
Under review as submission to TMLR

Physics-Informed Deep B-Spline Networks

Anonymous authors
Paper under double-blind review

Abstract

Physics-informed machine learning offers a promising framework for solving complex partial
differential equations (PDEs) by integrating observational data with governing physical
laws. However, learning PDEs with varying parameters and changing initial conditions and
boundary conditions (ICBCs) with theoretical guarantees remains an open challenge. In
this paper, we propose physics-informed deep B-spline networks, a novel technique that
approximates a family of PDEs with different parameters and ICBCs by learning B-spline
control points through neural networks. The proposed B-spline representation reduces the
learning task from predicting solution values over the entire domain to learning a compact
set of control points, enforces strict compliance to initial and Dirichlet boundary conditions
by construction, and enables analytical computation of derivatives for incorporating PDE
residual losses. While existing approximation and generalization theories are not applicable
in this setting—where solutions of parametrized PDE families are represented via B-spline
bases—we fill this gap by showing that B-spline networks are universal approximators
for such families under mild conditions. We also derive generalization error bounds for
physics-informed learning in both elliptic and parabolic PDE settings, establishing new
theoretical guarantees. Finally, we demonstrate in experiments that the proposed technique
has improved efficiency-accuracy tradeoffs compared to existing techniques in a dynamical
system problem with discontinuous ICBCs and can handle nonhomogeneous ICBCs and
non-rectangular domains.

1 Introduction

Recent advances in scientific machine learning have significantly accelerated progress in solving complex
partial differential equations (PDEs). Physics-informed neural networks (PINNs) are proposed to combine
information of available data and the governing physics model to learn the solutions of PDEs (Raissi et al., 2019;
Han et al., 2018). However, in dynamics scenarios, both the parameters of the PDE and those defining initial
and boundary conditions (ICBCs) can vary over time. Consequently, efficiently solving PDEs across a broad
range of parameter values becomes essential. Learning solutions for families of parametric PDEs—especially
when ICBCs are highly variable or discontinuous—remains a challenging task, requiring methods that are
accurate, efficient, and theoretically sound. For example, in safety-critical control applications, time-varying
system dynamics and shifting safe regions result in continuously changing PDEs that characterize safety
probabilities. However, solving these PDEs in real time with limited onboard resources is often prohibitively
costly. This motivates the need for a neural network trained efficiently to represent a family of PDEs that
enables rapid online inference of solutions under varying parameters and ICBCs.

Previous literature has generalized PINNs for parametric PDEs (Cho et al., 2024; Boudec et al., 2024;
Huang et al., 2022), and operator learning methods have been developed to map input functions to PDE
solutions (Kovachki et al., 2023; Li et al., 2020; Lu et al., 2019). These approaches typically impose initial
and boundary conditions (ICBCs) as soft constraints through penalty terms in the loss function, which often
require extensive tuning and do not guarantee strict compliance (Son et al., 2023; Brecht et al., 2023). Recent
works have introduced PINNs with hard ICBC constraints by explicitly constructing solution ansatzes that
satisfy the constraints by design (Wang et al., 2023; Li et al., 2024a; Chen et al., 2023; Liu et al., 2022; Sun
et al., 2024). Such ansatzes are typically tailored to specific ICBCs and may lead to reduced accuracy in the

1

Under review as submission to TMLR

𝑏!

𝑏"

…

𝑢

σ

σ

…

Coefficient Network

Basis Function Generation

Control Points

B-Spline Basis

𝐶" = 𝑐!# ,!$,⋯,!% ℓ#×ℓ$×⋯×ℓ%

Training Data
𝑠

Data Loss

ℒ# =$ 𝑠̃ − 𝑠 $

𝒟

Physics Model Loss

ℒ& =$|ℱ' 𝑠̃, 𝑥, 𝑢 |$
(

')*

𝐵!,& 𝑥

=
𝑥 − 𝑥(!
𝑥(!'& −𝑥(!

𝐵!,&() 𝑥

+
𝑥(!'&') −𝑥
𝑥(!'&') −𝑥(!')

𝐵!'),&() 𝑥

𝐵!,* 𝑥 = *1,		𝑥(!≤ 𝑥 < 𝑥(!')
0, otherwise

Cox-de Boor recursion formula

𝑠̃ = ; ⋯
ℓ#

!#+)

; 𝑐!# ,!$,⋯,!%

ℓ%

!#+)
𝐵!# ,& 𝑥) ⋯𝐵!% ,& 𝑥,

Prediction

𝑥!

𝑥"

…

Physics Model
ℱ!(𝑠, 𝑥, 𝑢)

𝐵& 𝑥) 	⋯𝐵& 𝑥,

𝛼

𝐺𝜽(𝑢, 𝑎)

Figure 1: Diagram of PI-BSNet. The coefficient network takes system and ICBC parameters as input and
outputs the control points tensor, which is then multiplied by the B-spline basis to produce the final output.
Physics and data losses are used to train the coefficient network using closed-form gradient formulas, while
the compliance of ICBC conditions is strictly enforced through the B-spline basis. Solid lines depict the
forward pass, and dashed lines depict the backward pass of the network.

interior (e.g., Liu et al. (2022); Sun et al. (2024), EPINN in Fig. 2). Moreover, most existing methods aim to
directly learn PDE solutions on the entire domain (Lu et al., 2019; Cuomo et al., 2022), without exploiting
more compact or structured representations. While many approximation and generalization bounds are
derived for PINNs and neural operators (Kovachki et al., 2023; Lu et al., 2019; De Ryck & Mishra, 2022a;b;
Mishra & Molinaro, 2023; 2022), theoretical results remain limited for families of PDEs represented using
neural networks with structured bases.

Contribution. In this work, we propose a novel framework, termed physics-informed deep B-spline networks
(PI-BSNet), that integrates neural B-splines and physics-informed learning to jointly solve families of
parametric PDEs with different ICBCs (Fig. 1). Specifically, PI-BSNet is composed of B-spline basis functions
and a parameterized coefficient network that learns the weights for the B-spline basis. The coefficient network
takes inputs of the PDE and ICBC parameters, and outputs a tensor of control points (i.e., weights for the
B-spline basis), which are then multiplied by the B-spline basis to generate the PDE values. This structured
representation enforces compliance of ICBCs by construction. Training is performed using both
physics-based and data-based loss functions to ensure the network accurately approximates PDE solutions
across the domain for any PDEs in the parametric family. Furthermore, we show that the deep B-spline
network serves as a universal approximator for families of parametric PDEs under mild assumptions,
and we establish generalization error bounds for PI-BSNet. Finally, we present experimental results
showing that PI-BSNet has improved computation vs. accuracy trade-offs and is capable of handling
nonhomogeneous ICBCs and non-rectangular domains. To the best of our knowledge, this is the first work
to integrate B-spline basis representations with physics-informed learning for solving families of parametric
PDEs while also providing theoretical guarantees on approximation accuracy and generalization error bounds.

2

Under review as submission to TMLR

2 Related Work

Physics-Informed Learning. Physics-informed neural networks (PINNs) are neural networks that are
trained to solve supervised learning tasks while respecting physics laws described by partial differential
equations (Raissi et al., 2019; Han et al., 2018; Cuomo et al., 2022). These approaches have been widely
applied across domains, such as power systems (Misyris et al., 2020), fluid mechanics (Cai et al., 2022), and
medical applications (Sahli Costabal et al., 2020), among others. Many variants of PINN have been developed
to meet diverse learning requirements. For example, parametrized PINNs are proposed to solve parametric
PDEs (Cho et al., 2024; Huang et al., 2022; de Avila Belbute-Peres et al., 2021; Qin et al., 2022; Lei et al.,
2024). PINNs with hard constraints are proposed to meet specific ICBC requirements (Wang et al., 2023;
Li et al., 2024a; Chen et al., 2023). PINN with adaptive rescaling or coupled differentiation schemes are
proposed to reduce the computation burden in training (Ko & Park, 2025; Chiu et al., 2022). Under certain
assumptions, PINNs are shown to exhibit bounded generalization error (De Ryck & Mishra, 2022a;b; Mishra
& Molinaro, 2023; 2022) and convergence to ground truth solutions (Fang, 2021; Pang et al., 2019; Jiao et al.,
2021).

Physics-informed neural operators (PINOs) are neural operators (Kovachki et al., 2023; Li et al., 2020; Lu
et al., 2019; 2021; 2022) that learn mappings between functional spaces while respecting underlying physics
laws. PINOs have been applied to both fixed and parametric PDEs (Wang et al., 2021; Gao et al., 2021; Li
et al., 2024b; Goswami et al., 2023), and extended to handle specialized problems such as pattern formation (Li
et al., 2023) and varying ICBCs (Kumar et al., 2024). These methods typically impose ICBCs through loss
terms, which may not guarantee strict compliance (Brecht et al., 2023).

In comparison, our method learns B-spline control point representations rather than solution values across
the entire domain as in PINN/PINO approaches (e.g., Raissi et al. (2019); Han et al. (2018); Kovachki et al.
(2023)). Moreover, our method directly enforces ICBCs through the B-spline structure itself, rather than
through loss functions (e.g., Cuomo et al. (2022); Li et al. (2024b); Goswami et al. (2023)) or problem-specific
filters (e.g., Wang et al. (2023); Li et al. (2024a); Chen et al. (2023)). These architectural differences yield
better compliance with boundary conditions (Fig. 2), stable and fast training (Fig. 3), and improved tradeoff
between computational efficiency and prediction accuracy (Fig. 4).

B-splines and neural networks. B-splines are piece-wise polynomial functions derived from slight
adjustments of Bezier curves, aimed at obtaining polynomial curves that tie together smoothly (Ahlberg
et al., 2016). B-splines have been integrated with finite element methods (Jia et al., 2013; Shen et al., 2023),
employed in variational dual formulations for PDEs (Sukumar & Acharya, 2024), used to parameterize PDE
domains (Falini et al., 2023), and adapted into spline-inspired mesh movement networks for PDEs (Song
et al., 2022).

The combination of B-splines with neural networks has produced diverse applications, including surface
reconstruction (Iglesias et al., 2004), nonlinear system modeling (Yiu et al., 2001; Wang et al., 2022b),
image segmentation (Cho et al., 2021), and control system design (Chen et al., 2004; Deng et al., 2008).
Kolmogorov–Arnold Networks (KANs) (Liu et al., 2024) employs spline functions to generate learnable
weights as an alternative to traditional multilayer perceptrons. The neural network in our proposed PI-BSNet
can take arbitrary MLP/non-MLP-based architectures, including KANs. Physics-informed learning is used to
train convolutional neural networks (CNNs) with Hermite spline kernels to provide forward-time prediction
in PDEs (Wandel et al., 2022). NNs are used to learn weights for general polynomial basis to solve PDEs
in (Tang et al., 2023). These works do not focus on approximating a family of parametric PDEs with different
ICBCs or imposing hard ICBC compliance.

Closest to our work are methods that learn B-spline weights for fixed-parameter ODEs (Fakhoury et al., 2022;
Romagnoli et al., 2024) and PDEs (Doległo et al., 2022; Zhu et al., 2024). Our work extends these approaches
in several key directions. First, while these works focus on learning a single PDE with fixed ICBCs, we
focus on joint learning of a family of parametric PDEs with different ICBCs with new theoretical guarantees
(Section 4). Second, we leverage analytical derivatives of B-splines to enable efficient physics-informed learning.
The use of physics-informed learning with hard ICBCs compliance enables accurate generalization beyond
regions with available training data (Theorem 4.6 and prediction on unseen parameters in Section 5).

3

Under review as submission to TMLR

3 Proposed Method

3.1 Problem Formulation

The goal of this paper is to efficiently estimate high-dimensional surfaces governed by physics laws of a wide
range variety of parameters (e.g., the solution of a family of PDEs). We denote s : Rn → R as the ground
truth, i.e., s(x) is the value of the surface at point x, where x ∈ Rn. We assume the physics laws can be
written as

F(s, x, u) = 0, x ∈ Ω(α),
B(s, x, u) = 0, x ∈ ∂Ω(α),

(1)

where F is the physics law and B is the initial and boundary conditions (ICBCs), u ∈ Rm is the parameters of
the systems, Ω(α) ∈ Rn parameterized by α is the domain of interest. In this paper, we consider n-dimensional
bounded domain Ω = [a1, b1]× [a2, b2]× · · · × [an, bn].1 Our goal is to generate s̃ with neural networks to
estimate s on the entire domain of Ω, with all possible parameters u and α. For example, in the case of solving
2D heat equations on (x1, x2) ∈ [0, α]2 at time t ∈ [0, 10] with varying coefficient u ∈ [0, 2] and α ∈ [3, 4], we
have

F(s, x, u) = ∂s/∂t− u
(
∂2s/∂x2

1 + ∂2s/∂x2
2
)

= 0, x = (x1, x2, t) ∈ Ωx × Ωt, (2)
B(s, x, u) = s− 1 = 0, x = (x1, x2, t) ∈ ∂Ωx × Ωt, (3)

where Ωx = [0, α]2 and Ωt = [0, 10], and ∂Ωx is the boundary of Ωx. Here, equation 2 is the heat equation
and equation 3 is the boundary condition. In this case, we want to solve for s on Ω = Ωx×Ωt for all u ∈ [0, 2]
and α ∈ [3, 4]. Similar problems have been studied in Li et al. (2024b); Gao et al. (2021); Cho et al. (2024)
while the majority of the literature considers solving parameterized PDEs but with either fixed coefficients or
fixed domain and initial/boundary conditions. We slightly generalize the problem to consider systems with
varying parameters, and with potentially varying domains and initial/boundary conditions.

