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Abstract

Graph Neural Networks have achieved tremendous success in modeling complex
graph data in a variety of applications. However, there are limited studies investi-
gating privacy protection in GNNs. In this work, we propose a learning framework
that can provide node-level privacy, while incurring low utility loss. We focus on
a decentralized notion of Differential Privacy, namely Local Differential Privacy,
and apply randomization mechanisms to perturb both feature and label data before
being collected by a central server for model training. Specifically, we investigate
the application of randomization mechanisms in high-dimensional feature settings
and propose an LDP protocol with strict privacy guarantees. Based on frequency
estimation in statistical analysis of randomized data, we develop reconstruction
methods to approximate features and labels from perturbed data. We also formulate
this learning framework to utilize frequency estimates of graph clusters to supervise
the training procedure at a sub-graph level. Extensive experiments on real-world
and semi-synthetic datasets demonstrate the validity of our proposed model.

1 Introduction

Graph data are ubiquitous in the modern world allowing graph-structured representation for complex
data in the realm of social networks, finance, biology, and so on. Graph Neural Networks (GNNs)
have been widely adopted to model the expressive nature of such graph-structured data [37]. GNNs
rely on message-passing mechanisms to propagate information between graph nodes and output
embeddings that encode both node and neighborhood features aggregated using graph adjacency
information. These embeddings are used in predictive downstream tasks for meaningful applications
such as drug discovery, traffic prediction, recommendation, and so on. This widespread prevalence
of GNNs, however, raises concerns regarding the privacy of sensitive information whose leakage
may lead to undesirable and even harmful consequences. GNNs have been shown to be vulnerable to
several privacy risks including membership inference [24], link re-identification [16], and attribute
disclosure [41]. The risks are considerably higher in GNNs compared to traditional learning models
due to the presence of additional graph structure information [24]. To ensure compliance with legal
data protection guidelines [22] and for the protection of user privacy, GNNs must thus be trained and
deployed in a privacy-preserving manner.

In this paper, we aim to address such privacy concerns in GNNs. We focus on a specific scenario
of node privacy wherein node-level features and labels are held locally by each user and the global
graph structure is available to a central server. The server could benefit from users’ feature data which
paired with graph topology can be utilized for embedding generation and/or predictive modeling via
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GNNs. However, collecting user feature and label data, possibly containing sensitive and identifying
information, may incur serious privacy issues. To this end, Local Differential Privacy (LDP) [18]
is often adopted during data collection for model training or releasing statistics privately [8]. Fur-
thermore, it has been deployed in large-scale data-gathering of user behavior and usage statistics at
Apple [1] and Google [13] motivating the integration of LDP in data collection for GNNs as well.

Challenges The main challenge in training GNNs with privately collected data is the utility-privacy
trade-off of differentially private mechanisms [33]. As a whole, data randomized at an individual
level oftentimes misrepresents the population-level distribution. A learning model that learns feature
and label correlation from this data may overfit the noise and achieve sub-par performance on
predictive and analytical tasks with unseen data [38]. Furthermore, since GNNs propagate information
throughout the graph to output node embeddings, the quality of the embeddings also suffers due to
additive noise present in the training data after applying LDP mechanisms.

Prior Work A few recent works have attempted to address node privacy in GNNs [9, 23] by
enforcing privacy during training and/or model release. This potentially puts user information at
risk. Sajadmanesh et al. [29] propose a node-level LDP framework in the distributed setting where
features and labels are held private by the user and the graph structure is known to the server. They
propose an LDP protocol called multi-bit mechanism to perturb node features by extending the 1-bit
mechanism [10] to multidimensional features. The multi-bit mechanism randomly selects a subset of
features for each user, transforms each selected feature value to either 1 or -1, and indiscriminately
reports the value 0 for the remaining ones. To protect label privacy, node labels are perturbed using
Randomized Response (RR) [35]. A GCN-based multi-hop aggregator is then prepended to the
GNN model for implicit denoising of both features and labels. They further implement forward
loss correction [26] to supervise the learning process in the presence of noisy labels. However, the
multi-bit mechanism potentially results in a huge loss of information, especially considering that the
size of the sampled feature subset is set to 1 as per the analysis presented in the paper. The model is
evaluated on several graph datasets with high-dimensional binary features where each feature has
around 99% zero values (shown in Table 2 in appendix). This inadvertently aids to reduce variance
during aggregation of features perturbed via the multi-bit mechanism. This may not be the case
during deployment in real world which could significantly affect the privacy-utility trade-off.

Contributions In this work, we propose RGNN, a novel reconstruction-based learning framework
that ensures LDP for nodes while incurring low utility loss. To protect feature privacy, we extend
previous work by Arcolezi et al. [4] and implement Generalized Randomized Response with Feature
Sampling (GRR-FS), a randomization framework with provable LDP guarantees. To minimize utility
loss caused by randomization, we propose reconstruction methods that approximate true features and
label distributions from the perturbed data via theoretically derived frequency estimation techniques.
We leverage graph homophily and use these methods to estimate data distributions at a sub-graph
level and ultimately at the node level. We further introduce propagation during reconstruction to
reduce estimation variance. We also formulate this learning framework to include frequency estimates
of graph clusters to supervise the training procedure. The proposed framework can be paired with any
GNN architecture and does not require private data for training or validation. We perform extensive
experiments on real-world and semi-synthetic datasets for the task of transductive node classification
under varying privacy budgets. Empirical results show our method’s effectiveness over baselines.

