
Learning Robust Representations for Transfer in
Reinforcement Learning

Faisal Mohamed Roger Creus Castanyer Hongyao Tang Zahra Sheikhbahaee

Glen Berseth

Université de Montréal and Mila Quebec AI Institute
{faisal.mohamed, roger.creus-castanyer,

tang.hongyao, zahra.sheikhbahae, glen.berseth}@mila.quebec

Abstract

Learning transferable representations for deep reinforcement learning (RL) is a
challenging problem due to the inherent non-stationarity, distribution shift, and
unstable training dynamics. To be useful, a transferable representation needs to be
robust to such factors. In this work, we introduce a new architecture and training
strategy for learning robust representations for transfer learning in RL. We propose
leveraging multiple CNN encoders and training them not to specialize in areas
of the state space but instead to match each other’s representation. We find that
learned representations transfer well across many Atari tasks, resulting in better
transfer learning performance and data efficiency than training from scratch.

1 Introduction

Transfer learning of pre-trained models in the context of reinforcement learning (RL) has shown
to be more challenging than in the supervised learning case. While the goal of many foundational
models is to create a good parameter initialization for future tasks, RL, and in general, sequential
decision-making problems experience more distribution shifts and variance in the learning process.
These issues give rise to the question of how can we pre-train models that will be more robust to
future distribution changes while still maintaining plasticity.

The lack of easy transfer hints that in addition to using a method that should learn a good representation
that is helpful across tasks, it is also to train this representation to be robust to future task-specific
updates. In this work, we propose introducing a modified mixture of expert architecture ? . Mixtures
of experts are typically used to help handle large state spaces or multi-modal behavior. However, in
this case, we use this structure to induce a type of structured gradient noise that assists in learning a
representation that achieves faster fine-tuning performance. Motivated by finding communication
channels that multuple models agree on to ensure robustness, we explore constructing a multiple
encoder single decoder model where we force the encoders to share the same communication channel.
This type of robust encoding is helpful because (1) the encoder may contain more task-general
information than prior methods that can overfit spurious correlations and (2) be less susceptible to
noisy gradients when components of the model are transferred to downstream tasks.

Our contribution is a new pre-training method for RL tasks. In particular, our simple method can be
used with image-based environments to learn better network initialization for similar and downstream
tasks. This learning process results in more efficient fine-tuning, improved data efficiency, and better
final performance than an agent train end-to-end from scratch.

38th Workshop on Fine-Tuning in Machine Learning (NeurIPS 2024).



2 Related Work

Scaling deep RL Recent work on scaling up deep RL algorithm has exhibited large improvement in
data efficiency, network’s parameter utilization, and stability of learning dynamics. Tang and Berseth
[2024] proposed a churn reduction method that improve learning performance and scaling abilities
of deep RL, Willi et al. [2024] shed the light on the role mixture of experts and how they improve
training under non-stationarity, Nikishin et al. [2022] discovered the primacy bias; a tendency to learn
from interactions and ignore new experience in later training stages and introduced to mitigate this
bias, which resulted in better scaling and utilization of the network parameters. Additional works
[Abbas et al., 2023, Nauman et al., 2024, D’Oro et al., 2023, Lee et al., 2024, Nikishin et al., 2024]
show that improving network’s plasticity results in better scaling and data utilization, however these
methods have not been used to pre-train a network and transfer that network to a similar or different
task.

Pre-training for deep RL Pre-training vision based models for control has been investigated in
various works, Kim et al. [2024] investigated the generalization capabilities of a resnet-50 model [He
et al., 2016] pre-trained with numerous objectives in Atari environments, while gou [2023] studied
the performance of pre-trained vision transformers. Majumdar et al. [2023] introduced a large-scale
study of pre-trained vision models. Hu et al. [2023] showed the performance of a pre-trained vision
model depends on the downstream learning algorithm, and not all algorithms perform equally for the
same vision model. Baker et al. [2022]. Baker et al. [2022], Seo et al. [2022] proposed pre-training
vision models from videos, which showed improvement in data efficiency and final performance.
While the RL community has used these pre-trained models to accelerate transfer, the pre-training
often reduces final policy performance. Instead, our work investigates how to get the benefits of
pre-training without the cost of final policy performance by improving sample efficiency in the
fine-tuning stage.

