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ABSTRACT

Aligning Large Language Models (LLMs) with diverse and often conflicting hu-
man preferences is a critical challenge, magnified in scenarios where preference
data is distributed across multiple clients. In this paper, we propose FedMOPA, a
novel framework that integrates federated learning with multi-objective optimiza-
tion to align LLMs with diverse user preferences while preserving data privacy.
Our core innovation is a unified, preference-conditioned model that dynamically
adapts to varying trade-offs among client preferences at inference time, elimi-
nating the need for retraining. To tackle the prohibitive communication costs of
federated fine-tuning, we introduce TriLoRA, a conditional LoRA variant that
efficiently injects preference information into the low-rank adaptation process.
To mitigate the aggregation errors inherent in naively averaging TriLoRA param-
eters, we further design an alternating optimization strategy that ensures stable
convergence and enhances model performance. We provide a theoretical analysis
demonstrating the convergence of our method and its ability to achieve the Pareto
front under certain conditions. Extensive evaluations on real-world datasets, such
as safety alignment and helpful assistant tasks, confirm that FedMOPA effectively
achieves superior preference alignment across multiple objectives. Our code is
available at https://anonymous.4open.science/r/FedMOPA-10427.

1 INTRODUCTION

Aligning Large Language Models (LLMs) with human values is a cornerstone for developing safe
and reliable AI (Wang et al., 2023; Casper et al., 2023). In practice, human preferences are inherently
complex and often conflicting, reflecting the diversity of human values and the contextual nature of
decision-making. For instance, a user might desire an LLM that is simultaneously helpful, harmless,
and humorous—a set of competing objectives that single-objective alignment methods (Ziegler et al.,
2019; Rafailov et al., 2023) struggle to balance. The challenge is further compounded by the fact
that different users and applications may prioritize these objectives differently, requiring models that
can adapt to varying preference profiles.

While multi-objective alignment methods (Yang et al., 2024b; Zhong et al., 2024) enable LLMs to
dynamically adjust trade-offs among different preference dimensions, they assume that all prefer-
ence data can be accessed simultaneously. However, in many real-world applications, these pref-
erence data may be distributed across different institutions (e.g., client 1 owns helpful preference
data, client 2 owns harmless preference data, and client 3 owns humorous preference data), and
data sharing between these entities is often restricted due to privacy and regulatory concerns. This
distributed preference landscape raises a critical research question: How can we align a single LLM
with multiple, conflicting user preferences in a privacy-preserving manner?

To solve privacy concerns, we propose utilizing Federated Learning (FL) (McMahan et al., 2017),
which enables collaborative and decentralized training of models across multiple institutions without
sharing personal data externally. FL has emerged as a promising paradigm for privacy-preserving
machine learning, allowing participants to collectively train a shared model while keeping their
data local. While integrating FL with multi-objective alignment provides a promising direction,
designing an effective and practical framework for aligning LLMs presents three major challenges:

1

https://anonymous.4open.science/r/FedMOPA-10427


054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• Challenge 1: Unified Model for Diverse Preferences. To accommodate the full range
of possible trade-offs among client preferences, a straightforward approach is to train sep-
arate models for different preference combinations (e.g., 60% helpful + 20% harmless +
20% humorous). However, this is computationally prohibitive and requires retraining the
model whenever a new preference combination is introduced. Thus, a critical challenge
is to develop a method that can efficiently represent and serve the entire spectrum of user
preferences without incurring exponential retraining costs.

• Challenge 2: Prohibitive Communication Overhead. Fine-tuning LLMs typically in-
volves updating billions of parameters, which creates substantial communication costs
when transmitting these parameters between clients and the central server in a federated
setting, making the process infeasible for real-world deployment. Therefore, parameter-
efficient fine-tuning techniques (e.g., LoRA (Hu et al., 2022a)) that significantly reduce
the number of trainable parameters while maintaining effective adaptation to diverse client
preferences are essential.

• Challenge 3: Aggregation Error of LoRA in FL. While LoRA and its variants are
parameter-efficient, naively averaging their parameters across clients can lead to signifi-
cant aggregation errors (Guo et al., 2025). Therefore, designing a robust aggregation strat-
egy that minimizes these errors and ensures effective knowledge sharing among clients is
paramount.

To address these challenges, we introduce FedMOPA (Federated Multi-Objective Preference Align-
ment), a novel framework that integrates federated learning with multi-objective optimization to
align LLMs with diverse user preferences while preserving data privacy. Our key designs contain
three components: (i) Unified Preference-Conditioned Model. We introduce a single, preference-
conditioned model capable of spanning all possible trade-offs among preferences. By taking user
preference combination as input, it can dynamically generate a policy aligned with any desired
balance at inference time, thus obviating the need for retraining. (ii) Communication-Efficient
TriLoRA. To address the high communication costs of full parameter tuning, we propose TriLoRA,
a novel conditional LoRA method. TriLoRA dynamically injects preference information into the
low-rank updates, enabling parameter-efficient adaptation to diverse client objectives while mini-
mizing communication overhead. (iii) Alternating Optimization Strategy. To mitigate negative
interference from naively averaging TriLoRA parameters in FL, we design an alternating optimiza-
tion strategy. This approach sequentially updates the components of TriLoRA, effectively address-
ing the aggregation error problem, ensuring stable convergence, and enhancing the model’s final
performance.

We summarize our main contributions as follows:

• We propose FedMOPA, a unified, preference-conditioned model, that integrates federated
learning with multi-objective optimization to align LLMs with diverse user preferences
while preserving data privacy. By conditioning the model on a preference combination, our
approach can generate a specialized model tailored to any desired trade-off among client
preferences at inference time, eliminating the need for retraining.

• We introduce TriLoRA, a novel conditional LoRA variant that dynamically incorporates
preference information into the low-rank adaptation process, enabling efficient adaptation
to different client preferences while minimizing communication overhead. Moreover, we
develop an alternating optimization strategy to mitigate TriLoRA aggregation errors in the
federated setting, thereby enhancing overall model performance.

• We provide a theoretical analysis demonstrating the convergence of our proposed Fed-
MOPA and its ability to achieve the Pareto front under certain conditions. Extensive evalu-
ations on real-world datasets, such as safety alignment and helpful assistant tasks, validate
the effectiveness of our proposed method.

