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ABSTRACT

Representation learning is critical to the empirical and theoretical success of
reinforcement learning. However, many existing methods are induced from model-
learning aspects, misaligning them with the RL task in hand. This work introduces
the Spectral Bellman Method, a novel framework derived from the Inherent Bell-
man Error (IBE) condition. It aligns representation learning with the fundamental
structure of Bellman updates across a space of possible value functions, making
it directly suited for value-based RL. Our key insight is a fundamental spectral
relationship: under the zero-IBE condition, the transformation of a distribution
of value functions by the Bellman operator is intrinsically linked to the feature
covariance structure. This connection yields a new, theoretically-grounded objec-
tive for learning state-action features that capture this Bellman-aligned covariance,
requiring only a simple modification to existing algorithms. We demonstrate that
our learned representations enable structured exploration by aligning feature co-
variance with Bellman dynamics, improving performance in hard-exploration and
long-horizon tasks. Our framework naturally extends to multi-step Bellman oper-
ators, offering a principled path toward learning more powerful and structurally
sound representations for value-based RL.

1 INTRODUCTION

Efficient reinforcement learning (RL) in complex environments hinges on two critical challenges:
learning effective representations and performing efficient exploration. While many approaches
tackle representation learning (Laskin et al., [2020; Schwarzer et al., [2021; |Oh et al., 2015} |[Zhang
et al.| 20215 Nabati et al.| 2023}, [Barreto et al.,2017;[Zhang et al.,|2022) and exploration as separate
problems, a deeper synergy is needed, particularly for control tasks where features must support
both accurate value estimation and strategic data gathering. This work introduces a novel framework
to learn representations that inherently unify these aspects, paving the way for more powerful and
sample-efficient RL agents.

Our approach is rooted in the theory of Inherent Bellman Error (IBE) (Zanette et al.,[2020a). The
IBE quantifies the suitability of a feature space for value-based RL by measuring the minimum error
in representing Bellman updates. A zero IBE condition, generalizing Linear MDPs (Jin et al., [2020),
is highly desirable as it implies the function space is closed under the Bellman operator. However,
directly discovering features that satisfy this condition a priori remains a significant challenge through
a min-max-min optimization (Modi et al., [2024)), especially with general function approximator.
The challenge impedes the practical applications of IBE-based representation learning.

This paper introduces the Spectral Bellman Method (SBM), a framework which makes low-IBE
representation learning tractable and addresses exploration upon the learned representation. Our
approach uses a fundamental spectral relationship of IBE: when the IBE is zero, the transformation
of a distribution of value functions by the Bellman operator is intrinsically linked to the covariance
structure of the features themselves. This connection reveals that features aligned with Bellman
updates naturally possess a covariance structure that can be exploited for structured exploration.
Leveraging this insight, we derive a novel, theoretically grounded objective function. Our method
learns state-action features whose covariance inherently captures this Bellman-aligned structure,
while avoiding the complicated optimization. The learned representations not only enhance value
approximation but also naturally facilitate structured exploration strategies. Specifically, we use
Thompson Sampling (TS) driven by the learned representation for efficient exploration.
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Figure 1: Spectral Representation of the optimal Bellman operator. Under zero IBE condition, the linear
representation is equivalent to an SVD decomposition of rank d with a singular value matrix A.

Our contributions are as follows. (1) We propose a novel representation learning framework, the
Spectral Bellman Method, which unifies representation learning with exploration, motivated by the
structural implications of the Inherent Bellman Error. Our method requires only a simple modification
to existing value-based RL algorithms. (2) We demonstrate the effectiveness of the Spectral Bellman
Method and its learned representations on the Atari benchmark, including a subset of hard exploration
games. (3) The extension of this representation learning approach to capture the structure of powerful
multi-step Bellman operators and targets.

2 BACKGROUND: THE ZERO-IBE CONDITION AND EFFICIENT EXPLORATION

We consider a Markov Decision Process (MDP) (Puterman, |1990) (S, A, ~, r, P) with state space S,
action space A, discount y € [0,1), reward 7 : S X A — R (|r(s,a)| < Rmax), and transition kernel
P:8x A~ A(S). The Q-functionis Q™ (s,a) = Ex p[> ;o0 V' (s, ar) | S0 = s,a0 = a]. The
goal is to find an optimal policy 7* € arg max, Equr[Q™ (s, a)].