2 Related Work

Privacy leakage in GNNs has become an unavoidable concern due to real-world implications of
models trained on potentially sensitive data. In order to protect against privacy leakage and attacks,
various attempts have been made to develop privacy-preserving GNN algorithms, including the
extension of Differential Privacy (DP) to GNNs. [36] proposes an edge-level DP algorithm by
adding noise to the adjacency matrix as a pre-processing step. However, the edge-DP problem is
different from the node privacy setting explored in this paper where the graph topology is non-private
but the node features and labels are locally private. [40] proposes a node-level DP algorithm that
decouples message-passing from feature aggregation and uses an approximate personalized PageRank
to perform feature transformation instead of message-passing. This algorithm requires a trusted
aggregator to compute the approximate personalized PageRank matrix from private data and is
more suited for private release of trained GNN models and their outputs than ensuring user-level
privacy. [9] proposes a node-level DP algorithm by integrating sub-graph sampling and the standard
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DP-SGD [2] algorithm into the training framework to update GNN parameters, but this approach also
requires a trusted aggregator to perform sampling before model training and is limited to a 1-layer
GNN model. [23] utilizes the student-teacher training workflow from the PATE framework [25] to
release a student GNN trained on public data and partly private labels obtained via the teacher GNN
with DP guarantees. However, their framework necessitates the availability of public graph data
which is not possible under LDP constraints considered in this work. [31] proposes a randomization
mechanism to ensure node-level and edge-level DP by optimizing the magnitude of noise injected
into nodes’ features and the graph structure. However, node labels are considered non-private in
their setting. Our work is most closely related to that of [29] where node features and labels are
individually perturbed before sending to a server for training. They utilize GCN-based multi-hop
aggregation for denoising features, and labels and incorporate forward loss correction [26] to facilitate
training with noisy labels. However, implicit denoising via aggregation may not be adequate to obtain
accurate graph signals due to propagation of noise during aggregation.

3 Preliminaries

We use G = (V, E) to denote an undirected graph where V is a set of N nodes and E ⊆ V × V
defines graph edges represented by an adjacency matrix A ∈ {0, 1}N×N s.t. Au,v = 1 if an edge
exists between nodes u and v. X = {x1, . . .xN} represents node features, where xv ∈ Rd is the
d-dimensional feature vector of node v and we use Xi ∈ RN to denote the i-th feature column. In a
transductive setting, a fraction of nodes denoted VL are provided with labels. For each node v ∈ VL,
a label vector yv ∈ {0, 1}c s.t.

∑
yv = 1 indicates its class membership. VU = V −VL is the set of

unlabeled nodes whose labels are to be predicted. We use Cr ⊆ V to denote an arbitrary cluster of G
containing a subset of nodes and we use br to refer to the label distribution of Cr which is defined as
the average of labels yv of all v ∈ Cr. Finally Y ∈ {0, 1}N×c is the node label matrix where yv is
an all-0 vector for any v ∈ VU , and B ∈ RC×c denotes the label distribution for C clusters.

3.1 Graph Neural Networks

GNNs primarily aim to learn vector representations for nodes in a graph through features and topology.
The learned representations are used for downstream tasks such as node classification, link prediction,
and graph classification. A k-layer GNN consists of k sequential graph convolutional layers that
implement message passing mechanisms to update representations using aggregated neighborhood
nodes representations. The updating process of the k-th layer in GNN is generally formulated as

hk
N (v) = AGGREGATEk({hk−1

u , ∀u ∈ N (v)}),

hk
v = UPDATEk(hk

N (v);W
k),

(1)

where hk
v is node v’s representation at the k-th layer, N (v) is its neighborhood set, and Wk defines

the parameters of the learnable UPDATE function. GCN [20], GraphSAGE [15], and GAT[32] are
some of the most widely used GNNs.

3.2 Differential Privacy

Since first proposed by Dwork et al. [11], differential privacy has been established as the de-facto
definition for privacy guarantees. In its seminal work, DP provided privacy guarantees for databases in
the centralized setting where a trusted curator holds a database containing users’ private information
and answers queries about the database. In this work, we focus on a decentralized definition of DP
referred to as Local Differential Privacy [18]. As opposed to DP which requires a trusted aggregator,
LDP provides privacy guarantees on the user side by letting each user perturb their own private data
before sending it to an aggregator. This way, the aggregator cannot access the true and private data of
any user alleviating the need for a trusted aggregator.
Definition 1. ϵ-LDP [18]. Given ϵ > 0, a randomized mechanismM satisfies ϵ-local differential
privacy, if for any pairs of user’s private data x and x′, and for any possible outputs o ∈ Range(M),
we have Pr[M(x) = o] ≤ eϵ · Pr[M(x′) = o], where ϵ is the privacy budget that controls the
trade-off between utility and privacy ofM.

Essentially, LDP ensures that an adversary is unable to infer the input values of any target individual
using the output values obtained. To achieve LDP in data statistics and analysis, mechanisms such as
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randomized response, histogram encoding, unary encoding, or local hashing are applied during the
collection of user data that are categorical in nature [33].

3.3 Sampling for Privacy Amplification

A widely accepted approach to strengthen privacy guarantees of DP mechanisms is to take advantage
of the aggregator/adversary’s uncertainty by adding a sampling step before privatization [21, 4]. Sam-
pling exploits such uncertainty and allows for the relaxation of privacy constraints in a randomization
mechanism while ensuring strict privacy guarantees.

Lemma 1. Amplification Effect of Sampling [21]. Let M denote an algorithm that guarantees
ϵ′-DP over some data. Also, letMβ denote an algorithm that first samples tuples from the data
with probability β and then applies M on the sampled data. Then, Mβ satisfies DP with ϵ =

ln
(
1 + β(eϵ

′ − 1)
)

.

3.4 Learning from Label Proportions

Learning from label proportions (LLP) is an alternative supervision method used to train predictive
models when instance labels are too difficult or expensive to obtain [27]. In LLP, instances are
grouped into iid bags and only the label distributions of these bags are known to the learning model.
The goal is to train an instance label predictor using supervision from bag-level aggregate information.

