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Abstract

Recently, test-time adaptation (TTA) has been
proposed as a promising solution for addressing
distribution shifts. It allows a base model
to adapt to an unforeseen distribution during
inference by leveraging the information from
the batch of (unlabeled) test data. However,
we uncover a novel security vulnerability of
TTA based on the insight that predictions on
benign samples can be impacted by malicious
samples in the same batch. To exploit this
vulnerability, we propose Distribution Invading
Attack (DIA), which injects a small fraction of
malicious data into the test batch. DIA causes
models using TTA to misclassify benign and
unperturbed test data, providing an entirely new
capability for adversaries that is infeasible in
canonical machine learning pipelines. Through
comprehensive evaluations, we demonstrate the
high effectiveness of our attack on multiple
benchmarks across six TTA methods. In response,
we investigate two countermeasures to robustify
the existing insecure TTA implementations,
following the principle of “security by design”.
Together, we hope our findings can make the
community aware of the utility-security tradeoffs
in deploying TTA and provide valuable insights
for developing robust TTA approaches.

1. Introduction

Test-time adaptation (TTA) (Wang et al., [2021bj |Schneider
et al.} 2020; |Goyal et al.| [2022)) is a cutting-edge machine
learning (ML) approach that addresses the problem of
distribution shifts in test data (Hendrycks & Dietterich,
2019)). Unlike conventional ML methods that rely on a fixed
base model, TTA generates batch-specific models to handle
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Figure 1. Overview of conventional machine learning and test-
time adaptation. Test-time adaptation adapts to the test batch,
but is vulnerable to malicious data at test time (in contrast to
conventional machine learning).

different test data distributions. Specifically, when test data
are processed batch-wise (batl [2021), TTA first leverages
them to update the base model and then makes the final
predictions using the updated model. Methodologically,
TTA differs from the conventional ML (inductive learning)
and falls within the transductive learning paradigm
(Vapnikl [1998). TTA usually outperforms conventional ML
under distribution shifts since 1) it gains the distribution
knowledge from the test batch and 2) it can adjust the model
adaptively. Empirically, TTA has been shown to be effective
in a range of tasks, including image classification (Wang
et al., |2021b)), object detection (Sinha et al., [2023)), and
visual document understanding (Ebrahimi et al., 2022).

However, in this work, we highlight a potential security
vulnerability in the test-time adaptation process — an
adversary can introduce malicious behaviors into the
model by crafting samples in the test batch. Our
key insight is that TTA generates the final predictive
model based on the entire test batch rather than making
independent predictions for each data as in a conventional
ML pipeline. Therefore, the prediction for one entry in
a batch will be influenced by other entries in the same
batch. As a result, an adversary may submit malicious
data at test time to interfere with the generation of the final
predictive model, consequently disrupting predictions on
other unperturbed data submitted by benign users. This
emphasizes the necessity of considering the utility-security
tradeoffs associated with deploying TTA.

Our Contributions. To exploit this vulnerability, we
present a novel attack called Distribution Invading Attack
(DIA), which exploits TTA by introducing malicious data
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(Section [)). Specifically, DIA crafts (or uploads) a small
number of malicious samples (e.g., 5% of the batch) to the
test batch, aiming to induce the mispredictions of benign
samples. We formulate DIA as a bilevel optimization
problem with outer optimization on crafting malicious data
and inner optimization on TTA updates. Next, we transform
it into a single-level optimization via approximating model
parameters, which can be solved by a projected gradient
descent mechanism. DIA is a generic framework that can
achieve multiple adversarial goals, including 1) flipping
the prediction of a crucial sample to a selected label
(targeted attack), 2) degrading performance on all benign
data (indiscriminate attack), and achieving the first objective
while keeping benign data accuracy (stealthy targeted
attack).

We empirically illustrate that DIA achieves a high attack
success rate (ASR) on various benchmarks, including
CIFAR-10-C, CIFAR-100-C, and ImageNet-C (Hendrycks
& Dietterichl [2019) against a range of TTA methods, such
as TeBN (Nado et al.} 2020), TENT (Wang et al., [2021b)),
and Hard PL (Lee et al.,[2013)) in Section@ Notably, we
demonstrate that targeted attacks using 5% of malicious
samples in the test batch can achieve over 92% ASR
on ImageNet-C. Our evaluation also indicates that DIA
performs well across multiple model architectures and data
augmentations. Furthermore, the attack is still effective even
when there is a requirement for the malicious inputs to be
camouflaged in order to bypass the manual inspection.

In response, we explore countermeasures to strengthen the
current TTA methods by incorporating the principle of
“security by design” (Section[6)). Given that adversarially
trained models (Madry et al., 2018]) are more resistant to
perturbations, we investigate the possibility of defending
against DIA using them as the base model. In addition, since
the vulnerabilities of TTA primarily stem from the insecure
computation of Batch Norm (BN), we explore two methods
to robustly estimate it. First, we leverage the BN computed
during training time, which is robust to DIA, as a prior for
the final BN statistics computation. Second, we observe that
DIA impacts later BN statistics more than other layers and
develop a method to adjust BN statistics accordingly. Our
evaluation shows the effectiveness of combining adversarial
models and robust BN estimation against DIA, providing
guidance to future works for improving TTA robustness.

Overall, our work shows that in effort to enhance
utility, using test-time adaptation (transductive learning
paradigm) inadvertently amplifies the security risks. Such
utility-secruity tradeoff has been deeply explored in
inductive learning (Chakraborty et al., [2018)), and we
urge the community to build upon the prior works in
inductive learning, by taking these security risks into
account when enhancing the utility with transductive

learning. The code is available at https://githubl
com/inspire—group/tta_risk

2. Background and Related Work

In this section, we introduce test-time adaptation and then
review the related works in adversarial machine learning.
More details can be found in[Al

2.1. Notation and Test-Time Adaptation

Let D° = {(x}, yf)}fil be the training data set from the

source domain, and X' := {xf}f\[:tl be the unlabeled test
data set from the target domain, where Ng and N; denote
the number of points in D* and X?, respectively. The goal
is to learn a prediction rule f(-; ) parameterized by 6 that
can correctly predict the label y! for each x} € X?’. In the
conventional ML (inductive learning) setting, we find the
best model parameters 6° by training on the source dataset
D?. However, in practice, training and test data distribution
may shift, and a fixed model f(-;6%) will result in poor
performance (Hendrycks & Dietterich) 2019). To address
this issue, test-time adaptation (TTA), under transductive
learning setting, has been proposed (Wang et al., 2021b).
Specifically, TTA first obtains a f(+; 0°) learned from the
source training set D® or downloaded from an online source
and then adapts to test data X' during inference. In this
case, TTA can characterize the distribution of X, thereby
boosting the performance.

2.2. Leveraging the Test Batch in TTA

TTA techniques are typically used when the test data is
processed batch by batch in an online mannerﬂ Let X, =
{x!} B C X be a subset (i.e., batch) of test data with size
Npy, and f(-; 0P*) be the pre-adapted model which is going
to perform adaption immediately. Initially, we set 0P = 6°.
At each iteration, a new batch of test data X% is available;
parts of the model parameter are updated accordingly, and
the final predictions are based on the updated model. Here
we introduce two mainstream techniques:

Test-time Batch Normalization (TeBN). Batch Norm
(BN) (Ioffe & Szegedyl [2015)) normalizes the input features
by batch mean and variance, reducing the internal covariate
shifts in DNN. Nado et al.[(2020) replace the normalization
statistics {1, 02} on the training set by the statistics of the
test batch X%, denoted as 05(XY%) := {u(X%), 02(X4)},
where Oz is BN statistics. This can help the model
generalize better to the unseen and shifted data distribution.

Self-Learning (SL). SL updates part of model parameters
0 4 by the gradient of loss function Lrrs. Some methods

"We exclude single-sample TTA methods (e.g., [Zhang et al.
(2021a)) which usually perform worse than batched version. In
addition, they make independent predictions for each test data,
avoiding the risks we discuss in this paper.
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like TENT (Wang et al., 2021b)) minimize the entropy of
prediction distribution on a batch of test samples, where loss
is CTTA(XtB). We then denote the remaining parameters as
Ox := 6%\ (0.4 U0p), which stay fixed. In other methods
like pseudo-labeling (PL), the loss can be formulated as
Lrra(X4,y), where ¥ = {7} X5 denote the pseudo-
labels. In the standard PL methods, the pseudo-labels y can
be directly predicted by the teacher, known as Hard PL (Lee
et al.,[2013), or by predicting the class probabilities, known
as Soft PL (Lee et al.,[2013)). Later, Robust PL proposed
by Rusak et al| (2022) and Conjugate PL developed by
Goyal et al.| (2022) further improve the pseudo-labels with
more advanced TTA loss. Notably, all SL. methods usually
achieve the best performance when 6 4 equals the affine
transformations of BN layers (Rusak et al., 2022).

2.3. Related Work

Previous work on conventional ML risks has focused on
adversarial attacks, such as evasion attacks (Biggio et al.
2013} (Goodfellow et al, 2015} |Carlini & Wagner, [2017)),
which perturb test data to cause mispredictions by the model
during inference. However, our attack on TTA differs in
that the malicious samples we construct can target benign
and unperturbed data. Another form of ML risk is data
poisoning (Biggio et al., 2012} |[Koh & Liang| 2017} |Gu
et al.,[2017)), which involves injecting malicious data into
training samples, causing models trained on them to make
incorrect predictions. Our attack differs in that we only
assume access to unlabeled test data, making it easier to
deploy in real-world environments.

The security community has also explored the use of
transductive learning to enhance the conventional ¢,
robustness of ML (Goldwasser et al., [2020; |Wu et al.}
2020bj; [Wang et al., 2021a). However, the latter work
by |Chen et al.| (2022b); |Croce et al.| (2022) demonstrated
these defenses through transductive learning have only a
small improvement in robustness. Our paper focuses on
another perspective, where transductive learning induces
new vulnerabilities such that benign and unperturbed data
may be misclassified.

Other related works are discussed in Appendix [A.5]

3. Threat Model

As no previous literature has studied the vulnerabilities
of TTA, we start by discussing the adversary’s objective,
capabilities, and knowledge for our attack. We consider
a scenario in which a victim gets a source model, either
trained on source data or obtained online, and seeks to
improve its performance using TTA on a batch of test data.

Adversary’s Objective. The objective of Distribution
Invading Attack (DIA) is to interfere with the performance
of the post-adapted model in one of the following ways: (1)

targeted attack: misclassifying a crucial targeted sample
as a specific label, (2) indiscriminate attack: increasing
the overall error rate on benign data in the same batch, or (3)
stealthy targeted attack: achieving targeted attack while
maintaining accuracy on other benign samples.

Adversary’s Capabilities and Additional Constraints.
The attacker can craft and upload a limited number of
malicious samples to the test batch during inference. Since
the DIA does not make any perturbations on the targeted
samples, in our main evaluation, we do not require a
constraint for malicious data as long as it is a valid image.
However, bypassing the manual inspection is sometimes
worthwhile; the adversary may also construct camouflaged
malicious samples. Concretely, we consider two constraints
on attack samples: (1) £, attacks (Goodfellow et al., 2015)),
the most common practice in the literature; (2) adversarially
generated corruptions (e.g., snow) (Kang et al.,[2019), which
simulates the target distribution.

Adversary’s Knowledge. We consider a white-box setting
where the DIA adversary knows the pre-adapted model
parameters P and has read-only access to benign samples
in the test batch (e.g., a malicious insider is involved). E]
However, the adversary has no access to the training data
or the training process. Furthermore, our main attacking
methods (used in most experiments) do not require the
knowledge of which TTA methods the victim will deploy.

4. Distribution Invading Attack

In this section, we first identify the detailed vulnerabilities
(Section , then formulate Distribution Invading Attack
as a general bilevel optimization problem (Section .2)), and
finally discuss constructing malicious samples (Section[4.3).

4.1. Indentifing the Vulnerabilities of TTA

The risk of TTA stems from its transductive learning
paradigm, where the predictions on test samples are no
longer independent of each other. In this section, we
detail how specific approaches used in TTA expose security
vulnerabilities.

Re-estimating Batch Normalization Statistics. Most
existing TTA methods (Nado et all 2020; [Wang et al.|
2021b; |Rusak et al. [2022) adopt test-time Batch
Normalization (TeBN) as a fundamental approach for
mitigating distribution shifts when the source model is
CNN with BN layers. We denote the input of /th BN
layer by z;, and test-time BN statistics for each BN layer
can be computed by {u <+ E[z],0? « E[(p — z)?]}
through the forward path in turn, where the expectation (i.e.,
average) E is applied channel-wise on the input. When

2We also consider the setting where attackers cannot access
benign data in Section 5.5}
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calculating BN statistics 63 over a batch of test data, any
perturbations to some samples in the batch can affect the
statistics jz, 0% layer by layer and potentially alter the
outputs (i.e., z)" := (z; — p)/o) of the other samples in
the batch. Hence, adversaries can leverage this property to
design Distribution Invading Attacks.