3.2 B-Splines with Basis Functions

In this section, we introduce B-spline basis functions. We begin with the one-dimensional variable x ∈ R.
The B-spline basis functions are defined recursively by the Cox–de Boor formula (Piegl & Tiller, 2012):

Bi,d(x) = x− x̂i

x̂i+d − x̂i
Bi,d−1(x) + x̂i+d+1 − x

x̂i+d+1 − x̂i+1
Bi+1,d−1(x), (4)

with the base case

Bi,0(x) =
{

1, x̂i ≤ x < x̂i+1,

0, otherwise.
(5)

Here, Bi,d(x) denotes the value of the i-th B-spline basis function of order d evaluated at x. The sequence
(x̂i)ℓ+d+1

i=1 is a non-decreasing vector of knot points, where ℓ is the number of B-spline basis functions. Since a
B-spline is a piecewise polynomial function, the knot points determine the interval in which the polynomial is
active.

There are multiple ways to choose knot points. In this work, we adopt clamped knot vectors, where the first
and last knots are repeated d + 1 times, i.e., x̂1 = · · · = x̂d+1 and x̂ℓ+1 = · · · = x̂ℓ+d+1, with the interior
knots equally spaced. For example, on the interval [0, 3] with ℓ = 6 control points and order d = 3, the knot
vector is

x̂ = [0, 0, 0, 0, 1, 2, 3, 3, 3, 3],
giving a total of ℓ + d + 1 = 10 knots.

The B-spline basis functions vector is defined as

Bd(x) := [B1,d(x), B2,d(x), . . . , Bℓ,d(x)]⊤, (6)
1Such domain configuration is widely considered in the literature (Takamoto et al., 2022; Gupta & Brandstetter, 2022; Li

et al., 2020; Raissi et al., 2019; Wang et al., 2021; Zhu et al., 2024). Generalizations are considered in Section 5.3 and Section C.2.

4

Under review as submission to TMLR

and the coefficients for these basis functions, namely control points, are defined as c := [c1, c2, . . . , cℓ]. Then,
we can approximate a solution s(x) with ŝ(x) = cBd(x). Note that with our choice of knot points, we ensure
the initial and final values of ŝ(x) coincide with the initial and final control points c1 and cℓ. This property
will be used later to directly impose initial conditions and Dirichlet boundary conditions with PI-BSNet. A
visualization of B-spline basis functions and reconstructions can be found in Fig. 8 in the Appendix.

More generally, for a n-dimensional space x = [x1, · · · , xn] ∈ Rn, we can generate B-spline basis functions
based on the Cox-de Boor recursion formula along each dimension xi with order di for i = 1, 2, · · · , n, and the
n-dimensional control point tensor will be given by C = [ci1,i2,··· ,in

]ℓ1×ℓ2×···×ℓn
, where ik and ℓk are the index

and the number of control points along the k-th dimension. We can then approximate the n-dimensional
surface with B-splines and control points via

ŝ(x1, x2, · · · , xn) =
ℓ1∑

i1=1
· · ·

ℓn∑
in=1

ci1,i2,··· ,in
Bi1,d1(x1) · · ·Bin,dn

(xn). (7)

3.3 Physics-Informed B-Spline Networks

In this section, we introduce our proposed physics-informed deep B-spline networks (PI-BSNet). The overall
diagram of the network is shown in Fig. 1. The network composites a coefficient network that learns the
control point tensor C with system parameters u and ICBC parameters α, and the B-spline basis functions
Bdi

of order di for i = 1, · · · , n. We use Gθ(u, α)(x) to denote the PI-BSNet parameterized by θ, where
(u, α) is the input to the coefficient net, and x is the input to the B-spline basis. We use C̃ := Gθ(u, α) to
denote the control points output by the coefficient network and s̃(x) := Gθ(u, α)(x) to denote the PI-BSNet
prediction. During the forward pass, the control point tensor C̃ output from the coefficient net is multiplied
with the B-spline basis functions Bdi

via equation 7 to get the approximation s̃. For the backward pass, two
losses are imposed to efficiently and effectively train PI-BSNet. We first impose a physics model loss

Lp =
∑
x∈P

1
|P|
|F(s̃, x, u)|2, (8)

where F is the governing physics model of the system as defined in equation 1, and P is the set of points
sampled to evaluate the governing physics model. When data is available, we can additionally impose a data
loss

Ld = 1
|D|

∑
x∈D
|s(x)− s̃(x)|2, (9)

to capture the mean square error of the approximation, where s is the data point for the high dimensional
surface, D is the set of points where data are available, and s̃ is the prediction from the PI-BSNet. Only
for special types of boundary conditions that involve derivatives of the solution (e.g., Neumann and Robin
types), we impose the following ICBC loss

Lb =
∑

x∈M

1
|M|
|B(s̃, x, u)|2, (10)

where M is the set of points sampled to evaluate the ICBC residual. The total loss is given by

L = wpLp + wdLd + wbLb, (11)

where wp, wd and wb are the weights for physics, data and ICBC losses, and are usually set to values close to
1.2 Detailed procedures for training PI-BSNet is shown in Alg. 1 in the Appendix.

Note that several good properties of B-splines are leveraged in PI-BSNet.

First, advantageous training efficiency can be obtained with the B-spline representation.
Specifically, the B-spline basis functions are fixed and can be calculated in advance, and the coefficient

2Ablation experiments on the effects of weights for physics and data losses can be found in Appendix E.4.

5

Under review as submission to TMLR

network is trained to learn only the fixed number of B-spline weights instead of the solution values on the
entire space. This speeds up training over existing methods for certain problems.

Besides, any Dirichlet boundary conditions and initial conditions can be directly assigned via
the control points tensor without any learning involved. This is a natural property of the B-spline
representation with clamped knot points (Ahlberg et al., 2016). This feature greatly enhances the accuracy
of the learned solution near the ICBC, and improves the ease of design for the loss function as weight factors
are often used to impose stronger ICBC constraints in previous literature (Wang et al., 2022a).
Lastly, the derivatives of the B-spline functions can be analytically calculated. Specifically, the
p-th derivative of the d-th ordered B-spline at arbitrary point x is given by (Butterfield, 1976)

dp

dxp
Bi,d(x) = (d − 1)!

(d − p − 1)!

p∑
k=0

(−1)k

(
p

k

)
Bi+k,d−p(x)∏p−1

j=0 (x̂i+d−j−1 − x̂i+k)
. (12)

Given this, we can directly calculate derivatives for the back-propagation of physics model loss Lp, which
improves both computation efficiency and accuracy over numerical methods.

4 Theoretical Analysis

In this section, we provide theoretical guarantees that the proposed PI-BSNet is a universal approximator for
parametric PDEs, and has bounded generalization errors for learning families of elliptic or parabolic PDEs.
All theorem proofs can be found in Appendix A.

4.1 Universal Approximation

In this section, we show that the proposed PI-BSNet is a universal approximator for solutions of families of
PDEs at arbitrary dimension. We consider n Hilbert spaces L2([ai, bi]) for i = 1, 2, · · · , n. We define the
inner products of two n-dimensional functions s, g ∈ L2([a1, b1]× · · · × [an, bn]) as

⟨s, g⟩ :=
∫ bn

an

···
∫ b1

a1

s(x1, ··· , xn)g∗(x1, ··· , xn)dx1 ··· dxn, (13)

and we say a function s : Rn → R is square-integrable if

⟨s, s⟩ =
∫ bn

an

· · ·
∫ b1

a1

|s(x1, · · · , xn)|2dx1 · · · dxn <∞. (14)

Assumption 4.1. The solution of the physics problem defined in equation 1 is continuous in α and u.
Specifically, let s1 and s2 be the solutions of the physics problem with parameters α1, u1 and α2, u2. For
any ϵ > 0, there exist δ1 > 0 and δ2 > 0 such that given ∥α1 − α2∥ < δ1, and ∥u1 − u2∥ < δ2, we have
∥s1 − s2∥2 < ϵ.3

Assumption 4.2. The solution of the physics problem defined in equation 1 is differentiable in x.

Assumption 4.1 is a basic assumption for a neural network to approximate solutions of families of parameterized
PDEs, and is not strict as it holds for many PDE problems.4 Assumption 4.2 holds for many PDE
problems (Chen et al., 2018; De Angelis, 2015; Barles et al., 2010), and our theoretical results can be
generalized to cases where the solution is not differentiable at finite number of points.
Theorem 4.3. Assume Assumption 4.1 and 4.2 hold. For any n ∈ N+ dimension, any u and α in a finite
parameter set, let di be the order of B-spline basis for dimension i = 1, 2, · · · , n. Then for any d-time
differentiable function s(x1, x2, · · · , xn) ∈ L2([a1, b1] × [a2, b2] × · · · × [an, bn]) with d ≥ max{d1, · · · , dn}
where the domain depends on α and the function depends on u, and any ϵ > 0, there exist a PI-BSNet

3Under necessary domain mapping when α1 ̸= α2.
4For a well-posed and stable PDE system with unique solution (e.g., linear Poisson, convection-diffusion and heat equations

with appropriate ICBCs), change of the system parameter u or the ICBC parameter α usually results in slight change of the
value of the solution Treves (1962).

6

Under review as submission to TMLR

configuration Gθ with enough width and depth, and corresponding parameters θ∗ independent of u and α such
that

∥s̃− s∥2 ≤ ϵ, (15)
where s̃ = Gθ∗(u, α)(x) is the B-spline approximation defined in equation 7 with the control points tensor
Gθ∗(u, α).

Theorem 4.3 tells us that the proposed PI-BSNet is a universal approximator of arbitrary-dimensional
surfaces with varying parameters and domains. Thus we know that when the solution of the problem
defined in equation 1 is unique, and the physics-informed loss functions Lp is densely imposed and attains
zero (De Ryck & Mishra, 2022a; Mishra & Molinaro, 2023), we learn the solution of the PDE problem of
arbitrary dimensions.

4.2 Generalization Error Bounds

In this section, we provide generalization error bounds of the proposed PI-BSNet for families of elliptic or
parabolic PDEs. We make the following assumption about the Lipschitzness of the coefficient network and
the training scheme of PI-BSNet.
Assumption 4.4. In the PI-BSNet framework, the output of the coefficient network is Lipschitz with respect
to its inputs. Specifically, given the coefficient network Gθ(u, α), ∀u1, u2 such that ∥u1 − u2∥ ≤ δu, and
∀α1, α2 such that ∥α1 − α2∥ ≤ δα, we have ∥Gθ(u1, α1)−Gθ(u1, α2)∥ ≤ L(δu + δα), for some constant L.
Assumption 4.5. The training of PI-BSNet is on a finite subset of Utrain ∈ U and Atrain ∈ A for u and
α, respectively. The maximum interval between the samples in Utrain and Atrain is ∆u and ∆α, and Utrain,
Atrain each fully covers U and A, i.e., ∀u1 ∈ U and α1 ∈ A, there exists u2 ∈ Utrain and α2 ∈ Atrain such that
∥u1 − u2∥ ≤ ∆u, ∥α1 − α2∥ ≤ ∆α.

Assumption 4.4 holds in practice as neural networks are usually finite compositions of Lipschitz functions,
and its Lipschitz constant can be estimated efficiently (Fazlyab et al., 2019). Assumption 4.5 can be easily
achieved since one can sample PDE parameters u and α with equispaced intervals less than ∆u and ∆α in U
and A for training. We then have the following theorem to bound the generalization error for PI-BSNet on
the family of elliptic or parabolic PDEs.
Theorem 4.6. Assume Assumption 4.1, Assumption 4.4 and Assumption 4.5 hold. For any elliptic or
parabolic PDE with varying parameters u ∈ U and α ∈ A with U and A bounded, suppose that the domain
of the PDE Ω(α) ∈ Rn is bounded, su,α ∈ C0(Ω̄(α)) ∩ C2(Ω(α)) is the solution where Ω̄ is the closure of
Ω, F(su,α, x) = 0, x ∈ Ω(α) defines the PDE, and B(su,α, x) = 0, x ∈ Ωb(α) is the boundary condition. Let
Gθ denote a PI-BSNet parameterized by θ and s̃u,α = Gθ(u, α) the solution predicted by PI-BSNet. If the
following conditions holds:

1. EY [|B(Gθ(u, α), x)|] < δ1, where Y is uniformly sampled from Ωb(α), for all u ∈ Utrain and α ∈ Atrain.
2. EX [|F(Gθ(u, α), x)|] < δ2, where X is uniformly sampled from Ω(α), for all u ∈ Utrain and α ∈ Atrain.
3. Gθ(u, α), F(Gθ(u, α), ·), s(u, α) are l

2 Lipschitz continuous on Ω(α), for all u ∈ U and α ∈ A.

Then for any u ∈ U and α ∈ A, the prediction error of s̃u,α over Ω(α) is bounded by

sup
x∈Ω(α)

|s̃u,α(x)− su,α(x)| ≤ δ̃1 + Mδ̃2 + L̃(∆u + ∆α), (16)

where M is a constant depending on parameter sets A, U , domain functions Ω, Ωb, and the PDE F , L̃ is
some Lipschitz constant, and

δ̃1 = max
α

 2δ1|Ωb(α)|
RΩb(α)|Ωb(α)| , 2l ·

(
δ1|Ωb(α)| · Γ(n+1

2)
lRΩb(α) · π(n−1)/2

) 1
n

 ,

δ̃2 = max
α

{
2δ2|Ω(α)|

RΩ(α)|Ω(α)| , 2l ·
(

δ2|Ω(α)| · Γ(n/2 + 1)
lRΩ(α) · πn/2

) 1
n+1
}

,

(17)

7

Under review as submission to TMLR

Ground Truth

PI-BSNet (Proposed) EPINN VS-PINN PI-DeepONet PI-FNO

Figure 2: Recovery probability visualizations. Predictions in first row and errors in second row.

where R(·) is the regularity of (·), |(·)| denotes the Lebesgue measure and Γ is the Gamma function.