Denote by Br, an arbitrary bag containing labeled instances. The learner cannot access the instance
labels y and only receives bag proportions br computed as an average over the instance labels in bag
Br. Then an instance label predictor can simply compute its prediction of the bag proportion b̂r by
averaging over the predicted labels ŷ in bag Br. Unlike a traditional learning model, this LLP-based
learner calculates training loss between the true and predicted distributions of the bags. For a bag Br,
this proportion loss can be computed as the KL divergence between true and predicted proportions as
DKL(b̂r||br). The objective of the learner is to minimize DKL(·) for all bags in the training dataset.
It has been previously shown that minimizing bag proportion prediction error guarantees a good
instance label predictor assuming that the labels are not evenly distributed in all bags [39].

4 Reconstruction-based Private GNN

We formally define the problem of node LDP. LetM denote some randomization mechanism that
provides ϵ-LDP. Then, X′ =M(X) and Y′ =M(Y) refer to features and labels collected using
M to ensure user privacy. Let h(·) define a GNN that takes node features and adjacency matrix as
the input and outputs label predictions. In this decentralized DP setting, the server responsible for
model training has access to the non-private adjacency A, randomized features X′ and randomized
labels Y′ but not the true private features X and labels Y. In this scenario, we aim to train a GNN on
X′ and Y′ to learn a mapping h(X′,A;W)→ Ŷ that can estimate accurate labels for v ∈ VU .

Figure 1: An overview of the proposed framework RGNN
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Fig. 1 illustrates the overall framework of RGNN which is composed of two perturbation models:MX

andMY implemented at the node level to inject noise into the feature and label data respectively. On
the server side, the feature reconstructor fX takes the non-private graph structure G and the perturbed
features X′ as input to derive estimated features X̃ via propagation and frequency estimation for
all nodes in the graph. The label reconstructor fY also takes the graph structure G and perturbed
labels Y′ as input to reconstruct labels for the labeled set of nodes VL. Additionally, an edge-based
graph clustering algorithm hE partitions the graph into a set of clusters C. For each cluster Cr ∈ C,
a cluster-level label proportion denoted as b′

r is computed by aggregating over the nodes in Cr.
Utilizing frequency estimation, an accurate cluster-level proportion b̃r is derived from the perturbed
cluster label proportion. A GNN model hG is then trained on the reconstructed features and labels
with additional supervision provided by the reconstructed cluster proportions.

4.1 Reconstruction with Private Features

LDP frequency oracles used to obtain private data statistics can also be adopted during training
data collection to provide privacy protection to users via plausible deniability. However, in contrast
to the one-dimensional data collected for such purpose, data for model training are usually multi-
dimensional with mutual dependencies between features. Ensuring formal privacy guarantees then
requires users to report privatized values for each feature. In other words, the total privacy budget gets
compounded along the feature dimension and results in a high noise rate often at the cost of model
performance [33]. To circumvent this issue, sampling and noisy data generation techniques have been
adopted in [29, 4] where each user applies randomization techniques only on a few sampled features
and reports some default or noisy values for the non-sampled features. The RS+FD method proposed
in [4] samples one of d total features and applies an LDP protocol on it. For the remaining d − 1
features, the method reports completely random values drawn from a uniform distribution over each
feature domain. On the other hand, the multi-bit mechanism in [29] randomizes one of d features but
reports a default value of 0 for the rest. As discussed prior, the multi-bit mechanism may require high
feature matrix sparsity to achieve good utility.

Therefore, in this paper, we focus on sampling and fake data generation using a uniform distribution.
Still, in high-dimensional feature settings, reporting d− 1 features from a uniform distribution may
result in highly noisy data unsuitable for training. So, we extend this method to a more general case
such that each user samples m of d features and randomizes them independently. Consequently, the
privacy budget ϵ is compounded over m sampled features, which is more favorable than compounding
over d features. On the client side, a user samples m features then implements the Generalized
Randomized Response (GRR) method [34] on the sampled features, i.e.: the user reports their true
value with probability p and reports any other value with probability q. Here, p and q are set as

eϵx

eϵx+γi−1 and 1
eϵx+γi−1 respectively where γi indicates the domain size of the sampled feature x and

ϵx is the allocated privacy budget for feature x. This probabilistic transition can also be represented
using a matrix P ∈ Rγi×γi whose diagonal entries equal p and the non-diagonal entries equal q. For
d−m features, the user reports a random value drawn from a uniform distribution over each feature.
We call this method Generalized Randomized Response with Feature Sampling (GRR-FS) which
ensures ϵX -LDP (Please refer to the appendix for proofs).
Theorem 1. GRR-FS satisfies ϵX -LDP where ϵX = ln

(
1 + m

d (e
mϵx − 1)

)
.

As data randomized via an LDP protocol is invariant to post-processing [12], the server can utilize the
collected data without compromising user privacy. Furthermore, as the server queries each user for
their feature values only once, privacy degradation via repeated queries is also avoided. GRR-FS can
also be applied to continuous node features after discretization. However, directly using noisy features
for learning can significantly impact the model’s capability of obtaining high-quality embeddings and
generalizing to new or unseen data. In this paper, we propose to utilize statistical frequency estimation
techniques to approximately reconstruct user features and labels and better facilitate training.

We first derive frequency estimation for GRR-FS. On the server side, the aggregator collects responses
from n users but is unaware whether an individual response was derived from GRR or sampled
from the uniform distribution. For an arbitrary feature xi, the aggregator can compute the frequency
estimate for its j-th value, denoted by π̃j , as follows

π̃j =
λ′
jd

m(p− q)
+

m− d−mγiq

mγi(p− q)
, (2)
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where λ′
j denotes the probability of observing the j-th value. The variance of π̃j is given as

v̂ar(π̃j) =
d2λ̃j(1− λ̃j)

m2(n− 1)(p− q)2
, (3)

where, λ̃j =
1
d (π̃jmγi(p− q) +m(qγi − 1) + d).

Theorem 2. For an arbitrary attribute xi for i ∈ {1, . . . , d}, randomized using GRR-FS with
sampling probability m/d, the estimation π̃j in (2) is an unbiased estimation of the true proportion
of users having the j-th value with estimated variance v̂ar(π̃j) in (3).