Parameters Update. To further adapt the model to a target
distribution, existing methods often update part of model
parameters 0,4 by minimizing unsupervised objectives
defined on test samples (Wang et al.,|2021b; Rusak et al.,
2022; |Goyal et al. 2022). The updated parameter can
be computed by: 6% = argmin,, Lr1a(X%3;60.4) Hence,
malicious samples inside X% may perturb the model
parameters 0%, leading to incorrect predictions later.

4.2. Formulating DIA as a Bilevel Optimization Problem

We formulate the DIA as an optimization problem to exploit
both vulnerabilities mentioned above. Intuitively, we want
to craft some malicious samples X¢ = {x! . .}Nm to
achieve an attack objective (e.g., misclassifying a’targeted
sample). Then, the test batch X*; comprises X!, and other
benign samples X%\mal. The pre-adapted model parameter
0P is composed of parameters 6 4 that will update, BN
statistics 6, and other fixed parameters 6~ (i.e., 6P :=
6.4 U6 U0Ox). Here, we use L(f(- ;6*(X%))) to denote
the general adversarial loss, and the problem for the attacker
can be formulated as the following bilevel optimization:
min L(f(-;6"(X3))) (M

mal

0 = {u(X%),0*(X5)

074 = argmin L11a(X; 0.4, 05, 05); )
04

0" (X) = 04 U0 UbF;

s.t. X?g - Xin,al ) XtB\mal;

where 6} is the updated BN statistics given the test batch
data, 0% is the parameter that is optimized over TTA
loss, and 6*(X%) is the optimized model parameters
containing 0%, 9;3, and other fixed parameters 6. In
most cases, test-time adaptation methods perform a single-
step gradient descent update (Wang et al., [2021b), and
the inner optimization for TTA simplifies to 6% = ¢/, =
0.4 — OLr1a(X%) /00 4. Now, we discuss how we design
the specific adversarial loss L(f(- ; 0*(XY%))) for achieving
various objectives.

Targeted Attack. We aim to cause the model to predict a
specific incorrect targeted label ;4 for a targeted sample

xigt € XtB\mal' Thus, the objective can be formulated as:

~

Xinal = arg min E(f(xigt; 0" (XtB))v ytgt) (3)
Xinal

where L is the cross-entropy loss.

Indiscriminate Attack. The objective turns to degrade

the performance of all benign samples as much as possible.

Algorithm 1 for constructing Distribution Invading Attack

1: Input: Pre-adapted model parameters 6P = 64 U
0 U0 x, test batch (X%; y';) which contains malicious
samples X, ; and benign samples X7, ;. targeted
samples xj,, and incorrect targeted label ¢4, attack
learning rates «, constraint ¢, number of steps NV, TTA
update rate: 7, perturbation d,,,=0
Output: Perturbed malicious input X! + .,
for step=1,2,..., N do:
X (Xt 4+ 0m) U XtB\mal
O  {n(Xp),0* (X))}
(Optional) 0’y <+ 0.4 — 1 - OLrra(XY)/00 4
#0'y ~ 04 in the single-level version.
70— 0, U0 UbF
8: O + Il (0 — - sign(Vs, L(f(-;0*(X%)))))
# L is chosen from Eq. @), Eq. @), or Egq. @
9: end for
10: return X! , =X! -+ 8,

AR AN

Given the correct labels of benign samples th\mal’ we
define the goal of indiscriminate attack as follows:

iznal = argtmin _‘C(f(xg’\malv 0" (XtB))7 y%\mal)' (4)

mal

Stealthy Targeted Attack. In some cases, when performing
targeted attack, the performance of the other benign
samples XtB\ (tgtumal)® which is the whole test batch
excluding malicious and targeted data, may drop. A solution
is conducting targeted attacks and maintaining the accuracy
of other benign data simultaneously, which is:

~

Xinar = argmin L(f(Xige; 0" (X)), Gege)+
Xnat 5)
W * £(f(X§3\(tgtUmal); 9* (X%)% th\(tgtUmal))'

We introduce a new weight term w to capture the trade-off
between these two objectives.

4.3. Constructing Malicious Inputs via Projected
Gradient Descent

We solve the bilevel optimization problems defined in
the last section via iterative projected gradient descent,
summarized in Algorithm|[I] Our solution generalizes across
the three adversary’s objectives, where L(f(- ;6*(X%)))
can be replaced by Eq. (3), Eq. (), or Eq. (3). We follow
the general projected gradient descent method but involve
TTA methods. Concretely, Line [Z_f] updates the test batch, and
Line E] computes the test-time BN. Then, Line E] and Line
perform parameter updates. In Line 8] we compute the
gradient toward the objective (three attacks we discussed
previously) and update the perturbation d,,, with « learning
rate. Since, in most cases, we do not consider a constraint
for the malicious images, the projection II. is to ensure the
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images are valid in the [0,1] range. For /., constrained
DIA attacks, we will also leverage the 11, to clip §,, with
constraint € (e.g., ¢ = 8/255). Finally, we get the optimal
malicious output samples Xfml =Xt i+ 0m.

Implementation. While Algorithm |lf is intuitive, the
gradient computation can be inconsistent and incur a
high computational cost due to the bilevel optimization.
Furthermore, we notice that TTA methods only perform
a short and one-step update on 6, parameters at each
iteration (Line @) Therefore, we approximate 6, ~
04 in most experiments, which makes the inner TTA
gradient update (Line E]) optionaIE] Since the re-estimated
6} does not involve any inner gradient computation, we
then decipher the problem as a single-level optimization.
Our empirical evaluation indicates the effectiveness of
our method, reaching comparable or even higher results
(presented in Appendix [C.2)). An additional benefit of our
method is we no longer need to know which TTA methods
the victim will choose. We also provide some theoretical

analysis in Appendix

5. Evaluation of Distribution Invading Attacks

In this section, we report the results of Distribution Invading
Attacks. We present the experimental setup in Section
discuss the main results for targeted attacks in Section[5.2}
present the results for indiscriminate and stealthy targeted
attacks in Section[5.3] consider extra constraints in Section
[54] and demonstrate the attack effectiveness under relaxed
assumptions in Section[5.5] Further results, including more
ablation studies, are presented in Appendix [D}]

5.1. Experimental Setup

Dataset & Architectures. We evaluate our attacks on well-
established distribution shift benchmarks, namely CIFAR-
10 to CIFAR-10-C, CIFAR-100 to CIFAR-100-C, and
ImageNet to ImageNet-C (Hendrycks & Dietterichl 2019),
where the severity of the corruption is set to medium (level
3). We primarily use ResNet-26 (He et al.|[2016) for CIFAR-
and ResNet-50 for ImageNet-C.

Test-time Adaptation Methods. We select six TTA
methods, which are TeBN (Nado et al.,[2020), TENT (Wang
et al., |2021b), Hard PL (Lee et al., 2013), Soft PL (Lee
et al., 2013), Robust PL (Rusak et al. 2022), and
Conjugate PL (Goyal et al.| [2022). We follow the settings
of their experiments, where the batch size is 200, and
all other hyperparameters are also default values. As a
result, all TTA methods significantly boost the corruption
accuracy (i.e., the accuracy on benign corrupted test data
like ImageNet-C), which is shown in Appendix [C.3]

3Line@is necessary for models without BN layers.
*CIFAR-C denotes both CIFAR-10-C and CIFAR-100-C.
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Figure 2. Success rate of our proposed attack across numbers of
malicious samples from 1 to 128 (0.5% to 64%). [TTA: TeBN]

Attack Settings (Targeted Attack). We consider each test
batch as an individual attacking trial where we randomly
pick one targeted sample with a targeted labeIE] The attacker
can inject a small set of malicious data inside this batch
without restrictions as long as their pixel values are valid.
In total, there are 750 trials for CIFAR-C and 375 trials for
ImageNet-C. We estimate our attack effectiveness by attack
success rate (ASR) averaged across all trials. Note that
except TeBN, for each trial, TTA methods use the current
batch to update 6 4, and send it to the next trial. Hence, P™
is different for different trials. Further experimental setup
details are in Appendix [D.1]

5.2. Main Results of Targeted Attack

Distribution Invading Attack achieves a high attack
success rate (ASR) across benchmarks and TTA methods
(Table . We select V,,, = {10,20,40} of malicious
samples out of 200 data in a batch for CIFAR-C and N,,, =
{5, 10,20} for ImageNet-C. By constructing 40 malicious
samples on CIFAR-10-C and CIFAR-100-C, our proposed
attack can shift the predictions of the victim sample to
a random targeted label in more than 82.93% trials. For
ImageNet-C, just 10 malicious samples are sufficient to
attack all TTA methods with an attack success rate of
more than 92.80%. The ASR of TeBN are higher than
other TTA methods since the attacks here only exploited
the vulnerabilities from re-estimating batch normalization
statistics. We demonstrate that further parameter updates
of other TTA methods cannot greatly alleviate the attack
effectiveness. For example, the drop of ASR is less than
6.7% for ImageNet-C with 10 malicious samples.

DIA reaches near-100% ASR, with 64, 32, and 16
malicious samples for CIFAR-10-C, CIFAR-100-C, and
ImageNet-C, respectively (Figure [Z). We then evaluate
our attack with more comprehensive experiments across
the number of malicious samples. Specifically, 1 to 128
malicious samples are considered, which is 0.5% to 64%
of batch size. TeBN is selected as the illustrated TTA
method (Appendix [D.2] presents more methods). Generally,
the attack success rate increases when the attacker can
control more samples. For CIFAR-10-C, we observe that

SUnless otherwise specified, most experiments in this paper are
conducted using targeted attack.
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Table 1. Attack success rate of Distribution Invading Attack (targeted attacks) across benchmarks and TTA methods. N, refers to the

number of malicious data, where the batch size is 200.

Dataset Ny, TeBN(%) TENT(%) HardPL(%) SoftPL(%) RobustPL(%) Conjugate PL(%)

10 (5%) 25.87 23.20 25.33 23.20 24.80 23.60

C&i‘tﬁ;g’(;)c 20 (10%)  55.47 4573 48.13 47.47 49.47 45.73
40 20%)  92.80 83.87 84.27 82.93 86.93 85.47

10 (5%) 46.80 26.40 31.20 27.60 32.13 26.13

C(Ilg‘:sl;;ltgg')c 20 (10%) 93.73 72.80 87.33 78.53 82.93 71.60
40 (20%)  100.00 100.00 99.87 100.00 99.87 100.00

ImageNet.C O 25%) 80.80 75.73 69.87 62.67 66.40 57.87
(RefNetso) 10 (5%) 99.47 98.67 96.53 94.13 96.00 92.80
20(10%)  100.00 100.00 100.00 100.00 100.00 100.00

Table 2. Effectiveness of the Distribution Invading Attack across
various model architectures and data augmentations. [CIAFR-C:
Nm=40; ImageNet-C: N,,,=10]. Table[7] presents full results.

Dataset Architectures TeBN(%) TENT(%) Hard PL(%)
ResNet-26 92.80 83.87 84.27
CIFAR-10-C VGG-19 79.07 65.33 67.47
WRN-28 93.73 89.60 90.80
ResNet-26 100.00 100.00 99.87
CIFAR-100-C VGG-19 88.00 82.93 86.53
WRN-28 97.47 83.60 87.07

Dataset Augmentations TeBN(%) TENT(%) Hard PL(%)
Standard 99.47 98.67 96.53
ImageNet-C AugMix 98.40 96.00 93.60
DeepAugment 96.00 94.67 91.20

the attacker has to manipulate ~64 (32% of the batch size)
samples to ensure victim data will be predicted as a targeted
label with a near-100% chance. Although 32% seems to
be a relatively strong assumption compared to conventional
poisoning attacks, it is worth noting that DIA only requires
perturbing test data which might not be actively monitored.

DIA also works across model architectures and data
augmentations (Table [2). Instead of ResNet-26, we
also consider two more common architectures: VGG
(Simonyan & Zisserman) 2015)) with 19 layers (VGG-19),
and Wide ResNet (Zagoruyko & Komodakis, 2016) with
a depth of 28 and a width of 10 (WRN-28) on CIFAR-C
dataset. Our proposed attack is also effective across different
architectures, despite the attack success rates suffering
some degradations (<20%) for VGG-19. We hypothesize
that the model with more batch normalization layers is
more likely to be exploited by attackers, where ResNet-26,
VGG-19, and WRN-28 contain 28, 16, and 25 BN layers,
respectively. We further refine the statement through more
experiments in Appendix In addition, we also select
two more data augmentation methods, AugMix (Hendrycks
et al., 2020) and DeepAugment (Hendrycks et al., [2021)),
on top of ResNet-50, which is known to improve the
model generalization on the corrupted dataset. Strong data
augmentation techniques provide mild mitigations against
our attacks (with 10 malicious samples) but still mistakenly
predict the targeted data in more than 91% of trials.

Table 3. Average benign corruption error rate of TTA when
deploying DIA indiscriminate attack. Table [§]presents full results.