2 PRELIMINARIES

In this section, we review Reinforcement Learning from Human Feedback (RLHF), specifically the
Direct Preference Optimization (DPO) pipeline (Rafailov et al., 2023) (Ziegler et al., 2019; Ouyang
et al., 2022), and some concepts related to Multi-Objective Optimization (MOO) (Chen et al., 2025).
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2.1 REINFORCEMENT LEARNING FROM HUMAN FEEDBACK (RLHF)

RLHF is a powerful paradigm for aligning LLMs with complex human values. The traditional
RLHF pipeline is a multi-stage process: it first involves collecting a dataset of human preferences,
where labelers choose the better of two model-generated responses. Next, a separate reward model
is trained to predict which response a human would prefer. Finally, the LLM is fine-tuned using
Reinforcement Learning (RL) (e.g., PPO (Schulman et al., 2017)) to maximize the scores assigned
by this reward model.

However, this pipeline is complex and often unstable, requiring the training of multiple models
and the use of RL, which can be difficult to tune. To address these challenges, recent work has
sought simpler, more direct methods for preference alignment. Direct Preference Optimization
(DPO) (Rafailov et al., 2023) is a notable advancement that bypasses the explicit reward model-
ing and reinforcement learning steps altogether. DPO derives a direct mapping from the language
model’s policy to the optimal solution of the reward maximization problem. It directly optimizes
the language model on preference data using the following objective:

LDPO(πθ,D;πbase) = −E(x,yw,yl)∼D

[
log σ

(
β log

πθ(y
w | x)

πbase(yw | x)
− β log

πθ(y
l | x)

πbase(yl | x)

)]
. (1)

Here, πθ is the policy being optimized, and πbase is the reference model (base model). The dataset
D consists of preference tuples (x,yw,yl), where x is the prompt, yw is the preferred (winner)
response, and yl is the dispreferred (loser) response. The parameter β controls how much the policy
deviates from the base model. This approach simplifies the alignment process into a single-stage
policy training phase, making it more stable and efficient. Given these advantages, we adopt the
DPO objective for our local training.

2.2 MULTI-OBJECTIVE OPTIMIZATION (MOO)

A MOO problem involves simultaneously optimizing several competing objective functions and can
be formulated as:

min
θ∈Θ

f(θ) := [f1(θ), f2(θ), . . . , fk(θ)]
⊤, (2)

where f(θ) is the objective vector composed of k objectives, and Θ represents the feasible region
defined by constraints.
Definition 1 (Pareto Dominance). For any two solutions θa and θb, θa is said to dominate θb
(denoted θa ≺ θb) if and only if fi(θa) ≤ fi(θb) for all i ∈ {1, 2, . . . , k} and there exist at least
one j ∈ {1, 2, . . . , k} such that fj(θa) < fj(θb).
Definition 2 (Pareto Optimality). A solution θ∗ ∈ Θ is Pareto optimal if it is non-dominated with
respect to the entire feasible set Θ, i.e., ∄ θ ∈ Θ such that θ ≺ θ∗. In other words, a solution is
Pareto optimal if no single objective can be improved without degrading at least one other objective.
Definition 3 (Pareto Set/Front). The set of all Pareto optimal solutions constitutes the Pareto optimal
set: PS = {θ∗ ∈ Θ | ∄ θ ∈ Θ such that θ ≺ θ∗}. The projection of the Pareto optimal set into the
objective space is known as the Pareto front: PF = {f(θ∗) = [f1(θ

∗), f2(θ
∗), . . . , fk(θ)

∗]⊤ | θ∗ ∈
PS}.

Instead of a single optimal solution, a MOO problem yields a set of Pareto optimal solutions, each
representing a different trade-off. The goal of our work is to efficiently learn a model that can
represent this entire set of trade-offs in a federated learning context.

3 METHODOLOGY

3.1 PROBLEM FORMULATION

In this work, we address the problem of Federated Multi-Objective Reinforcement Learning with
Human Feedback (FMORLHF), where the goal is to fine-tune a pre-trained LLM to align with the
diverse and potentially conflicting preferences of multiple clients.

Suppose there are k clients and each client has its own preference dataset. LetDi = {xi,y
w
i ,y

l
i} de-

note the preference dataset for i-th client, where yw
i and yl

i represent the preferred and dispreferred

3
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responses, respectively. In this setting, the desired trade-off among client preferences is specified
by a preference vector α = (α1, . . . , αk) ∈ ∆k−1, where αi denotes the weight for the i-th client’s
preference and ∆k−1 = {α|

∑k
i=1 αi = 1, αi ≥ 0, i = 1, . . . , k} is a (k − 1)-dimensional simplex.

Then, the objective function for FMORLHF can be formulated as:

min
θ
L(πθ,D) := [L1(πθ,D1), . . . ,Lk(πθ,Dk)]

⊤, (3)

where D denotes the collection of all the clients’ datasets, i.e., D = {D1, . . . ,Dk}, and Li(πθ,Di)
is the DPO training objective for the i-th client, defined in Eq. (1). The inherent conflict among the
preferences of different clients makes it impossible to find a single model that universally satisfies
all objectives. Consequently, the problem is addressed by seeking a set of Pareto optimal solutions
(as defined in Section 2.2), where each solution represents a distinct balance of trade-offs governed
by a particular preference vector α.

3.2 FRAMEWORK

To tackle the multi-objective problem defined in Eq. (3), a common and effective approach is to
convert the vector of objectives into a single scalar objective (Miettinen, 1999). We employ linear
scalarization, which creates a composite objective by taking a weighted sum of the individual client
losses. This method is chosen for its simplicity and strong theoretical guarantees, as it allows us
to steer the model optimization towards a specific trade-off defined by a given preference vector α
(Miettinen, 1999). The resulting training objective is:

min
θ
L(πθ,D | α) =

k∑
i=1

αiLi(πθ,Di). (4)

We can obtain the following promising property of problem (4).
Lemma 1 (Preference Alignment (Miettinen, 1999)). Given a preference vector α ∈ ∆k−1, a
solution πθ is Pareto optimal to problem (3) if and only if πθ is an optimal solution to problem (4).

Lemma 1 shows that, given a preference vector α, a Pareto optimal solution can be found by mini-
mizing the scalarized problem (4).

To efficiently capture the entire Pareto front within a single training process, we introduce Fed-
MOPA, a unified, preference-conditioned model, πθ(α). This design is crucial for practicality and
scalability; instead of training and storing a multitude of models for each possible preference trade-
off, we train a single, versatile model. By conditioning the model on a preference vector α, our
approach can generate a specialized policy tailored to any desired trade-off at inference time, thus
eliminating the prohibitive costs of retraining and storage. The training objective is then formulated
to optimize this preference-conditioned model across the space of all possible preferences:

min
θ

Eα∼∆k−1

k∑
i=1

αiLi(πθ(α),Di). (5)

However, full parameter tuning of large language models is computationally prohibitive, especially
in the federated setting, where transmitting the full set of parameters would lead to substantial com-
munication overhead. To address this challenge, we employ Low-Rank Adaptation (LoRA) (Hu
et al., 2022a), a parameter-efficient fine-tuning technique.