For an arbitrary feature xi, (2) gives us an unbiased estimate of the proportion of nodes with the
j-th value over the whole graph. Pointwise reconstruction, however, is still intractable. Nonetheless,
we can estimate proportions π̃ at a sub-graph level for a reasonable number of nodes, i.e.: for a
sub-graph with n nodes, λ′

j is the observed proportion of xi’s j-th value in the sub-graph. We
extend this sub-graph estimation to node neighborhoods. For a node v ∈ V , we first obtain λ′

v, the
proportional frequency of an arbitrary feature xi from its neighborhood. Using (2), we estimate v’s
true neighborhood feature distribution as π̃vj for the j-th value in the domain of xi. Furthermore,
considering homophily in graphs, we reason that the feature distribution of a node should be very
close to the feature distribution in its neighborhood. Ultimately, we obtain the highest probable feature
value from the reconstructed neighborhood feature distribution π̃v and assign it as v’s reconstructed
feature x̃. In a simpler case with binary feature values, we can assign π̃v2 (π̃v1) to be node v’s
reconstructed feature to incorporate the uncertainty of the estimates.

That said, node degrees in real-world graphs generally follow a power law distribution resulting
in a high number of nodes having low degrees [5]. This variation in node degrees affects the
reconstruction process as the neighborhood size directly influences the variance in estimating the
true feature distribution. In (3), for a fixed privacy budget ϵx, we obtain a fixed transition probability
p; the variance is then inversely proportional to n which refers to the neighborhood size. This
results in low-degree nodes having a higher variance in their estimates which may lead to inaccurate
reconstruction. To minimize this effect, we implement multi-hop feature aggregation to increase the
neighborhood size for low-degree nodes before computing the estimate.

4.2 Reconstruction with Private Labels

In this section, we discuss the privatization and reconstruction of node labels. We implement GRR
to add class-independent and symmetric noise to the labels. Here, the probabilities p and q are
set as eϵy

eϵy+c−1 and 1
eϵy+c−1 respectively where c indicates the number of classes and ϵy is the

allocated label privacy budget. The server collects perturbed label vectors y′
v from all labeled nodes

and computes graph-level aggregates from the collected data. We can further leverage frequency
estimation to obtain unbiased estimates of these aggregates. Let π ∈ Rc denote the label distribution
vector over n nodes and λ′ denote the label distribution observed by the server containing the sample
proportions corresponding to π. Then an unbiased estimate of π is obtained as [34]

π̃ = P−1λ′, (4)
where P refers to the label transition matrix with diagonal entries p and non-diagonal entries
q. The variance in estimating π̃ is obtained from the diagonal elements of the dispersion ma-
trix disp(π̃) = (n− 1)−1P−1(λ′δ − λ′λ′⊺)(P⊺)−1 where λ′δ is a diagonal matrix with the same
diagonal elements as those of λ′ and (·)⊺ indicates the transpose operation.

Similar to node features, we can obtain frequency estimates of labels at a sub-graph level using (4).
Unlike node features, node labels are only provided for a small subset of nodes in the training graph.
Direct propagation over all nodes is not feasible in such graphs. However, unlabeled nodes are also
important for message propagation during multi-hop aggregation. To this end, we perform masked
propagation to obtain label frequencies in multi-hop node neighborhoods. We mask the unlabeled
nodes by setting their label vectors as an all-0 vector of size c. We then use the obtained neighborhood-
level label distribution λ′

v to estimate the true label distribution π̃v using (4). Assuming homophily,
we assign the reconstructed neighborhood label distribution as the node’s new label ỹv after one-hot
encoding such that ỹv ∈ {0, 1}c. With the reconstructed labels, we define the GNN objective as
Lgnn =

∑
v∈VL

ℓ(ŷv, ỹv), where ℓ(·) is the cross-entropy loss, ỹv and ŷv denote the reconstructed and

predicted label of node v, respectively.
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Algorithm 1: Reconstruction based Private GNN (RGNN)
Input: Graph G = (V, E), features X, labels Y, feature privacy budget ϵx, label privacy budget

ϵy , feature randomizerMX , label randomizerMY , feature reconstructor fX , label
reconstructor fY , hops for feature reconstruction KX , hops for label reconstruction KY ,
clustering algorithm hE , number of clusters C, GNN model hG , regularization parameter
α

// randomization
1 x′

v ←MX(xv; ϵx) ∀v ∈ V
2 y′

v ←MY (yv; ϵy) ∀v ∈ VL

// clustering
3 {Cr}Cr=1 ← hE(G) such that Cr

⋂
Cs = ∅

4 b′
r ← 1

|CL
r |

∑
v∈CL

r

y′
v for r = {1, .., C}

// reconstruction
5 X̃← fX(G,X′, γ, ϵx, d,m,Kx)

6 ỸL ← fY (G,Y′, ϵy, c,Ky)

7 obtain b̃r from b′
r for r = {1, . . . , C} using (4)

// GNN training
8 for t = 1, . . . , T do
9 Ŷ ← hG(X̃,G;W)

10 b̂r ← 1
|CL

r |
∑

v∈CL
r

ŷv for r = {1, . . . , C}

11 Lgnn ← 1
|VL|

∑
v∈VL

ℓ(ŷv, ỹv)

12 Lllp ← 1
C

∑C
r=1 DKL(b̂r||b̃r)

13 Wt+1 ←Wt − η∇ (Lgnn + αLllp)
14 end for

4.3 Reconstruction with Label Proportions

The variance in node label estimation depends on neighborhood size which could be small for some
nodes even after multi-hop aggregation. To alleviate this dependence on neighborhoods, we further
introduce a reconstruction-based regularization that incorporates LLP. This LLP regularization term
enforces similarity constraints on bag-level label distributions instead of node-level label distributions.
We introduce this LLP objective during training by creating bags that contain subsets of nodes in
the graph. To this end, we utilize edge-based graph clustering algorithms so as to not consume any
privacy budget and partition G into C disjoint clusters, C1, . . . , CC . We use METIS [17] to partition
the graph in this work. METIS is a multilevel C-way graph partitioning scheme that partitions G
containing N nodes into C disjoint clusters such that each cluster contains around N/C nodes and
the number of inter-cluster edges is minimized. In the presence of homophily, nodes in the same
cluster most likely share similar labels due to their proximity in G. LLP on bags containing similarly
labeled nodes approximates the standard supervised learning and is preferable for training [39].