The optimal Q-function Q* (s, a) satisfies Q* (s, a) = (s, a) + YEyp(.|s,a) [Maxa ca Q*(s',a’)].
The optimal Bellman operator 7 on @ : S x A — R is defined by

TQ(s,a) =r(s,a) + YEg < p(.|s,a) [maﬁ Q(s, a’)} ) (Optimal Bellman Operator)
a’' €

This is a special case of the policy Bellman operator 77Q(s,a) = r(s,a) +
YEg o P(|5,a),a'~n(-|s) [Q(s, a’)]. Indeed, for a greedy policy 7 w.r.t Q, T and 7™ are equivalent.

2.1 THE ZERO INHERENT BELLMAN ERROR CONDITION

Q* is often approximated linearly with features ¢ : S x A — R? as Qq(s,a) = ¢(s,a) "6 for
0 € R9. We assume [|¢(s,a)2 < 1.

Definition 1 (Function Space and Parameter Bounds). Let ¢ : S x A — R< be a feature map. We
define the linear function space for Q-functions as:
Q¢ = {QG(Sva) = QS(S,a)T@ ‘ ZAS B¢}7 B¢ = {9 € Rd ‘ ( ?up ‘d)(sva)—re‘ < D}a
s,a)ES XA
for a bounded parameter set By, typically defined such that the resulting Q-values are bounded. for
some maximum value D (e.g., D = Rpaz/(1 — 7))

Effective exploration for policy learning and data collection is crucial in RL, especially with large
state/action spaces, where good representations are key (Jin et al., 2020} [Zanette et al., 2020a} |Aziz{
zadenesheli et al.,[2018)). While policy learning has advanced (Schulman et al., 2017; |Kapturowski
et al., 2018}; Badia et al.| [2020), representation for exploration remains challenging (Laskin et al.,
2020; [Nabati et al., 2023 [Ren et al.l [2023)). Our work offers a unified framework based on low
Inherent Bellman Error (IBE) and spectral theory (Ren et al., 2023)). We define IBE below.

Definition 2 (Inherent Bellman Error (IBE), (Zanette et al.,|2020a)). Given an MDP and a feature
map ¢, the Inherent Bellman Error (IBE) is defined as:

TQ — QHOO = sup inf ||TQO - Qé”oo'

0€B, 0By

Ly := sup _inf
QeEQy QEQy

If 7, = 0, Qg is closed under T (up to projection onto By). Z, quantifies how well 7 maps Qg to
itself. Zero IBE means any 7 () for Qg € Q is perfectly representable by some Q)5 € Q4. This
generalizes Linear MDPs (Jin et al.| 2020), where 7 maps any Q-function into Q.
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2.2 FACILITATING EFFICIENT EXPLORATION WITH LOW-IBE FEATURES

A representation with zero or low IBE facilitates efficient exploration. With expected feature ¢, =
E(s,a)~d~ [#(s, a)] under policy 7 (occupancy d™), effective exploration aims to reduce uncertainty,
e.g., by minimizing ||¢~||s,—1 across policies. Zanette et al.|(2020b) define maximum uncertainty:

Definition 3 (Max Uncertainty (Zanette et al, 2020b)). U(c) = max, ¢ <= pr& =
maxy /0 [|pr|l 5

Informally, our goal is to reduce maximum uncertainty. This can be done by overestimating it via
sampling exploration noise £ € R? ~ N(0,o% 1) per rollout (i.e., Thompson Sampling), where

1€]l5 < Ii’j‘jf (Zanette et al., [2020b).

Motivated by the IBE, in what follows we detail a method for learning low-IBE representations and
integrate them with exploration methods like Thompson Sampling (TS) to improve RL performance.

3 SPECTRAL BELLMAN METHOD

This section develops the Spectral Bellman Method (SBM), a novel approach for learning representa-
tions that satisfy the zero-IBE condition (Definition[2). Our analysis reveals a fundamental connection
between the spectral properties of the optimal Bellman operator and the covariance structure of the
learned features. By leveraging this connection, inspired by the power iteration method, we derive a
new learning objective that overcomes the limitations of direct Bellman error minimization.

3.1 ZERO-IBE OBJECTIVE
Consider the mapping 0(6) : By — By, that maps a parameter § € By into his correspond Bellman
minimizer § € B, (noting that for the optimal Q-function parameter, this is the identity map):

0(0) := argmin | TQp — Qz]|oo
6eBy

Our goal is to learn features ¢(s,a) € R? and a corresponding mapping #(#) such that the function
space Qg is closed under the Bellman operator, i.e., Zs = 0. However, a straightforward idea for
minimizing the IBE leads to a complicated optimization (Modi et al.||2024), and thus, difficult to be
implemented for practical applications.