Dataset Ny, TeBN(%) TENT(%) HardPL(%)
CIFAR-10-C 0 (0%) 10.73 10.47 11.05
(ResNet-26) 40 (20%) 28.02 27.01 27.91

CIFAR-100-C 0 (0%) 34.52 33.31 34.66
(ResNet-26) 40 (20%) 58.41 54.44 56.59
ImageNet-C 0 (0%) 47.79 45.45 43.42
(ResNet-50) 20 (10%) 79.03 75.01 70.26

5.3. Alternating Attacking Objective

Our previous DIA evaluations focus on targeted attacks.
However, as we discussed in Section 4.2] malicious actors
can also leverage our attacking framework to achieve
alternative goals by slightly modifying the loss function.

5.3.1. INDISCRIMINATE ATTACK

The first alternative objective is to degrade the performance
on all benign samples, which is done by leveraging Eq. @).
Here, we adopt the corruption error rate on the benign
corrupted dataset as the attack evaluation metric.

By injecting a small set of malicious samples, the error
rate grows (Table . Besides attack effectiveness, we
report the error rate for O malicious samples (which stands
for no attacks) as the standard baseline. Our attack causes
the error rate on benign samples to rise from ~11% to
~28% and from ~34% to ~56% for the CIFAR-10-C and
CIFAR-100-C benchmarks, respectively. Furthermore, only
20 malicious samples (10%) for ImageNet-C boost the error
rate to more than 70%. Since all benign samples remain
unperturbed, the increasing error rate demonstrates the extra
risks of TTA methods compared to the conventional ML.

5.3.2. STEALTHY TARGETED ATTACK

In Table [, ~40 samples are needed for the CIFAR-C
dataset to achieve a high attacking performance. Thus, the
malicious effect might also affect the predictions for other
benign samples, resulting in losing attacking stealth. We
adopt Eq. (5) to simultaneously achieve targeted attacks and
maintain corruption accuracy. Here, we use the corruption
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Figure 3. Adjusting the weight w achieves a high attack
success rate (line) and a high benign corruption accuracy (bar).
[Benchmark: CIFAR-10-C, N,,=40, TTA method: TeBN]

Figure 4. (a) Test data from ImageNet-C with Gaussian noise. (b)
Lo constrained DIA on test data (e=8/255). (c) A clean data from
the ImageNet validation set. (d) Snow attack on the clean data.

accuracy degradation on benign samples to measure the
stealthiness.

When w = 0.1, stealthy DIA can both achieve a high
attack success rate and maintain corruption accuracy
(Figure[3). We select CIFAR-10-C with 40 malicious data
and TeBN method, where w = {0,0.1,0.2}. We observe
that if w = 0.1, the corruption accuracy degradation drops
to ~2%. At the same time, the ASR remains more than
75%. Appendix has more results on CIFAR-100-C.

5.4. Additional Constraints on Malicious Images

We further consider the stealth of malicious samples to
avoid suspicion. The model may reject test samples that are
anomalous and refuse to adapt based on them.

5.4.1. ¢, BOUND

Like much other literature in the adversarial machine
learning community, we adopt the ¢, constraints as
imperceptible metrics to perturb the malicious samples.
Specifically, we conduct targeted attack experiments on
the ImageNet-C by varying the /., bound of 5 malicious
data samples. Figure [5|reports the attacking effectiveness
trends in terms of various £, constraints, where DIA with ¢
= 32/255 reach similar performance with unconstrained
attacks. Furthermore, we specifically select the e =8/255 to
run extra experiments on the number of malicious samples,
as the resulting images are almost imperceptible to the
original images (showed in Figure [d(b) and Figure[26). As
a result, DIA achieves near-100% attack success rate,
with 32 (e = 8/255) malicious samples for ImageNet-C.

5.4.2. SIMULATED CORRUPTIONS

Since our out-of-distribution benchmark is composed of
common corruptions, another idea is to leverage such
intrinsic properties and generate “imperceptible” adversarial

100 [ reBN 100 [ eBN
TENT TENT

80| . HardpL 80|+ HardpL

60

40

20

Attack Success Rate
Attack Success Rate

O 21 22 22 2t 3 2 2
# of Malicious Samples

2/255 8/255 32/255 128/255
Epsilon

Figure 5. Illustration of the attack success rate across various €

of Lo constraints [N,, = 5] (left) and the different number of
malicious samples (right) [e = 8/255]. [Targeted Attack]

Table 4. Average attack success rate of adversarially optimized
snow corruptions and fog corruptions. [V,,,=20; Targeted Attack]

Dataset Corruption/Attack TeBN(%) TENT(%) HardPL(%)
ImageNet-C ~ Snow/Snow Attack 64.00 68.00 68.00
(ResNet50) Fog/Fog Attack 84.00 76.00 72.00

samples adaptively. For example, we can apply the
adversarially optimized snow distortions to the clean images
and insert them into the test data in snow distribution. Then,
these injected malicious images (shown in Figure[dd)) are
hard to be distinguished from benign corrupted data. For
implementation, we again compute the gradient of the loss
function in Eq. (3) and adopt the same approach as [Kang
et al. (2019).

Adversarially optimized simulated corruption is another
effective and input-stealthy DIA vector (Table d). We
apply the Snow attack to the ImageNet-C with snow
corruptions, similar to Fog. By inserting 20 malicious
samples, the attack success rate reaches at least 60%
and 72% for Snow and Fog, respectively. Our findings
show attackers can leverage test distribution knowledge to
develop a better threat model. More details are presented in

Appendix

5.5. Relaxing the Assumptions of Attacker’s Knowledge

In this subsection, we evaluate the performance under
relaxed assumptions of DIA attacks, including no access to
benign data and randomly selected test batch.

5.5.1. NO ACCESS TO BENIGN SAMPLES

We first illustrate the feasibility of our attack method, despite
lacking access to benign samples within the test batch. To
approximate the benign user data during the test phase, we
employ data sourced from the training set. More specifically,
we select a random subset of data for each attack iteration,
apply analogous noise (i.e., noise similar to the one applied
to the targeted sample), and use it as a replacement for
benign data. Next, we conduct the targeted attack on the
ImageNet-C dataset (Gaussian noise subset), varying the
amount of injected malicious data.

Table 5] presents the experimental outcomes when attackers
lack access to benign samples at test time. Compared to our
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Table 5. Attack success rate with two relaxed assumptions
of attacker’s capability (i.e., access/no access to benign data
and whether the random batch selection (RBS) is considered).
[TmageNet; Targeted Attack]. Table[I0]presents full results

Ny, Benign Data RBS TeBN(%) TENT(%) HardPL(%)
5(2.5%) Access X 92.00 92.00 72.00
5(2.5%) No access X 64.00 52.00 44.00
5(2.5%) No access v 60.00 44.00 40.00
10(5%) Access X 100.0 100.0 100.0

10(5%) No access X 100.0 92.00 84.00
10(5%) No access v 100.0 92.00 84.00

previous scenario (where the attacker has access to benign
samples in the test batch), the attack success rate drops
~30% if 5 malicious data samples are injected but achieve
comparable performance if more malicious data samples are
injected. This indicates that our DIA attack is still highly
effective even if benign samples cannot be accessed.

5.5.2. RANDOM BATCH SELECTION

We also consider a more practical setting where the test
batch is chosen randomly, meaning that targeted data can be
in any batch. The challenge arises from the unpredictability
of the number and selection of malicious samples, which
complicates managing their effectiveness. To eliminate
randomness within the malicious samples, we constrain
them to be identical. Then, our goal is twofold: (1) perform
the targeted attack on the batch containing the targeted
sample, accounting for the uncertainty of the number of
malicious samples while ensuring identicalness through the
same initialization and updates of malicious samples; and
(2) insert a sufficient number of malicious examples into the
test set. To ensure the targeted data comprise n% malicious
data in expectation, we should inject n% of malicious data
into the entire test set.

Taking the random batch selection into account won’t
largely affect the DIA performance. Our analysis also
extends to the targeted attack on the ImageNet-C dataset
(Gaussian noise subset) under conditions where the attacker
has no prior knowledge of which batch contains the targeted
data. In Table 5] we document the results when the
attacker has no access to benign samples, and the batch
selection is random. Here, the number of malicious data
is in expectation. Interestingly, we observe that the attack
success rates yield identical performance when the number
of malicious data is 10.

6. Mitigating Distribution Invading Attacks

Next, we turn our attention to developing mitigation
methods. Our goal is two folds: maintaining the benefits of
TTA methods and mitigating Distribution Invading Attacks.
Note that we present additional results, including all CIFAR-
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Figure 6. (Left) Attack success rate of DIA against robust models,
including |Salman et al.| (2020)) and |[Engstrom et al.| (2019), across
numbers of malicious samples. As a reference, 128 is 64% of the
whole batch containing 200 samples. (Right) Corruption accuracy

of robust models. [TTA method: TeBN]
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6.1. Leveraging Robust Model to Mitigate DIA

Our first idea is to replace the source model with a robust
model (i.e., adversarially trained models (Madry et al.,
2018)). Our intuition is that creating adversarial examples
during training causes shifts in the batch norm statistics.
(Adversarially) training with such samples will robustify the
model to be resistant to BN perturbations. We evaluate the
targeted DIA against robust ResNet-50 trained by |Salman
et al.| (2020) and |[Engstrom et al.|(2019), which are the best
ResNet-50 models from RobustBench (Croce et al.| 2020).
Since our single-level attacks only exploit the vulnerabilities
of re-estimating the BN statistics, evaluating defenses on
TTA with updating parameters could give a false sense of
robustness. Therefore, most countermeasure experiments
mainly focus on the TeBN method.

Adversarially trained models boost robustness against
DIA and maintain the corruption accuracy (Figure [6).
We report the ASR curve of two robust models and observe
that they significantly mitigate the vulnerabilities from the
test batch. For example, with 8 malicious samples, robust
models degrade ASR by ~80% for ImageNet-C. At the
same time, the TeBN method significantly improves the
corruption accuracy of robust models, reaching even higher
results. However, DIA still achieves more than 70% success
rate with 32 malicious samples (16% of the whole batch).

6.2. Robust Estimate of Batch Normalization Statistics

We then seek to mitigate the vulnerabilities by robustifying
the re-estimation of Batch Norm statistics.

Smoothing via training-time BN statistics. Since training-
time BN cannot be perturbed by DIA, we can combine the
training-time and test-time BN statistics. This approach
is also mentioned in (Schneider et al.l 2020; [You et al.|
2021)); however, their motivation is to stabilize the BN
estimation when batch size is small (e.g., <32) and improve
the corruption accuracy. It can be formulated as i =
Ths + (1 —7)ue, % =702+ (1—7)o?, where (ji,5?)
stand for final BN statistics, (i, ag) are training-time BN,
and (u¢,0?) are test-time BN. We view the training-time
BN statistics as a robust prior for final estimation and adopt
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smoothing factor 7 to balance the weight.

Leveraging Training-time Batch Norm statistics
mitigates the vulnerabilities for both standard and
adversarial models (Figure [7). We specifically select
Ny, =20 and set 7 = {0.0,0.2,0.4,0.6,0.8,1.0}, where
7 = 0.0 ignores the test-time BN and 7 = 1.0 ignores
training-time BN. It appears that improving 7 generally
results in both ASR and corruption accuracy drops on
ImageNet-C. However, the degradation in corruption
accuracy happens only when 7 > 0.6. Therefore, setting
7 = 0.6 is a suitable choice, which can mitigate the ASR to
~20% for 20 malicious samples with robust models.

Adptively Selecting Layer-wise BN statistics. We also
explore and understand the DIA by visualizing each layer
BN in Appendix [E4] Given the discovery where BN
statistics shift on the latter layers when applying DIA, we
can strategically select training or test time BN statistics for
different layers. Hence, we take advantage of training-time
BN for the last few layers to constrain the malicious effects.

Adaptive Layer-wise BN further constrains the malicious
effect from DIA (Figure [8). Given 7 = 0.6 is a suitable
choice for whole BN layers, we further leverage full training-
time BN (7 = 1.0) for the last Ny, = {0, 1, 2, 4, 8, 16}
BN layers. It appears that increasing training-time BN
layers (from Ny, = 0 to Ny, = 16) results in tiny corruption
accuracy drops (~2%) and generally helps the robustness
against DIA. For example, if we set N, = 8, ASR drops
~40% for the standard model with V,,, = 20.

In conclusion, applying both approaches, our best results
achieve a negligible corruption accuracy degradation and
mitigate ASR by ~50% for the standard model and
~40% for the robust model on ImageNet-C. However,
our mitigations have not fully resolved the issue, where

increasing the number of malicious data samples may
still allow successful DIA attacks with a high probability.
We encourage future researchers to consider the potential
adversarial risks when developing TTA techniques.

7. Discussion and Future Work

While our proposed attacks are promising in terms of
effectiveness, several limitations exist. Many recent works
in test-time adaptation have been proposed, which leverage
different adaptation techniques (e.g., (Niu et al. [2022)).
Most of them still suffer from the two vulnerabilities we
identified in Sectiondand can be attacked by DIA directly
(see Appendix and Appendix [D.12.2). However,
an adaptive attack design should be considered if the
TTA techniques change significantly (e.g., methods neither
using test-time BN nor self-learning, see Appendix [D.12.3).
Furthermore, methods under the general transductive
learning settings (i.e., predictions affected by test batch) also
involve similar risks, which we encourage the community
to explore in future studies.