For each bag/cluster Ci, we compute its label proportion as the mean of the label distribution of
nodes in Ci. However, due to privacy constraints, the server cannot access true labels yv. So, we
use randomized labels y′

v to obtain the perturbed bag proportions b′
i for each Ci. Note that we

only use the nodes that are also in VL (denoted as CLi in Line 10 of Algorithm 1) to obtain label
proportions of Ci. Since b′

i is an observed estimate of label proportion at a sub-graph level, we can
obtain an unbiased estimate of the bag label proportion using frequency estimation. We formulate the
LLP-based objective as min

W
Lllp =

∑C
i=1 DKL(b̂i||b̃i), where b̂i is the predicted label proportion

of bag i obtained by aggregating the predicted labels ŷv of nodes in CLi , b̃i is the reconstructed label
proportion of bag i obtained using (4). Also, W denotes the learnable parameters of a GNN model
hG(·). The overall GNN objective with LLP regularization follows as

min
W
Lgnn + αLllp, (5)
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where α controls the influence of the LLP-based regularization. The overall training procedure of our
model is presented in Algorithm 1 (Complete pseudocodes for reconstruction components fX and
fY are included in the appendix). On the user side, randomization is performed on both features and
labels (Lines 1-2). The server has access to graph adjacency and performs a clustering operation on it
to obtain clusters to be used as bags for LLP (Lines 3-4). The server uses the perturbed data along
with the graph adjacency to estimate node features and labels, and bag proportions via reconstruction
as discussed prior (Lines 5-7). Finally, the server trains a GNN model to fit the reconstructed features
and labels with the LLP loss as regularization (Lines 9-13).

Theorem 3. Algorithm 1 satisfies (ϵX + ϵy)-LDP where ϵX = ln
(
1 + m

d (e
mϵx − 1)

)
.

5 Experiments

5.1 Experimental Setup

We evaluate RGNN on four real-world datasets: Citeseer, Cora, DBLP, Facebook and two semi-
synthetic datasets: German and Student. Detailed information about the datasets, semi-synthetic
dataset construction, and preprocessing to reduce feature sparsity are presented in the appendix. For
all datasets, we compare RGNN against a stand-alone GNN model trained directly on the randomized
features and labels. We demonstrate RGNN’s efficiency by comparing it against LPGNN [29] which
performs node classification in the same node privacy scenario. For LPGNN, we use the multi-bit
mechanism to perturb features and RR to perturb labels as discussed in [29].

We implement a two-layer GNN model with 16 hidden dimensions. We use GraphSAGE as the base
GNN model unless stated otherwise. For all models, we use ReLU [3] as the non-linear activation
followed by dropout and train with Adam [19] optimizer. We vary the propagation parameters Kx

and Ky among {2, 4, 8, 16}. For a fair comparison, we use the same propagation parameters in both
RGNN and LPGNN for each dataset. We further vary the hyperparameters C among {4, 8, 16, 32, 64,
128, 256} and α among {0.01, 0.1, 1, 10, 20}. Detailed experiments on the effects of the propagation
and regularization parameters and the choice of the base GNN model can be found in the appendix.
To study the performance of RGNN under varying privacy budgets, we vary ϵx within {1, 0.1, 0.01}
and ϵy within {3, 2, 1, 0.5} and fix m=10. The total feature privacy budget provided by GRR-FS, ϵX ,
is then computed as in Theorem 1. For instance, for the Citeseer dataset the corresponding values for
ϵX varies within {8.3, 0.3, 0.02}. Accordingly, we set LPGNN’s sampling parameter to be m. Since
LPGNN also performs sampling before randomization, we reason that the total feature privacy for
LPGNN is also amplified resulting in ϵX feature privacy. For all datasets, we randomly split nodes
into training, validation, and test sets with 50/25/25% ratios, respectively. We report the average
results with standard deviations of 5 runs trained for 100 epochs each for all experiments. All models
are implemented using PyTorch-Geometric [14] and are run on GPU Tesla V100 (32GB RAM). Our
implementation is available at https://github.com/karuna-bhaila/RGNN.

5.2 Comparison with Baselines

We evaluate all models on the semi-synthetic and the pre-processed real-world datasets with reduced
feature sparsity and report the results in Table 1 under (ϵX + ϵy)-LDP. Here, GraphSAGE refers to
the stand-alone GNN that directly uses the perturbed features and labels. We observe that RGNN
significantly improves performance with some utility trade-off for all datasets. For semi-synthetic
Student dataset, RGNN can achieve better or similar accuracy compared to the non-private baseline
for higher label privacy budgets (Please refer to Table 2 in appendix for the performance of the non-
private GNN). This can be attributed to its size and the higher degree of feature homophily present
in the graph owing to the nature of its construction. Generally, RGNN also achieves significantly
better accuracy compared to LPGNN. Out of 48 scenarios, RGNN outperforms LPGNN for 39 of
them. The difference in accuracy is mostly minimal otherwise. As discussed previously, the multi-bit
mechanism in LPGNN preserves the sparsity of the feature matrix when m < d. Furthermore, even
after pre-processing to reduce dimensions, the datasets are not evenly distributed in terms of the
feature domains. Compared with this, RGNN has comparable or improved performance despite
providing rigorous privacy protection by randomizing every feature. These results imply that the
reconstruction-based framework is effective in improving model performance under LDP constraints.
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Table 1: Accuracy of RGNN and baselines under (ϵX + ϵy)-LDP with m = 10