Given a set of observations {s;, a;, Gi}f\il sampled from distributions p(s, a) over state-action pairs
and v(0) over input Q-function parameters, IBE condition implies the minimization of mean squared
error (MSE) between the Bellman backup of (Qy and its representation in the learned feature space:

~ - 2
LMSE(¢; 0) = E(s,a)mp(s,a),erw/(a) |:HTQ0(57 (l) - ¢(S7 a)TG(H)HJ . (1)

However, even the minimization of Equation () is still challenging. First, the Bellman operator
T is highly non-linear in )y (which depends on the learned ¢ and ) and the task parameters
0, complicating the joint optimization landscape and risking suboptimal minima or poor features.
Second, this MSE objective neither leverages the underlying spectral properties of 7 Q¢ nor inherently
promotes desirable structural properties in ¢ and 6. To address these limitations, we next introduce a
spectral analysis of the Bellman operator to derive a more principled learning objective.

The core distinction of SBM is its objective derived from the zero IBE condition, which seeks closure
of Q, under the Bellman operator across a distribution of parameters. This contrasts with: (1)
methods focusing only on the optimal Q-function (Mnih et al.,| 2013} Kapturowski et al., 2018)), which
may be unfeasible to learn directly (Du et al.,2019)); (2) Learn a successor representation or Laplace
methods (Mahadevanl [2005; [Barreto et al., [2017; Touati & Ollivier, |2021}; [Farebrother et al.l [2023)),
which are task-agnostic and not task-specific as our method.

3.2 BELLMAN SPECTRAL DECOMPOSITION UNDER ZERO IBE

To overcome the challenges of directly minimizing Equation (IJ), we analyze the spectral properties of
the optimal Bellman operator under the zero-IBE condition. This analysis will lead us to an algorithm
inspired by the power iteration method for singular value decomposition (Golub & Van Loan, 2013}
Trefethen & Baul 2022)), designed to efficiently learn a zero-IBE representation.

For conceptual clarity, let us temporarily adopt a matrix perspective, assuming finite state-action
spaces (|S x A| = n) and a finite parameter space (|B4| = m). Let & : [n] — S x A be a bijection
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Algorithm 1 Spectral Bellman Power Method

. Initialize 6o, ¢
- fort = {1,2,} do

1
2
3: Compute A1y = E,(5.0)[0e(s,a)di(s,a) "], Aoy =E, ) [0}5;]
4:  Find ¢ and 0 which satisfy the following constraints:

Ao (s, a) = (TQ.(s,a),0:(-)), (s,a) €S xA

AvB(0) = (TQy().hu()). 0 € By,

(0i(-);0;(-)) =0, (0:(),0;(-)) =0, i#jeld. 3)

5: end for

from indices to state-action pairs. We denote the feature matrix as ® € R"*¢ (where the i-th row
is ¢(#(i)) ") and the matrix of input parameters as © = [0y, ..., 6,,] € R*™ A Q-function Qy is
then ®6, and the collection of Q-functions for all §; € © is ) = ®O € R™*™. Under the zero-IBE
condition, for every § € B, there exists a §(6) such that 7(®0) = $6(6). In matrix form, this

means 7Q = ®O, where © = [A(0,),...,0(0,,)] € R¥"™. To incorporate the influence of the
sampling distributions p(s, a) and v(6), we augment the feature and parameter mappings:

d(s,a) :=~/p(s,a)p(s,a), 0(0):=6(0)\/v(0). )
Consequently, the Bellman operator acting on a distribution of Q-functions can be thought of
through an augmented operator, 7 Q, (s, a) = ¢(s,a) " 8(6). In essence, the augmentation defined in
Equation (2)) enables us to treat the distribution-weighted problem as a standard spectral decomposition
on the augmented space.

We also define the feature covariance matrix Ay := E(5 0)0p(s,0) [#(s, @)¢(s,a) T | and the post-

Bellman parameter covariance matrix Ay := Eg.., () 0(0)0(0)7|.