Another direction is relaxing the adversary’s knowledge
assumption. When model architectures and parameters
are not exposed to adversaries (black-box threat model),
launching DIA attacks could become more challenging.
Future works should consider methods using model
ensemble (Geiping et al.,2020) or diverse inputs (Xie et al.|
2018)) to boost the transferability of DIA’s malicious data.

8. Conclusion

In this work, we investigate adversarial risks of test-time
adaptation (TTA). First, we present a novel framework
called Distribution Invading Attack, which can be used
to achieve new malicious goals. Significantly, we prove
that manipulating a small set of test samples can affect the
predictions of other benign inputs if adopting TTA, which
is not studied at all in previous literature. We then explore
mitigation strategies, such as utilizing an adversarially-
trained model as a source model and robustly estimating BN
statistics. Overall, our findings uncover the risks of TTA
and inspire future works build robust and effective TTA
techniques.
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A. Omitted Details in Background and Related Work

In this appendix, we cover additional details on batch normalization (Appendix [A.T) and self-learning (Appendix [A.2)),
along with TTA algorithms in Appendix [A.3] Then, we discuss conventional machine learning vulnerabilities including
adversarial examples and data poisoning in Appendix Furthermore, we include a comprehensive review of the existing

literature in Appendix

A.1. Batch Normalization

In batch normalization, we calculate the BN statistics for each BN layer [ by computing the mean p and variance o2 of
the pre-activations z;: p < E|z;], 0% < E[(z; — 1)?]. The expectation [E is computed channel-wise on the input. We then
normalize the pre-activations by subtracting the mean and dividing by the standard deviation: z; = (z; — ) /0. Finally,
we scale and shift the standardized pre-activations z; to z; = ’leZl + 5, by learnable affine parameters {~;, 5;}. In our
experiments, the parameters updated during the TTA procedures are 6 4 = {7;, ;},, where L is the number of BN layers.
The statistics of the source data are replaced with those of the test batch.

A.2. Objectives of Self-Learning

We provide detailed formulations of the TTA loss functions used in self-learning (SL) methods. Let h(+; #) be the hypothesis
function parameterized by 6, which we consider to be the logit output (w.l.0.g.). The probability that sample x belongs to
class j is denoted as p(j|x) = o(h(x;0)), where o(-) is the softmax function. Here, we use 0 to denote 87" for simplicity.

TENT (Wang et al.,2021b). This method minimizes the entropy of model predictions.

Npt

Lrra(XF) : Z Zp jlx:) log p(jx;) (6)

Hard PL (Galstyan & Cohen) 2007} Lee et al., 2013). The most likely class predicted by the pre-adapted model is
computed as the pseudo label for the unlabeled test data.

Npt

Lria(Xp,¥(0) == —— Z log p(9i(8) ;)
(7
where y;(0) = argmaxp(ﬂxi)ﬁxi .4
J

Soft PL (Galstyan & Cohen, |2007; Lee et al.,[2013). Instead of using the predicted class, the softmax function is applied
directly to the prediction to generate a pseudo label.

Npt

L Xt y(0)) == — (0)1
(X5, 5(0)) NBt;Zy ) log p(j|x?), )

where 7;(0) = p(jx}), vx; € X
Robust PL (Rusak et al.}|[2022). It has been shown that the cross-entropy loss is sensitive to label noise. To mitigate the

side effect to the training stability and hyperparameter sensitivity, Robust PL replaces the cross-entropy (CE) loss of the
Hard PL with a Generalized Cross Entropy (GCE).

Lroa(XE 7(6)) 1=~ > a7 (1~ p(@H(O)x))) o

where 7;(0) = argmaxp(j|x), vx! € X}
J

where ¢ € (0, 1] adjusts the shape of the loss function. When ¢ — 1, the GCE loss approaches the MAE loss, whereas when
q — 0, it reduces to the CE losses.
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Conjugate PL (Goyal et al.,|2022). We consider the source loss function, which can be expressed as L(h(x;6),y) =
g(h(x;0)) — yTh(x;6), where g is a function and ¥ is a one-hot encoded class label. The TTA loss for self-learning with
conjugate pseudo-labels can be written as follows:

Np:¢

Lra(Xp,¥(9)) = NBt Zﬁ 0)/T,yi(0)),

where y;(6) = Vg(h (Xi)/T; Q)aVXi € X

(10)

The temperature 7" is used to scale the predictor.

A.3. TTA algorithms in details

In this subsection, we present the detailed algorithm of test-time adaptation (Algorithm [2). In our setting, the model is
adapted online when a batch of test data comes and then makes the prediction immediately.

Algorithm 2 Test-Time Adaptation
1: Input: Source model parameters #°, number of steps IV, TTA update rate: n
2: Initialization: 6 = 6°
3: forstep=1,2,...,N do

4:  Obtain a new test batch X% from the test domain.
50 05+ {u(XY),0%(X))

6: GA(—HA—U'aﬁTTA(XtB)/aeA

7: 0+ 0, Ub0U0F

8:  Make the prediction ¥ = f(X';6)

9: end for

A .4. Conventional Machine Learning Vulnerabilities

The following subsection provides additional background on ML vulnerabilities and their relevance to DIA. We then
emphasize the distinctiveness of the proposed attack, which differentiates it from other known adversarial examples and data
poisoning attacks.

Adversarial Examples. The vast majority of work studying vulnerabilities of deep neural networks concentrates on
finding the imperceptible adversarial examples. Those examples have been successfully used to fool the model at test
time (Goodfellow et al.| 2015} |Carlin1 & Wagner, 2017 |Vorobeychik & Kantarcioglul 2018). Commonly, generating an
adversarial example X’ = x* + & can be formulated as follows:

6 = argmax L(f(x' + 8;0°),y") s.t. [6ll, <e, (11)
s

where L is the loss function (e.g., cross-entropy loss), x*, y* denote one test data, ||4]| , < € is the £, constraint of the
perturbation . The objective is to optimize & to maximize the prediction loss £. For /., constraint, the problem can be
solved by Projected Gradient Descent (Madry et al., 2018)) as

8 <« I1.(8 + asign(VsL(f(x' + §;0%),9"))). (12)

Here, II. denotes projecting the updated perturbation back to the constraint, and « is the attack step size. By iteratively
updating through Eq. (12)), the attacker will likely cause the model to mispredict. Our single-level variant of the DIA attack
employs an algorithm similar to the projected gradient descent.

One characteristic of adversarial examples in ML pipeline is that the perturbations have to be made on the targeted data.
Therefore, as long as the user keeps the test data securely (not distorted), the machine learning model can always make
benign predictions. Our attack, targeted at TTA, differs from adversarial examples, where our malicious samples can be
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inserted into a test batch and attack the benign and unperturbed data. Therefore, there exists an increasing security risk if
deploying TTA.

Data Poisoning Attacks. In terms of attacking benign samples without directly modifying the data, another pernicious
attack variant, data poisoning, can accomplish this goal. Specifically, an adversary injects poisoned samples into a training
set and aims to cause the trained model to mispredict the benign sample. There are two main objectives for a poisoning
attack: targeted poisoning and indiscriminate. For targeted poisoning attacks (Koh & Liang] |[2017; Carlini & Terzis, [2022;
Carlini, 2021} |Geiping et al., 2020), the attacker’s objective is to attack one particular sample with a pre-selected targeted
label, which can be written as follows:

N,
win £ (f (xigr: 0°(9))  egr) .t 6°(8) = argming=> L (f (xf +6:60)37) (13)

° =1

where x! gt 1s the targeted samples and g, is the correpsonding incorrect targeted labels. x; is the training data and y;
is the corresponding ground truth. We use the d; to denote the perturbation on training data x{, and since there are N,
poisoning samples, some §; stays zero to represent clean samples.

For indiscriminate attacks (Nelson et al., 2008; Biggio et al.,|2012), the adversary seeks to reduce the accuracy of all test
data, which can be formulated as:

1 Qe

N,

=1

Ny
mém_;t;c(f (x:0°(8) .3})  5:.6°(6) € ang min L (xt+6,,6).4) (14)

t.

where X;

is the test data and y§ is the ground truth of it. These objectives also guide the design of our adversary’s goals.

However, the key characteristic of data poisoning for the machine learning model is the assumption of access to training data
for adversaries. Therefore, if the model developer obtains the training data from a reliable source and keeps the database
secure, then there is no chance for any poisoning attacks to be effective. Our attack for TTA differs from data poisoning, in
which DIA only requires test data access. This makes our attack easier to access, as data in the wild environment (test data)
are less likely to be monitored.

A.5. Extended Related Work

We present more related works of our paper in this subsection.

Unsupervised Domain Adaptation. Unsupervised domain adaptation (UDA) deals with the problem of adapting a model
trained on a source domain to perform well on a target domain, using both labeled source data and unlabeled target data.
One common approach (Ganin et al.| 2016} |Long et al., 2018)) is to use a neural network with shared weights for both the
source and target domains and introduce an additional loss term to encourage the network to learn domain-invariant features.
Other approaches include explicitly (Saito et al., 2018;Damodaran et al., [2018]) or implicitly (Li et al., [2016;(Wang et al.,
2019) aligning the distributions of the source and target domains. One category related to our settings is source-free domain
adaptation (Liang et al.l 2020; Kundu et al.| 2020; [Li et al., [2020), where they assume a source model and the entire test set.
For instance, SHOT (Liang et al.,2020) uses information maximization and pseudo-labels to align the source and target
domain during the inference stage.

Test-time Adaptation. TTA obtains the model trained on the source domain and performs adaptation on the target domain.
Some methods (Sun et al.,2020; |L1u et al.l 2021} |Gandelsman et al.,|2022) modify the training objective by adding a self-
supervised proxy task to facilitate test-time training. However, in many cases, access to the training process is unavailable.
Therefore some methods for test-time adaptation only revise the Batch Norm (BN) statistics (Singh & Shrivastaval, [2019;
Nado et al., |2020; Schneider et al., 2020; |You et al., [2021; Hu et al., 2021). Later, TENT (Wang et al., 2021b), BACS (Zhou
& Levine} 2021), and MEMO (Zhang et al., 2021a)) are proposed to improve the performance by minimizing entropy at test
time. Other approaches (Galstyan & Cohenl [2007; |Lee et al.,[2013}Rusak et al., 2022} |Goyal et al.,|2022;|Wang & Wibisono,
2022)) use pseudo-labels generated by the source (or other) models to self-train an adapted model. As an active research area,
recent efforts have been made to further improve TTA methods in various aspects. For example, Niu et al.[(2022) seeks
to solve the forgetting problem of TTA. Wang et al.|(2022b); |Gong et al.|(2022); [Huang et al.| (2022) propose methods to
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address the continual domain shifts. Iwasawa & Matsuo|(2021) improves the pseudo-labels by using the pseudo-prototype
representations. |[Zhang et al.| (2021c); Kojima et al.| (2022)); |Gao et al.| (2022b) leverage recent vision transformer model
architecture to improve TTA.

Most TTA methods assume a batch of test samples is available, while some papers consider the test samples coming
individually (Zhang et al.,|2021a;|Gao et al.,[2022a; Bartler et al., 2022 Mirza et al., 2021} |Dobler et al.|, [2022). For instance,
MEMO (Zhang et al., 2021b)) leverages various augmentations on single test input and then adapts the model parameters.
Gao et al.|(2022a)) propose using diffusion to convert the out-of-distribution samples back to the source domain. Such a
“single-sample” adaption paradigm makes an independent prediction on each data, avoiding the risk (i.e., DIA) of TTA.
However, batch-wise test samples provide more information about the distribution, usually achieving better performance.

Adversarial Examples and Defenses. A host of works have explored the imperceptible adversarial examples (Goodfellow
et al., 2015} |Carlini & Wagner, [2017; |Vorobeychik & Kantarcioglul 2018) which fool the model at test time and raise
security issues. In response, adversarial training (Madry et al.,[2017) (training with adversarial samples) has been proposed
as an effective technique for defending against adversarial examples. Later, there existed a host of enhanced methods on
robustness (Wu et al., [2020a; |Sehwag et al., [2022; Dai et al., |2022; (Gowal et al., 2021), time efficiency (Shafahi et al.,|2019;
Wong et al.,|2019)), and utility-robustness tradeoff (Pang et al., 2022; Wang et al., [2022a)).

Data Poisoning Attacks and Defenses. Data poisoning attacks refer to injecting poisoned samples into a training set
and causing the model to predict incorrectly. It has been applied to different machine learning algorithms, including the
Bayesian-based method (Nelson et al.| |2008)), support vector machines (Biggio et al.,[2012), as well as neural networks
(Koh & Liang, 2017). Later, Carlini| (2021)) tries to poison the unlabeled training set of semi-supervised learning and |Carlini
& Terzis| (2022) target at contrastive learning with an extremely limited number of poisoning samples. Recently, researchers
have utilized poisoning attacks to achieve other goals (e.g., enhancing membership inference attacks (Tramer et al., 2022
and breaking machine unlearning (Marchant et al., 2021} Di et al.| [2022)). For defense, |Geiping et al.|(2021) has shown that
adversarial training can also effectively defend against data poisoning attacks.