Dataset ϵx Model ϵy = 3 ϵy = 2 ϵy = 1 ϵy = 0.5

Citeseer

1
GraphSAGE 24.4 ± 1.3 24.3 ± 2.6 20.5 ± 1.2 19.4 ± 0.9

LPGNN 45.6 ± 12.2 51.7 ± 1.8 46.4 ± 1.6 26.9 ± 5.9
RGNN 55.7 ± 1.4 52.6 ± 2.7 47.1 ± 2.8 36.2 ± 4.7

0.1
GraphSAGE 25.2 ± 1.3 24.6 ± 1.1 19.4 ± 1.2 19.4 ± 1.2

LPGNN 53.1 ± 1.9 51.3 ± 3.4 47.3 ± 1.8 31.1 ± 6.3
RGNN 51.7 ± 2.1 51.3 ± 2.3 45.1 ± 3.2 34.6 ± 3.0

Cora

1
GraphSAGE 31.5 ± 1.9 28.0 ± 1.6 25.9 ± 2.4 20.4 ± 4.4

LPGNN 55.5 ± 15.4 39.5 ± 14.2 34.1 ± 8.4 37.8 ± 14.2
RGNN 77.8 ± 2.0 75.5 ± 1.6 67.5 ± 3.8 41.9 ± 3.0

0.1
GraphSAGE 32.2 ± 1.9 28.5 ± 0.8 24.8 ± 2.4 21.0 ± 3.3

LPGNN 68.5 ± 1.8 63.8 ± 5.4 60.6 ± 3.5 44.8 ± 13.2
RGNN 77.0 ± 1.5 75.8 ± 2.0 66.6 ± 5.0 40.6 ± 2.3

DBLP

1
GraphSAGE 50.3 ± 1.4 50.2 ± 1.5 45.5 ± 0.9 42.4 ± 2.4

LPGNN 65.2 ± 0.5 65.0 ± 0.4 60.7 ± 6.7 46.6 ± 1.5
RGNN 71.2 ± 0.4 70.7 ± 0.7 70.0 ± 1.0 65.5 ± 2.3

0.1
GraphSAGE 49.1 ± 1.7 48.7 ± 2.4 44.5 ± 1.7 43.8 ± 1.4

LPGNN 70.2 ± 1.1 68.5 ± 1.8 64.6 ± 4.4 59.9 ± 3.0
RGNN 71.4 ± 0.7 71.0 ± 0.8 69.9 ± 0.9 65.8 ± 2.0

Facebook

1
GraphSAGE 46.4 ± 1.3 45.2 ± 1.3 35.5 ± 1.1 29.7 ± 1.4

LPGNN 70.4 ± 2.1 69.3 ± 1.7 67.6 ± 1.9 58.7 ± 10.8
RGNN 76.3 ± 0.9 75.9 ± 1.1 72.6 ± 1.6 64.5 ± 1.6

0.1
GraphSAGE 42.0 ± 1.3 41.4 ± 1.5 33.5 ± 1.2 29.6 ± 1.3

LPGNN 76.3 ± 0.9 75.8 ± 0.8 73.1 ± 0.3 67.4 ± 1.3
RGNN 76.5 ± 0.8 76.1 ± 1.2 73.2 ± 1.2 63.4 ± 1.1

German

1
GraphSAGE 76.8 ± 3.1 73.1 ± 4.3 70.9 ± 2.8 70.1 ± 4.2

LPGNN 69.6 ± 1.5 69.6 ± 1.5 69.6 ± 1.5 69.6 ± 1.5
RGNN 82.2 ± 3.5 82.3 ± 3.5 82.2 ± 6.2 83.1 ± 7.9

0.1
GraphSAGE 74.1 ± 5.2 72.3 ± 2.9 70.8 ± 2.6 69.3 ± 6.3

LPGNN 74.7 ± 5.0 73.1 ± 7.0 71.3 ± 6.7 72.8 ± 5.
RGNN 81.9 ± 4.4 81.9 ± 4.2 82.9 ± 6.9 83.2 ± 7.1

Student

1
GraphSAGE 73.6 ± 4.5 68.9 ± 3.1 63.8 ± 7.8 56.2 ± 3.8

LPGNN 90.3 ± 2.4 89.9 ± 2.0 85.1 ± 4.1 76.7 ± 9.7
RGNN 88.9 ± 1.6 87.8 ± 1.2 88.2 ± 0.9 82.1 ± 3.6

0.1
GraphSAGE 73.2 ± 4.7 68.8 ± 4.9 62.2 ± 6.7 56.9 ± 3.6

LPGNN 88.1 ± 1.9 89.7 ± 1.9 87.4 ± 2.2 78.1 ± 9.7
RGNN 88.5 ± 1.7 88.5 ± 1.1 87.4 ± 1.5 81.7 ± 4.2

5.3 Ablation Study

We conduct an ablation study to evaluate the contribution of the reconstruction and LLP components.
To this end, we train three variants of RGNN: RGNN\fX uses the perturbed features directly in
training, RGNN\fY uses perturbed labels for training, and RGNN\LLP without LLP regularization.
With m = 10, ϵx = 1 and ϵy = 0.5, we obtained the following results: (40.2±1.9, 34.0±3.2,
28.3±6.6, 23.6±1.5) for Citeseer and (66.2±1.4, 63.0±1.0, 64.9±1.0, 46.1±1.3) for DBLP with RGNN, and
RGNN\LLP, RGNN\fY , RGNN\fX respectively. We observe that the performance of RGNN\fX is
significantly worse than that of RGNN, which highlights the contribution of denoising node features
via frequency estimation. The performance of RGNN is also better than that of RGNN\fY and
RGNN\LLP, showing that label reconstruction and reconstructed LLP improves model performance.