A key insight reveals a deep structural connection under the zero-IBE condition. Informally, when
the Bellman operator 7 transforms a distribution of Q-functions (weighted by p and v), the resulting
(weighted) feature matrix ® and (weighted) post-Bellman parameter matrix 6] correspond to the
singular vectors of this transformation. Furthermore, their respective covariance matrices, A; and
Ao, are aligned (i.e., A; = Ao =: A), where A is intrinsically linked to the singular values of the
transformed Q-functions (see Figure[I] for further visualization). This structural alignment is crucial
and forms the basis of our method. We refer the reader to Section [A]for a formal statement and proof
of this connection.

This spectral relationship naturally motivates an approach analogous to the power iteration method for
finding dominant eigenvectors/singular vectors (Golub & Van Loan, [2013; [Trefethen & Bau, [2022).
The following proposition captures identities central to such an iterative process (see Section |B|for
proof).

Proposition 1. The following identities hold:

(TQp(-);0()) = Mi0(0),  (TQ.(s,0),0()) = Aao(s, a).

The above identities closely resemble the update rules of a power iteration algorithm (Sanger,
1988} [ Xie et al., [2015}; |Guo et al., [2025), but for eigenfunction learning for symmetric operator in
semi-supervised learning. This suggests an alternating optimization strategy for learning ¢ and 6.
Algorithm [T] outlines this iterative procedure. In each round, covariance matrices are computed,
followed by solving linear equations to extract the updated representation ¢ and parameters 6. This
spectral method offers significant advantages over direct minimization MSE loss (Equation (), as
we will discuss in Section The alternating updates can stabilize the optimization by decomposing
the problem into simpler, often convex, subproblems. Moreover, by leveraging the power iteration
structure, our method aims for the faster convergence rates characteristic of such techniques, leading
more efficiently to the desired representation.

3.3 PRACTICAL SBM LEARNING

While Algorithm [I]provides a conceptual framework based on power iteration, directly solving the
system of linear equations in Equation (3] at each step can be computationally prohibitive, especially
in environments with large or infinite state-action spaces. To make this approach practical, we
formulate an objective function whose minimization effectively performs these power iteration steps.
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Let A1y = E,(5.0)[¢t(5,a)0u(s,a) "] and Agy = E, () [ét(e)ét(eﬂ denote the empirical covari-
ance matrices at iteration ¢. The SBM objective is given by
L(¢,0;v,p) = L1(9) + L2(0) st ¢ MG, 4,0 € My, (SBM Loss)

where £1(¢) = E,g)p(s, [qu(s a)Hf\z . — 2T Qo.t(s,a)9(s, a)Tét(G)} is the representation loss;
Ly(0) = Ey(0)p(s,a) {Hé( )HAI . —2TQot(s,a)0 0(6) T pu(s, a)] is the parameter objective; and

M ={f: X =R | Eeurlfi(2)fi(2)] =0 Vi#jeld)}
is the orthogonal function space of functions over X w.r.t probability P : X — [0, 1].

The term £, updates ¢ to align with the Bellman-transformed Q-values, using the current estimate of

parameter covariance A ; and parameters 6,. The term Lo updates 6 to best represent the Bellman-
transformed Q-values given the current features ¢, and their covariance A; ;. Indeed, minimizing the
objective in is equivalent to applying the power method. This is formally shown by the
following proposition.

Proposition 2. For any t, a solution 0F , ¢} to the power method objective in Equation (3) if and only

if it is a minimizer of the|SBM Loss

A proof is provided in Section This equivalence means that by minimizing £(¢, é) using gradient-
based methods, we are effectively performing the updates of the power iteration algorithm. In practice,
we solve an unconstrained relaxed version of (see Section[E] for details).

3.4 COMPARISON OF THE SBM L0OSS TO THE BELLMAN MSE

To better understand the advantages of the[SBM Loss|over the naive MSE objective (Equation (1),
consider the following expansion of the MSE objective:

BB st -0 [Tl 0) = 6.0)06)

= rf;iepE(s,a)wp(s,a)ﬂwu(G) |:C - 2TQ9(57 a)¢(5 a) ( ) + (b(s a) é(g)é(ﬂ)T(b(s’ a):|

X E (s 0.0 0000) 905, @)} = 2T Qo (s, @), ) T0O) .

)

where C is a constant independent of ¢ and 0, and A = 6(0)8(0)T is a noisy, single-sample estimate
of the parameter covariance. The SBM objective offers distinct advantages. First, its separation into

L1(¢) and Lo (9) enables alternating optimization (inherent to the power method), decomposing the
joint problem into tractable subproblems and promoting stability over simultaneous MSE updates.