5 Experiments

In this section, we present simulation results on estimating the recovery probability of a dynamical system
which gives irregular ICBCs, and compare the proposed PI-BSNet with several baseline methods to show
advantages. We then present results to show that PI-BSNet can handle nonhomogeneous ICBCs and learn
PDEs on non-rectangular trapezoid domains. All experiment details, ablation experiments and additional
experiments can be found in Appendix D, E and F, respectively.

5.1 Recovery Probabilities

We consider an autonomous system with dynamics dxt = u dt + dwt, where x ∈ R is the state, wt ∈ R is the
standard Wiener process with w0 = 0, and u ∈ R is the system parameter. Given a set Cα = {x ∈ R : x ≥ α},
we want to estimate the probability of reaching Cα at least once within time horizon t starting at some x0.
Here, α is the varying parameter of the set Cα. Mathematically this can be written as

s(x0, t) := P (∃τ ∈ [0, t], s.t. xτ ∈ Cα | x0) . (18)

From Chern et al. (2021) we know that such probability is the solution of convection-diffusion equations with
certain initial and boundary conditions

PDE: ∂s

∂t
(x, t)− u

∂s

∂x
(x, t)− 1

2

(
∂2s

∂x2 (x, t)
)

= 0, ∀[x, t] ∈ Cc
α × T (19)

ICBC: s(α, t) = 1,∀t ∈ T , s(x, 0) = 0, ∀x ∈ Cc
α, (20)

where Cc
α is the complement of Cα, and T = [0, T] with T = 10 be the time horizon of interest. Note that the

initial condition and boundary condition at (x, t) = (α, 0) is not continuous,5 which imposes difficulty for
learning the solutions.

We train PI-BSNet with 3-layer fully connected neural networks with ReLU activation on varying parameters
u ∈ [0, 2] and α ∈ [0, 4] with both data and physics losses,6 and test on randomly selected parameters in the
same domain. We compare PI-BSNet with the standard physics-informed neural network (PINN) (Raissi et al.,
2019), PINNs that enforces hard constraints for ICBCs including EPINN (Wang et al., 2023), SFHCPINN (Li
et al., 2024a), HWPINN (Chen et al., 2023), efficient PINN methods including VS-PINN (Ko & Park, 2025),

5When on the boundary of the Cα, the recovery probability at horizon t = 0 is s(α, 0) = 1, but close to the boundary with
very small t the recovery probability is s(x, 0) = 0.

6With data, the learning process goes to unique solutions despite the presence of only one BC.

8

Under review as submission to TMLR

Figure 3: Losses vs. epochs with mean and standard deviation over 10 independent runs.

CAN-PINN (Chiu et al., 2022), physics-informed neural operator methods including PI-DeepONet (Goswami
et al., 2023), PI-FNO (Li et al., 2024b), with similar or comparable NN configurations. All methods are
implemented to take PDE and ICBC parameters as additional inputs for parametric PDEs. All comparison
experiments are run on a Linux machine with Intel i7 CPU and Nvidia GeForce RTX 4090 GPU. Details of
the experiment configuration can be found in Appendix D.

PI-FNO

PI-BSNet PI-BSNet (FD)

SFHCPINN

PI-DeepONet

PINN
VS-PINN

CAN-PINN EPINN

HW-PINN

Figure 4: Training time vs. prediction error
trade-offs.

Fig. 2 visualizes the prediction results on a parameter set (u, α)
from the same distribution but not used for training (see Fig. 10
in Appendix for full visualization results). We can see that
PI-BSNet predicts the ground truth solution accurately during
testing while the other methods fails to do so. Fig. 3 visualizes
the losses vs. epochs, and we can see that the loss for PI-BSNet
drops the fastest and reaches convergence in the shortest amount
of time. Fig. 4 visualizes the averaged computation time vs.
prediction accuracy over 10 independent runs, and we can see
that PI-BSNet obtained the lowest prediction error as well as
the lowest training time. This is because PI-BSNet has more
compact representation with B-spline basis functions, achieves
zero initial and boundary condition losses at the very beginning
of the training. In addition, thanks to the analytical calculation
of gradients and Hessians, the training time of PI-BSNet is
further shortened compared to using finite difference, which is
given by PI-BSNet (FD).

5.2 Advection Equations with Nonhomogeneous ICBCs

In this section, we demonstrate the capability of the proposed PI-BSNet to handle nonhomogeneous ICBCs.
We consider the following advection equation

∂s

∂t
+ u

∂s

∂x
= 0, (21)

where u ∈ [0.5, 1.5] is a changing parameter. The domain of interest is set to be (x, t) ∈ [0, 1]× [0, 2], and the
initial condition is given by

s(x, 0) = A sin (kx + α) , (22)

where A = 1, k = 2π, and α ∈ [0, 2π) is a changing parameter. We train PI-BSNet with 3-layer fully
connected neural networks with ReLU activation on varying parameters u ∈ [0.5, 1.5] and α ∈ [0, 2π), and
test on randomly selected parameters in the same domain. The B-spline basis of order 5 is used and the
number of control points along x and t are set to be ℓx = ℓt = 150. Note that more control points are used in
this case study to represent the high frequency solution. Fig. 5 visualizes the prediction results. The average
MSE across 30 test cases is 6.178± 4.669× 10−3.

9

Under review as submission to TMLR

Ground Truth PI-BSNet Absolute Difference

Figure 5: Test results on advection equations with unseen parameter.

𝑡 = 0 𝑡 = 0.1 𝑡 = 0.2 𝑡 = 0.3 𝑡 = 0.5 𝑡 = 1

Ground Truth

PI-BSNet

Difference

Figure 6: Results on diffusion equation on the trapezoid over time.

5.3 Diffusion on Trapezoid

In this experiment, we demonstrate the capability of the proposed PI-BSNet to handle non-rectangular
domains. Specifically, we aim to estimate the probability that a driftless Brownian motion in 2D (x-y plane)
with varying diffusion factor α ∈ [0, 1.5] along y direction, starting at a point in a trapezoid

Ωtarget = {(x, y) ∈ R2 : y ∈ [0, 1], x ∈ [−1 + 0.5 y, 1− 0.5 y]}, (23)

will exit the domain within a given time horizon t ∈ [0, T] with T = 1. Equivalently, we want to compute the
following value for all starting positions (x, y) ∈ Ωtarget and t ∈ [0, T]

s(x, y, t) = P
(
∃ τ ∈ [0, t] s.t. xτ /∈ Ω

∣∣ (x0, y0) = (x, y) ∈ Ωtarget

)
. (24)

We know that the exit probability s(x, y, t) is the solution of the following diffusion equation

∂s

∂t
= 1

2(∂2s

∂x2 + α
∂2s

∂y2), (25)

with ICBCs
s(0, x, y) = 0, ∀(x, y) ∈ Ωtarget,

s(t, x, y) = 1, ∀t ∈ [0, T], ∀(x, y) ∈ ∂Ωtarget.
(26)

To solve this problem, we transform the target domain Ωtarget to a rectangular mapped domain Ωmapped =
{(u, v) ∈ R2 : u ∈ [0, 1], v ∈ [0, 1]}, and find the corresponding PDE. We train a PI-BSNet with order
d = 3, number of control points ℓx = ℓy = 20 and ℓt = 100 on 10 uniformly sampled α ∈ [0, 1.5]. We then
test the prediction results on unseen α. Fig. 6 visualizes the results for one test case. It can be seen that
PI-BSNet can accurately predict the diffusion evolution on the trapezoid with unseen parameter. The MSE
for prediction is 1.0459× 10−5, and the mean absolute error is 1.8870× 10−3, for 10 random testing trials.
Domain transformation derivations and experiment details can be found in Appendix D.3.

6 Discussions

In this section, we discuss the practical considerations and limitations.

10

Under review as submission to TMLR

Choice of control point numbers. Theorem 4.3 suggests that a higher number of control points can
provide a lower approximation error. In practice, when data are available, which is common for parametric
PDE learning problems, one could tune the number of control points in prior to training to reach desired
approximation error, or choose higher numbers of control points to ensure expressiveness of the model. In
general, smoother problems will require less control points to reach a certain desired error tolerance, since
B-splines are smooth functions.

Scalability to high-dimensional systems. For the number of points used to enforce the PDE loss,
the proposed PI-BSNet, along with many PINN and neural operator methods, suffers from the curse of
dimensionality. However, adaptive sampling techniques, such as those discussed in (Zeng et al., 2022), can be
effective in reducing the number of points required for training PINNs, especially when the PDE solution is
concentrated in certain regions of the domain. Similar ideas can be potentially incorporated into the proposed
PI-BSNet framework through adaptive knot placement (Yeh et al., 2020), which would reduce the number of
control points needed and improve scalability.

For the number of network parameters, using fixed B-spline basis will result in exponential increase with the
dimension for the proposed PI-BSNet. Additional treatment such as hierarchical B-splines (Valentin, 2019),
control point adjustments (Yeh et al., 2020; Yang et al., 2004) and non-uniform B-spline representations (Piegl
& Tiller, 2012) can be potentially used to reduce the number of control points, thus effectively reduce
the network size. Nevertheless, the proposed PI-BSNet requires less control points than typical grid-based
optimization methods for PDE solving in such cases, thanks to the representation capacity of B-spline basis
functions.

General domains and transformations. While the standard B-spline formulation primarily supports
domains that are diffeomorphic to rectangulars, we show in Appendix C.2 that B-splines can effectively
represent solutions on general domains, which motivates future work on physics-informed learning for such
cases. In addition, coordinate transformations such as Mojgani et al. (2023) can be potentially leveraged
to effectively reduce the representation complexity, for advection-dominated equations such as equation 21,
where dense control points are typically needed to accurately capture the coupled evolution between state
and time.

Fixed basis vs. learned basis. With the use of fixed B-spline basis, the proposed method enjoys unique
features such as exact enforcement of initial and boundary conditions, analytical derivative calculations for
physics loss functions, inherent solution smoothness, and a compact, structured representation. These lead to
practical advantages for systems like the one studied in Section 5.1, where we demonstrate faster convergence,
higher prediction accuracy, and reduced computation time. In the literature, there are also methods such
as PI-DeepONet (Goswami et al., 2023) that leverage learned basis. Correspondingly, longer training time
is usually required due to the lack of structural advantages, with a potential gain in expressiveness. This
distinction reflects the difference of architecture choice results in different capabilities and target applications.
In particular, our method is especially suited for scenarios that demand strict IC/BC satisfaction, smooth
solutions, and efficient training.

7 Conclusion

In this paper, we propose physics-informed deep B-spline networks (PI-BSNet), which incorporate B-spline
functions into physics-informed neural networks, to efficiently learn solutions of families of PDEs with varying
ICBCs. With PI-BSNet, analytical derivatives are available for B-splines to calculate physics-informed losses,
initial conditions and Dirichlet boundary conditions can be directly imposed through B-spline control points.
We prove theoretical guarantees that PI-BSNets are universal approximators and have bounded generalization
errors for elliptic and parabolic PDE families. We demonstrate in experiments that PI-BSNet achieves
better training time and prediction accuracy trade-offs over various baselines, and is capable of addressing
nonhomogeneous ICBCs and non-rectangular domains. Future work includes extensions to unparameterized
domains and high-dimensional problems.

11

Under review as submission to TMLR

References
Shmuel Agmon. Lectures on elliptic boundary value problems, volume 369. American Mathematical Soc.,

2010.

J Harold Ahlberg, Edwin Norman Nilson, and Joseph Leonard Walsh. The Theory of Splines and Their
Applications: Mathematics in Science and Engineering: A Series of Monographs and Textbooks, Vol. 38,
volume 38. Elsevier, 2016.

Alampallam V Balakrishnan. Applied Functional Analysis: A, volume 3. Springer Science & Business Media,
2012.

Guy Barles, Emmanuel Chasseigne, and Cyril Imbert. Hölder continuity of solutions of second-order non-linear
elliptic integro-differential equations. Journal of the European Mathematical Society, 13(1):1–26, 2010.

Thierry Blu and Michael Unser. Quantitative fourier analysis of approximation techniques. i. interpolators
and projectors. IEEE Transactions on signal processing, 47(10):2783–2795, 1999.

Lise Le Boudec, Emmanuel De Bézenac, Louis Serrano, Ramon Daniel Regueiro-Espino, Yuan Yin, and
Patrick Gallinari. Learning a neural solver for parametric pde to enhance physics-informed methods. arXiv
preprint arXiv:2410.06820, 2024.

Rüdiger Brecht, Dmytro R Popovych, Alex Bihlo, and Roman O Popovych. Improving physics-informed
deeponets with hard constraints. arXiv preprint arXiv:2309.07899, 2023.

Kenneth R Butterfield. The computation of all the derivatives of a b-spline basis. IMA Journal of Applied
Mathematics, 17(1):15–25, 1976.

Shengze Cai, Zhiping Mao, Zhicheng Wang, Minglang Yin, and George Em Karniadakis. Physics-informed
neural networks (pinns) for fluid mechanics: A review. Acta Mechanica Sinica, pp. 1–12, 2022.

Jiaolong Chen, Manzi Huang, Antti Rasila, and Xiantao Wang. On lipschitz continuity of solutions of
hyperbolic poisson’s equation. Calculus of Variations and Partial Differential Equations, 57:1–32, 2018.

Simin Chen, Zhixiang Liu, Wenbo Zhang, and Jinkun Yang. A hard-constraint wide-body physics-informed
neural network model for solving multiple cases in forward problems for partial differential equations.
Applied Sciences, 14(1):189, 2023.