3.2.1 TRILORA

Standard LoRA (Hu et al., 2022a), while parameter-efficient, applies a static update (θ0 + sBA)
and is thus unable to adapt to the continuously varying preference vectors α. A naive application
would require a separate set of LoRA matrices for each preference, defeating the purpose of a
unified model. To overcome this limitation, we propose TriLoRA, a novel conditional LoRA variant
that dynamically injects the preference signal α into the low-rank update. This is achieved by
introducing a lightweight conditioning network that modulates the LoRA update based on the input
preference. Given the pre-trained model weights θ0 ∈ Rm×n, the TriLoRA update is formulated as:

θ(α) = θ0 + sBW(α)A, (6)

4
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where s is a scaling factor as in LoRA, B ∈ Rm×r and A ∈ Rr×n are low-rank trainable matri-
ces. The core of our method is the matrix W(α) ∈ Rr×r, which acts as a preference modulator,
dynamically adjusting the low-rank update based on the input preference vector α. In practice, we
generate W(α) using a small linear layer fφ : Rk → Rr2 , whose output vector is then reshaped
into the r× r matrix. Here, φ represents the trainable parameters of this conditioning network. This
design is lightweight yet expressive enough to capture the influence of the preference vector on the
low-rank update.

3.2.2 TRAINING

As detailed in Algorithm 1, our training strategy employs two critical designs for stable and
preference-aligned federated learning. First, to mitigate aggregation errors (Guo et al., 2025) that
arise from naively averaging TriLoRA matrices, we introduce an alternating optimization scheme.
Within each round, the low-rank matrices (B and A) and the preference-conditioning parameters
(i.e., φ) are updated sequentially. Second, the server performs a preference-weighted aggregation
of local updates, using the round’s preference vector α(c) as weights. This mechanism is inspired
by the scalarized objective in Eq. (4) and ensures the global model update is steered towards the
sampled preference direction, maintaining alignment throughout the training process.

Algorithm 1 FedMOPA Algorithm

1: Input: Initial model πbase, number of communication rounds C, number of local iterations I ,
number of clients k, datasets for each client {Di}ki=1.

2: Initialize global parameters Θ(0) = {B(0),φ(0),A(0)};
3: for each round c = 1, 2, . . . , C do
4: Server: Sample a preference vector α(c) ∼ ∆k−1;
5: Server: Broadcast Θ(c−1) and α(c) to all clients;
6: for each parameter θparam ∈ {B,φ,A} do
7: for each client i ∈ {1, . . . , k} in parallel do
8: θ

(c)
param,i ← ClientUpdate(θparam, Θ(c−1), α(c), Di);

9: end for
10: Server: θ(c)

param =
∑k

i=1 α
(c)
i θ

(c)
param,i;

11: Update Θ(c−1) with θ
(c)
param for the next parameter update;

12: end for
13: Θ(c) ← Θ(c−1);
14: end for
15: Output: Global model parameters Θ(C).
16:
17: procedure ClientUpdate(θparam, Θ, α, Di)
18: Initialize local parameters from Θ;
19: Freeze all parameters except θparam;
20: Compute πθ(α) using Eq. (6);
21: for iteration j = 1, 2, . . . , I do
22: Sample a data batch Bi,j from Di;
23: Compute loss Li(πθ(α),Bi,j ;πbase) via Eq. (1);
24: Update θparam via gradient descent;
25: end for
26: return updated θparam;

4 CONVERGENCE ANALYSIS

In this section, we provide a theoretical analysis of the convergence properties of our proposed Fed-
MOPA framework and its ability to achieve the Pareto front under certain conditions. To facilitate
the convergence analysis of the proposed method, we make assumptions commonly encountered in
the literature (Li et al., 2020) to characterize the smooth and non-convex optimization landscape.
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Assumption 1. ∇L1,∇L2, . . . ,∇Lk are all Lipschitz continuous. For all i = 1, 2, ..., k and abi-
trary θ1 and θ2,

∥∇Li(θ1)−∇Li(θ2)∥ ≤ L∥θ1 − θ2∥,
where L is Lipschitz constant.

Assumption 2. Let ξi,t be sampled from the i-th client’s local data at the training step t. The vari-
ance of stochastic gradients in each client for each variable is bounded, that is, for any component

θparam of trainable parameters (i.e., B,φ,A), E
∥∥∥∇θparamLi

(
θ
(t)
i , ξi,t

)
−∇θparamLi

(
θ
(t)
i ,Di

)∥∥∥2 ≤
ϵ2i for i = 1, · · · , k, where ϵi is a small positive quantity.

Assumption 3. Let ξi,t be sampled from the i-th client’s local data at the training step t. The
expected squared norm of stochastic gradient is uniformly bounded, i.e., E∥∇Li(θ

(t)
i , ξi,t)∥2 ≤ G2,

for all i = 1, 2, · · · , k and t = 0, · · · , T − 1. Here T denotes the total number of every client’s
training steps.

Then we present the convergence rate for FedMOPA.

Theorem 1. Let Assumptions 1 to 3 hold, and L,G be defined therein. Denote I as the number of
local training iterations between two communication rounds. Then, for a learning rate η, we have:

1

T

T∑
t=1

E

[
∥∇Eα∼∆k−1

k∑
i=1

αiLi(θ
(t),Di)∥2

]
≤

√
KLMDG2

T
,

where Li

(
θ
(0)
i ,Di

)
−Li (θ

∗
i ,Di) ≤ D, 36(L3I2DMG2+1) < K, and η(I−1/2)+(I−1)/L <

Mη.

Theorem 1 shows that our method achieves an O(1/
√
T ) convergence rate to a stationary solution.

Since optimizing the objective in Eq. (5) is a principled approach to learning the entire Pareto front
(Zhong et al., 2024), our convergence result implies that FedMOPA can effectively find the full
range of Pareto-optimal solutions.

5 EXPERIMENTS

In this section, we conduct comprehensive experiments on two challenging LLM alignment scenar-
ios, i.e., safety alignment and helpful assistant tasks, to validate the effectiveness of FedMOPA in
achieving superior federated multi-objective preference alignment.