3 Background

In this section, we provide a very brief review of the fundamental background used by our method.
reinforcement learning (RL) is formulated within the framework of a Markov Decision Processes
(MDP) where at every time step t, the world (including the agent) exists in a state st ∈ S, where
the agent is able to perform actions at ∈ A. The action to take is determined according to a policy
π(aa|st) which results in a new state st+1 ∈ S and reward rt = R(st,at) according to the transition
probability function P (st+1|st, st). The policy is optimized to maximize the future discounted
reward Er0,...,rT

[∑T
t=0 γ

trt

]
, where T is the max time horizon, and γ is the discount factor.

In transfer learning, an agent is trained on a source task(s) Ts, then we used the trained agent for
learning on new target task(s) Tt, by task we mean an MDP, for example we train an agent on different
atari games, where each game is represented as a different MDP Ti, then we use the pre-trained agent
for faster learning in new games. For effective transfer, we assume a common structure between the
source and the target task.

4 Method

In this section, we describe our model architecture and training algorithm. Our method consists of
two modifications: (1) a network architecture with a shared decoder network that forces the encoders
to agree on a shared encoder representation and (2) a data mixing strategy to increase robustness and
further force learning a shared representation.

Shared Encoders. In a base PPO agent with multiple encoders, these encoders are shared between the
actor and the critic models. In our work we instead create multiple encoders as shown in Figure 1. The
use of multiple encoders is motivated by the idea that any representation that many agents (encoders)
can agree on must be a more reusable representation and will also be robust to communicating with
newcomers (future tasks).

Data Mixing. To make the encoders more robust and avoid specialization of the models, we
purposefully mix data generated by different encoders. In data collection, an encoder fψi

is chosen

2



Figure 1: On the left is the original PPO architecture the image observation is passed through a shared
CNN encoder that output latent representations to the policy and the value function. On the right we
train the ppo agent with multiple encoders, an encoder is sampled randomly (the black arrow), while
the rest of the encoders remains inactive (the gray arrows), the image observation is passed through
the sampled encoder, and the output is passed to the policy and value networks.

randomly, and the transition data is stored in a shared rollout buffer. In the model update, we sample
an encoder randomly at each update iteration, and we update the model based on the shared rollout
buffer. An important factor is sharing the data across different encoders, which we show in Section 5
results in more efficient pre-training and fine-tuning compared to training each encoder only on its
own data. Algorithm 1 describes the training procedure in detail.

Algorithm 1 Pre-training with multiple encoders

1: Initialize CNN encoders parameters ψi, where i ∈ {1, . . . , N}, policy network parameters θ,
and value network parameters ϕ and rollout buffer β.

2: for iteration = 0, . . . , I do
3: Sample initial observation so ∼ p(s0)
4: Store so in β
5: for t = 0, . . . , T do ▷ Data collection
6: Sample an encoder randomly fψi

, i ∼ U(N)
7: Sample an action at ∼ πθ(at | fψi

(st))
8: st+1 ∼ p(st+1 | st, at)
9: Store transition in β

10: end for
11: for epoch = 0 . . . , E do ▷ Model update
12: Sample an encoder randomly fψi , i ∼ U(N)
13: Sample a minibatch B ∼ β
14: Update model fψi

, πθ, and V πϕ ▷ See Schulman et al. [2017]
15: end for

5 Experiments

To validate that our method learns useful representations and does not overfit to a particular training
distribution, we experiment with same-task transfer Ti → Ti by pre-training the agent on an atari
environment and transferring the encoders fψ0 , . . . , fψN

to the same environment (section 5.1). In
section 5.2 we conduct transfer learning experiments, where the source environment is different
than the target environment(s) Ti → Tj . We use the episode return as the evaluation metric and as a
baseline we compare to an agent trained from scratch end-to-end, also, we include the results where
we don’t mix the data coming from different encoders.

3



5.1 Same-task Transfer

We experiments with five atari environments; SpaceInvaders, RiverRaid, BeamRider, Breakout,
and Pong we pre-train all agents for 200M time-steps, log the model weights, and reload them for
re-training, we re-initialize the actor and critic networks, but fine-tune the CNN encoders.