YangQuan Chen, Kevin L Moore, and Vikas Bahl. Learning feedforward control using a dilated b-spline
network: Frequency domain analysis and design. IEEE Transactions on neural networks, 15(2):355–366,
2004.

Albert Chern, Xiang Wang, Abhiram Iyer, and Yorie Nakahira. Safe control in the presence of stochastic
uncertainties. In 2021 60th IEEE Conference on Decision and Control (CDC), pp. 6640–6645. IEEE, 2021.

Pao-Hsiung Chiu, Jian Cheng Wong, Chinchun Ooi, My Ha Dao, and Yew-Soon Ong. Can-pinn: A fast
physics-informed neural network based on coupled-automatic–numerical differentiation method. Computer
Methods in Applied Mechanics and Engineering, 395:114909, 2022.

Minsu Cho, Aditya Balu, Ameya Joshi, Anjana Deva Prasad, Biswajit Khara, Soumik Sarkar, Baskar
Ganapathysubramanian, Adarsh Krishnamurthy, and Chinmay Hegde. Differentiable spline approximations.
Advances in neural information processing systems, 34:20270–20282, 2021.

Woojin Cho, Minju Jo, Haksoo Lim, Kookjin Lee, Dongeun Lee, Sanghyun Hong, and Noseong Park.
Parameterized physics-informed neural networks for parameterized pdes. arXiv preprint arXiv:2408.09446,
2024.

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi, and Francesco
Piccialli. Scientific machine learning through physics–informed neural networks: Where we are and what’s
next. Journal of Scientific Computing, 92(3):88, 2022.

12

Under review as submission to TMLR

Tiziano De Angelis. A note on the continuity of free-boundaries in finite-horizon optimal stopping problems
for one-dimensional diffusions. SIAM Journal on Control and Optimization, 53(1):167–184, 2015.

Filipe de Avila Belbute-Peres, Yi-fan Chen, and Fei Sha. Hyperpinn: Learning parameterized differential
equations with physics-informed hypernetworks. The symbiosis of deep learning and differential equations,
690, 2021.

Tim De Ryck and Siddhartha Mishra. Error analysis for physics-informed neural networks (pinns) approxi-
mating kolmogorov pdes. Advances in Computational Mathematics, 48(6):79, 2022a.

Tim De Ryck and Siddhartha Mishra. Generic bounds on the approximation error for physics-informed (and)
operator learning. Advances in Neural Information Processing Systems, 35:10945–10958, 2022b.

Chongyang Deng and Hongwei Lin. Progressive and iterative approximation for least squares b-spline curve
and surface fitting. Computer-Aided Design, 47:32–44, 2014.

Heng Deng, Ramesh Oruganti, and Dipti Srinivasan. Neural controller for ups inverters based on b-spline
network. IEEE Transactions on Industrial Electronics, 55(2):899–909, 2008.

Kamil Doległo, Anna Paszyńska, Maciej Paszyński, and Leszek Demkowicz. Deep neural networks for
smooth approximation of physics with higher order and continuity b-spline base functions. arXiv preprint
arXiv:2201.00904, 2022.

Daniele Fakhoury, Emanuele Fakhoury, and Hendrik Speleers. Exsplinet: An interpretable and expressive
spline-based neural network. Neural Networks, 152:332–346, 2022.

Antonella Falini, Giuseppe Alessio D’Inverno, Maria Lucia Sampoli, and Francesca Mazzia. Splines parame-
terization of planar domains by physics-informed neural networks. Mathematics, 11(10):2406, 2023.

Zhiwei Fang. A high-efficient hybrid physics-informed neural networks based on convolutional neural network.
IEEE Transactions on Neural Networks and Learning Systems, 33(10):5514–5526, 2021.

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas. Efficient and
accurate estimation of lipschitz constants for deep neural networks. Advances in neural information
processing systems, 32, 2019.

Han Gao, Luning Sun, and Jian-Xun Wang. Phygeonet: Physics-informed geometry-adaptive convolutional
neural networks for solving parameterized steady-state pdes on irregular domain. Journal of Computational
Physics, 428:110079, 2021.

Somdatta Goswami, Aniruddha Bora, Yue Yu, and George Em Karniadakis. Physics-informed deep neural
operator networks. In Machine learning in modeling and simulation: methods and applications, pp. 219–254.
Springer, 2023.

Jayesh K Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized pde modeling.
arXiv preprint arXiv:2209.15616, 2022.

Jiequn Han, Arnulf Jentzen, and Weinan E. Solving high-dimensional partial differential equations using
deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are universal
approximators. Neural networks, 2(5):359–366, 1989.

Xiang Huang, Zhanhong Ye, Hongsheng Liu, Shi Ji, Zidong Wang, Kang Yang, Yang Li, Min Wang, Haotian
Chu, Fan Yu, et al. Meta-auto-decoder for solving parametric partial differential equations. Advances in
Neural Information Processing Systems, 35:23426–23438, 2022.

Andrés Iglesias, G Echevarría, and Akemi Gálvez. Functional networks for b-spline surface reconstruction.
Future Generation Computer Systems, 20(8):1337–1353, 2004.

13

Under review as submission to TMLR

Rong-Qing Jia and JJ Lei. Approximation by multiinteger translates of functions having global support.
Journal of approximation theory, 72(1):2–23, 1993.

Yue Jia, Yongjie Zhang, Gang Xu, Xiaoying Zhuang, and Timon Rabczuk. Reproducing kernel triangular
b-spline-based fem for solving pdes. Computer Methods in Applied Mechanics and Engineering, 267:342–358,
2013.

Yuling Jiao, Yanming Lai, Dingwei Li, Xiliang Lu, Fengru Wang, Yang Wang, and Jerry Zhijian Yang. A
rate of convergence of physics informed neural networks for the linear second order elliptic pdes. arXiv
preprint arXiv:2109.01780, 2021.

Seungchan Ko and Sanghyeon Park. Vs-pinn: A fast and efficient training of physics-informed neural networks
using variable-scaling methods for solving pdes with stiff behavior. Journal of Computational Physics, 529:
113860, 2025.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Neural operator: Learning maps between function spaces with applications to
pdes. Journal of Machine Learning Research, 24(89):1–97, 2023.

Varun Kumar, Somdatta Goswami, Katiana Kontolati, Michael D Shields, and George Em Karniadakis. Syner-
gistic learning with multi-task deeponet for efficient pde problem solving. arXiv preprint arXiv:2408.02198,
2024.

Angela Kunoth, Tom Lyche, Giancarlo Sangalli, Stefano Serra-Capizzano, Tom Lyche, Carla Manni, and
Hendrik Speleers. Foundations of spline theory: B-splines, spline approximation, and hierarchical refinement.
Splines and PDEs: From Approximation Theory to Numerical Linear Algebra: Cetraro, Italy 2017, pp.
1–76, 2018.

Guanhang Lei, Zhen Lei, Lei Shi, and Chenyu Zeng. Solving parametric pdes with radial basis functions and
deep neural networks. arXiv preprint arXiv:2404.06834, 2024.

Moshe Leshno, Vladimir Ya Lin, Allan Pinkus, and Shimon Schocken. Multilayer feedforward networks with
a nonpolynomial activation function can approximate any function. Neural networks, 6(6):861–867, 1993.

Wei Li, Martin Z Bazant, and Juner Zhu. Phase-field deeponet: Physics-informed deep operator neural
network for fast simulations of pattern formation governed by gradient flows of free-energy functionals.
Computer Methods in Applied Mechanics and Engineering, 416:116299, 2023.

Xi’an Li, Jiaxin Deng, Jinran Wu, Shaotong Zhang, Weide Li, and You-Gan Wang. Physical informed neural
networks with soft and hard boundary constraints for solving advection-diffusion equations using fourier
expansions. Computers & Mathematics with Applications, 159:60–75, 2024a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Fourier neural operator for parametric partial differential equations. arXiv
preprint arXiv:2010.08895, 2020.

Zongyi Li, Hongkai Zheng, Nikola Kovachki, David Jin, Haoxuan Chen, Burigede Liu, Kamyar Azizzadenesheli,
and Anima Anandkumar. Physics-informed neural operator for learning partial differential equations.
ACM/JMS Journal of Data Science, 1(3):1–27, 2024b.

Songming Liu, Zhongkai Hao, Chengyang Ying, Hang Su, Jun Zhu, and Ze Cheng. A unified hard-constraint
framework for solving geometrically complex pdes. Advances in Neural Information Processing Systems,
35, 2022.

Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić, Thomas Y Hou,
and Max Tegmark. Kan: Kolmogorov-arnold networks. arXiv preprint arXiv:2404.19756, 2024.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. Deeponet: Learning nonlinear operators for identi-
fying differential equations based on the universal approximation theorem of operators. arXiv preprint
arXiv:1910.03193, 2019.

14

Under review as submission to TMLR

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning nonlinear
operators via deeponet based on the universal approximation theorem of operators. Nature machine
intelligence, 3(3):218–229, 2021.

Lu Lu, Xuhui Meng, Shengze Cai, Zhiping Mao, Somdatta Goswami, Zhongqiang Zhang, and George Em
Karniadakis. A comprehensive and fair comparison of two neural operators (with practical extensions)
based on fair data. Computer Methods in Applied Mechanics and Engineering, 393:114778, 2022.

Siddhartha Mishra and Roberto Molinaro. Estimates on the generalization error of physics-informed neural
networks for approximating a class of inverse problems for pdes. IMA Journal of Numerical Analysis, 42
(2):981–1022, 2022.

Siddhartha Mishra and Roberto Molinaro. Estimates on the generalization error of physics-informed neural
networks for approximating pdes. IMA Journal of Numerical Analysis, 43(1):1–43, 2023.

George S Misyris, Andreas Venzke, and Spyros Chatzivasileiadis. Physics-informed neural networks for power
systems. In 2020 IEEE Power & Energy Society General Meeting (PESGM), pp. 1–5. IEEE, 2020.

Rambod Mojgani, Maciej Balajewicz, and Pedram Hassanzadeh. Kolmogorov n–width and lagrangian physics-
informed neural networks: A causality-conforming manifold for convection-dominated pdes. Computer
Methods in Applied Mechanics and Engineering, 404:115810, 2023.

Guofei Pang, Lu Lu, and George Em Karniadakis. fpinns: Fractional physics-informed neural networks.
SIAM Journal on Scientific Computing, 41(4):A2603–A2626, 2019.

Wei Peng, Weien Zhou, Jun Zhang, and Wen Yao. Accelerating physics-informed neural network training
with prior dictionaries. arXiv preprint arXiv:2004.08151, 2020.

Les Piegl and Wayne Tiller. The NURBS book. Springer Science & Business Media, 2012.

William K Pratt. Digital image processing: PIKS Scientific inside, volume 4. Wiley Online Library, 2007.

H Prautzsch. Bézier and b-spline techniques, 2002.

Tian Qin, Alex Beatson, Deniz Oktay, Nick McGreivy, and Ryan P Adams. Meta-pde: Learning to solve
pdes quickly without a mesh. arXiv preprint arXiv:2211.01604, 2022.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational physics, 378:686–707, 2019.

Raffaele Romagnoli, Jasmine Ratchford, and Mark H Klein. Building hybrid b-spline and neural network
operators. arXiv preprint arXiv:2406.06611, 2024.

Francisco Sahli Costabal, Yibo Yang, Paris Perdikaris, Daniel E Hurtado, and Ellen Kuhl. Physics-informed
neural networks for cardiac activation mapping. Frontiers in Physics, 8:42, 2020.

Yuang Shen, Zhilin Han, Yongcheng Liang, and Xingwei Zheng. Mesh reduction methods for thermoelasticity
of laminated composite structures: Study on the b-spline based state space finite element method and
physics-informed neural networks. Engineering Analysis with Boundary Elements, 156:475–487, 2023.

Hwijae Son, Sung Woong Cho, and Hyung Ju Hwang. Enhanced physics-informed neural networks with
augmented lagrangian relaxation method (al-pinns). Neurocomputing, 548:126424, 2023.

Wenbin Song, Mingrui Zhang, Joseph G Wallwork, Junpeng Gao, Zheng Tian, Fanglei Sun, Matthew Piggott,
Junqing Chen, Zuoqiang Shi, Xiang Chen, et al. M2n: Mesh movement networks for pde solvers. Advances
in Neural Information Processing Systems, 35:7199–7210, 2022.

Gilbert Strang and George Fix. A fourier analysis of the finite element variational method. In Constructive
aspects of functional analysis, pp. 793–840. Springer, 1971.

15

Under review as submission to TMLR

N Sukumar and Amit Acharya. Variational formulation based on duality to solve partial differential equations:
Use of b-splines and machine learning approximants. arXiv preprint arXiv:2412.01232, 2024.

Y. Sun, C. Zhang, et al. On the hard boundary constraint method for fluid flow prediction using physics-
informed neural networks. Applied Sciences, 14(2):859, 2024.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani, Dirk Pflüger,
and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine learning. Advances in
Neural Information Processing Systems, 35:1596–1611, 2022.

Siping Tang, Xinlong Feng, Wei Wu, and Hui Xu. Physics-informed neural networks combined with polynomial
interpolation to solve nonlinear partial differential equations. Computers & Mathematics with Applications,
132:48–62, 2023.

François Treves. Fundamental solutions of linear partial differential equations with constant coefficients
depending on parameters. American Journal of Mathematics, 84(4):561–577, 1962.

Michael Unser. Splines: A perfect fit for signal and image processing. IEEE Signal processing magazine, 16
(6):22–38, 1999.

Julian Valentin. B-splines for sparse grids: Algorithms and application to higher-dimensional optimization.
arXiv preprint arXiv:1910.05379, 2019.