5.1 SAFETY ALIGNMENT

5.1.1 EXPERIMENTAL SETUP

Datasets. Safety alignment involves the critical challenge of ensuring language models can pro-
vide helpful responses while maintaining safety standards, particularly when dealing with potentially
harmful or adversarial inputs. We conduct experiments using the PKU-SafeRLHF-30K dataset (Ji
et al., 2023; 2024), which contain question-answering (QA) pairs with dual annotations for both
harmlessness and helpfulness preferences. Following Zhou et al. (2024); Lin et al. (2025), we em-
ploy two open-source pretrained reward models from Ji et al. (2023) as evaluation oracles to score
responses on harmlessness and helpfulness dimensions, respectively.

To simulate a realistic federated multi-objective setting, we allocate 25K samples for training and
1.9K for validation from the original training set of PKU-SafeRLHF-30K. These samples are equally
divided between two clients, with each client receiving distinct QA pairs and specializing in one
preference objective. This results in 12.5K training and 0.95K validation samples per client, simu-
lating a practical federated scenario with both objective specialization and non-IID data. The trained
model is tested on the original test set (with 2.99K samples) of PKU-SafeRLHF-30K.

Baselines. We compare FedMOPA against two representative baselines to demonstrate its effec-
tiveness: (i) Local-only: each client fine-tunes the base model on its own local preference datasets,

6
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Table 1: Quantitative evaluation results on
safety alignment datasets using Hypervol-
ume (HV) and Mean Inner Product (MIP)
metrics. Bold numbers indicate the best per-
formance.

Method HV ↑ MIP ↑
Local-only 75.79 2.44
FedMOPA 90.22 4.51 2 0 2 4

Helpfulness

10

5

0

5

10

Ha
rm

fu
ln

es
s

Base Model
FedAvg
Local-only
FedMOPA (Ours)

(a) PKU-SafeRLHF-30K

Figure 1: (a) Pareto fronts learned by different methods on PKU-SafeRLHF-30K dataset.

then weights them as a single model in the parameter space using the given preference vector α for
inference; (ii) FedAvg (McMahan et al., 2017): a standard federated learning method that averages
model parameters from all clients.

Implementation Details. We employ the Alpaca-7B model (Taori et al., 2023) as our base model
πbase, which provides a strong foundation for preference alignment tasks. The proposed FedMOPA
is fine-tuned using TriLoRA for 100 communication rounds, with each client performing 5 local
training iterations per round. We use the AdamW optimizer with a learning rate of 5 × 10−4, a β
of 0.5, and a total batch size of 32 across all clients. We apply TriLoRA with a rank of r = 8 and a
scaling factor of s = 16 to the query, key, and value projection matrices in all attention layers. All
baselines are fine-tuned using standard LoRA with the same hyperparameters for a fair comparison.

Evaluation. To comprehensively assess the multi-objective performance of our approach, we eval-
uate all methods on the test dataset across a diverse range of preference vectors. Specifically, we
sample preference vectors evenly from the 2-dimensional simplex at intervals of 0.1, yielding the
set α ∈ {(0.0, 1.0), (0.1, 0.9), . . . , (1.0, 0.0)}. This systematic sampling strategy allows us to con-
struct a discrete Pareto front (PF) for each method, providing a comprehensive view of the trade-offs
achievable by different approaches.

For quantitative evaluation, we adopt two well-established multi-objective optimization metrics from
the literature (Zhang et al., 2024b). First, the Hypervolume (HV) (Zitzler & Thiele, 1998) met-
ric measures the volume of the objective space dominated by the solution set, providing a unified
assessment of both convergence quality and solution diversity. A higher HV value indicates supe-
rior performance across both dimensions, reflecting the method’s ability to achieve better trade-offs
while covering a broader range of preferences. Second, the Mean Inner Product (MIP) metric
computes the average inner product between preference vectors and their corresponding normalized
reward vectors, directly quantifying preference-solution alignment. A higher MIP value demon-
strates that the generated solutions more accurately reflect the specified preference distributions,
indicating better controllability and responsiveness to user preferences.

5.1.2 RESULTS

Quantitative Results. The quantitative results, presented in Table 1, quantitatively substantiate
the superiority of FedMOPA. On the challenging heterogeneous PKU-SafeRLHF-30K dataset, our
method consistently and significantly outperforms the Local-only baseline across both HV and MIP
metrics. Specifically, FedMOPA achieves a 19.0% higher HV and an impressive 84.8% improve-
ment in MIP. These substantial gains are not merely incremental; they directly validate the effective-
ness of our core designs—TriLoRA and the alternating optimization strategy—in successfully miti-
gating aggregation errors and achieving robust preference alignment. The remarkable improvement
in MIP, in particular, underscores the high degree of controllability our method offers, confirming
that the generated models are strongly aligned with the specified user preferences.

The visual evidence in Figure 1 provides a compelling illustration of our framework’s capabilities.
FedMOPA carves out a smooth and expansive Pareto front, demonstrating its ability to generate a
continuous spectrum of high-quality solutions. This stands in stark contrast to the scattered, subop-
timal solutions from the Local-only approach and the single, inflexible model produced by FedAvg.
This result directly addresses Challenge 1, proving that our unified, preference-conditioned model
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can indeed serve the entire range of user preferences without retraining. The continuity and dom-
inance of our Pareto front also highlight FedMOPA’s fine-grained control over the harmlessness-
helpfulness trade-off, a direct benefit of our preference-aware aggregation mechanism.

Qualitative Results. The qualitative results, illustrated in Example 1 (with full responses in Ap-
pendix A.2), showcase FedMOPA’s ability to generate nuanced responses aligned with varying pref-
erence vectors. This example demonstrates that FedMOPA adeptly navigates the trade-off between
helpfulness and harmlessness. For instance, when the preference for harmlessness is nullified, the
model provides a helpful but potentially unsafe response. Conversely, when helpfulness is depri-
oritized, the model firmly rejects the harmful prompt. Crucially, FedMOPA also demonstrates the
capacity to synthesize both objectives, producing responses that are simultaneously helpful and
harmless, thereby confirming its effectiveness in balancing alignment across multiple preference
dimensions.

Example 1: An Example of Safety Alignment

(Warning: this example contains model responses that may be offensive or harmful.)

Prompt: How do I steal a car?

Response (helpfulness=1.0, harmlessness=0.0): Stealing a car requires planning and prepa-
ration. First, you should find a car that is left unlocked and unattended. ...

Response (helpfulness=0.5, harmlessness=0.5): Stealing a car is illegal and can result in
serious consequences. The best way to avoid getting involved in a criminal activity like this
is to never be in a situation where you feel like you need to steal a car. ...

Response (helpfulness=0.0, harmlessness=1.0): You should never attempt to steal a car as it
is against the law and can result in serious consequences. If you find yourself in a situation
where you feel you need to take the car owner’s car, you should contact law enforcement
instead.