Second, SBM’s quadratic terms (||¢(s, a)|3, ,» 16(6) I3, ,) use moving average covariance matrices
Aoy, Ay from the previous iteration, offering robust, statistically grounded regularization. In

contrast, MSE’s quadratic term ||¢(s, a) Hi uses the noisy, single-sample A, lacking this stabilizing
batch-averaged influence. Finally, SBM incorporates an explicit orthogonality regularizer L+, .

These differences demonstrate SBM’s more refined approach to representation learning over direct
MSE minimization. These fundamental differences highlight how SBM offers a more refined approach
for representation learning than direct MSE minimization, which is also justified empirically in (Guo
et al.,[2025).

3.5 EFFICIENT EXPLORATION USING THOMPSON SAMPLING
After covering spectral representation learning part, a learned representation can be leveraged to
establish an efficient exploration method. In this work, we focus on Thompson Sampling (TS)
(Osband et al., 2013} 2016} |Azizzadenesheli et al.l 2018; Zanette et al.,2020b), which is particularly
suited for settings with low-IBE representations. Indeed, given a dataset D = {s;, a;, 7;, sg}f\;l, a
least-square estimator for an optimal parameter 6* € By (such that 7TQy- = Qy-) can be found:
arg max

Ors € aregerélax]E(S,a)ND [(TQQ(S, a) — ¢(s, a)TG)Q}, 4

¢

We conduct exploration following (Zanette et al., |2020b). Specifically, the weights O for the
behavior policy 7y _(s) = argmax,c 4 ¢(s, a)T0rg, are sampled from a posterior distribution,
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Algorithm 2 Q-Learning with SBM

1: Initialize Q-function parameters 0o, features @0, and replay buffer D.

2: fort=1,2,...,do

3:  Data Collection with TS Exploration:

4 Generate Org ~ N (ét, Cepiy 1) using current 6, and X, from ¢ (Equation ).
5 Collect data using policy 7y _(s) = argmax,¢ 4 ¢(s, a)T0rg, and add to D.

6 Policy Optimization:

7: Update Q-function parameters: ét+1 = argmin, Lo (0; ¢¢) (Equation @), using D.
8 Representation Learning:

9 Define v4(0) = N (0,41, o2.,I) and py(s, a) as a probability over D (e.g. uniform).
10

11:

Update features: ¢;y1 = argmin £(, 0;v:(0), pi(s,a)) (SBM Loss).
end for

often referred to as the uncertainty set. Given the representation, the weights are sampled from the
posterior before each rollout according to:

Ors ~ N(Ops,0eap®™"); S=A+ > (s,a)d(s,a)", )
(s,a)€D

for some positive A. TS prov1des an easy-to- implement method that add an exploration noise to the
least-squre estimate 0 s (i.e., GTS Sy Ls + &), which yields the sampling procedure in Equation li
and reduce the maximum uncertainty in Definition [3] We emphasize although we mainly consider
the TS for exploration, the learned spectral Bellman representation is also compatible UCB with the
same covariance Y in equation E], as discussed in (Zanette et al., 2020b; [Modi et al., 2024; |[Zhang
et al., 2022). Having established the representation learning and exploration framework, we next
explore its practical integration into value-based reinforcement learning algorithms, using Q-learning
(Sutton et al.|[1998) as an illustrative example due to its intrinsic connection with the optimal Bellman
operator.

4 Q-LEARNING WITH SBM

Put the representation learning and RL together, we obtain Algorithm 2] which describes the imple-
mentation of the Spectral Bellman Method (SBM) using Q-learning and Thompson Sampling (TS)
for exploration. The algorithm iteratively refines the policy and representation through three key
phases: i) data collection with TS exploration, ii) policy optimization, and iii) spectral representation
learning.

Algorithmbegins by initializing the Q-function parameters 6o, feature mapping ¢g, and an empty
replay buffer D (Line 1). For every iteration ¢, the algorithm samples exploratory Q-function

parameters fpg (Lines 3-5) using the current Q-parameters 0, (as the mean for the TS posterior, akin
to 0 s in Equation ) and the feature covariance X ; (derived from the current features ¢; as per
Equation @). The agent then interacts with the environment using a policy 7, that is greedy with
respect to Q5. (s, a) = P (s, a)TOrs. The collected state-action-reward transitions are stored in the
replay buffer D. This mechanism ensures that data collection is guided by the uncertainty captured in
the learned feature space. Following data collection, the Q-function parameters are updated from 6,
to ét+ 1 (Lines 6-7). This update is achieved by minimizing the standard loss with Q-learning target:

EQL(67 (b) = IE(s,a)ND [(TQG* (57 a‘) - ¢(Sa a)T9)2] ’ (6)
where 0~ are the target parameters. This loss utilize the current features ¢; and mini-batches of
data sampled from the replay buffer D. This step refines the agent’s policy based on the existing
representation of state-action values.