Nils Wandel, Michael Weinmann, Michael Neidlin, and Reinhard Klein. Spline-pinn: Approaching pdes
without data using fast, physics-informed hermite-spline cnns. In Proceedings of the AAAI conference on
artificial intelligence, volume 36, pp. 8529–8538, 2022.

Jiaji Wang, YL Mo, Bassam Izzuddin, and Chul-Woo Kim. Exact dirichlet boundary physics-informed neural
network epinn for solid mechanics. Computer Methods in Applied Mechanics and Engineering, 414:116184,
2023.

Jiangyu Wang, Xingjie Peng, Zhang Chen, Bingyan Zhou, Yajin Zhou, and Nan Zhou. Surrogate modeling
for neutron diffusion problems based on conservative physics-informed neural networks with boundary
conditions enforcement. Annals of Nuclear Energy, 176:109234, 2022a.

Sifan Wang, Hanwen Wang, and Paris Perdikaris. Learning the solution operator of parametric partial
differential equations with physics-informed deeponets. Science advances, 7(40):eabi8605, 2021.

Yanjiao Wang, Shihua Tang, and Muqing Deng. Modeling nonlinear systems using the tensor network b-spline
and the multi-innovation identification theory. International Journal of Robust and Nonlinear Control, 32
(13):7304–7318, 2022b.

Zhuoyuan Wang and Yorie Nakahira. A generalizable physics-informed learning framework for risk probability
estimation. arXiv preprint arXiv:2305.06432, 2023.

Musheng Wei. The perturbation of consistent least squares problems. Linear Algebra and its Applications,
112:231–245, 1989.

Huaiping Yang, Wenping Wang, and Jiaguang Sun. Control point adjustment for b-spline curve approximation.
Computer-Aided Design, 36(7):639–652, 2004.

Raine Yeh, Youssef SG Nashed, Tom Peterka, and Xavier Tricoche. Fast automatic knot placement method
for accurate b-spline curve fitting. Computer-aided design, 128:102905, 2020.

Ka Fai Cedric Yiu, Song Wang, Kok Lay Teo, and Ah Chung Tsoi. Nonlinear system modeling via knot-
optimizing b-spline networks. IEEE transactions on neural networks, 12(5):1013–1022, 2001.

Shaojie Zeng, Zong Zhang, and Qingsong Zou. Adaptive deep neural networks methods for high-dimensional
partial differential equations. Journal of Computational Physics, 463:111232, 2022.

Xuedong Zhu, Jianhua Liu, Xiaohui Ao, Sen He, Lei Tao, and Feng Gao. A best-fitting b-spline neural
network approach to the prediction of advection–diffusion physical fields with absorption and source terms.
Entropy, 26(7):577, 2024.

16

Under review as submission to TMLR

Table of Contents

1 Introduction 1

2 Related Work 3

3 Proposed Method 4

3.1 Problem Formulation . 4

3.2 B-Splines with Basis Functions . 4

3.3 Physics-Informed B-Spline Networks . 5

4 Theoretical Analysis 6

4.1 Universal Approximation . 6

4.2 Generalization Error Bounds . 7

5 Experiments 8

5.1 Recovery Probabilities . 8

5.2 Advection Equations with Nonhomogeneous ICBCs . 9

5.3 Diffusion on Trapezoid . 10

6 Discussions 10

7 Conclusion 11

Appendix 18

A Proof of Theorems 18

A.1 Universal Approximation (Theorem 4.3) . 18

A.2 Generalization Error Bounds (Theorem 4.6) . 20

B Proof of Supporting Theorems and Lemmas 21

B.1 Proof of Theorem A.1 . 21

B.2 Proof of Lemma A.2 . 22

B.3 Proof of Lemma A.3 . 23

C Additional Results 24

C.1 Convex Hull Property of B-Splines . 24

C.2 B-Spline Representation for General Domains . 25

D Experiment Details 27

D.1 Recovery Probabilities . 27

17

Under review as submission to TMLR

D.2 Advection Equations . 29

D.3 Diffusion on Trapezoid . 30

E Ablation Experiments 31

E.1 B-spline Derivatives . 31

E.2 Optimality of Control Points . 31

E.3 Number of Control Points . 32

E.4 Robustness and Loss Function Weights Ablations . 32

E.5 Number of NN Layers and Parameters Ablation . 32

F Additional Experiments 33

F.1 Burgers’ Equation . 33

F.2 3D Heat Equation . 33

A Proof of Theorems

A.1 Universal Approximation (Theorem 4.3)

In this section, we prove that PI-BSNets are universal approximators of families of PDEs of arbitrary
dimensions.

We first consider the one-dimensional function space L2([a, b]) with L2 norm defined over the interval [a, b].
For two functions s, g ∈ L2([a, b]), we define the inner product of these two functions as

⟨s, g⟩ :=
∫ b

a

s(x)g∗(x)dx, (27)

where ∗ denotes the conjugate complex. We say a function s(x) is square-integrable if the following holds

⟨s, s⟩ =
∫ b

a

|s(x)|2dx <∞. (28)

We define the L2 norm between two functions s, g as

∥s− g∥2 :=
(∫ b

a

|s(x)− g(x)|2dx

) 1
2

. (29)

We then state the following theorem that shows B-spline functions are universal approximators in the sense
of L2 norms in one dimension.
Theorem A.1. Given a positive natural number d and any d-time differentiable function s(x) ∈ L2([a, b]),
then for any ϵ > 0, there exist a positive natural value ℓ̄ such that for all ℓ ≥ ℓ̄, there exists a realization of
control points c1, c2, · · · , cℓ such that

∥s− ŝ∥2 ≤ ϵ, (30)
where

ŝ(x) =
ℓ∑

i=1
ciBi,d(x)

is the B-spline approximation with Bi,d(x) being the B-spline basis functions defined in equation 6.

Proof. (Theorem A.1) See Section B.1.

18

Under review as submission to TMLR

Now that we have the error bound of B-spline approximations in one dimension, we will extend the results to
arbitrary dimensions. We point out that the space L2([a, b]) is a Hilbert space (Balakrishnan, 2012). We
consider n Hilbert spaces L2([ai, bi]) for i = 1, 2, · · · , n. We define the inner products of two n-dimensional
functions s, g ∈ L2([a1, b1]× · · · × [an, bn]) as

⟨s, g⟩ :=
∫ bn

an

···
∫ b1

a1

s(x1, ··· , xn)g∗(x1, ··· , xn)dx1 ··· dxn, (31)

and we say a function s : Rn → R is square-integrable if

⟨s, s⟩ =
∫ bn

an

· · ·
∫ b1

a1

|s(x1, · · · , xn)|2dx1 · · · dxn <∞. (32)

Now we present the following lemma to bound the approximation error of n-dimensional B-splines.
Lemma A.2. Given a set positive natural numbers d1, · · · , dn and a d-time differentiable function
s(x1, x2, · · · , xn) ∈ L2([a1, b1] × [a2, b2] × · · · × [an, bn]). Assume d ≥ max{d1, · · · , dn}, then given any
ϵ > 0, there exist ℓ̄i ∈ N+ of control points for each component i = 1, ..., n, such for all ℓi ≥ ℓ̄i, ∀i = 1, · · · , n,
there exists a control points realization such that

∥s(x1, x2, · · · , xn)− ŝ(x1, x2, · · · , xn)∥2 ≤ ϵ, (33)

where

ŝ(x1, · · · , xn) =
ℓ1∑

i1=1
· · ·

ℓn∑
in=1

ci1,··· ,in
Bi1,d1(x1) · · ·Bin,dn

(xn). (34)

Proof. (Lemma A.2) See Section B.2.

On the other hand, we know that neural networks are universal approximators (Hornik et al., 1989; Leshno
et al., 1993), i.e., with large enough width or depth a neural network can approximate any function with
arbitrary precision. We first show that given some basic assumptions on the solution of the physics problems,
the optimal control points are continuous in the system and domain parameters u and α, thus can be
approximated by neural networks.

In this following lemma, we show that with Assumption 4.1 and Assumption 4.2, the optimal control points
are continuous in terms of the system and ICBC parameters.
Lemma A.3. For any n ∈ N+ and two n-dimensional surfaces s1, s2 ∈ L2([a1, b1]× [a2, b2]× · · · × [an, bn])
being the solution of the physics problem defined in equation 1 with parameters α1, u1 and α2, u2. Assume
Assumption 4.1 and Assumption 4.2 hold. Let C1 and C2 be the two control points tensors that reconstruct
ŝ1 and ŝ2. For any ϵ > 0, ϵ1, ϵ2 > 0, there exist δ1, δ2 > 0 such that ∥α1 − α2∥ < δ1, and ∥u1 − u2∥ < δ2,
and control points tensors C1 and C2 with ∥C1 − C2∥ < δ(ϵ) such that ∥s1 − ŝ1∥2 < ϵ1, ∥s2 − ŝ2∥2 < ϵ2, and
∥s1 − s2∥2 < ϵ. Here δ(ϵ)→ 0 when ϵ→ 0.

Proof. (Lemma A.3) See Section B.3.

Lemma A.3 shows that the optimal control points exist and are continuous in α and u, thus can be
approximated by neural networks with arbitrary precision given enough representation capability (Hornik
et al., 1989). We restate the universal approximation theorem for neural networks in our context as follows,
assuming the requirements for the neural network are met. 7

Theorem A.4. Assume Assumption 4.1 and 4.2 hold. Given any u and α in a finite parameter set, and the
corresponding B-spline approximation control points tensor C := [c]ℓ1×···×ℓn

, for the coefficient net Gθ(u, α)
and ∀ϵ > 0, when the network has enough width and depth, there is θ∗ such that

∥Gθ∗(u, α)− C∥ ≤ ϵ. (35)
7The Borel space assumptions are met since we consider L2 space which is a Borel space.

19

Under review as submission to TMLR

Then, we combine Lemma A.2 and Theorem A.4 to prove the universal approximation property of PI-BSNet
(Theorem 4.3).

Proof. (Theorem 4.3) For any u and α, from Lemma A.2 we know that there is ℓ1, · · · , ℓn by taking the
upper bounds of control point numbers, and the control points realization C := [c]ℓ1×···×ℓn

such that
∥s(x1, x2, · · · , xn)− ŝ(x1, x2, · · · , xn)∥2 ≤ ϵ1 for any ϵ1 > 0, where ŝ is the B-spline approximation defined
in equation 7 with the control points tensor C. Then, from Theorem A.4 we know that there is a DBSN
configuration Gθ(u, α) and corresponding parameters θ∗ such that ∥Gθ∗(u, α) − C∥ ≤ ϵ2 for any ϵ2 > 0.
Since B-spline functions are defined on bounded domains and are continuous and Lipschitz (Prautzsch, 2002;
Kunoth et al., 2018), and s̃ and ŝ are weighted sum of B-spline basis functions with weights Gθ∗(u, α) and C
(see equation 7), we know that ∥s̃− ŝ∥2 ≤ Lϵ2 for some positive constant L. Then by triangle inequality of
the L2 norm, we have

∥s̃− s∥2 ≤ ∥s̃− ŝ∥2 + ∥ŝ− s∥2 ≤ ϵ1 + Lϵ2. (36)
For any ϵ > 0 we can find ϵ1 and ϵ2 such that ϵ = ϵ1 + Lϵ2 to bound the norm.

A.2 Generalization Error Bounds (Theorem 4.6)

In this section, we show proof of Theorem 4.6 to bound the generalization error of PI-BSNet on families of
PDEs.

We start by giving a lemma on PI-BSNet generalization error for fixed elliptic and parabolic PDEs. From
Section 4 we know that PI-BSNets are universal approximators of PDEs. From Section 3 we know that the
physics loss Lp is imposed over the domain of interest. Given this, we have the following lemma on the
generalization error of PI-BSNet for elliptic and parabolic PDEs with fixed parameters, adapted from (Wang
& Nakahira, 2023, Theorem 6) and (Peng et al., 2020, Theorem 2.4).
Definition A.5. Let Ω ⊂ Rn be a domain. We define the regularity of Ω as

RΩ := inf
x∈Ω,r>0

|B(x, r) ∩ Ω|
min

{
|Ω|, πn/2 rn

Γ(n/2+1)

} , (37)

where B(x, r) := {y ∈ Rn | ∥y − x∥ ≤ r} and |(·)| is the Lebesgue measure of a set (·).
Lemma A.6. Assume the PDE is elliptic or parabolic, for any fixed parameters α and u, suppose that
Ω ∈ Rn is a bounded domain, s ∈ C0(Ω̄)∩C2(Ω) is the solution to the PDE of interest where Ω̄ is the closure
of Ω, F(s, x) = 0, x ∈ Ω defines the PDE, and B(s, x) = 0, x ∈ Ωb is the boundary condition. Let Gθ denote a
PI-BSNet parameterized by θ and s̃ the solution predicted by PI-BSNet. If the following conditions holds:

1. EY [|B(Gθ, x)|] < δ1, where Y is uniformly sampled from Ωb.

2. EX [|F(Gθ, x)|] < δ2, where X is uniformly sampled from Ω.

3. Gθ, F(Gθ, ·), s are l
2 Lipschitz continuous on Ω.

Then the error of s̃ over Ω is bounded by

sup
x∈Ω
|s̃(x)− s(x)| ≤ δ̃1 + Mδ̃2 (38)

where M is a constant depending on Ω, Ωb and F , and

δ̃1 = max

 2δ1|Ωb|
RΩb
|Ωb|

, 2l ·
(

δ1|Ωb| · Γ(n+1
2)

lRΩb
· π(n−1)/2

) 1
n

 ,

δ̃2 = max
{

2δ2|Ω|
RΩ|Ω|

, 2l ·
(

δ2|Ω| · Γ(n/2 + 1)
lRΩ · πn/2

) 1
n+1
}

,

(39)

where R(·) is the regularity of (·), |(·)| is the Lebesgue measure of a set (·) and Γ is the Gamma function.