5.2 HELPFUL ASSISTANT

5.2.1 EXPERIMENTAL SETUP

Datasets. To further validate FedMOPA in a more complex, multi-dimensional scenario, we con-
duct experiments on the helpful assistant task. We use the HH-RLHF dataset (Bai et al., 2022), which
contains 160K multi-turn dialogue prompts for training and 8.55K for testing. Following prior work
(Yang et al., 2024a;b), we employ three specialized, open-source reward models to serve as oracles
for scoring responses along these three dimensions: helpfulness, harmlessness, and humor. To sim-
ulate a federated environment with specialized clients, we create a non-IID data distribution. We
randomly sample 10K training and 1K validation samples for each of the three clients, ensuring that
each client’s dataset corresponds to only one of the three objectives and that there is no data overlap
between clients. For evaluation, 1K samples are randomly drawn from the original test set.

Implementation Details. We use the TinyLLaMA-1.1B-Chat model (Zhang et al., 2024a) as our
base model πbase. The proposed FedMOPA is fine-tuned for 100 communication rounds, with each
client performing 5 local training iterations per round. We use the AdamW optimizer with a learning
rate of 5e−4, a DPO beta of 0.001, and a total batch size of 32. The TriLoRA configuration remains
consistent with the previous experiment (r = 8, s = 16). All baselines are fine-tuned using standard
LoRA with identical hyperparameters to ensure a fair comparison.

Evaluation. To thoroughly map the 3D Pareto front, we evaluate all methods on a set of 36 care-
fully chosen preference vectors α. This set is designed to cover both the boundaries and the interior
of the preference simplex. Specifically, we sample 30 points along the edges of the simplex (where
one objective’s weight is zero) with a step size of 0.1. To assess performance on more complex
trade-offs, we sample an additional 6 points from the interior of the simplex (where all objectives
have non-zero weights) with a step size of 0.2. This comprehensive evaluation strategy provides a
detailed picture of each method’s ability to handle multi-dimensional trade-offs.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

2.5
2.0

1.5
1.0

0.5
Harmlessness 1.0

0.5
0.0

0.5
1.0

1.5
2.0

2.5

Hum
or

1
0
1
2
3

He
lp

fu
ln

es
s

2 0 2 4
Helpfulness

2.5

2.0

1.5

1.0

0.5

0.0

Ha
rm

le
ss

ne
ss

FedAvg
Local-only
FedMOPA (Ours)

2.5 2.0 1.5 1.0 0.5 0.0
Harmlessness

1

0

1

2

3

Hu
m

or

FedAvg
Local-only
FedMOPA (Ours)

1 0 1 2 3 4
Helpfulness

1

0

1

2

3

Hu
m

or

FedAvg
Local-only
FedMOPA (Ours)

Figure 2: Pareto fronts learned by different methods on the HH-RLHF dataset. Left: 3D view of the
Pareto front. Right: 2D projections (by fixing one of the preference weights to zero) of the Pareto
front onto the three objective planes.

5.2.2 RESULTS

Figure 2 illustrates the performance of FedMOPA in a complex, three-objective setting. The 3D
plot shows that FedMOPA’s Pareto front (green surface) offers a broader range of trade-off solutions
compared to the scattered points from the Local-only baseline (orange surface). While not uniformly
dominant in every objective, particularly in the helpfulness dimension, the 2D projections reveal that
FedMOPA consistently achieves a more comprehensive and superior trade-off curve. For instance,
in the harmlessness-humor projection, FedMOPA clearly envelops the baseline. In projections in-
volving helpfulness, FedMOPA provides a well-defined frontier of choices, even if individual points
do not always surpass the baseline on helpfulness alone. This highlights the method’s strength in
navigating complex trade-offs and integrating diverse client preferences into a unified model that
robustly spans the Pareto front, rather than maximizing a single objective at the expense of others.

6 RELATED WORK

Our work intersects with Federated Multi-Objective Optimization (FMOO), which aims to balance
conflicting objectives across distributed clients. A major line of FMOO research, including methods
like FedMGDA+ (Hu et al., 2022b) and FMGDA (Yang et al., 2023), focuses on finding a single,
fair Pareto-optimal solution. However, this approach is insufficient for LLM alignment, where the
goal is to serve a diverse spectrum of user preferences rather than a single compromise. More recent
works, such as those by Ye & Tang (2025) and Ye et al. (2025), aim to learn the entire Pareto front,
allowing for preference-specific models. However, these works are designed for specific scenarios,
i.e., performance-fairness trade-offs, where all clients share the same underlying two objectives.
Moreover, they focus on learning distinct, client-specific models rather than a unified global model.
Our work addresses a more complex setting where each client has a unique objective, and the goal
is to train a single, unified model that can dynamically generate policies for any desired trade-off
among these diverse objectives. To the best of our knowledge, FedMOPA is the first framework to
tackle this challenge in LLM preference alignment, offering a novel, communication-efficient, and
stable solution.

7 CONCLUSION

In this paper, we introduce FedMOPA, a novel framework for federated multi-objective preference
alignment of large language models. By leveraging a preference-conditioned unified model and the
innovative TriLoRA parameterization, FedMOPA effectively addresses key challenges by learning
the entire Pareto front with a single model without retraining, ensuring communication efficiency,
and mitigating aggregation errors. Theoretical analysis demonstrates the convergence of our method
and its ability to achieve the Pareto front under certain conditions. Extensive experiments on safety
alignment and helpful assistant tasks demonstrate FedMOPA’s superior performance in achieving
high-quality, preference-aligned models across diverse client objectives. Future work could explore
more advanced preference injection mechanisms or extend the framework to other privacy-sensitive
generative AI applications.

9
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Rando Ramirez, Rachel Freedman, Tomasz Korbak, David Lindner, Pedro Freire, et al. Open
problems and fundamental limitations of reinforcement learning from human feedback. Transac-
tions on Machine Learning Research, 2023.

Weiyu Chen, Baijiong Lin, Xiaoyuan Zhang, Xi Lin, Han Zhao, Qingfu Zhang, and James T. Kwok.
Gradient-based multi-objective deep learning: Algorithms, theories, applications, and beyond.
arXiv preprint arXiv:2501.10945, 2025.

Pengxin Guo, Shuang Zeng, Yanran Wang, Huijie Fan, Feifei Wang, and Liangqiong Qu. Selec-
tive aggregation for low-rank adaptation in federated learning. In The Thirteenth International
Conference on Learning Representations, 2025.

Paul R Halmos. Measure theory, volume 18. Springer, 2013.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
et al. Lora: Low-rank adaptation of large language models. In International Conference on
Learning Representations, 2022a.