Finally, in the final representation learning phase (Lines 8-10), the feature mapping is updated from ¢
to ¢¢11 by minimizing the[SBM Loss| A critical aspect of this phase 1s the choice of the distribution
over parameters, () and over state-actions p(s, a) Equatlon . v(0) is centered around the newly

updated Q-parameters obtained from the policy optimization phase: v(6) = N (ét+1; Eepl ), where
fpp is a variance hyperparameter. The state-action distribution p(s, a) for the SBM loss is implicitly
defined by sampling transitions from the replay buffer D. This adaptive focus of (6), as visualized
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Figure 2: Visualization of the parameter sampling distribution v (6) = N (8;, a2, T) for d = 2 over successive

rounds. As Q-learning updates the mean 6, v(0) shifts, focusing representation learning on parameters relevant
to the current policy. Darker regions indicate higher probability density.

in Figure 2] ensures that the feature learning process concentrates on satisfying the low-IBE condition
in regions of the parameter space that are most relevant to the current policy.

This alternating process of exploration, policy optimization, and representation learning allows the
policy and the features to co-evolve. Improved features lead to more accurate value estimates and
consequently better policies. In turn, an improved policy guides the representation learning towards
more effective exploration.

Extension to Multi-Step Operators. The SBM framework naturally extends to h-step Bellman
operators 7". A low one-step IBE implies a low h-step IBE (Section D). Thus, we can apply the
[SBM Loss|by simply replacing the one-step backup T Qg,; with a multi-step target, such as one from
Retrace(\) (Munos et al.,[2016).

5 EXPERIMENTS

We evaluate the effectiveness of incorporating Spectral Bellman Representation learning into standard
deep RL algorithms. We focus on challenging benchmarks and compare against established baselines.

5.1 SETTING

Environments: We use the Atari game suite (ALE, Bellemare et al.| (2013)). We follow standard
preprocessing steps, including frame stacking (4 frames), grayscale conversion, downsampling, and
sticky actions unless specified otherwise. Performance is measured using mean and median Human
Normalized Score (HNS) across all 55 games after 100 million environment steps.

To assess the impact of our method on exploration, we report aggregated HNS on a subset of
particularly challenging Atari games identified by Badia et al.[(2020). This subset includes games
known for sparse rewards or requiring long-term credit assignment: Montezuma’s Revenge, Pitfall!,
Private Eye, Skiing, Freeway, Solaris, Venture, BeamRider and Pong. We denote this benchmark as
Atari Explore.

Implementation Details: Our spectral learning method is integrated into two representative deep RL
agents: DQN (Mnih et al., 2013) and R2D2 (Kapturowski et al., 2018)).

We minimize the Equation using stochastic gradient descent. This is also true for the
Q-learning phase. Therefore, SBM was actually tested in a fully online setting similar to DQN. To
satisfy the theoretical assumption ||¢(s, a)||2 < 1 used in the background (Section [2.1) , we apply
norm clipping to the output of the feature encoder network. We follow Algorithm [2] performing
alternating updates between the Q-learning objective (Equation (6)) and the spectral representation

objective (SBM Loss). The distribution 1/(6) is set to A" (641, 07, 1), as explained in Section For
specific hyperparameters and implementation details we refer the reader to Section [E] We compare
standard e-greedy exploration with the TS approach described in Section[3.3] As R2D2 operates

in a distributed setting with multiple asynchronous actors, the precision matrix ¥ is shared across
the actors while each of them sample 61 s before each epoch according to Equation . For R2D2
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Atari ALE Atari Explore

Method Mean Median Mean Median
DON (Mnih et al.[2013) 1.62 +0.12 0.52 0.24 +0.03 0.11
Online PVN (e-greedy) 1.72 +£0.11 0.60 0.26 4+ 0.03 0.21
Online PVN (TS) 1.84 £ 0.15 0.65 0.31 £ 0.04 0.23
SBM + DQN (e-greedy). 1.80 & 0.13 0.64 0.33 +0.03 0.23
SBM + DQN (TS) 2.23 +0.19 0.85 0.45 £+ 0.05 0.24
R2D2 (Kapturowski et al.;2018)  3.21 £0.22 1.14 0.40 4+ 0.06 0.22
SBM + R2D2 (e-greedy) 33+024 1.14 0.45 4+ 0.05 0.22
SBM + R2D2 (TS) 3.53 +0.23 1.37 0.61 & 0.03 0.30

Table 1: Aggregated Atari HNS at 100M steps. Our SBM method with TS is in bold.