20

Under review as submission to TMLR

We then prove Theorem 4.6 to bound the generalization error for PI-BSNet on the family of PDEs.

Proof. (Theorem 4.6) The goal is to prove equation 16 holds for any u ∈ U and α ∈ A. Without loss of
generality, we pick arbitrary u1 ∈ U and α1 ∈ A to evaluate the prediction error, and we denote the ground
truth and PI-BSNet prediction as s1 and s̃1, respectively. From Assumption 4.5 we know that there are
u2 ∈ Utrain and α2 ∈ Atrain such that ∥u1 − u2∥ ≤ ∆u, ∥α1 − α2∥ ≤ ∆α. Let s2 and s̃2 denote the ground
truth and PI-BSNet prediction on the PDE with parameters u2 and α2. Since the conditions in Theorem 4.6
hold for all u ∈ Utrain and α ∈ Atrain, and δ̃1 and δ̃2 are taking the maximum among all α, we know the
following inequality holds due to Lemma A.6.

sup
x∈Ω(α1)

|s̃2(x)− s2(x)| ≤ δ̃1 + Mδ̃2, (40)

where M is a constant depending on Ω(α2), Ωb(α2) and F , and δ̃1, δ̃2 are given by equation 17. Note that
the domain considered is Ω(α1), as eventually we will bound the error in this domain. Necessary mapping of
the domain is applied here and in the rest of the proof when α1 ̸= α2.

Since A and U are bounded, and from Assumption 4.1 we know the PDE solution is continuous in u and α,
we know the solution is Lipschitz in u and α. Then we have

sup
x∈Ω(α1)

|s1(x)− s2(x)| = ∥s1 − s2∥∞ ≤ K1∥s1 − s2∥2 ≤ L1(∆u + ∆α), (41)

where K1 and L1 are some finite constants (Agmon, 2010).

Lastly, from Assumption 4.4 we know that the learned control points from the coefficient network Gθ(u, α)
are Lipschitz in u and α. Since the B-spline basis functions Bi,d(x) are bounded by construction, we know
that

sup
x∈Ω(α1)

|s̃1(x)− s̃2(x)| = ∥s̃1 − s̃2∥∞ ≤ K2∥s̃1 − s̃2∥2 ≤ L2(∆u + ∆α), (42)

where K2 and L2 are some finite constants.

Now, combining equation 40, equation 41 and equation 42, by triangular inequality we get

sup
x∈Ω(α1)

|s̃1(x)− s1(x)|

≤ sup
x∈Ω(α1)

|s̃2(x)− s2(x)|+ sup
x∈Ω(α1)

|s1(x)− s2(x)|+ sup
x∈Ω(α1)

|s̃1(x)− s̃2(x)|

≤ δ̃1 + M
δ̃2

σ2 + L̃(∆u + ∆α),

(43)

where M is a constant depending on parameter sets A, U , domain functions Ω, Ωb, and the PDE F ,
L̃ = L1 + L2 is a Lipschitz constant.

B Proof of Supporting Theorems and Lemmas

B.1 Proof of Theorem A.1

Proof. (Theorem A.1) From (Jia & Lei, 1993; Strang & Fix, 1971) we know that given d the least square spline
approximation of ŝ(x) =

∑ℓ
i=1 ciBi,d(x) can be obtained by applying pre-filtering, sampling and post-filtering

on s, with L2 error bounded by
∥s− ŝ∥2 ≤ Cd · T d · ∥s(d)∥, (44)

where Cd is a known constant (Blu & Unser, 1999), T is the sampling interval of the pre-filtered function,
and ∥s(d)∥ is the norm of the d-th derivative of s defined by

∥∥∥s(d)
∥∥∥ =

(
1

2π

∫ +∞

−∞
ω2d|S(ω)|2dω

)1/2

, (45)

21

Under review as submission to TMLR

and S(ω) is the Fourier transform of s(x). Note that given s and d,
∥∥s(d)

∥∥ is a known constant.

Then, from (Unser, 1999) we know that the samples from the pre-filtered functions are exactly the control
points ci that minimize the L2 norm of the approximation error. In other words, the sampling time T and
the number of control points ℓ are coupled through the following relationship

T = b− a

ℓ− 1 , (46)

since the domain is [a, b] and it is divided into ℓ− 1 equispaced intervals for control points. Then with ci

being the samples with interval T , we can rewrite the error bound into

∥s− ŝ∥2 ≤ Cd ·
(

b− a

ℓ− 1

)d

· ∥s(d)∥. (47)

Thus we know that for ∀ϵ > 0, we can find ℓ̄ ∈ N+ such that for all ℓ ≥ ℓ̄

∥s− ŝ∥2 ≤
(b− a)dCd∥s(d)∥

(ℓ− 1)d
≤ ϵ, (48)

because for fixed d the numerator is a constant, and the L2 norm bound converges to 0 as ℓ→∞.

B.2 Proof of Lemma A.2

Proof. (Lemma A.2) For given ℓ1, · · · , ℓn, let C := [c]ℓ1×···×ℓn
be the control points tensor such that

∥s(x1, x2, · · · , xn) − ŝ(x1, x2, · · · , xn)∥2 is minimized. Let (x′
1, x′

2, · · · , x′
n) denote the knot points in the

n-dimensional space, i.e., the equispaced grids where the control points are located. Then from Theorem A.1
and the separability of the B-splines (Pratt, 2007), we know that∫ b1

a1

(s− ŝ)(s− ŝ)∗(x1, x′
2, · · · , x′

n)dx1 ≤ ϵx1 , (49)

where ϵx1 = (b−a)d1 Cd1 ∥s(d1)∥
(ℓ1−1)d1 . This shows that the L2 norm along the x1 direction at any knots points

(x′
2, · · · , x′

n) is bounded. Now we show the following is bounded∫ b2

a2

∫ b1

a1

(s− ŝ)(s− ŝ)∗(x1, x2, x′
3, · · · , x′

n)dx1dx2. (50)

We argue that s is Lipschitz as it is defined on a bounded domain and is d-time differentiable, and ŝ is also
Lipschitz as B-spline functions of any order are Lipschitz (Prautzsch, 2002; Kunoth et al., 2018) and C is
finite. Then we know that (s− ŝ)(s− ŝ)∗ is Lipschitz with some Lipschitz constant Lxi

along dimension i for
i = 1, 2, · · · , n. For ∀x2 ∈ [a2, b2], there is a knot point x′

2 such that |x2 − x′
2| ≤ b2−a2

ℓ2−1 since knot points are
equispaced. Thus, we know for ∀x2 ∈ [a2, b2], there is x′

2 such that

|(s− ŝ)(s− ŝ)∗(x1, x2, x′
3, · · · , x′

n)− (s− ŝ)(s− ŝ)∗(x1, x′
2, x′

3, · · · , x′
n)| ≤ Lx2

b2 − a2

ℓ2 − 1 (51)

Then we have∫ b2

a2

∫ b1

a1

(s − ŝ)(s − ŝ)∗(x1, x2, x′
3, · · · , x′

n)dx1dx2 (52)

≤
∫ b2

a2

∫ b1

a1

(s − ŝ)(s − ŝ)∗(x1, x′
2, x′

3, · · · , x′
n)dx1dx2

+
∫ b2

a2

∫ b1

a1

|(s − ŝ)(s − ŝ)∗(x1, x2, x′
3, · · · , x′

n) − (s − ŝ)(s − ŝ)∗(x1, x′
2, x′

3, · · · , x′
n)|dx1dx2 (53)

≤
∫ b2

a2

∫ b1

a1

(s − ŝ)(s − ŝ)∗(x1, x′
2, x′

3, · · · , x′
n)dx1dx2 +

∫ b2

a2

∫ b1

a1

Lx2
b2 − a2

ℓ2 − 1 dx1dx2 (54)

≤ (b2 − a2)
[

ϵx1 + Lx2
(b2 − a2)(b1 − a1)

ℓ2 − 1

]
:= ϵx1,x2 , (55)

22

Under review as submission to TMLR

𝑠 𝑠̅ 𝑠̂
Interpolation

B-spline
Approximation

𝜖
2

𝜖
2

𝜖

Figure 7: Relationships between ground truth s, interpolation s̄, and B-spline approximation ŝ used in the
proof of Lemma A.3.

where equation 53 is the triangle inequality of norms, and equation 54 is due to the Lipschitz-ness of the
function.
Similarly we can show the bound when we integrate the next dimension∫ b3

a3

∫ b2

a2

∫ b1

a1

(s − ŝ)(s − ŝ)∗(x1, x2, x3, x′
4, · · · , x′

n)dx1dx2dx3 (56)

≤
∫ b3

a3

∫ b2

a2

∫ b1

a1

[
(s − ŝ)(s − ŝ)∗(x1, x2, x′

3, x′
4, · · · , x′

n)

+ |(s − ŝ)(s − ŝ)∗(x1, x2, x3, x′
4, · · · , x′

n) − (s − ŝ)(s − ŝ)∗(x1, x2, x′
3, x′

4, · · · , x′
n)|
]
dx1dx2dx3 (57)

≤
∫ b3

a3

∫ b2

a2

∫ b1

a1

[
(s − ŝ)(s − ŝ)∗(x1, x2, x′

3, x′
4, · · · , x′

n) + Lx3
b3 − a3

ℓ3 − 1

]
dx1dx2dx3 (58)

≤ (b3 − a3)
[

ϵx1,x2 + Lx3
(b3 − a3)(b2 − a2)(b1 − a1)

ℓ3 − 1

]
:= ϵx1,x2,x3 . (59)

We know that ϵx1,x2,x3 → 0 when ℓi →∞ for i = 1, 2, 3. By keeping doing this, recursively we can find the
bound ϵx1,··· ,xn that ∫ bn

an

· · ·
∫ b1

a1

(s− ŝ)(s− ŝ)∗(x1, · · · , xn)dx1 · · · dxn ≤ ϵx1,··· ,xn
, (60)

where the left hand side is exactly ∥s(x1, x2, · · · , xn)−ŝ(x1, x2, · · · , xn)∥2
2, and the right hand side ϵx1,··· ,xn → 0

when ℓi →∞ for all i = 1, 2, · · · , n. Thus for any ϵ > 0, we can find ℓ̄i for i = 1, 2, · · · , n such that for all
ℓi ≥ ℓ̄i, there exists a control points realization such that

∥s(x1, x2, · · · , xn)− ŝ(x1, x2, · · · , xn)∥2 ≤ ϵ. (61)

B.3 Proof of Lemma A.3

Proof. (Lemma A.3) From Assumption 4.1 we know that there exists δ1, δ2 > 0 such that ∥α1 − α2∥ < δ1,
and ∥u1 − u2∥ < δ2, and ∥s1 − s2∥2 < ϵ.

Now we need to prove that there exist control points tensors C1 and C2 with ∥C1 − C2∥ < δ(ϵ) such that
∥s1 − ŝ1∥2 < ϵ1, ∥s2 − ŝ2∥2 < ϵ2. We prove by construction.

We first construct surrogate functions s̄1 and s̄2 by interpolation of s1 and s2, then find B-spline approximations
ŝ1 and ŝ2 of the surrogate functions. The relationships between s, s̄ and ŝ are visualized in Fig. 7.

For the two surfaces s1 and s2, we first find two continuous functions s̄1 and s̄2 for approximation. Specifically,
s̄1 and s̄2 are interpolations of sampled data on s1 and s2 with Ni grids along i-th dimension, i = 1, 2, · · · , n.
Since Assumption 4.2 holds, from Lemma A.2 we know that there exist d ∈ N+, ℓi ∈ N+ and control points

23

Under review as submission to TMLR

C1 and C2 of dimension ℓ1 × ℓ2 × · · · × ℓn such that ∥ŝ1 − s̄1∥2 < ϵ1/2, ∥ŝ2 − s̄2∥2 < ϵ2/2. We also know that
the optimal control points are obtained by solving the following least square (LS) problem to fit the sampled
data on s1 and s2.

ℓ1∑
i1=1

ℓ2∑
i2=1
· · ·

ℓn∑
in=1

c1,i1,i2,··· ,in
Bi1,d1(x1)Bi2,d2(x2) · · ·Bin,dn

(xn) = s1(x1, x2, · · · , xn), ∀x ∈ D1,

ℓ1∑
i1=1

ℓ2∑
i2=1
· · ·

ℓn∑
in=1

c2,i1,i2,··· ,inBi1,d1(x1)Bi2,d2(x2) · · ·Bin,dn(xn) = s2(x1, x2, · · · , xn), ∀x ∈ D2,

(62)

where D1 and D2 are the sets of all sampled data on s1 and s2. And we can write the LS problem into the
matrix form as follow.

A1C1 = b1,

A2C2 = b2,
(63)

where A1 = A2 and |b1 − b2| < δ′(ϵ) as ∥s1 − s2∥2 < ϵ. Here δ′(ϵ)→ 0 as ϵ→ 0. Without loss of generality,
we consider cases where the sampled data on s1 and s2 is dense enough such that both A1 and A2 are full
rank. Then by results from the LS problems with perturbation (Wei, 1989), we know that the difference of
the LS solutions of the two problems in equation 63 is bounded by

∥C1 − C2∥ < δ(ϵ), (64)

where δ(ϵ)→ 0 as ϵ→ 0.