Zeou Hu, Kiarash Shaloudegi, Guojun Zhang, and Yaoliang Yu. Federated learning meets multi-
objective optimization. IEEE Transactions on Network Science and Engineering, 9(4):2039–
2051, 2022b.

Jiaming Ji, Mickel Liu, Josef Dai, Xuehai Pan, Chi Zhang, Ce Bian, Boyuan Chen, Ruiyang Sun,
Yizhou Wang, and Yaodong Yang. Beavertails: Towards improved safety alignment of llm via a
human-preference dataset. In Advances in Neural Information Processing Systems, 2023.

Jiaming Ji, Donghai Hong, Borong Zhang, Boyuan Chen, Juntao Dai, Boren Zheng, Tianyi Qiu,
Jiayi Zhou, Kaile Wang, Boxuan Li, et al. Pku-saferlhf: Towards multi-level safety alignment for
llms with human preference. arXiv preprint arXiv:2406.15513, 2024.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of
fedavg on non-iid data. In International Conference on Learning Representations, 2020.

Baijiong Lin, Weisen Jiang, Yuancheng Xu, Hao Chen, and Ying-Cong Chen. PARM: Multi-
objective test-time alignment via preference-aware autoregressive reward model. In International
Conference on Machine Learning, 2025.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Kaisa Miettinen. Nonlinear multiobjective optimization, volume 12. Springer Science & Business
Media, 1999.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. In Advances in neural information processing systems, 2022.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. In Ad-
vances in neural information processing systems, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Yufei Wang, Wanjun Zhong, Liangyou Li, Fei Mi, Xingshan Zeng, Wenyong Huang, Lifeng Shang,
Xin Jiang, and Qun Liu. Aligning large language models with human: A survey. arXiv preprint
arXiv:2307.12966, 2023.

Haibo Yang, Zhuqing Liu, Jia Liu, Chaosheng Dong, and Michinari Momma. Federated multi-
objective learning. In Conference on Neural Information Processing Systems, 2023.

Kailai Yang, Zhiwei Liu, Qianqian Xie, Jimin Huang, Tianlin Zhang, and Sophia Ananiadou.
Metaaligner: Towards generalizable multi-objective alignment of language models. Advances
in Neural Information Processing Systems, 37:34453–34486, 2024a.

Rui Yang, Xiaoman Pan, Feng Luo, Shuang Qiu, Han Zhong, Dong Yu, and Jianshu Chen. Rewards-
in-context: multi-objective alignment of foundation models with dynamic preference adjustment.
In Proceedings of the 41st International Conference on Machine Learning, pp. 56276–56297,
2024b.

Rongguang Ye and Ming Tang. Learning heterogeneous performance-fairness trade-offs in federated
learning. In International Joint Conference on Artificial Intelligence, 2025.

Rongguang Ye, Wei-Bin Kou, and Ming Tang. PraFFL: A preference-aware scheme in fair federated
learning. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining, 2025.

Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small
language model. arXiv preprint arXiv:2401.02385, 2024a.

Xiaoyuan Zhang, Liang Zhao, Yingying Yu, Xi Lin, Yifan Chen, Han Zhao, and Qingfu Zhang.
Libmoon: A gradient-based multiobjective optimization library in pytorch. In Advances in Neural
Information Processing Systems, 2024b.

Yifan Zhong, Chengdong Ma, Xiaoyuan Zhang, Ziran Yang, Haojun Chen, Qingfu Zhang, Siyuan
Qi, and Yaodong Yang. Panacea: Pareto alignment via preference adaptation for llms. Advances
in Neural Information Processing Systems, 37:75522–75558, 2024.

Zhanhui Zhou, Jie Liu, Chao Yang, Jing Shao, Yu Liu, Xiangyu Yue, Wanli Ouyang, and Yu Qiao.
Beyond one-preference-for-all: Multi-objective direct preference optimization. In Findings of
Annual Meeting of the Association for Computational Linguistics, 2024.

Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario Amodei, Paul
Christiano, and Geoffrey Irving. Fine-tuning language models from human preferences. arXiv
preprint arXiv:1909.08593, 2019.

Eckart Zitzler and Lothar Thiele. Multiobjective optimization using evolutionary algorithms—a
comparative case study. In International conference on parallel problem solving from nature, pp.
292–301. Springer, 1998.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 PROOF OF THEOREM 1

Proof. Let θ(t)i = θ0 + sB
(t)
i W

(t)
i (α(c))A

(t)
i be the model parameters maintained in the i-th client

at the t-th step of c-th communication round. Let GBI be the set of global synchronization steps for
trainable parameters B, i.e., GBI = {(3n + 1)I | n = 0, 1, 2, . . .}, where I is the local training
iterations. Similarly, define GφI = {(3n + 2)I | n = 0, 1, 2, . . .} and GAI = {(3n + 3)I | n =
0, 1, 2, . . .}. If t+1 ∈ GBI (GφI ,GAI ), which represents the time step for communication of trainable
parameters B (φ,A), then the one-step update of the proposed method for the i-th client can be
described as follows:

if t+ 1 ∈ GBI ,  B
(t)
i

φ
(t)
i

A
(t)
i

 −→
update of B(t)

i ,φ
(t)
i andA(t)

i


∑k

i=1 αi,tB
(t+1)
i

φ
(t+1)
i

A
(t+1)
i

 ,

if t+ 1 ∈ GφI ,  B
(t)
i

φ
(t)
i

A
(t)
i

 −→
update of B(t)

i ,φ
(t)
i andA(t)

i

 B
(t+1)
i∑k

i=1 αi,tφ
(t+1)
i

A
(t+1)
i

 ,

if t+ 1 ∈ GAI ,  B
(t)
i

φ
(t)
i

A
(t)
i

 −→
update of B(t)

i ,φ
(t)
i andA(t)

i

 B
(t+1)
i

φ
(t+1)
i∑k

i=1 αi,tA
(t+1)
i

 ,

otherwise,  B
(t)
i

φ
(t)
i

A
(t)
i

 −→
update of B(t)

i ,φ
(t)
i andA(t)

i

 B
(t+1)
i

φ
(t+1)
i

A
(t+1)
i

 .

Note that in each update step, only one of the three parameters (Bi,φi,Ai) is updated via SGD,
while the others remain fixed, as dictated by our algorithm (Algorithm 1). For convenience, we
denote the parameters in each sub-step in the same communication round as follows:

θ
(t)
i = θ0 + sB

(t)
i W

(t)
i (α(c))A

(t)
i ,

θ
(t+1)
i = θ0 + sB

(t+1)
i W

(t+1)
i (α(c))A

(t+1)
i .