6 Conclusion

We present a reconstruction-based learning framework for GNNs with private features and labels.
We derive a perturbation mechanism with sampling that is implemented at the user level and ensures
privacy via plausible deniability. We then propose a flexible training framework that can significantly
improve the privacy-utility tradeoff of the learner. The proposed method utilizes statistical frequency
estimation to approximate true node features and labels. To reduce estimation variance, we incorporate
a simple propagation mechanism that aggregates information from multi-hop neighborhoods. We
also introduce a regularization technique that uses label proportions of graph clusters to supervise the
learning process at a sub-graph level. Our experiments demonstrate that our method generalizes well
across various datasets and GNN architectures while providing rigorous privacy guarantees.
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A Proof of Theorem 1

Proof. Consider a feature vector x = {x1, . . . , xd} on which GRR-FS is applied with feature
sampling probability β = m/d and privacy budget ϵx on each sampled feature. Let γi refer to the
domain size of feature xi s.t. xi ∈ {1, . . . , γi}. The private feature vector x′ = {x′

1, . . . , x
′
d} is

obtained as

x′
i =

{
GRR(ϵx, xi) with probability β
Unif(1, γi) with probability 1− β,

(6)

where GRR(·) denotes the response obtained by applying randomized response and Unif(·) denotes a
sample drawn from a discrete uniform distribution. For each of the m sampled features, the sampling
and reporting together satisfy ϵx-LDP, and for each of the d−m features, the reporting ensures total
randomness. Since ϵ-LDP composes [12], the mechanism composes as m · ϵx. Additionally, since
we incorporate sampling at the rate of β for each user, we are able to leverage privacy amplification,
enabled by the combination of sampling with a randomization mechanism as shown in Lemma 1.
Therefore, GRR-FS, with sampling rate β and applied privacy budget ϵx for each of m sampled
features, satisfies ϵX -LDP with ϵX = ln

(
1 + m

d (e
mϵx − 1)

)
.

B Proof of Theorem 2

Proof. For an arbitrary feature xi, let πj denote the true proportion of users who have the j-th value
for 1 ≤ j ≤ γi. Under GRR-FS, the probability of observing the j-th value is

λj =
1

n

[
m

d
(nπjp+ n(1− πj)q2) +

(
1− m

d

) n

γi

]
(7)

=
1

dγi
[mπjγi(p− q) +mqγi + d−m] . (8)

An unbiased estimator of λj is the observed proportion of the j-th value, λ′
j = nj/n, where nj refers

to the number of users who report the j-th value. Then from (8), it follows

π̃j =
λ′
jd

m(p− q)
+

m− d−mγiq

mγi(p− q)2
. (9)

From (9), we have

var(π̃j) =
d2 var(nj)

n2m2(p− q)2
. (10)

We observe that nj follows the binomial distribution with parameters n and λj such that var(nj) =
nλj(1− λj) and we get

var(π̃j) =
d2λj(1− λj)

nm2(p− q)2
. (11)

Since E(nj) = nλj and E(n2
j ) = nλj + n(n− 1)λj , we have

E

[
λ̃j(1− λ̃j)

n− 1

]
=

λj(1− λ)

n
, (12)

where we use λ̃j to mean the estimated probability of observing the j-th value obtained as λ̃j =
1
d (π̃jmγi(p− q) +m(qγi − 1) + d). Finally, an estimation of the variance in (11) is given as

v̂ar(π̃j) =
d2λ̃j(1− λ̃j)

m2(n− 1)(p− q)2
. (13)

12



C Proof of Theorem 3

Proof. We show in Theorem 1 that GRR-FS provides ϵX -LDP. Also, the label randomization
mechanismMY which implements GRR ensures ϵy-LDP. According to the compositional property
of DP [12], the randomized feature and label data collectively provide (ϵX + ϵy)-LDP. The server
collects query responses from each node independently only once, thus maintaining the privacy
guarantee. Finally, due to the invariance of randomization mechanisms to post-processing [12],
privacy protection is not compromised during any step in the reconstruction or training process.
Therefore, Algorithm 1 satisfies (ϵX + ϵy)-LDP.

D More Details on Feature and Label Reconstruction

The algorithm to obtain reconstructed node features by the server from the perturbed ones is shown
in Algorithm 2.

Algorithm 2: Node Feature Reconstruction
Input: G = (V, E), perturbed features X′, feature domain sizes γ = {γ1, . . . , γd}, number of

features d, number of sampled features m, privacy budget ϵ, number of hops K
Output: Reconstructed features X̃

1 Function fX(G,X′, γ, ϵ, d,m,K):
2 for i = 1, . . . , d do
3 λ′ ← one-hot(X′

i)
4 for k = 1, . . . ,K do
5 for v ∈ V do
6 λ′

v ← MEAN({λ′
v} ∪ {λ

′
u,∀u ∈ N (v)})

7 end for
8 end for
9 p← eϵ

eϵ+γi−1 and q ← 1
eϵ+γi−1

10 for v ∈ V do
11 for j = 1, . . . , γi do
12 π̃vj ←

dλ′
vj

m(p−q) +
m−d−mγiq
mγi(p−q)

13 end for
14 x̃v ← argmax

j
π̃vj

15 end for
16 x̃i ← {x̃v,∀v ∈ V}
17 end for
18 return X̃ = {x̃1, . . . , x̃d}⊺
19 end

Algorithm 3 shows the process of approximating labels through frequency estimation using perturbed
labels.