Since s1 and s2 are continuous functions defined on bounded domain, we know that both functions are
Lipschitz. We denote Li the larger Lipschitz constants of the two functions along dimension i = 1, 2, · · · , n,
i.e., ∀x = [x1, x2, · · · , xn], x′ = [x′

1, x′
2, · · · , x′

n] ∈ Rn,

|s1(x)− s1(x′)| ≤ L1|x1 − x′
1|+ L2|x2 − x′

2|+ · · ·+ Ln|xn − x′
n|,

|s2(x)− s2(x′)| ≤ L1|x1 − x′
1|+ L2|x2 − x′

2|+ · · ·+ Ln|xn − x′
n|.

(65)

Then we know
∥s1 − s̄1∥2 ≤

L1(b1 − a1)
N1

+ L2(b2 − a2)
N2

+ · · ·+ Ln(bn − an)
Nn

,

∥s2 − s̄2∥2 ≤
L1(b1 − a1)

N1
+ L2(b2 − a2)

N2
+ · · ·+ Ln(bn − an)

Nn
,

(66)

since s̄1 and s̄2 are the interpolations of sampled data on s1 and s2 with Ni grids along i-th dimension. We
know that ∥s1 − s̄1∥2 → 0 and ∥s2 − s̄2∥2 → 0 when Ni → ∞ for all i. Thus, we can find N1, N2, · · · , Nn

such that ∥s1 − s̄1∥2 < ϵ1/2, ∥s2 − s̄2∥2 < ϵ2/2. Then by the triangle inequality we have

∥s1 − ŝ1∥2 ≤ ∥s1 − s̄1∥2 + ∥ŝ1 − s̄1∥2 < ϵ1/2 + ϵ1/2 = ϵ1,

∥s2 − ŝ2∥2 ≤ ∥s2 − s̄2∥2 + ∥ŝ2 − s̄2∥2 < ϵ2/2 + ϵ2/2 = ϵ2.
(67)

C Additional Results

C.1 Convex Hull Property of B-Splines

Considering a one-dimensional B-spline of the form as ŝ(x) = cBd(x), where x ∈ [a, b], we have

ŝ ∈ [a, b]× [c, c] , (68)

where
c = min

i=1,...,ℓ
ci, c = max

i=1,...,ℓ
ci.

24

Under review as submission to TMLR

Figure 8: Visualization of B-spline basis functions (left) and B-spline reconstruction (right). Note that with
the clamped knot points, B0,3(0) = B5,3(3) = 1, so that the reconstruction ŝ(0) = c1 and ŝ(3) = cℓ to enforce
hard boundary satisfaction.

This property is inherent to the Bernstein polynomials used to generate Bézier curves. Specifically, the Bézier
curve is a subtype of the B-spline, and it is also possible to transform Bézier curves into B-splines and vice
versa (Prautzsch, 2002).

This property also holds in the multidimensional case when the B-spline is represented by a tensor product of
the B-spline basis functions in equation 7 (Prautzsch, 2002):

ŝ ∈ [a1, b1]× · · · × [an, bn]× [c, c] , (69)

where
c = min

i1=1,...,ℓ1
i2=1,...,ℓ2

...
in=1,...,ℓn

ci1,i2,...,in
, c = max

i1=1,...,ℓ1
i2=1,...,ℓ2

...
in=1,...,ℓn

ci1,i2,...,in
.

This property offers a practical tool for verifying the reliability of the results produced by the trained learning
scheme. In the case of learning recovery probabilities, the approximated solution should provide values
between 0 and 1. Since the number of control points is finite, a robust and reliable solution occurs if all
generated control points are within the range [0, 1], i.e.,

c = 0 c = 1.

C.2 B-Spline Representation for General Domains

In this section, we present results on using B-splines to represent a surface in arbitrary domains. Without
loss of generality, we consider 2D cases. Specifically, we consider a original domain (u, v) ∈ D ≜ [0, 1]× [0, 1],
and a surface defined on a parametric domain via the following transformation

x(u, v) = gx(u, v),
y(u, v) = gy(u, v),
z(u, v) = f(x(u, v), y(u, v)).

Note that since gx and gy are arbitrary, (x, y) can lie in arbitrary domains of interest.

We approximate the surface by reconstructing x, y and z using tensor-products B-spline defined on (u, v),
and with slight abuse of notation, we use s to denote the approximation:

s(u, v) =
nu∑
i=1

nv∑
j=1

cijBi,d(u)Bj,d(v), s(u, v) ∈ R3,

25

Under review as submission to TMLR

where the control points cij are given by

cij =

cx
ij

cy
ij

cz
ij

 ∈ R3,

and Bi,d(u) and Bj,d(v) are B-spline basis functions of degrees d in the u and v directions, respectively,
defined on clamped knot vectors as in Section 3.2. The vectors cij are the control points in R3. With this
representation, the surface components can be written as the following three separate B-spline functions

sx(u, v) =
nu∑
i=1

nv∑
j=1

cx
ijBi,d(u)Bj,d(v),

sy(u, v) =
nu∑
i=1

nv∑
j=1

cy
ijBi,d(u)Bj,d(v),

sz(u, v) =
nu∑
i=1

nv∑
j=1

cz
ijBi,d(u)Bj,d(v).

While the (u, v) parameters lie on a regular meshgrid, the actual surface domain in the (x, y) space is shaped
through the mapping functions gx and gy, and can also be approximated by B-splines.

To sample points on the surface, we can evaluate a meshgrid on D and compute:

xkℓ = gx(uk, vℓ),
ykℓ = gy(uk, vℓ),
zkℓ = f(xkℓ, ykℓ),

where k = 1, . . . , Nu and ℓ = 1, . . . , Nv are the indices of sampled points in the u and v directions, respectively.

Similarly, the control points are arranged on a meshgrid over D. Due to the clamped nature of the B-spline
basis functions, the first and last basis functions in each direction satisfy:

B1,d(0) = 1, Bnu,d(1) = 1,

B1,d(0) = 1, Bnv,d(1) = 1,

and all other basis functions vanish at these boundary values. This property allows direct control over the
surface boundary through the corresponding boundary control points. For example, we can write:

sx(v)
∣∣
u=0 =

nv∑
j=1

cx
1jBj,d(v), (70)

sx(v)
∣∣
u=1 =

nv∑
j=1

cx
nujBj,d(v), (71)

sx(u)
∣∣
v=0 =

nu∑
i=1

cx
i1Bi,d(u), (72)

sx(u)
∣∣
v=1 =

nu∑
i=1

cx
inv

Bi,d(u). (73)

The same one-dimensional B-spline representation applies to the y and z components. This demonstrates
that a subset of control points governs the shape and values of the surface along the boundary.

This method generalizes naturally to higher-dimensional problems, since each surface component is represented
independently using B-spline functions.

26

Under review as submission to TMLR

Ground Truth Reconstruction Error

Figure 9: B-spline reconstruction of a surface on an annulus.

In the following, we show an example of approximating a surface on an annulus with the methods above. We
consider a parametric domain (u, v) ∈ [0, 1]× [0, 1], and define a transformation to an annular domain in R2

with inner radius rinner = 1 and outer radius router = 2. The radial coordinate R(u) is defined as a convex
combination of squared radii

R(u) =
√

(1− u)r2
inner + ur2

outer.

The angular coordinate is set as θ(v) = 2πv. The transformation to Cartesian coordinates is then given by

x(u, v) = R(u) cos(2πv),
y(u, v) = R(u) sin(2πv).

This maps the unit square [0, 1]2 to an annular region in (x, y)-space.

We define a scalar height function z(x, y) over the annulus, depending on the transformed radial and angular
coordinates

z(u, v) = 0.3 sin(3R(u)) cos(10πv).
Hence, we can represent the surface z on (x, y) with the (u, v) coordinates as follows.x(u, v)

y(u, v)
z(u, v)

 =

 R(u) cos(2πv)
R(u) sin(2πv)

0.3 sin(3R(u)) cos(10πv)

 .

We then generate data on a 100× 100 equispaced grid in the (u, v) domain, and fit a B-spline surface of order
3 using 30 control points along each direction. We use this grid structure to independently learn a B-spline
surface for each of the x, y, and z coordinates, allowing us to represent the geometry of the annular surface.
The boundary conditions are enforced by separately computing the approximating B-splines in equation 70
for each component along the boundary. To determine the remaining control points, we solve a least squares
problem based on data points.

Fig. 9 visualizes the results. We can see that the B-splines are able to accurately reconstruct the surface on
the annulus. Note that the transformation from (u, v) to (x, y) could be arbitrary other than the annulus,
suggesting the possibility of future work to learn PDE solutions in arbitrary domains.

D Experiment Details

In this section, we provide details for the experiments in Section 5. The general procedures for training the
proposed PI-BSNet is shown in Alg. 1.

D.1 Recovery Probabilities

Training Data: The convection diffusion PDE defined in equation 19 and equation 20 has analytical solution

s(x, t) =
∫ t

0

(α− x)√
2πτ3

exp
(
− ((α− x)− uτ)2

2τ

)
dτ, (74)

27

Under review as submission to TMLR

Algorithm 1 Training Physics-Informed Deep B-Spline Networks (PI-BSNet)
Given: Training data D = {(u, α, s)}Ntrain

Input: B-spline order d; control points number ℓ; loss weights wp, wd, wb; epochs E
Output: Trained PI-BSNet parameters θ∗

1: Compute B-spline basis Bd and derivatives B′
d, B′′

d and higher derivatives if needed
2: for epoch = 1 to E do
3: for each sample (u, α, s) ∈ D do
4: Predict control points: C̃ ← Gθ(u, α)
5: Assign ICBCs:

C̃[0, :]← IC, C̃[:, end]← BC ▷ Specific assignment depending on actual ICBCs
6: Assemble B-spline approximation: s̃(x) = Gθ(u, α)(x) via equation 7
7: Evaluate physics residual:
8: ∂xs̃(x), ∂xxs̃(x) using Bd, B′

d, B′′
d via equation 12

9: F(s̃, x, u) for all x ∈ P
10: Compute losses:
11: Lp = 1

|P|
∑

x∈P |F(s̃, x, u)|2

12: Ld = 1
|D|
∑

x∈D |s(x)− s̃(x)|2

13: If needed: Lb = 1
|M|

∑
x∈M |B(s̃, x, u)|2

14: Update parameters:
15: optimize θ with loss L = wpLp + wdLd + wbLb

16: return θ∗

where α is the parameter of the boundary of the set Cα = {x ∈ R : x ≥ α}, and u is the parameter in the
system dynamics dxt = u dt + dwt. We use numerical integration to solve equation 74 to obtain ground truth
training data for the experiments. We uniformly sample 40 random u ∈ [0, 2] and α ∈ [0, 4] for training data
generation.

Network Configurations:

• PI-BSNet (proposed): We use 3-layer fully connected neural networks with ReLU activation functions
for the coefficient network. The number of neurons for each hidden layer is set to be 64. We use Adam as
the optimizer.

• PINN (Raissi et al., 2019): A 3-layer fully connected neural network with Tanh activations is used to
approximate the solution directly. The PDE residuals are computed via automatic differentiation. Initial
and boundary conditions losses are imposed.

• EPINN (Wang et al., 2023): A 3-layer fully connected network with Tanh activation is used. The exact
solution form is preserved via the function template g + ϕxϕtfθ, where fθ is approximated by the network.
The spatial-temporal encoding is based on domain-aware transformations using ϕx = a−x

a−xmin
and ϕt = t

T .

• SFHCPINN (Li et al., 2024a): Extends EPINN by applying sinusoidal feature embeddings (SIREN-style)
to the input coordinates (x, t) before passing them into the network. These features are linearly transformed
and concatenated with parameters (λ, a) before being passed to a 2-layer MLP with ReLU activations.
The template g + ϕxϕtfθ is still enforced.

• HWPINN (Chen et al., 2023): The same formulation g + ϕxϕtfθ is used as in EPINN while the standard
hidden layer width is replaced by a wider fully connected MLP (two hidden layers of 64 neurons each with
Tanh activation). This model emphasizes expressive capacity within the hard-constraint formulation.

• VS-PINN (Ko & Park, 2025): A learnable input transformation is applied to (x, t) via trainable scaling
factors before the hard-constrained template is enforced. This adds a degree of flexibility to adapt to
unknown domain warping or scale mismatch, while preserving the g + ϕxϕtfθ form.

28

Under review as submission to TMLR

Ground Truth

PI-BSNet (Proposed) EPINN VS-PINN PI-DeepONet PI-FNO

PI-BSNet - FD SFHCPINN HWPINN CANPINNPINN

Figure 10: Recovery probability visualizations. Predictions in first row and errors in second row.

• CAN-PINN (Chiu et al., 2022): The hard-constrained formulation is used along with a finite-difference
approximation to compute second-order spatial derivatives in the PDE residual. The model uses a standard
MLP with two hidden Tanh layers (64 neurons each) and predicts the residual via custom finite difference
steps.

• PI-DeepONet (Goswami et al., 2023): A DeepONet structure is used with separate branch and trunk
networks, each comprising two Tanh layers of 64 neurons. The outputs of the two networks are fused through
an inner product after a linear transformation, enforcing parameter conditioning and spatial-temporal
separation. Initial and boundary condition losses are imposed.

• PI-FNO (Li et al., 2024b): This model is implemented based on the Tensorized Fourier Neural Operator
(TFNO2d) module, and it operates on a 4-channel input grid of shape [λ, a, x, t]. The architecture includes
4 spectral convolution layers with 12 Fourier modes in each direction and a hidden width of 32. PDE
residuals are computed using automatic differentiation on the input grid, and ICBC losses are imposed.

Full Visualization: Visualization of prediction results for all methods is shown in Fig. 10.