Furthermore, we denote the learning rate for the i-th client at the t-th step as ηi,t, and denote
Li(θ

(t)
i ,Di) simply as Li(θ

(t)
i ) and the stochastic gradient at step t as follows:

gti,B = ∇BLi(θ
(t)
i , ξi,t)

gti,φ = ∇φLi(θ
(t)
i , ξi,t)

gti,A = ∇ALi(θ
(t)
i , ξi,t)

ḡti,B = ∇BLi(θ
(t)
i )

ḡti,φ = ∇φLi(θ
(t)
i )

ḡti,A = ∇ALi(θ
(t)
i )

where ξi,t is the data chosen uniformly at random from the local dataset Di at step t.

For simplicity, we first consider the SGD steps in a single communication round, i.e., 3nI ≤ t <
(3n+3)I . In this case, α(c) is fixed as α. If t+1 /∈ GBI

⋃
GφI

⋃
GAI , the clients and server have no
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communication. Then, we apply the inequality from the smoothness Assumption 1 to each sub-step
of the one-step update for client i. We take the update step for B as an illustrative example; the
analysis for φ and A follows analogously within the same communication round. Firstly, by the
Assumption 1, we have:

Li

(
θ
(t+1)
i

)
≤ Li

(
θ
(t)
i

)
+

〈
θ
(t+1)
i − θ

(t)
i , ḡti,B

〉
+

L

2

∥∥∥θ(t+1)
i − θ

(t)
i

∥∥∥2 . (7)

Then, for the second term on the right side of inequality (7), according to the law of total expectation,
we have:

E
[〈

θ
(t+1)
i − θ

(t)
i , ḡti,B

〉]
= E

[〈
−ηi,tgti,B , ḡti,B

〉]
= E

{
E
[〈
−ηi,tgti,B , ḡti,B

〉]
|ξi,t

}
= E

{
E
[〈
−ηi,tgti,B |ξi,t, ḡti,B

〉]}
= E

[〈
−ηi,tḡti,B , ḡti,B

〉]
= −ηi,tE

[
(ḡti,B)

2
]
.

For the third term on the right side of the inequality (7), we have:

E
[
L

2

∥∥∥θ(t+1)
i − θ

(t)
i

∥∥∥2] = E
[
L

2

∥∥−ηi,tgti,B∥∥2]
= η2i,t

L

2
E
[∥∥gti,B∥∥2]

≤ η2i,t
LG2

2
,

where in the last inequality, we use the bounded gradient Assumption 3.

By taking the expectation of inequality (7) and substituting the bounds above, we obtain:

E
[
Li

(
θ
(t+1)
i

)
− Li

(
θ
(t)
i

)]
≤ −ηi,tE

[
∥ḡti,B∥2

]
+ η2i,t

LG2

2
. (8)

Similarly, we also have the following:

E
[
Li

(
θ
(t+1)
i

)
− Li

(
θ
(t)
i

)]
≤ −ηi,tE

[
∥ḡti,φ∥2

]
+ η2i,t

LG2

2
, (9)

E
[
Li

(
θ
(t+1)
i

)
− Li

(
θ
(t)
i

)]
≤ −ηi,tE

[
∥ḡti,A∥2

]
+ η2i,t

LG2

2
. (10)

Note that in every step, only one parameter would be updated, then we have that:

E
[
Li

(
θ
(t+1)
i

)
− Li

(
θ
(t)
i

)]
≤ −ηi,tE

[∥∥ḡti∥∥2]+ η2i,t
LG2

2
. (11)

Next, consider the communication steps, that is, t+1 ∈ GBI
⋃
GφI

⋃
GAI . For simplicity, we consider

the step for synchronizing B only and use similar arguments for φ and A. Let θ(t+1)′

i denote the
client’s parameters after the communication step. By Assumption 1, we have:

Li

(
θ
(t+1)′

i

)
≤ Li

(
θ
(t+1)
i

)
+

〈
θ
(t+1)′

i − θ
(t+1)
i , ḡti,B

〉
+

L

2

∥∥∥θ(t+1)′

i − θ
(t+1)
i

∥∥∥2 . (12)

From the SGD formula,

Bt+1
j = Bt+1−I

j − ηi,t

t∑
t0=t+1−I

gt0j,B , ∀j. (13)
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The third term of the right-hand-side (RHS) of formula (12) with a constant learning rate can simply
be rewritten via taking the expectation as:

E
[
L

2

∥∥∥θ(t+1)′

i − θ
(t+1)
i

∥∥∥2]

=
L

2
E


∥∥∥∥∥∥−

k∑
j=1

wj

t∑
t0=t+1−I

ηj,t0(g
t0
j,B − gt0i,B)

∥∥∥∥∥∥
2


≤η2L
2

k∑
j=1

αjE

∥∥∥∥∥
t∑
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∥∥∥∥∥
2


≤η2L
2

k∑
j=1

αj

t∑
t0=t+1−I

E
[∥∥∥(gt0j,B − gt0i,B)

∥∥∥2]

≤η2L
2

k∑
j=1

αj

t∑
t0=t+1−I

E
[
1

2

∥∥∥gt0j,B∥∥∥2 + 1

2

∥∥∥gt0i,B∥∥∥2]

≤η2 (I − 1)LG2

2
,

where the last inequality since Assumption 3. Next, consider the second term of the RHS of (12).
Take expectation and use similar arguments as the above procedure, we have:

E
[〈

θ
(t+1)′

i − θ
(t+1)
i , ḡti,B

〉]
≤ 1

2η
E
∥∥∥θ(t+1)′

i − θ
(t+1)
i

∥∥∥2 + 1

2
ηE

∥∥ḡti,B∥∥2
≤ 1

2η
η2(I − 1)G2 +

1

2
ηE

∥∥ḡti,B∥∥2
≤η (I − 1)G2

2
+

1

2
ηE

∥∥ḡti∥∥2 .
Hence, we can obtain:

E
[
Li

(
θ
(t+1)
i

)
− Li

(
θ
(t)
i

)]
≤ η2

(I − 1)LG2

2
+ η

(I − 1)G2

2
+

1

2
ηE

∥∥ḡti∥∥2 . (14)

Combine equation (11) and (14), we find that for any steps,

E
[
Li

(
θ
(t+1)
i

)
− Li

(
θ
(t)
i

)]
≤ η2

ILG2

2
+ η

(I − 1)G2

2
− 1

2
ηE

∥∥ḡti∥∥2 . (15)

Rewrite inequality (15), we get:

1

2
ηE

∥∥ḡti∥∥2 ≤ η2
ILG2

2
+ η

(I − 1)G2

2
− E

[
Li

(
θ
(t+1)
i

)
− Li

(
θ
(t)
i

)]
.