Method Atari ALE  Atari Explore

Features from DQN Loss (Azizzadenesheli et al[[2018) 1.73 +£0.14  0.30 = 0.03
Features from Naive MSE Loss 1.82+£0.12 0.37 £0.04

SBM w/o Orthogonality Reg. 211+£0.11  0.43£0.05

SBM Full 223+£0.19 0454+0.05

Table 2: Ablation study on the DQN backbone with TS exploration.

experiments, the spectral objective is applied using a multi-step operator in the form of Retrace
operator target (Munos et al.| [2016)) in place of Ty ; (see Section . We found that choosing o,
is crucial for successful learning. We conducted a grid search and empirically found the best value to
be o2, = 1072

rep

In addition, in order to compare SBM to a Laplace based representation method, we compare SBM
to PVN [Farebrother et al.| (2023). To fairly compare with SBM, we adapted PVN to our online
learning setup. We alternate between policy optimization (DQN) and representation learning. The
representation learning phase uses Random Network Indicators (RNI) to define auxiliary tasks, over
the collected data, as in the original PVN. We used the same network architecture and latent dimension
as our SBM experiments. We evaluated Online PVN with both e-greedy and TS. Lastly, we made an
ablation study with a DQN backbone. We examine SBM with features extracted with naive MSE
loss in Equation (T)) and not with our suggested spectral representation. Furthermore, we investigated
the specific case where 14 (6) = 6(0 — 6;) under the naive MSE loss. This configuration effectively
corresponds to standard DQN training in Equation (6) augmented with TS exploration, suggest by
Azizzadenesheli et al.| (2018). We also examine the effect of the orthogonality regularization by
training SBM without it. All runs are done over 10 seeds.

5.2 MAIN RESULTS

Table|[T]presents results comparing the baseline agents with their SBM counterparts, which incorporate
spectral representation learning and exploration. Figure [3] presents the results against environment
steps over the training. Per game results are presented in Section[F]

DQN Comparison: We find SBM significantly outperforms vanilla DQN. Furthermore, combining
spectral learning with TS exploration yields substantial gains, particularly on hard exploration tasks,
suggesting that the learned representation effectively facilitates structured exploration. We observed
that SBM underperforms compared to DQN in precision-control games such as Breakout. This is a
characteristic side-effect of optimistic exploration strategies (like TS) in environments with *narrow’
optimal paths or instant-death conditions, where high-variance actions often lead to termination. This
effect can be mitigated by annealing the exploration noise or switching to greedy evaluation once a
sufficient performance threshold is reached.

R2D2 Comparison: We augment the R2D2 agent, which utilizes recurrent networks and Retrace
targets, with our spectral representation learning objective applied to the Retrace target. R2D2
with SBM demonstrates improved performance over the baseline R2D2, with the most significant
improvement observed when combined with TS, particularly on the Atari Explore subset.

Online PVN Comparison: While Online PVN improves over DQN, SBM with TS performs better,
especially on Atari Explore. This is likely because Online PVN learns reward-agnostic features
using successor measure representation, capturing state-action structure on various MDPs, whereas
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Figure 3: Average HNS over 100M steps. DQN and R2D2 against their SBM counterparts with TS across Atari
ALE benchmark (left) and on the hard-exploration subset (right).

SBM learns reward-dependent features by enforcing closure under the optimal Bellman operator.
SBM’s approach appears better for maximizing online rewards, while PVN’s may be more suited for
adapting to varied reward tasks.

Ablation Study: The results are presented in Table[2] SBM-learned features yielded significantly
better results compared to features learned by minimizing the naive MSE loss, highlighting the advan-
tage of the spectral objective over direct Bellman error minimization. While limiting representation
learning to the current policy (effectively the DQN objective) combined with TS exploration improves
performance over vanilla e-greedy DQN, it causes significant degradation compared to SBM or even
the full Naive MSE loss. This indicates the critical importance of learning representations over a
distribution of value functions rather than solely fitting the current policy. Additionally, performance
without the orthogonality regularizer was slightly lower, suggesting that while beneficial, strict
orthogonality is not the primary driver of SBM’s gains. The computational overhead of SBM is
relatively small, resulting in a ~ 20% increase in compute time per 1M steps. This overhead primarily
stems from training the € network and computing the inverse covariance for Thompson Sampling.
Notably, the core representation learning cost mirrors vanilla baselines, while the Q-learning phase
remains highly efficient by updating only linear weights.