D.2 Advection Equations

Training Data: The advection equation defined in equation 21 admits an analytical solution

s(x, t) = sin (2π ((x− ut) mod 1) + α) ,

which is evaluated on a uniform spatio-temporal grid with 100 points in x ∈ [0, 1] and 100 points in t ∈ [0, 2].
For each of the 100 training samples, we uniformly sample u ∈ [0.5, 1.5] and α ∈ [0, 2π).

29

Under review as submission to TMLR

Network Configurations: We train PI-BSNet with 3-layer fully connected neural networks with ReLU
activation on varying parameters u ∈ [0.5, 1.5] and α ∈ [0, 2π), and test on randomly selected parameters
in the same domain. The B-spline basis of order 5 is used and the number of control points along x and t
are set to be ℓx = ℓt = 150. Note that more control points are used in this case study to represent the high
frequency solution.

D.3 Diffusion on Trapezoid

Domain Transformation: The exit probability s(x, y, t) defined in equation 24 is the solution of the
following diffusion equation

∂s

∂t
= 1

2(∂2s

∂x2 + α
∂2s

∂y2), (75)

where α ∈ [0, 2] is an unknown parameter. And the ICBCs are

s(0, x, y) = 0, ∀(x, y) ∈ Ωtarget,

s(t, x, y) = 1, ∀t ∈ [0, T], ∀(x, y) ∈ ∂Ωtarget,
(76)

We define the square mapped domain as

Ωmapped = {(u, v) ∈ R2 : u ∈ [0, 1], v ∈ [0, 1]}, (77)

and we can find the mapping from the target domain to this mapped domain as

(u, v) = T (x, y) =
(

x + 1− 0.5y

2− y
, y

)
, (78)

which maps the left boundary x = −1 + 0.5y of Ωtarget to the left edge u = 0 of Ωmapped and the right
boundary x = 1− 0.5y to the right edge u = 1, while preserving y. The inverse mapping is then given by

(x, y) = T −1(u, v) = (−1 + 0.5v + (2− v)u, v) . (79)

Note that the mapped domain Ωmapped can be readily handled by PI-BSNet. We then derive the transformed
PDE on the mapped square domain Ωmapped to be

∂s

∂t
= 1

2
1

2− v

[
∂

∂u

(
A(u, v) ∂s

∂u
−B(u, v) ∂s

∂v

)
+ ∂

∂v

(
−B(u, v) ∂s

∂u
+ D(u, v) ∂s

∂v

)]
, (80)

where
A(u, v) = 1 + α(u− 0.5)2

2− v
, B(u, v) = α(0.5− u), D(u, v) = α(2− v). (81)

The corresponding ICBCs are

s(u, v, t) = 1, ∀t ∈ [0, T], ∀(u, v) ∈ ∂Ωmapped,

s(u, v, 0) = 0, ∀(u, v) ∈ Ωmapped.
(82)

For efficient evaluation of the physics loss, we approximate equation 80 with the following anisotropic but
cross-term-free PDE

∂s

∂t
= 1

2

[
1(

2− v
)2

∂2s

∂u2 + α
∂2s

∂v2

]
. (83)

Training Data: The ground truth data is generated by solving equation 75 on the trapezoid domain using
the forward Euler method, with time step size ∆t = 0.001 and spatial resolution (Nx, Ny) = (21, 21).

Network Configurations: We generate 50 sample solutions of equation 75 with varying α uniformly
sampled from [0, 1.5], and transform the solution from Ωtarget to Ωmapped via equation 78 as training data.
We construct a PI-BSNet with 3-layer neural network with ReLU activation functions and 64 hidden neurons

30

Under review as submission to TMLR

each layer. The number of control points are ℓx = ℓy = 20 and ℓt = 100. The order of B-spline is set to
be 3. We train the coefficient network with Adam optimizer with 10−3 initial learning rate for 3000 epoch.
Note that the physics loss enforces equation 83 on Ωmapped, which is the domain for PI-BSNet training. We
use wd = 1 and wp = 0.001 as the loss weights for training. We use a smaller weight for physics loss since
the physics model is approximate. We then test the prediction results on unseen α randomly sampled from
[0, 1.5].

E Ablation Experiments

E.1 B-spline Derivatives

In this section, we show that the analytical formula in equation 12 can produce fast and accurate calculation
of B-spline derivatives. Fig. 11 shows the derivatives from B-spline analytical formula and finite difference for
the 2D space [−10, 2]× [0, 10] with the number of control point ℓ1 = ℓ2 = 15. The control points are generated
randomly on the 2D space, and the derivatives are evaluated at mesh grids with N1 = N2 = 100. We can see
that the derivatives generated from B-spline formulas match well with the ones from finite difference, except
for the boundary where finite difference is not accurate due to the lack of neighboring data points.

1st Derivative (B-Spline) 1st Derivative (Finite Difference) Difference (1st)

2nd Derivative (B-Spline) 2nd Derivative (Finite Difference) Difference (2nd)

Figure 11: First and second derivatives from B-splines and finite difference.

E.2 Optimality of Control Points

In this section, we show that the learned control points of PI-BSNet are near-optimal in the L2 norm sense.
For the recovery probability problem considered in section 5.1, we investigate the case for a fixed set of
system and ICBC parameters u = 1.5 and α = 2. We use the number of control points ℓ1 = ℓ2 = 25 on the
domain [−10, 2] × [0, 10], and obtain the optimal control points C∗ in the L2 norm sense by solving least
square problem (Deng & Lin, 2014) with the ground truth data. We then compare the learned control points
C with C∗ and the results are visualized in Fig. 12. We can see that the learned control points are very
close to the optimal control points, which validates the efficacy of PI-BSNet. The only region where the
difference is relatively large is near c25,0, where the solution is not continuous and hard to characterize with
this number of control points.

31

Under review as submission to TMLR

Control Points (Optimal) Control Points (PI-BSNet) Difference

Figure 12: Control points.

E.3 Number of Control Points

In this section, we investigate the effect of the number of control points on the performance of PI-BSNet. The
setting is described in section 5.1. Table 1 shows the approximation error and training time of PI-BSNet with
different numbers of control points along each dimension. We can see that the training time increases as the
number of control points increases, and the approximation error decreases, which matches with Theorem 4.3
which indicates more control points can result in less approximation error.

Table 1: PI-BSNet prediction MSE with different numbers of control points along each dimension.

Number of Control Points 2 5 10 15 20 25
Number of NN Parameters 4417 5392 9617 17092 27817 41792

Training Time (s) 241.76 223.53 247.39 295.67 310.83 370.48
Prediction MSE (×10−4) 5357.9 7.327 7.313 5.817 4.490 3.064

E.4 Robustness and Loss Function Weights Ablations

In this section, we provide ablation experiments of the proposed PI-BSNet with different loss function
configurations, and examine its robustness again noise. The setting is described in section 5.1. We first
train with noiseless data and vary the data loss weight wd. Table 2 shows the average MSE and its standard
deviation over 10 independent runs. We can see that with more weights on the data loss, the prediction MSE
reduces as noiseless data help with PI-BSNet to learn the ground truth solution. We then train with injected
additive zero-mean Gaussian noise with standard deviation 0.05 and vary the physics loss weight wp. Table 3
shows the results. It can be seen that increasing physics loss weights help PI-BSNet to learn the correct
neighboring relationships despite noisy training data, which reduces prediction MSE. In general, the weight
choices should depend on the quality of the data, the training configurations (e.g., learning rates, optimizer,
neural network architecture).

Table 2: PI-BSNet prediction MSE (noiseless data).

wd 1 2 3 4 5
wp 1 1 1 1 1

Prediction MSE (×10−5) 36.76 ± 12.16 12.91 ± 10.40 10.21 ± 3.99 9.28 ± 6.78 3.95 ± 1.36

E.5 Number of NN Layers and Parameters Ablation

In this section, we show ablation results on the number of neural network (NN) layers and parameters. We
follow the experiment settings in section 5.1, and train the proposed PI-BSNet with different numbers of
hidden layers, each with 10 independent runs. The number of NN parameters, the prediction MSE and its
standard deviation are shown in Table 4. We can see that with 3 layers the network achieves the lowest
prediction errors, while the number of layers does not have huge influence on the overall performance.

32

Under review as submission to TMLR

Table 3: PI-BSNet prediction MSE (additive Gaussian noise data).

wd 1 1 1 1 1
wp 1 2 3 4 5

Prediction MSE (×10−4) 31.58 ± 6.46 33.15 ± 7.77 13.37 ± 11.74 7.95 ± 6.24 3.86 ± 2.05

Table 4: PI-BSNet prediction MSE with different numbers of NN layers.

Number of Hidden Layers 2 3 4 5
Number of NN parameters 37632 41792 45952 50112
Prediction MSE (×10−4) 1.12± 0.43 0.90± 0.42 3.17± 2.46 3.12± 2.81

F Additional Experiments

In this section, we provide additional experiment results.

F.1 Burgers’ Equation

We conduct additional experiments on the following Burgers’ equation, by adapting the benchmark problems
in PDEBench (Takamoto et al., 2022) to account for varying system and ICBC parameters.

∂s

∂t
+ us

∂s

∂x
− ν

∂2s

∂x2 = 0, (84)

where ν = 0.01 and u ∈ [0.5, 1.5] is a changing parameter. The domain of interest is set to be (x, t) ∈
[0, 10]× [0, 8], and the initial condition is

s(x, 0) = exp{−(x− α)2/2}, (85)

where α ∈ [2, 4] is a changing parameter. We train PI-BSNet with 3-layer fully connected neural networks
with ReLU activation on varying parameters u ∈ [0.5, 1.5] and α ∈ [2, 4], and test on randomly selected
parameters in the same domain. The B-spline basis of order 4 is used and the number of control points along
x and t are set to be ℓx = ℓt = 100. Note that more control points are used in this case study compared to
the convection diffusion equation in section 5.1, as the solution of the Burgers’ equation has higher frequency
along the ridge which requires finer control points to represent. Adaptive basis functions can be potentially
used to further reduce errors under the same number of control points. Fig. 13 visualizes the prediction
results on several random parameter settings. The average MSE across 20 test cases is 1.319± 0.408× 10−2.
This error rate is comparable to the Fourier neural operators as reported in Figure 3 in Li et al. (2020).

F.2 3D Heat Equation

We consider the 3D heat equation given by

∂

∂t
s(x, t) = D

∂2

∂x2 s(x, t), (86)

where D = 0.1 is the constant diffusion coefficient. Here x = [x1, x2, x3] ∈ R3 are the states, and the domains
of interest are Ωx1 = Ωx2 = Ωx3 = [0, 1], and Ωt = [0, 1]. All lengths are in centimeters (cm) and the time is
in seconds (s). In this experiment we solve equation 86 with random linear initial conditions:

s(x, t = 0) = α1 · x1 + α2 · x2 + α3 · x3 + α0 (87)

where α1, α2, α3 ∈ [−0.5, 0.5] and α0 ∈ [0, 1] are randomly chosen. We impose the following Dirichlet and
Neumann boundary conditions:

s(x, t|x3 = 0) = s(x, t|x3 = 1) = 1, (88)
∂

∂x1
s(x, t|x1 = 0) = ∂

∂x1
s(x, t|x1 = 1) = 0,

∂

∂x2
s(x, t|x2 = 0) = ∂

∂x2
s(x, t|x2 = 1) = 0 (89)

33

Under review as submission to TMLR

Figure 13: Results on Burgers’ equations with different random parameter settings.

We set the B-splines to have the same number ℓ = 15 of equispaced control points in each direction including
time. We sample the solution of the heat equation at 21 equally spaced locations in each dimension. Thus,
each time step consists of 153 = 3375 control points and each sample returns 154 = 50625 control points
total. The inputs to our neural network are the values of α from which it learns the control points, and
subsequently the initial condition surface via direct supervised learning. This is followed by learning the
control points associated with later times, (t > 0) via the PI-BSNet method. Because of the natural time
evolution component of this problem, we use a network with residual connections and sequentially learn each
time step. The neural network has a size of about 5× 104 learnable parameters. We also train a standard
PINN (Raissi et al., 2019) for comparison. The PINN consists of 4 hidden layers with 50 neurons in each
layer, with Tanh as the activation functions.

Fig. 14 shows the learned heat equation and a slice of the residual in the x1-t plane. It can be seen that with
PI-BSNet the value is diffusing over time as intended. Although our initial condition does not adhere to the
heat equation as estimated by the B-spline derivative, we quickly achieve a low residual, while PINN fails to
do so. The average residuals during testing is 0.0121 for PINN and 0.0032 for PI-BSNet, which indicates the
efficacy of the PI-BSNet method.

34

Under review as submission to TMLR

Figure 14: The learned solutions (left) and the residuals (right) for the 3D heat equations.

35

	Introduction
	Related Work
	Proposed Method
	Problem Formulation
	B-Splines with Basis Functions
	Physics-Informed B-Spline Networks

	Theoretical Analysis
	Universal Approximation
	Generalization Error Bounds

	Experiments
	Recovery Probabilities
	Advection Equations with Nonhomogeneous ICBCs
	Diffusion on Trapezoid

	Discussions
	Conclusion
	Appendix
	Proof of Theorems
	Universal Approximation (Theorem 4.3)
	Generalization Error Bounds (Theorem 4.6)

	Proof of Supporting Theorems and Lemmas
	Proof of Theorem A.1
	Proof of Lemma A.2
	Proof of Lemma A.3

	Additional Results
	Convex Hull Property of B-Splines
	B-Spline Representation for General Domains

	Experiment Details
	Recovery Probabilities
	Advection Equations
	Diffusion on Trapezoid

	Ablation Experiments
	B-spline Derivatives
	Optimality of Control Points
	Number of Control Points
	Robustness and Loss Function Weights Ablations
	Number of NN Layers and Parameters Ablation

	Additional Experiments
	Burgers' Equation
	3D Heat Equation