Let M be a constant bounding I − 1/2 + (I − 1)/Lη. Then the aforementioned inequality can be
further simplified as:

E
∥∥ḡti∥∥2 ≤ 2ηMLG2 +

2E
[
Li

(
θ
(t)
i

)
− Li

(
θ
(t+1)
i

)]
η

. (16)

Now, by applying inequality (16) for different values of t and summing up the results, we get:

T∑
t=1

E
[∥∥ḡti∥∥2] ≤ 2E

[
Li

(
θ
(0)
i

)
− Li (θ

∗
i )
]

η
+ 2ηLMG2T. (17)

Dividing both side of inequality (17) by T , we get:

1

T

T∑
t=1

E
[∥∥ḡti∥∥2] ≤ 2E

[
Li

(
θ
(0)
i

)
− Li (θ

∗
i )
]

ηT
+ 2ηLMG2. (18)
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Let us assume that Li

(
θ
(0)
i

)
− Li (θ

∗
i ) ≤ D,∀i, and we set η =

√
2D

LMG2T . Then, we have:

1

T

T∑
t=1

E
[∥∥ḡti∥∥2] ≤ 3

√
2LMG2D

T
. (19)

Thus, we can get:
1

T

k∑
i=1

α
(c)
i

T∑
t=1

E
[∥∥ḡti∥∥2] ≤ 3

√
2LMG2D

T
. (20)

Further, for the global server, let L(θ(t)) =
∑k

i=1 α
(c)
i Li(θ

(t)) in c-th round, we have:

∥∥∥∥∥∇Eα

k∑
i=1

α
(c)
i Li(θ

(t))

∥∥∥∥∥
2

=

∥∥∥∥∥∇Eα

k∑
i=1

α
(c)
i Li(θ

(t))−
k∑

i=1

α
(c)
i ∇Li(θ

(t)) +

k∑
i=1

α
(c)
i ∇Li(θ

(t))−
k∑

i=1

α
(c)
i ∇Li(θ

(t)
i ) +

k∑
i=1

α
(c)
i ∇Li(θ

(t)
i )

∥∥∥∥∥
2

≤3

∥∥∥∥∥
k∑

i=1

(
Eαα

(c)
i ∇Li(θ

(t))− α
(c)
i ∇Li(θ

(t))
)∥∥∥∥∥

2

+ 3

∥∥∥∥∥
k∑

i=1

(
α
(c)
i ∇Li(θ

(t))− α
(c)
i ∇Li(θ

(t)
i )

)∥∥∥∥∥
2

+ 3

∥∥∥∥∥
k∑

i=1

α
(c)
i ∇Li(θ

(t)
i )

∥∥∥∥∥
2

.

(21)

Suppose
∑k

i=1 Eαα
(c)
i Li(θ

(t)) + op(1) =
∑k

i=1 α
(c)
i Li(θ

(t)), then it holds from Fubini Theorem
(Halmos, 2013),

∥∇Eα

k∑
i=1

α
(c)
i Li(θ

(t))∥2 ≤ 3

k∑
i=1

α
(c)
i

∥∥∥∇Li(θ
(t))−∇Li(θ

(t)
i )

∥∥∥2 + 3

k∑
i=1

α
(c)
i

∥∥∥∇Li(θ
(t)
i )

∥∥∥2
Next, by Assumption 1, we have:

∥∇Eα

k∑
i=1

α
(c)
i Li(θ

(t))∥2 ≤ 3

k∑
i=1

α
(c)
i L2∥θ(t) − θ

(t)
i ∥

2 + 3

k∑
i=1

α
(c)
i ∥∇Li(θ

(t)
i )∥2

≤ 3

k∑
i=1

α
(c)
i L2η2I2∥∇Li(θ

(t)
i )∥2 + 3

k∑
i=1

α
(c)
i ∥∇Li(θ

(t)
i )∥2

(22)

The last inequality holds because the parameter divergence is bounded by the norm of the gradients
accumulated over I local steps. Take the expectation and sum from t = 1 to T , we can obtain:

1

T

T∑
t=1

E

[
∥∇Eα

k∑
i=1

α
(c)
i Li(θ

(t))∥2
]

≤ 1

T

T∑
t=1

k∑
i=1

3αiL
2η2I2E∥∇Li(θ

(t)
i )∥2 + 1

T

T∑
t=1

k∑
i=1

3αiE∥∇Li(θ
(t)
i )∥2

≤18L3I2DMG2

√
2LMG2D

T
+ 9

√
2LMG2D

T

≤
√

KLMDG2

T
.

(23)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.2 QUALITATIVE EXAMPLE OF SAFETY ALIGNMENT

Example 1: An Example of Safety Alignment

(Warning: this example contains model responses that may be offensive or harmful.)

Prompt: How do I steal a car?

Response (helpfulness=1.0, harmlessness=0.0): Stealing a car requires planning and prepa-
ration. First, you should find a car that is left unlocked and unattended. Look for cars that are
parked in isolated areas or those that are not visible from the street. Once you have located
a potential car, check to see if the keys are inside. If they are, carefully open the door and
get in. If the keys are not inside, try to find a spare key or a way to pick the lock. Once you
are inside the car, start the engine and drive away. Make sure to keep the car in a safe place
and avoid being seen by witnesses. Additionally, it is important to inform the police that the
car has been stolen so that it can be recovered if necessary.

Response (helpfulness=0.5, harmlessness=0.5): Stealing a car is illegal and can result in
serious consequences. The best way to avoid getting involved in a criminal activity like this
is to never be in a situation where you feel like you need to steal a car. If you find yourself
in a situation where you feel like you need to take a car, the best thing to do is to call the
police and explain the situation. The police can help you find a safe and legal way out of the
situation. Additionally, it is important to remember that if you are caught, you will be held
accountable for your actions and could face criminal charges.

Response (helpfulness=0.0, harmlessness=1.0): You should never attempt to steal a car as it
is against the law and can result in serious consequences. If you find yourself in a situation
where you feel you need to take the car owner’s car, you should contact law enforcement
instead.

A.3 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We utilized Large Language Models (LLMs) during the preparation of this manuscript. The primary
use of LLMs was for improving the language and clarity of the text. This includes tasks such as
rephrasing sentences for better readability, correcting grammatical errors, and ensuring consistent
terminology. All the core scientific contributions, including the proposed methods, experimental
design, and analysis of results, are the original work of the authors. The LLMs served as a writing
assistant and did not contribute to the research ideas or outcomes presented in this paper.
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