Adversarial Risk in Domain Adaptation. Only a few papers discuss adversarial risks in the context of domain adaptation
settings. One example is (Mehra et al., 2021)), which proposes several methods for adding the poisoned data to the source
domain data exploiting both the source and target domain information. Another example is (Wu & Hel 2021)), which
introduces I2Attack, an indirect, invisible poisoning attack that only manipulates the source examples but can cause the
domain adaptation algorithm to make incorrect predictions on the targeted test examples. However, both approaches assume
that the attacker has access to the source data and cannot be applied to the source-free (TTA) setting.
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B. Theorical Analysis of Distribution Invading Attacks

In this appendix, we provide technical details of computing the DIA gradient described in Section @] Then, we analyze why
smoothing via training-time BN can mitigate our attacks. For simplicity, we consider the case for a single layer, and the
gradient computation can be generalized to the case of a multi-layer through backpropagation.

B.1. Understanding the Vulnerabilities of Re-estimating BN Statistics

Recall the setting where xﬁgt € R, XtB = (Zij)i=1..n,j=1..d € R"*4 5 € RYand b € R. The output of a linear layer
with batch normalizatimﬂ on a single dimension can be written as

Xigt - M(XtB) -

f(xige) = Xy U b (15)

where 1 and o2 : R"*¢ — R? denote the coordinate-wise mean and variance. In addition, the square root /- is also applied
coordinate-wise. Suppose we can perturb z; in X%, which corresponds to a malicious data point in X .. In order to find
the optimal perturbation direction that causes the largest deviation in the prediction of f(x} gt), we compute the following
derivative:

0F () (—)O(X)); — [(xhge); — p(X),) AR

Owije (0(X5))? i
_ (=) {(a(X%)); = [(xhge); — (X)), ] (0(XE)); (@i e — M(X%)j)}w‘
(0(X}))? )
where (5(X5)); = > i,

i=1

2
n n
_ xs . — | = E Ti s
n 4 7,7 n 4 3
=1 =1

(0(X5));

Then, we can leverage the above formula to search for the optimal malicious data.

B.2. Analysis of Smoothing via Training-time BN Statistics

We robustly estimate the final BN statistics by i = 7jis+ (1 —17)fi;, 5% = 762 + (1 —7)57, where (jis, 52) are training-time
BN and (ji; = p(XY%), 57 = 0?(XY%)) are test-time BN (shown in Section . Therefore, the output of a linear layer with
smoothed batch normalization on a single dimension can be re-written as

Xty = (1= (X +772.)

Foxige) = V- 1)o2(XG) + 152

+b (16)

The new gradient can be computed by

SFor the purpose of this analysis, we will set the scale parameter to 1 and the shift parameter to 0. This assumption does not limit the
generalizability of our results.
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05(xty) _ (159055 — [6elyr)i — (= T)a(X); — 7(F)i§(55) 11— ) HTRY
drije (1= 7)(0(X%p)); +7(2); ’

_ CEDEEXE)); — (g = (L= 1) (0(Xp)); = 7)) ()~ (@ige = (Xp)))}
(1 =7)(o(XB))} +7(57); ’

1 n
where (1u(X%)); = -~ > @i,
i=1

n

(X)) = | D2y = (- ai)?
i=1

i=1

55 = /(L= T)(0(X}))2 + 7(52);.

o o . af(xt . . .
Here, whenever 11(X%) ~ i, , and 02(X%) ~ 72, the norm of graident ||% || will decrease as T increases. Specifically,
7
of(xt . T .. . .
||% || = 0 when 7 = 1, which means the BN statistics is only based on the training-time BN and do not involve any
y

adversarial risks.
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C. Preliminary Results
C.1. Sanity Check of Utilizing Training-time BN Statistics for TTA

In this experiment, we evaluate the performance of TTA using training-time BN statistics on CIFAR-10-C, CIFAR-100-C,
and ImageNet-C with the ResNet architecture (He et al.,2016). Note that we did not include the result of the TeBN method,
as it is identical to the Source method (directly using the source model without any TTA method). For other TTA methods,
only affine transformation parameters (i.e., scale «y; and shift 3;) within the BN layer are updated. All other hyperparameters
stay the same with experiments in|Goyal et al.|(2022), including batch size 200 and TTA learning rate 77 = 0.001.
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Figure 9. Test-time adaptations exhibit an obvious degradation on corruption datasets when using training-time BN statistics. [Severity
Level: 3]

Adopting training-time BN completely ruins performance gain for TTA (Figure[9). We observe that all TTA methods
exhibit a significant degradation (from ~15% to ~50%) across benchmarks. It can be inferred that the utilization of test-time
batch normalization statistics is paramount to all TTA methods implemented.

C.2. Preliminary Results of Bilevel Optimization

We study the effectiveness of utilizing bilevel optimization to find the malicious data )A(fna I

Table 6. Attack success rate of Distribution Invading Attack with and without bilevel optimization. (We omit TeBN as it is identical for
both methods)

Dataset Ny, Bilevel TENT(%) Hard PL(%) Soft PL(%) RobustPL(%) Conjugate PL(%)
10 (5%) X 23.20 25.33 23.20 24.80 23.60
10 (5%) v 22.93 23.73 22.80 24.00 23.73
CIFAR-10-C 20 (10%) X 45.73 48.13 47.47 49.47 45.73
(ResNet-26) 20 (10%) v 44.40 47.33 46.40 47.60 45.20
40 (10%) X 83.87 84.27 82.93 86.93 85.47
40 (10%) Ve 82.80 84.53 82.40 84.53 84.67
10 (5%) X 26.40 31.20 27.60 32.13 26.13
10 (5%) v 26.93 31.87 28.80 32.93 26.40
CIFAR-100-C 20 (10%) X 72.80 87.33 78.53 82.93 71.60
(ResNet-26) 20 (10%) Ve 72.27 85.87 78.13 85.47 72.13
40 (10%) X 100.00 99.87 100.00 99.87 100.00
40 (10%) v 100.00 99.73 100.00 100.00 100.00
5(2.5%) X 75.73 69.87 62.67 66.40 57.87
5(2.5%) v 74.93 70.13 62.13 67.47 59.43
ImageNet-C 10 (5%) X 98.67 96.53 94.13 96.00 92.80
(ResNet-50) 10 (5%) v 98.40 97.07 94.40 96.27 93.43
20 (10%) X 100.00 100.00 100.00 100.00 100.00
20 (10%) v 100.00 100.00 100.00 99.73 100.00
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Our proposed single-level solution yields comparable effectiveness to the Bi-level Optimization approach (Table[6).
We evaluate the DIA method with and without the bilevel optimization (inner loop) step, revealing that, in most cases, the
difference between them is generally less than 1%. In addition, we observe that using bilevel optimization results in a
substantial increase (by a factor of ~10) in computational time.

C.3. Effectiveness of Test-time Adaptations on Corruption Datasets

We demonstrate the effectiveness of applying TTA methods to boost corruption accuracy. We use Source to denote the
performance of the source model without TTA.
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Figure 10. Test-time adaptations consistently improve the accuracy on corruption datasets with severity level 3.

All TTA methods significantly boost the accuracy on distribution shift benchmarks (Figure [I0). We observe the
absolute performance gains of TTA on corrupted inputs are >5% for CIFAR-10-C, >10% for CIFAR-100-C, and >12% for
ImageNet-C. These promising results incentivize the use of TTA methods in various applications when test data undergoes a
shift in distribution.
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D. Additional Experiment Details and Results of Distribution Invading Attacks

In this appendix, we show some supplementary experimental details and results in Section[5] We begin by outlining our
experimental setup in Appendix [D.1] This is followed by the experiments that study the effectiveness of DIA by varying the
number of malicious samples in Appendix[D.2]and using various models and data augmentations in Appendix Then, we
delve into different types of attack objectives and constraints, including (1) indiscriminate attack (Appendix , (2) stealthy
targeted attack (Appendix [D.5), and (3) distribution invading attack via simulated corruptions (Appendix [D.6). In addition,
we conduct ablation studies including different assumptions of the attacker’s knowledge (Appendix and various batch
sizes (Appendix [D.§). Besides, we examine various TTA design choices, such as larger learning rates (Appendix [D.10), and
increased optimization steps (Appendix [D.1T). We also consider the DIA under various corruption choices by adjusting the
severities of corruption in Appendix and present the detailed results of all types of corruption in Appendix Other
new baseline methods are applied in Appendix

D.1. Addtional details of Experiment setup

Dataset. Our attacks are evaluated on CIFAR-10 to CIFAR-10-C, CIFAR-100 to CIFAR-100-C, and ImageNet to ImageNet-
C (Hendrycks & Dietterichl 2019), which contain 15 types of corruptions on test data. We select all corruption types and set
the severity of the corruption as 3 for most experiments[] Therefore, our CIFAR-10-C and CIFAR-100-C evaluation sets
contain 10,000 x 15 = 150,000 images with 32 x 32 resolution from 10 and 100 classes, respectively. For ImageNet-C,
there are 5,000 x 15 = 75,000 high-resolution (224 x 224) images from 1000 labels to evaluate our attacks.

Source Model Details. We follow the common practice on distribution shift benchmarks (Hendrycks & Dietterich, [2019),
and train our models on the CIFAR-10, CIFAR-100, and ImageNet. For training models on the CIFAR dataset, we use the
SGD optimizer with a 0.1 learning rate, 0.9 momentum, and 0.0005 weight decay. We train the model with a batch size of
256 for 200 epochs. We also adjust the learning rate using a cosine annealing schedule (Loshchilov & Hutter, [2016)). This
shares the same configurations with |Goyal et al.|(2022). As we mentioned previously, the architectures include ResNet with
26 layers (He et al.| [2016), VGG 19 with layers (Simonyan & Zisserman, [2015), Wide ResNet with 28 layers (Zagoruyko &
Komodakis|, 2016). For the ImageNet benchmark, we directly utilize the models downloaded from RobustBench (Croce
et al.| 2020) (https://robustbench.github.io/), including standard trained ResNet-50 (He et al.,2016), AugMix (Hendrycks
et al., [2020), DeepAugment (Hendrycks et al.,|2021)), robust models from |Salman et al.| (2020), and |[Engstrom et al.| (2019).
We want to emphasize that TTA does not necessarily need to train a model from scratch, and downloading from outsourcing
is acceptable and sometimes desirable.

Test-time Adaptation Methods. Six test-time adaptation methods are selected, including TeBN (Schneider et al.,[2020)),
TENT (Wang et al.,[2021b), Hard PL. (Lee et al., 2013} |Galstyan & Cohenl 2007), Soft PL. (Lee et al.| 2013} |Galstyan
& Cohen, [2007)), Robust PL (Rusak et al}[2022), and Conjugate PL (Goyal et al.,[2022), where they all obtain obvious
performance gains when data distribution shifts. We use the same default hyperparameters with Wang et al.| (2021b)) and
Goyal et al.| (2022), where the code is available at|github.com/DequanWang/tent and github.com/locuslab/tta-conjugatel.
Besides setting the batch size to 200, we use Adam for the TTA optimizer, n = 0.001 for the TTA learning rate, and 1 for
temperature. TTA is done in 1 step for each test batch.

Attack Setting. Each test batch is an individual attacking trial, which contains 200 samples. Therefore, there are 150,000/200
=750 trials for CIFAR-C and 75,000/200 = 375 trials for ImageNet-C. All of our experimental results are averaged across
all trials. For targeted attacks, we use attack success rate (ASR) as the evaluation metrics for attack effectiveness, which
means the ratio of DIA can flip the targeted sample to the pre-select label. For indiscriminate attacks, we use corruption
corruption error rate (i.e., the error rate on the benign corrupted data) to measure the effectiveness. For stealthy targeted
attacks, we again use attack success rate (ASR) as the attacking effectiveness metrics. In addition, since we want to
maintain the corruption accuracy, we leverage the corruption accuracy degradation (i.e., the accuracy drop of benign
corrupted data compared to “no attack™) as the metric.

For other hyperparameters, we set the attacking steps N = 500 and attacking optimization rate o« = 1/255. In addition, the
attack effectiveness can be further improved if applying more iterations or multiple random initializations like Madry et al.
(2018)). We leave more enhancing DIA techniques as future directions.

"the severities of the corruption range from 1 to 5, and 3 can be considered as medium corruption degree.
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D.2. More Experiments of DIA across Number of Malicious Samples

Figure [TT] depicts the effectiveness of the DIA success rate in relation to the number of malicious samples. We selected
TeBN, TENT, and Hard PL as demonstrated TTA methods and observed them perform similarly. Our conclusion “DIA
obtains near-100% ASR, using 64 malicious samples for CIFAR-10-C, 32 for CIFAR-100-C, and 16 for ImageNet-C” still

holds.
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Figure 11. Success rate of our proposed attack across numbers of malicious samples from 1 to 128 (0.5% to 64%). [TTA: TeBN, TENT,
and Hard PL] (Extended version of Figure Q)

D.3. Effectiveness of DIA across Various Model Architectures and Data Augmentations

Then we conduct more comprehensive experiments on DIA across model architectures, data augmentations, and the number
of malicious samples. In Table (full version of Table |Z[), we observe that the attack success rate of the VGG (Simonyan &
Zisserman, 2015) architecture is less affected by the number of malicious samples compared to the Wide ResNet (Simonyan
& Zisserman, [2015) architecture. For example, the ASR of VGG improves from ~42% to ~79% while Wide ResNet
improves from ~16% to ~94% if N,, increases from 10 to 40 for the TeBN method on CIFAR-10-C. Therefore, our
previous hypothesis should be modified to “with a sufficient number of malicious data, more BN layers expose more
vulnerabilities.” For ImageNet-C, we are still observing the mild mitigation effect from strong data augmentations.