Figure 2 shows the results for each environment, in five out of the six environments, our agent either
matches or surpasses the end-to-end agent, which indicates that the learned representations are not
overfitted to the training distribution in the pre-training process. In Breakout, the end-to-end agent
outperformed both variants of our method, which might hint to some optimization challenges that
need to addressed.

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e8

0

20000

40000

60000

Ep
iso

de
 R

et
ur

n

SpaceInvaders

(a) SpaceInvaders

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e8

0

5000

10000

15000

Ep
iso

de
 R

et
ur

n

RiverRaid

(b) RiverRaid

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e8

0

5000

10000

15000

20000

Ep
iso

de
 R

et
ur

n

BeamRider

(c) BeamRider

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e8

0

500

1000

1500

2000

Ep
iso

de
 R

et
ur

n

Breakout

(d) Breakout

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e8

10

5

0

5

10
Ep

iso
de

 R
et

ur
n

Pong

(e) Pong
PPO (End-to-End) PPO (Pre-trained w/ multiple_encoders, Mixed data) PPO (Pre-trained w/ multiple_encoders, Non-mixed data)

Figure 2: In four out of the five environments (SpaceInvaders, RiverRaid, BeamRider, and Pong),
our agent either matches or surpasses the end-to-end agent. In Breakout, the end-to-end agent
outperformed both variants of our method.

5.2 Different-task Transfer

To show the effectiveness of our method, we conduct different-task transfer experiments, we pre-train
two ppo agents, one on Breakout and the other on DemonAttack for 200M time-steps, the agent
pre-trained on Breakout is transferred to Pong, while the agent pre-trained on DemonAttack is
transferred to SpaceInvaders and Assault.

Figure 3 shows the results on each environment, in Pong both variants of our method solved the
task efficiently and in fewer time-steps compared to the end-to-end agent, in Assault, the transferred
agent (with mixed data) did not show any improvement compared to the end-to-end agent, while
in SpaceInvaders the agent pre-trained with the non-mixed data variant outpeformed the two other
agents.

In all environments, pre-training with mixed data collected from different encoders result in bet-
ter transfer performance compared to the variant where each encoder is trained only on its own
data(except for SpaceInvaders).

6 Conclusion and Discussion

This work introduced a new architecture and training strategy for transfer learning in RL. Interestingly
the multiple encoders architecture and data mixing showed better transfer learning performance in
Atari environments and improved data efficiency. This mixing is surprising because a large amount

4



0.0 0.5 1.0 1.5 2.0
Environment Steps 1e8

10

5

0

5

10

Ep
iso

de
 R

et
ur

n

Pong

(a) Breakout → Pong

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e8

0

10000

20000

30000

Ep
iso

de
 R

et
ur

n

Assault

(b) DemonAttack → Assault

0.0 0.5 1.0 1.5 2.0
Environment Steps 1e8

0

1000

2000

3000

Ep
iso

de
 R

et
ur

n

SpaceInvaders

(c) DemonAttack → SpaceInv.
PPO (End-to-End) PPO (Pre-trained w/ multiple_encoders, Mixed data) PPO (Pre-trained w/ multiple_encoders, Non-mixed data)

Figure 3: Transfer learning performance, in Pong and Tennis, pre-training improved data efficiency
and final performance. In Assault, pre-training did not introduce any additional benefits compared to
the end-to-end agent, and in SpaceInvaders the agent pre-trained with non-mixed data had the best
performance

of literature suggests that policy specialization is key to success and generalization [Peng et al., 2019,
Chang et al., 2021, Eysenbach et al., 2018, Sutton et al., 1999, Bacon et al., 2017]. However, at
least in the case of pre-training models for RL, our results indicate that models that are robust to
other distributions are more reusable. In the future, we plan to evaluate our findings using more RL
algorithms to strengthen the claims.

References
Pretraining the vision transformer using self-supervised methods for vision based deep reinforcement

learning. 2023.

Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C Machado. Loss of plasticity
in continual deep reinforcement learning. In Conference on Lifelong Learning Agents, pages
620–636. PMLR, 2023.