E Datasets Details

We perform evaluations on four real-world benchmark datasets: Citeseer [30], Cora [30] and DBLP [7]
are well-known citation datasets where nodes represent papers and edges denote citations. Each
node is described by bag-of-words features and a label denoting its category. Facebook [28] is
a social network dataset with verified Facebook sites as nodes and mutual likes as links. Node
features represent site descriptions and label indicates its category. Statistics of the datasets are
presented in Table 2. Sparsity in d highlights the imbalanced distribution of binary feature values as
we discussed in Section 1. To reduce such feature matrix sparsity, we preprocess these real-world
datasets by combining a fixed number of features (70, 25, 50, and 100 for Citeseer, Cora, DBLP,
and Facebook respectively) into one representative feature resulting in a lower feature dimension
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Algorithm 3: Node Label Reconstruction
Input: G = (V, E), perturbed labels Y′, number of classes c, privacy budget ϵ, number of hops

K
Output: Reconstructed labels ỹv ∀v ∈ VL

1 Function fY (G,Y′, ϵ, c,K):
2 λ′

v ← y′
v ∀v ∈ VL

3 λ′
v ← 0⃗ ∀v ∈ VU

4 for k = 1, . . . ,K do
5 for v ∈ V do
6 λ′

v ← MEAN({λ′
v} ∪ {λ

′
u,∀u ∈ N (v)})

7 end for
8 end for
9 p← eϵ

eϵ+c−1 and q ← 1
eϵ+c−1

10 Construct transition matrix P ∈ Rc×c using p and q

11 for v ∈ VL do
12 π̃v ← P−1λ′

v
13 ỹv ← one-hot(π̃v)
14 end for
15 return ỹv ∀v ∈ VL

16 end

Table 2: Dataset statistics

Dataset |V| |E| Avg. Deg. d
Sparsity
in d(%) c d′ Sparsity

in d′(%) Accuracy(%)

Citeseer 3,327 4,552 2.7 3,703 99.2 6 53 56.0 74.7±1.2
Cora 2,708 5,278 3.9 1,433 98.7 7 58 73.8 87.5±0.9
DBLP 17,716 52,867 6.0 1,639 99.7 4 33 85.3 84.7±0.3
Facebook 22,470 170,912 15.2 4,714 99.7 4 48 82.8 94.2±0.3
German 955 9,900 20.9 46 74.2 2 - - 88.1±4.0
Student 577 4,243 14.7 60 71.1 2 - - 86.3±3.8

indicated as d′ in Table 2. We choose varying numbers of features for aggregation to obtain different
levels of sparsity on the datasets as indicated in the Sparsity in d′ column in Table 2. Additionally,
this process only requires the server to communicate the number of features to be grouped to the
users and does not affect the privacy guarantees of RGNN.

We also evaluate RGNN on two semi-synthetic datasets, German [6] and Student [6]. In the German
dataset, nodes represent clients at a German bank and the label classifies clients as good or bad
customers. In Student dataset, nodes represent students at two Portuguese schools and the label
indicates their final grade. Both of these datasets contain both numerical and categorical features and
we discretize the numerical attributes based on the quantile distribution of their values. Compared to
real-world datasets, both German and Student are smaller in scale with relatively balanced distribution
in the feature domains. For both datasets, synthetic edges are generated by selecting top-k node pairs
with the highest feature similarity quantified as the Euclidean distance between features of the pair.

The rightmost column in Table 2 shows node classification accuracies with unperturbed features. We
provide this result as the non-private baseline measure of performance on each dataset.

F Additional Experimental results

F.1 Choice of GNN

In Fig. 2, we plot the performance of RGNN that uses GraphSAGE, GCN, and GAT as the backbone
GNN. We only report the results on Citeseer as we observed similar trends on other datasets. In the
non-private setting (∞,∞), GAT outperforms both GCN and GraphSAGE. In the private scenario,
GAT and GraphSAGE have relatively similar performances and GCN has comparatively lower utility.
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Figure 2: Comparison of GNN architec-
tures

Figure 3: Hyperparameter study of α
and C

This trend suggests that the attention mechanism of GAT is able to effectively utilize the reconstructed
features to compute attention coefficients. The neighborhood feature aggregator in GraphSAGE
also benefits from such reconstruction. The results of this experiment demonstrate the flexibility of
the proposed framework in fitting the reconstructed data to popular GNN models with satisfying
performance.

F.2 Hyperparameter Sensitivity

We analyze the effects of hyperparameters in the regularization term Lllp. We vary α as
{0.01, 0.1, 1, 10, 20} and number of clusters C as {16, 32, 64, 128, 256} and report the results in
Fig. 3 for a fixed privacy budget at ϵx = 1 and ϵy = 0.5 on the DBLP dataset. We observe that
generally as α increases, the performance increases and then decreases with the best performance
at α ∈ {0.1, 1, 10}. Also, performance increases as C increases and the best results are obtained at
C = 128 for this dataset. Note that the optimal value of C may vary depending on the size of the
dataset which determines the bag size during clustering. The results demonstrate that the learner can
benefit from the additional supervision provided by reconstructed LLP at a sub-graph level.

F.3 Propagation Parameter Study

We further investigate the effect of propagation on the reconstruction framework. We vary the
propagation parameters Kx and Ky among {0, 2, 4, 8, 16} and report the results in Fig. 4 for different
values of ϵx and ϵy while fixing m = 10 on Citeseer and DBLP datasets. We observe that there
is a drastic improvement in performance when increasing Kx from 0 to 2 for both datasets. The
performance further improves as Kx increases for all values of ϵx. This empirically proves that
multi-hop propagation is effective in improving the estimates of node features during reconstruction.

Although the performance gain is not as drastic compared to Kx, model utility generally rises as
Ky increases. For Citeseer, at lower ϵy, larger values of Ky are needed to significantly improve
performance. For DBLP, higher values of Ky turn out to be detrimental to model performance for
larger ϵy but beneficial for small ϵy. We speculate that the comparatively higher node degrees in
DBLP result in over-smoothing of the labels during multi-hop aggregation when lesser noise is added
to them. This observation is also supported by our results on Facebook whose optimal Kx & Ky

both turn out to be 4. We generally conclude that RGNN can benefit from long-range propagation,
especially with lower privacy budgets, but the selection of these parameters should depend on the
desired privacy budget and average node degree of the graph.
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(a) Kx on Citeseer (b) Kx on DBLP

(c) Ky on Citeseer (d) Ky on DBLP

Figure 4: Influence of propagation parameters Kx and Ky on the performance of RGNN
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