D.4. Effectiveness of Indiscriminate Attack

We further present detailed results of indiscriminate attacks with more TTA methods and options for the number of malicious
samples. Since the benign corruption error rates are different for different numbers of malicious data, we include the
corruption error rate improvement in the bracket with red color.

Table 8. Average corruption error rate of TTA when deploying indiscriminate attack. The red number inside the bracket is the corruption
error rate improvement. (Extended version of Table[3)

Dataset Ny, TeBN(%) TENT(%) Hard PL(%) Soft PL(%) Robust PL(%) Conjugate PL(%)

CIFAR-10-C 10 (5%) 15.66 (+4.96) 15.16 (+4.74) 15.86 (+4.84) 15.56 (+4.86) 16.60 (+5.04) 14.32 (+4.51)
(ResNet26) 20 (10%)  20.09 (+9.37) 19.43 (+9.00)  20.14 (+9.10) 19.77 (+9.06) 21.04 (+9.46) 18.51 (+8.70)
40 (20%) 28.02 (+17.29) 27.01 (+16.54) 27.91 (+16.86) 27.47 (+16.69) 28.81 (+17.20)  26.09 (+16.26)

CIFAR.100.c 10G%) — 4384(+722)  4290(+732)  44.65(+7.92) 4345(+756) 4534 (+8.02) 42.01 (+7.53)
(ResNet26) 20 (10%) 51.99 (+13.44) 50.33 (+12.60) 52.00 (+13.33) 50.80 (+12.82) 52.52 (+13.21) 49.39 (+12.71)
40 (20%) 58.41 (+23.89) 54.44 (+21.13) 56.59 (+21.93) 54.93 (+21.22) 56.97 (+21.72) 53.33 (+21.06)

ImageNet-C 512.5%) 57.42(+9.45) 5453 (+8.90)  52.32(+8.70)  50.53 (+8.50) 51.52 (+8.43) 50.18 (+8.52)
(ResNet50) 10(5%) 67.18 (+19.21) 62.39 (+16.76) 58.70 (+15.09) 55.90 (+13.88)  57.08 (+13.97) 55.60 (+13.94)
20 (10%) 79.03 (+31.24)  75.01 (+29.57) 70.26 (+26.84) 65.67 (+23.81) 67.53 (+24.60)  65.30 (+23.80)

The indiscriminate DIA causes a large error rate increase on benign samples (Table ). We observe that the ratio
between the fraction of malicious data and error rate improvement is about 0.9 x for CIFAR-10-C and 1.2x for CIFAR-100-
C. For example, the error rate increases ~12% with 20 (10%) malicious data for CIFAR-100-C. Significantly, 20 (10%)
malicious data cause the error rate improves ~25% for ImageNet-C. In addition, compared to other TTA methods, TeBN is
still the most vulnerable method against DIA.
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Table 7. Effectiveness of distribution invading attack across various model architectures, data augmentation, and the number of malicious
data. (Full version of Table[2)

Dataset Ny, Architectures TeBN(%) TENT(%) HardPL(%) SoftPL(%) RobustPL(%) Conjugate PL(%)
ResNet-26 25.87 23.20 25.33 23.20 24.80 23.60
10 (5%) VGG-19 41.73 30.27 30.13 28.00 33.07 29.07
WRN-28 16.27 14.40 14.67 14.53 15.73 13.87
CIFAR-10C ResNet-26 55.47 45.73 48.13 47.47 49.47 45.73
IFAR-10-C 54 (109 VGG-19 60.13 44.80 46.67 44.13 46.67 44.67
WRN-28 46.00 41.47 4333 41.60 44.00 40.53
ResNet-26 92.80 83.87 84.27 82.93 86.93 85.47
40 (20%) VGG-19 79.07 65.33 67.47 64.13 67.47 64.13
WRN-28 93.73 89.60 90.80 90.13 91.20 89.33
ResNet-26 46.80 26.40 31.20 27.60 32.13 26.13
10 (5%) VGG-19 4213 32.00 4133 33.60 33.87 37.33
WRN-28 29.60 14.67 16.53 15.47 18.13 14.53
CIFAR-100-C ResNet-26 93.73 72.80 87.33 78.53 82.93 71.60
TFAR-100-C 5 (1) VGG-19 71.60 5733 71.60 61.87 63.60 66.13
WRN-28 64.80 38.67 44.13 40.93 46.40 39.87
ResNet-26 100.00 100.00 99.87 100.00 99.87 100.00
40 (20%) VGG-19 88.00 82.93 86.53 85.73 87.33 85.47
WRN-28 97.47 83.60 87.07 86.67 90.13 79.73
Dataset Ny, Augmentations TeBN(%) TENT(%) HardPL(%) SoftPL(%) RobustPL(%) Conjugate PL(%)
Standard 80.80 75.73 69.87 62.67 66.40 57.87
5(2.5%) AugMix 72.53 65.60 59.47 53.60 56.27 49.07
DeepAugment 67.20 63.73 58.67 53.87 57.33 53.33
| Net.C Standard 99.47 98.67 96.53 94.13 96.00 92.80
mageNet- 10 (5%) AugMix 98.40 96.00 93.60 88.27 92.00 87.20
DeepAugment 96.00 94.67 91.20 87.47 89.60 86.67
Standard 100.00 100.00 100.00 100.00 100.00 100.00
20 (10%) AugMix 100.00 100.00 100.00 100.00 100.00 100.00
DeepAugment  100.00 100.00 100.00 100.00 100.00 100.00

D.5. Effectiveness of Stealthy Targeted Attack

Next, we present more results of the stealthy targeted attack on the CIFAR-C dataset in Figure [12] We use 40 malicious data
and TeBN method, where w = {0,0.1,0.2}. Specifically, we select three architectures, including ResNet-26, VGG-19, and
WRN-28. Since different architectures result in various corruption accuracy, we use the corruption accuracy degradation
to measure the stealthiness, where the best attack should have 0% degradation. We observe that we can obtain < 2%
degradation by sacrificing the attack success rates about 10% when w = 0.1. In addition, we find the attack success rates of
Wide ResNet-28 drop much more than other model architectures.
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D.6. Distribution Invading Attack via Simulated Corruptions

This subsection presents the details of generating simulated corruption and then demonstrates its effectiveness.

Constructing Simulated Corruptions. We directly utilize the methods of Kang et al.| (2019)) to construct adversarially
snow and fog effects, which are available at github.com/ddkang/advex-uar. Specifically, we use many tiny occluded image
regions representing snowflakes at randomly chosen locations. Then, the intensity and directions of those “snow pieces”
are adversarially optimized. Furthermore, the adversarial fog is generated by adversarially optimizing the diamond-square
algorithm (Fournier et al., |1982), a technique commonly used to create a random, stochastic fog effect. We present some
snow and fog attack examples in Figure

Simulated corruptions can be used as an input-stealthy DIA approach (Table[9). For evaluation, we use snow to attack
clean images and insert them into the validation set of snow corruption. Similarly, we use a fog attack for the fog corruption
dataset. We observe that either adversarial snow or fog can effectively attack all TTA approaches with at least 60% of attack
success rate.

Table 9. Average attack success rate of adversarially optimized snow corruptions and fog corruptions. [N,,=20; Targeted Attack]
(Extended version of Table[d)

Dataset Corruption TeBN(%) TENT(%) HardPL(%) SoftPL(%) RobustPL(%) Conjugate PL(%)

ImageNet-C Snow 64.00 68.00 68.00 60.00 68.00 60.00
(ResNet-50) Fog 84.00 76.00 72.00 76.00 76.00 76.00

D.7. Effectiveness of DIA under Relaxed Assumptions
In this subsection, we present the effectiveness of DIA under two relaxed assumptions of the attacker’s capability.
DIA is still effective even if the attacker has no access to benign data and the batch is randomly selected (Table [10).

We observe that the attack success rate of DIA is still high (e.g., 100% for 20 malicious samples) even if the attacker has no
access to benign data or considers the random batch selection (RBS).

Table 10. Attack success rate with two relaxed assumptions of attacker’s capability (i.e., access/no access to benign data and whether the
random batch selection (RBS) is considered). [ImageNet; Targeted Attack] (Extended version of Table@

Ny, Benign Data RBS TeBN(%) TENT(%) HardPL(%) SoftPL(%) RobustPL(%) Conjugate PL(%)
Access X 92.00 92.00 72.00 56.0 64.0 52.0
5(2.5%) No access X 64.00 52.00 44.00 32.0 36.0 28.0
No access v 60.00 44.00 40.00 28.0 32.0 28.0
Access X 100.0 100.0 100.0 96.0 100.0 96.0
10 (5%) No access X 100.0 92.0 84.0 88.0 88.0 84.0
No access v 100.0 92.0 84.0 80.0 88.0 80.0
Access X 100.0 100.0 100.0 100.0 100.0 100.0
20 (10%) No access X 100.0 100.0 100.0 100.0 100.0 100.0
No access v 100.0 100.0 100.0 100.0 100.0 100.0

D.8. Effectiveness of DIA across Batch Sizes

We conduct additional experiments with batch sizes of 10, 20, 40, 80, 160, and 200 and a fixed 10% malicious samples rate.
Our results, shown in the Table[IT] indicate the attack success rate (ASR) remains similar for CIFAR-10-C and ImageNet-C
(e.g., 55% for CIFAR-10-C and 100% for ImageNet-C). The results on CIFAR-100-C demonstrate a lower ASR for smaller
batch sizes, but the ASR still remains highly effective. For instance, the ASR of TeBN drops to 75% with a batch size of 10.
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Dataset TTA Methods N,,=10 N,,=20 N,,=40 N,,=80 N,,=160 N,,=200
TeBN 60.84 55.11 56.72 57.97 57.88 55.47
((:Il{igl\itlgg TENT 55.81 50.67 52.16 48.05 48.89 45.73
HardPL 57.03 51.75 53.15 50.24 49.52 48.13
TeBN 75.25 80.51 86.72 90.03 88.68 93.73
ngﬁi_ozoé)c TENT 62.70 7056 7829  70.88 70.16 72.80
HardPL 68.67 74.97 81.52 78.61 81.48 87.33
ImageNet-C TeBN 100.0 99.97 100.0 100.0 100.0 100.0
(ResgNe £-50) TENT 99.09 99.92 100.0 100.0 100.0 100.0
HardPL 99.81 99.95 100.0 100.0 100.0 100.0
D.9. Effectiveness of DIA across Severities of Corruption
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Table 11. Average attack success rate with different batch size and fixed 10% malicious samples rate. [Targeted Attack]

Figure 13. Illustration of how severity levels of corruption affect the corruption accuracy and attack success rate of our attack on the
ImageNet-C dataset. (Line plot: attack success rate; bar plot: corruption accuracy) [N,,=5; Targeted Attack]
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Figure 14. Illustration of how severity levels of corruption affect the corruption accuracy and attack success rate of our attack on the
CIFAR-C dataset. (Line plot: attack success rate; bar plot: corruption accuracy) [NV,,=20; Targeted Attack]

Larger corruption severity tends to be more vulnerable against Distribution Invading Attack (Figure [13]and Figure
[T4). Our previous evaluation only concentrates on the level 3 severity (medium) of corruption; now, we analyze the impact
of corruption severity. First, the accuracy significantly drops when corruptions are more severe, e.g., the average degradation
from level 1 to level 5 is nearly 30% on ImageNet-C. Therefore, as expected, the ASR of the Distribution Invading Attack
gets higher as the models (updated by TTA methods) tend not to be confident in their predictions. Similar behaviors are
observed for the CIFAR-C dataset.
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D.10. Effectiveness of DIA with Larger TTA Learning Rate

We conduct ablation studies (shown in Table [I2) on the TTA learning rate 7 (set as 0.001 for previous experiments).
Concretely, we increase 7 to 0.005 and evaluate DIA. Our single-level optimization method exhibits some performance
degradations when the TTA learning rate rises but still reaches near-100% ASR with 20 (10%) malicious data. Furthermore,
we also observe the corruption accuracy with n = 0.005 drop ~4% on average.

Table 12. Effectiveness of Distribution Invading Attack with larger TTA learning rate (1) on ImageNet-C dataset.