Pierre-Luc Bacon, Jean Harb, and Doina Precup. The option-critic architecture. In Proceedings of
the AAAI conference on artificial intelligence, volume 31, 2017.

Bowen Baker, Ilge Akkaya, Peter Zhokov, Joost Huizinga, Jie Tang, Adrien Ecoffet, Brandon
Houghton, Raul Sampedro, and Jeff Clune. Video pretraining (vpt): Learning to act by watching
unlabeled online videos. Advances in Neural Information Processing Systems, 35:24639–24654,
2022.

Michael Chang, Sid Kaushik, Sergey Levine, and Tom Griffiths. Modularity in reinforcement
learning via algorithmic independence in credit assignment. In International Conference on
Machine Learning, pages 1452–1462. PMLR, 2021.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G. Bellemare, and
Aaron C. Courville. Sample-efficient reinforcement learning by breaking the replay ratio bar-
rier. In International Conference on Learning Representations, 2023. URL https://api.
semanticscholar.org/CorpusID:259298604.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

Yingdong Hu, Renhao Wang, Li Erran Li, and Yang Gao. For pre-trained vision models in motor
control, not all policy learning methods are created equal. In International Conference on Machine
Learning, pages 13628–13651. PMLR, 2023.

5

https://api.semanticscholar.org/CorpusID:259298604
https://api.semanticscholar.org/CorpusID:259298604


Donghu Kim, Hojoon Lee, Kyungmin Lee, Dongyoon Hwang, and Jaegul Choo. Investigating
pre-training objectives for generalization in vision-based reinforcement learning. arXiv preprint
arXiv:2406.06037, 2024.

Hojoon Lee, Hanseul Cho, Hyunseung Kim, Daehoon Gwak, Joonkee Kim, Jaegul Choo, Se-
Young Yun, and Chulhee Yun. Plastic: Improving input and label plasticity for sample efficient
reinforcement learning. Advances in Neural Information Processing Systems, 36, 2024.

Arjun Majumdar, Karmesh Yadav, Sergio Arnaud, Jason Ma, Claire Chen, Sneha Silwal, Aryan Jain,
Vincent-Pierre Berges, Tingfan Wu, Jay Vakil, et al. Where are we in the search for an artificial
visual cortex for embodied intelligence? Advances in Neural Information Processing Systems, 36:
655–677, 2023.

Michal Nauman, Michał Bortkiewicz, Piotr Miłoś, Tomasz Trzcinski, Mateusz Ostaszewski, and
Marek Cygan. Overestimation, overfitting, and plasticity in actor-critic: the bitter lesson of
reinforcement learning. In Forty-first International Conference on Machine Learning, 2024.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In International conference on machine learning,
pages 16828–16847. PMLR, 2022.

Evgenii Nikishin, Junhyuk Oh, Georg Ostrovski, Clare Lyle, Razvan Pascanu, Will Dabney, and André
Barreto. Deep reinforcement learning with plasticity injection. Advances in Neural Information
Processing Systems, 36, 2024.

Xue Bin Peng, Michael Chang, Grace Zhang, Pieter Abbeel, and Sergey Levine. Mcp: Learning
composable hierarchical control with multiplicative compositional policies. Advances in neural
information processing systems, 32, 2019.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

Younggyo Seo, Kimin Lee, Stephen L James, and Pieter Abbeel. Reinforcement learning with
action-free pre-training from videos. In International Conference on Machine Learning, pages
19561–19579. PMLR, 2022.

Richard S Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps: A framework
for temporal abstraction in reinforcement learning. Artificial intelligence, 112(1-2):181–211, 1999.

Hongyao Tang and Glen Berseth. Improving deep reinforcement learning by reducing the chain
effect of value and policy churn, 2024. URL https://arxiv.org/abs/2409.04792.

Timon Willi, Johan Obando-Ceron, Jakob Foerster, Karolina Dziugaite, and Pablo Samuel Castro.
Mixture of experts in a mixture of rl settings. arXiv preprint arXiv:2406.18420, 2024.

6

https://arxiv.org/abs/1707.06347
https://arxiv.org/abs/2409.04792

	Introduction
	Related Work
	Background
	Method
	Experiments
	Same-task Transfer
	Different-task Transfer

	Conclusion and Discussion