Ny, n TeBN(%) TENT(%) HardPL(%) Soft PL(%) RobustPL(%) Conjugate PL(%)
5(2.5%) 0.001 80.80 75.73 69.87 62.67 66.40 57.87
= 0.005 80.80 52.00 46.93 35.73 45.33 32.00
10 (5%) 0.001 99.47 98.67 96.53 94.13 96.00 92.80
¢ 0.005 99.47 87.73 83.73 74.67 82.13 71.47
20 (5%) 0.001 100.00 100.00 100.00 100.00 100.00 100.00
¢ 0.005 100.00 100.00 99.73 98.13 100.00 98.67

D.11. Effectiveness of DIA with More TTA Optimization Steps

In this subsection, we conduct ablation studies (shown in Table where the TTA optimization step is no longer 1 step but
5 steps. We observe a degradation (0% to 25%) in DIA performance if the TTA optimizes the unsupervised loss with 5 steps.
However, with 20 malicious data, the ASR is still near-100%.

Table 13. Effectiveness of Distribution Invading Attack with more TTA optimization steps on ImageNet-C dataset.
Ny, Steps TeBN(%) TENT(%) HardPL(%) SoftPL(%) RobustPL(%) Conjugate PL(%)

5(2.5%) 1 80.80 75.73 69.87 62.67 66.40 57.87
= 5 80.80 58.13 53.07 39.73 49.87 36.00

10 (5%) 1 99.47 98.67 96.53 94.13 96.00 92.80
¢ 5 99.47 93.60 88.53 79.73 87.20 71.87
20 (5%) 1 100.00 100.00 100.00 100.00 100.00 100.00
¢ 5 100.00 100.00 100.00 99.73 100.00 99.47

D.12. Effectiveness of DIA with Additional Baseline Methods
D.12.1. EFFICIENT TEST-TIME ADAPTATION (ETA)

In this subsection, we present our DIA can also attack advanced methods of TENT, like ETA (Niu et al.,[2022)). In general,
ETA introduces a technique to boost the efficiency of TENT by actively selecting reliable samples for updating the base
model. However, they still suffer from the vulnerabilities of re-estimating BN statistics. Therefore, we can directly apply
DIA, and our results demonstrate that ETA is even more vulnerable than TENT for the CIFAR-C dataset (Table .
Furthermore, 20 malicious data can still achieve near-100% ASR on the ImageNet-C benchmark.
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Table 14. Attack success rate of Distribution Invading Attack (targeted attacks) across benchmarks and TTA methods.

Dataset Ny, TeBN(%) TENT(%) ETA(%)

10 (5%) 25.87 23.20 24.53

C&i‘:ﬁ;&f 20 (10%) 55.47 45.73 53.07
40 (20%) 92.80 83.87 89.87

10 5%) 46.80 26.40 33.60

C(Ilf‘:sl;'égz')c 20 (10%) 93.73 72.80 86.67
40 (20%)  100.00 100.00 100.00

5(2.5%) 80.80 75.73 4133

I(‘;if;fgo? 10(5%)  99.47 98.67 81.60
20(10%)  100.00 100.00 99.47

D.12.2. DEFENSIVE ENTROPY MINIMIZATION (DENT)

Recently, |Chen et al.| (2022b)) evaluated some previous defenses against conventional ¢, adversarial attacks that leverage
transductive learning. We select Defensive Entropy Minimization (Dent) (Wang et al., |2021a)) to defend against DIA as it is
the most recent proposal. We conduct targeted attack experiments on ImageNet-C dataset with the standard and adversarially
trained models, comparing TeBN (non-robust) and Dent with 20 and 40 malicious data. We observe that Dent provides
some mitigations compared to TeBN, but DIA still achieved over 60% attack success rate with 40(20% ) malicious data.

Table 15. Effectiveness of Distribution Invading Attack against Dent on ImageNet-C benchmark.

N, Model TeBN(%) Dent(%) \ N, Model TeBN(%) Dent(%)
Standard 100.0 77.80 Standard 100.0 98.40
20 (10%) Salman et al. 52.80 35.47 40 (20%) Salman et al. 92.50 67.37
Engstrom et al. 44.20 36.53 Engstrom et al. 77.60 72.00

D.12.3. TEST-TIME TRAINING(TTT)

We also conduct experiments to evaluate whether Test-time Training(TTT) (Sun et al., [2020)) is vulnerable under our threat
model in this subsection. TTT leverages an auxiliary rotation prediction task at test time to improve prediction, which
significantly differs from the methods we explored. Thus, we consider a simple attack by injecting rotated images as
malicious data to confuse the auxiliary task and cause the model to update incorrectly. We perform the indiscriminate attack,
which is to degrade the performance of all benign samples (excluding the malicious samples we injected).

To stay consistent with our setting in Section[5.3.1], we assume that the test data for each trial contains 200 samples with
10, 20, and 40 of malicious data that is rotated 180 degrees and randomly injected. The model we used is a ResNet with
GroupNorm(GN), the same as (Sun et al.,[2020) , and the dataset is CIFAR-10-C. Table report the benign error rate (the
ratio of benign samples that is incorrectly classified by the model). We notice that this simple attack causes the error rate
on benign samples to rise (e.g., from 14% to 25% for 40 malicious data). It is worth noting that, as we discussed in section
DIA may not be effective for all and future TTA methods. Our paper is to uncover that the TTA pipelines introduce yet
another attack surface that can potentially be exploited by malicious parties.

Table 16. Effectiveness of Distribution Invading Attack aginst Test-time Training(TTT) on ImageNet-C dataset.

Ny, Model No Attack(%) Rotation Attack(%)
10(5%) ResNet+GN 14.48 18.84
20(10%) ResNet+GN 14.50 21.03
40(20%) ResNet+GN 14.50 25.39
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D.13. Effectiveness of DIA across Various Corruption Types

We then report the result of DIA for all 15 corruption types on Table We select N,,, = 20 for CIFAR-10-C and
CIFAR-100-C and N,,, = 5 for ImageNet-C. We observe that the predictions under Brightness corruption are the hardest to
attack. This is the expected result because the benign accuracy of Brightness is the highest (Schneider et al., 2020).

Table 17. Effectiveness of Distribution Invading Attack across various corruption types. (CIFAR-C: N,,,=20; ImageNet-C: N,,,=5)

Dataset Corruption Type TeBN(%) TENT(%) HardPL(%) SoftPL(%) RobustPL(%) Conjugate PL(%)
Gaussian Noise 68.0 48.0 52.0 50.0 56.0 50.0
Shot Noise 70.0 54.0 56.0 62.0 62.0 54.0
Impulse Noise 76.0 48.0 58.0 54.0 62.0 50.0
Defocus Blur 44.0 38.0 38.0 40.0 40.0 40.0
Glass Blur 50.0 44.0 52.0 44.0 48.0 42.0
Motion Blur 54.0 48.0 46.0 50.0 52.0 46.0
CIFAR-10-C Zoom Blur 44.0 46.0 44.0 46.0 44.0 44.0
(ResNet-26) Snow 58.0 44.0 42.0 44.0 50.0 44.0
(N,,=20 (10%)) Frost 48.0 46.0 48.0 50.0 48.0 48.0
Fog 60.0 40.0 46.0 44.0 48.0 40.0
Brightness 38.0 38.0 40.0 38.0 38.0 40.0
Contrast 62.0 48.0 48.0 48.0 50.0 50.0
Elastic Transform 56.0 56.0 58.0 50.0 54.0 52.0
Pixelate 44.0 46.0 46.0 44.0 40.0 44.0
JPEG Compression 60.0 42.0 48.0 48.0 50.0 42.0
All 55.47 45.73 48.13 47.47 49.47 45.73
Gaussian Noise 100.0 80.0 92.0 86.0 94.0 74.0
Shot Noise 100.0 80.0 98.0 82.0 86.0 82.0
Impulse Noise 96.0 82.0 92.0 90.0 90.0 74.0
Defocus Blur 86.0 64.0 82.0 72.0 82.0 68.0
Glass Blur 96.0 78.0 80.0 78.0 78.0 66.0
Motion Blur 94.0 74.0 82.0 80.0 82.0 74.0
CIFAR-100-C Zoom Blur 90.0 60.0 80.0 62.0 70.0 60.0
(ResNet-26) Snow 92.0 72.0 80.0 74.0 72.0 66.0
(N;,,=20 (10%)) Frost 94.0 72.0 94.0 74.0 82.0 78.0
Fog 94.0 76.0 92.0 86.0 92.0 76.0
Brightness 86.0 64.0 84.0 72.0 72.0 68.0
Contrast 96.0 80.0 94.0 88.0 94.0 78.0
Elastic Transform 100.0 74.0 90.0 80.0 84.0 70.0
Pixelate 90.0 64.0 84.0 80.0 78.0 72.0
JPEG Compression 92.0 72.0 86.0 74.0 88.0 68.0
All 93.73 72.80 87.33 78.53 82.93 71.60
Gaussian Noise 92.0 92.0 72.0 56.0 64.0 52.0
Shot Noise 88.0 76.0 68.0 56.0 60.0 48.0
Impulse Noise 92.0 84.0 80.0 68.0 80.0 60.0
Defocus Blur 100.0 96.0 88.0 84.0 84.0 80.0
Glass Blur 92.0 84.0 84.0 68.0 72.0 64.0
Motion Blur 88.0 88.0 84.0 68.0 76.0 68.0
ImageNet-C Zoom Blur 84.0 76.0 76.0 72.0 76.0 68.0
(ResNet-50) Snow 72.0 64.0 56.0 56.0 56.0 56.0
(N;,,=5 (2.5%)) Frost 88.0 72.0 72.0 64.0 68.0 52.0
Fog 88.0 84.0 80.0 76.0 80.0 68.0
Brightness 48.0 48.0 44.0 40.0 40.0 40.0
Contrast 96.0 96.0 88.0 84.0 88.0 80.0
Elastic Transform 56.0 60.0 52.0 48.0 48.0 40.0
Pixelate 56.0 52.0 52.0 44.0 48.0 36.0
JPEG Compression 72.0 64.0 52.0 56.0 56.0 56.0
All 80.80 75.73 69.87 62.67 66.40 57.87
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D.14. Results of Greedy Model Space Attack (GSMA)

We also evaluate the another optimization method GSMA-MIN (instead of PGD) (Chen et al., 2022b) on the CIFAR-10-C
and CIFAR-100-C benchmark, with 10, 20, and 40 malicious data. We modified the objective of GSMA-MIN to attack
a single benign input (DIA targeted attack) and maintained the default attack ensemble size of ' = 3. We compared
GSMA-MIN with DIA via PGD, which serves as the default method in our paper. The attack success rates are presented in
Table[T8] and we observed nearly identical performance between the two methods.

Table 18. Attack success rate of Distribution Invading Attack with GMSA.

Dataset Np, Optimization TeBN(%) TENT(%) HardPL(%) SoftPL(%) RobustPL(%) Conjugate PL(%)
10 (5%) PGD 25.87 23.20 25.33 23.20 24.80 23.60
10 (5%) GMSA-MIN 26.27 24.40 24.40 23.47 26.13 23.60
CIFAR-10-C 20 (10%) PGD 5547 45.73 48.13 47.47 49.47 45.73
(ResNet-26) 20 (10%) GMSA-MIN 55.07 45.47 48.93 47.73 49.33 45.73
40 (10%) PGD 92.80 83.87 84.27 82.93 86.93 85.47
40 (10%) GMSA-MIN 92.93 83.87 84.40 82.93 87.07 84.93
10 (5%) PGD 46.80 26.40 31.20 27.60 32.13 26.13
10(5%) GMSA-MIN 47.47 26.80 31.07 27.87 32.27 25.60
CIFAR-100-C 20 (10%) PGD 93.73 72.80 87.33 78.53 82.93 71.60
(ResNet-26) 20 (10%) GMSA-MIN 94.27 72.80 87.07 78.13 84.40 71.33
40 (10%) PGD 100.00 100.00 99.87 100.00 99.87 100.00
40 (10%) GMSA-MIN 100.00 100.00 100.00 100.00 99.87 100.00
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E. Additional Experiments on Robust Models and Mitigation Methods

In this appendix, we show some additional findings and results of our mitigating methods as the complement of Section [6]

The roadmap of this section is as follows. We first investigate the role of robust models from two aspects. In Appendix [E.I]
we apply TTA to the adversarially trained models and surprisingly witness an improvement in clean accuracy. We then
evaluate the robust models’ performance facing the corruption accuracy in Appendix and analyze their effectiveness in
resisting DIA attacks in Appendix [E.3] Furthermore, we extensively study the Robust Batch Normalization (BN) estimation.
In Appendix [E.4] we visualize the behaviors of Layer-wise BN. Then we provide the additional results of Robust BN
Estimation on CIFAR-C in Appendix [E.5] ImageNet-C in Appendix [E.6] Finally, we conduct a parameter search for Robust
BN estimation in Appendix

E.1. Additional Findings of Adversarial Models and TTA on Clean Data

Dataset Models Source(%) TeBN(%) TENT(%) HardPL(%) SoftPL(%) RobustPL(%) Conjugate PL(%)
(Dai et al.{[2022) WRN-28 87.02 87.00 91.74 90.83 91.62 90.93 91.68
CIFAR-10 (Wu et al.|[2020a) WRN-28 88.25 86.35 92.81 91.35 93.07 93.02 91.59
: (Gowal et al.|[2021) WRN-28 87.49 87.42 88.39 88.22 88.44 88.21 88.44
(Sehwag et al.|[2022) RN-18 84.59 84.38 87.24 87.25 87.63 87.05 86.73
(Sehwag et al.|[2022) WRN-34 65.93 67.37 73.96 70.63 74.06 73.93 72.81
CIFAR-100 (Wu et al.|[2020a) WRN-34 60.38 55.37 62.01 59.43 62.19 61.89 61.87
(Chen et al.|2022a) WRN-34 64.07 61.94 67.58 61.29 68.11 69.09 65.02
(Jia et al.|[2022) WRN-34-20 67.31 64.17 69.72 68.60 70.21 69.97 69.71

Table 19. Clean accuracy can be improved by the test-time adaptation for adversarially trained models on CIFAR-10 and CIFAR-100. As
a reference, the accuracy of the standard Wide ResNet with 28 layers (WRN-28) is 94.78% for CIFAR-10 and 78.78% for CIFAR-100.
(RN-18 is ResNet-18, WRN-34 is Wide ResNet 34 )

One of the notable weaknesses of adversarial training is the apparent performance degradation on clean test data (Madry
et al.,|2018; Xie et al.,|2019), owing to the divergent distributions of adversarial and clean inputs for batch normalization
(BN). Therefore, (Xie et al., 2020) proposed to use distinct BN layers to handle data from two distributions and (Wang
et al.| 2022a) leveraged normalizer-free networks (removing BN layers) to improve clean accuracy. As we discussed, TTA
methods exhibit promising improvement in mitigating distribution shifts. Therefore, we consider if they can improve the
accuracy of clean input when training data draws from the distribution of adversarial data.

TTA methods achieve a non-trivial clean accuracy improvement for adversarially trained models on CIFAR-10
and CIFAR-100 (Table @]) We select a list of adversarial training methods (Dai et al.| 2022; Wu et al., 2020a}; |Gowal
et al.,|2021; Sehwag et al.| 2022} |Chen et al.,|2022a; Jia et al., [2022) as the source model and use TTA methods on clean
inputs. All of them are downloaded from RobustBench (Croce et al.,2020). As shown, Soft PL significantly improves
the average accuracy ~3.35% for CIFAR-10 and ~4.22% for CIFAR-100. The most significant improvement even boosts
8.13% compared to no TTA method. This result is interesting as another perspective to understand TTA better, and we hope
future works can explore more on it. We also observe that simply replacing the BN statistics does not work as well as using
adversarial models on ImageNet.

E.2. Corruption Accuracy of Robust Models

We evaluate the corruption accuracy, where Wide ResNet with 28 layers trained by Gowal et al.|(2021) and [Wu et al.| (2020a))
are chosen for CIFAR-10-C, and Wide ResNet with 28 layers developed by [Pang et al.| (2022) and [Rebutffi et al.| (2021) are
selected for CIFAR-100-C. Note that all adversarial models are downloaded from RobustBench (Croce et al., [2020).

Robust models with TTA achieve better performance than the standard model on CIFAR-10-C, but worse
performance on CIFAR-100-C (Figure[15/and Figure [16). For CIFAR-10-C, we observe a performance boost from using
robust models. For example, Wu et al.|(2020a) achieves a ~5% improvement than the standard one. For CIFAR-100-C,
robust models cannot perform similarly to the standard model. However, leveraging adversarial models and TTA can still
exceed the standard model without TTA. Since they may use different training configurations (e.g., training batch size, data
augmentations, inner optimization steps), we leave the question of “training the best adversarial source model for TTA” as
future works.
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Robust models achieve comparable performance with the standard model on ImageNet-C if TTA is deployed (Figure
[T7). We then evaluate the corruption accuracy of robust models on the ImageNet-C dataset. Specifically, adversarially

trained ResNet 50 models originated by [Salman et al.| (2020) and [Engstrom et al.| (2019) are selected. We observe that the

average corruption accuracy of adversarial models can significantly benefit from test-time adaptation methods. For example,
the average corruption accuracy of robust models is ~10% less than the standard model but reaches similar performance
when TTA is deployed. Furthermore, robust models generally gain higher accuracy on larger severity than the standard ones
(e.g., ~10% improvement on severity 5 with TTA).
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Figure 15. Corruption accuracy of the standard and robust models (Gowal et al.| (2021)) and [Wu et al.| (2020a)) on CIFAR-10-C under

different severity levels.
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Figure 16. Corruption accuracy of the standard and robust models (Pang et al.|(2022)) and [Rebuffi et al.| (2021)) on CIFAR-100-C under

different severity levels.

32



Uncovering Adversarial Risks of Test-Time Adaptation

==Standard
==Salman

®
3
o
3
m
3

100 100 100
==Engstrom ==Engstrom ==Engstrom

==Standard ==Standard
|| | || || 0 ‘l ‘l
ce

a
3
a
3
a

5
3
=
8
N
5

N
3
N
3

~
3
Corruption Accuracy

Corruption Accuracy
Corruption Accuracy

°
°

==Salman ==Salman
TeBN  TENT HardPL SoftPL  RPL Conjugate Source TeBN TENT HardPL SoftPL RPL Conjugate Source TeBN TENT HardPL SoftPL RPL Conjugate

Adaptatlon Method Adaptation Method Adaptation Method
(a) Average severity (b) Severity 1 (c) Severity 2
5 [—=standard 5" [—standard 5% [—=standard
© 8o ==Salman © g0 ==Salman C g ==Salman
5 ==Engstrom S ==Engstrom 5 ==Engstrom
S S S
< 60 < 60 < 60
5 5 5,
5 40 =] E=
Q Q Q
g g 2
call UL LR
o o (] III
© Source TeBN TENT HardPL SoftPL RPL Conjugate Source TeBN TENT HardPL SoftPL RPL Conjugate Source TeBN TENT HardPL SoftPL RPL Conjugate
Adaptation Method Adaptation Method Adaptation Method
(d) Severity 3 (e) Severity 4 (f) Severity 5

Figure 17. Corruption accuracy of the standard and robust models (Salman et al.| (2020) and [Engstrom et al.| (2019)) on ImageNet-C
under different severity levels.

E.3. Mitigating Distribution Invading Attacks by Robust Models on CIFAR-C Benchmarks
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Figure 18. Attack success rate of our proposed attacks against robust models across the numbers of malicious samples. As a reference,
128 is 64% of the whole batch containing 200 samples. Robust models for CIFAR-10-C are|Gowal et al.|(2021) and |Wu et al | (2020a));

robust models for CIFAR-100-C are [Pang et al](2022) and [Rebuffi et al| (2021). [TTA method: TeBN]

In Figure[T8] we report the ASR of standard and two robust models across the number of malicious samples on the CIFAR-C
dataset. Adversarial models mitigate the vulnerability against DIA but cannot fully alleviate it. For example, with
32 malicious samples, robust models degrade ~60% and ~70% ASR for CIFAR-10-C and CIFAR-100-C, respectively.
However, increasing malicious samples still breaks robust source models.

E.4. Understanding the Layer-wise Batch Normalization behaviors

To further design a more robust approach, we seek to understand what happens to BN statistics when deploying the
Distribution Invading Attack. Therefore, we visualize the BN mean histogram and BN variance histogram of all 53 layers
in Figure and with and without attacks. We use the Wasserstein distance with ¢1-norm to measure the discrepancy
between two histograms. Specifically, given two probability measures (i, tt, over R, the Wasserstein distance under
Kantorovich formulation (Kantorovich| [1942) is defined as

Dw (s ftv) == min / |z — 2'|dn(z, 2") (17)
7€M (pw o) JRXR
where I(py, o) = {7 € P(RxR) | [p7(z,2")dz = i, [ 7(2,2")dz" = j1,} denotes a collection of couplings

between two distributions ft,, and ,- Here, we view each hlstogram as a discrete probability distribution in a natural sense.
Note that the histograms for different layers may have different overall scales; hence, we normalize the ¢; distance |z — 2’|
by the range of the histogram of benign samples for a fair comparison.
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Figure[T9(a) presents the Wasserstein distance for each layer, and interestingly, we observe that Dy remains low on most
layers but leaps on the last few layers, especially the BN layer 52. Then, we visualize the histograms of layer 52 in Figure
[I9(b), which appears to be an obvious distribution shift.
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Figure 19. (a) Wasserstein Distance between malicious and benign BN Statistics gets unexpectedly high at BN Layer 52. (b) Histogram
of batch mean and variance at BN Layer 52. (More figures are presented in Figurelf_gl and Figure@)‘

E.5. Effectiveness of Robust BN Estimation on CIFAR-C

We report the effectiveness of our two robust estimation methods, smoothing via training-time BN statistics and adaptively
selecting layer-wise BN statistics on CIFAR-C. Precisely, we use N,,, = 40, which is very challenging for defense (ASR
reaches near-100%). Again, we select 7 = {0.0,0.2,0.4,0.6,0.8, 1.0} for balancing training-time and test-time BN. For
adaptively selecting layer-wise BN statistics, we leverage full training-time BN (7 = 1.0) for the last Ny, = {0, 1, 2, 4, 8,
16} BN layers.
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Figure 20. Controlling 7 = 0.6 can degrade the attack success rate (line) while maintaining high corruption accuracy (bar). [ /N,,=40]
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Figure 21. Controlling layer-wise BN can degrade the attack success rate (line) while maintaining high corruption accuracy (bar). [V,,,=40;
7=0.6]

Robustly estimating the final BN statistics significantly enhance performance against DIA. Figure 20| demonstrates the
effectiveness of smoothing with training-time BN, which degrades the ASR ~30% for the standard model if we select 7 =
0.6. Then, we stick with 7 = 0.6 and apply layer-wise BN. As a result, the ASR further degrades by about 15% without
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sacrificing the corruption accuracy (shown in Figure[21)). In conclusion, applying two of our robust estimating methods can
degrade ~45% for the standard model and ~30% for the adversarial model in total.

Our method involves a trade-off between TTA performance and robustness to DIA attacks. It does not inherently eliminate
vulnerability when exploiting the test batch information. In addition, selecting the right hyper-parameters (i.e., 7 and N¢,.)
without the out-of-distribution information is another challenging problem.

E.6. Addtional Experiments of Robust BN Estimation on ImageNet-C
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Figure 22. Robustly estimating the final BN statistics can degrade the attack success rate (line) while maintaining high corruption accuracy
(bar) on ImageNet-C. [N, =40] This is the complementary evaluation of Figure[7]and Figure 8] with more malicious samples.

Figure 22] shows the additional experiments of section [6.2] with a stronger attacking setting (IV,,, = 40). We observe the
conclusions keep the same where selecting an appropriate 7 and Vy,. (i.e., 7 = 0.6, N, = 16) can decrease the ASR for
~70% and ~20% for the robust and standard model, respectively, and maintain the corruption accuracy.

E.7. More Evaluations of Corruption Accuracy for Robustly Estimating BN

In this subsection, we present a more comprehensive parameters search for the smoothing factor 7 and number of training-
time BN layers Ny, to understand their effect on corruption accuracy. Specifically, we analyze standard and robust models
on CIFAR-C and ImageNet-C benchmarks.

As shown in Figure 23] Figure 24] and Figure 23] we observe that the corruption accuracy generally reaches the best when
7 = 0.5 and N, = 0. The improvement compared to TeBN (7 = 0 and N, = 0) is limited (~2%) except for the robust
models on CIFAR-100-C. The corruption accuracy drops dramatically for 7 > 0.7. Furthermore, increasing N, also
decreases the accuracy of corrupted data.
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Figure 23. Corruption accuracy of balancing training-time BN across 7 and number of Training-time BN layers on CIFAR-10-C.
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Figure 24. Corruption accuracy of balancing training-time BN across 7 and number of Training-time BN layers on CIFAR-100-C.
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Figure 25. Corruption accuracy of balancing training-time BN across 7 and number of Training-time BN layers on ImageNet-C.
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F. Visiualization of Constrained Attacks

F.1. Examples of Corrupted Images and Corresponding L., Malicious Images

Gaussian Noise _ Shot Noise Defocus Blur Frosted Glass Blur

_ Impulse Noise

Motion Blur Zoom Blur

Figure 26. Demonstrations of 15 types of corrupted benign images (upper) and malicious images with ¢ = 8/255 (lower) from the

ImageNet-C benchmark. Most malicious images are visually imperceptible compared with their original ones. [Severity level: 3]
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F.2. Examples of Corrupted Images and Adversarial Corrupted Images

(b) Snow Attack | (c) Fog Corruption (d) Fog Attack

Figure 27. Demonstrations of the corrupted snow and fog dataset from ImageNet-C with severity level 3 and adversarially corrupted
images (DIA). We observe that manually distinguishing malicious and benign samples is hard.

F.3. Examples of Distribution Invading Attack without Constraints

Figure 28. A demonstration of unconstrained Distribution Invading Attack. The resulting image is largely dependent on the initialization
process, which uses random noise in this case.
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G. Visualization of Batch Normalization Statistics
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Figure 29. Full layer-by-layer visualization of BN mean histogram with and without DIA attacks. The distribution differs on the last few
layers.
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Figure 30. Full layer-by-layer visualization of BN variance histogram with and without DIA attacks. The distribution differs on the last
few layers.
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