6 RELATED WORK
Our work builds upon and distinguishes itself from several key areas in reinforcement learning.

Representation Learning in RL: Many auxiliary objectives, such as contrastive learning
et alll 2020} [Schwarzer et al.} 2021)) and autoencoders (Kingma et al.} 2019), don’t explicitly optimize
for Bellman compatibility. Laplace-based methods, including Successor Features
[Barreto et al, 2017} [Touati & Ollivier, 2021}, [Farebrother et all,[2023)), often aim for task-agnostic,
generalizable representations, potentially less potent for task-specific optimization as done in our work.
Directly learning linear representations for the optimal Q-function can be sample inefficient under
misspecification (Du et al., 2019; [Azizzadenesheli et al.,[2018). In contrast, SBM, derives its objective
from structural properties under low IBE (Zanette et al.,[2020a)), targeting Bellman consistency across
the function space, which makes the IBE-based model-free representation learning
eventually practical.

Linear MDPs and IBE: Linear MDPs (Jin et al.} 2020;[Yang & Wang|[2020) assume linear transitions
and rewards in features, a practically challenging condition (Agarwal et al.,[2020; [Zhang et al.| 2022}

2022). The IBE (Zanette et al., 2020a) relaxes this, measuring if the function space

Q, is nearly closed under the Bellman operator (7 Qg ~ Q). Low IBE, a more direct target
than full MDP linearization, ensures theoretical guarantees; e.g., Zanette et al| (2020al) presented a

planning-based algorithm achieving @(dH L5/T ++/dH TTy) regret under low-IBE settings. While
practical methods approximate linear MDPs by combining representation learning for RL with some

dynamics assumptions (Zhang et al. 2022} [Ren et al., [2022; [Shribak et all 2024} [Fujimoto et al.}
[2025)), our work is inspired by the Z; = 0 condition’s structural implications, avoiding full Linear

MDP decomposition which can be resource-intensive and require impractical latent dimensions with
heuristic nonlinear correction in (Fujimoto et al.| [2025)).

Bellman Error/Residual Minimization: Traditional value-based RL minimizes the Bellman error

via methods like gradient TD (Sutton et al, 2009), residual algorithms (Baird} [1993)), and target
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networks (Mnih et al.| 2013)). Distributional RL (Bellemare et al.| [2017)) matches return distributions.
Unlike these, our method doesn’t directly minimize the residual for a single 6, but leverages structural
relationships (specifically covariance alignment) emerging from assuming zero residual across a
function distribution induced by v(6).

Exploration Strategies: In contrast to count-based methods (Bellemare et al.,|2016) and intrinsic
motivation (Pathak et al.|[2017)), TS offers a Bayesian uncertainty approach, effective in linear settings
(Agrawal & Goyall 2013 |Azizzadenesheli et al.,[2018)). Notably, Zanette et al.|(2020b) analyzes TS
for RL with low-IBE representations. Our contribution is synergistic: our spectral objective learns
suitable representations ¢, and TS naturally utilizes the resulting feature covariance X, for more
directed exploration.

7 CONCLUSION

We introduced Spectral Bellman Method (SBM), a theoretically-motivated method for spectral
representation learning and efficient TS based exploration. Our spectral objective derived from the
zero-IBE condition allows for theoretically-grounded representation. We show that the SBM is
compatible with multi-step operators such as Retrace. Experiments on Atari demonstrate consistent
improvements over baselines, especially on hard-exploration games and when applied to advanced
agents (R2D2), validating our approach.

A key limitation includes the sensitivity of SBM over the parameter distribution, which needs to be
tuned carefully. Also, a broader empirical validation beyond Atari would be beneficial (e.g., continu-
ous control tasks). Future work may focus on strengthening the theoretical analysis (convergence,
non-zero IBE), developing improved algorithms (better approximations of 6, adaptive parameter
sampling), and extending the framework to other settings (e.g., distributional or actor-critic methods).

In conclusion, SBM offers a promising avenue for representation learning and exploration, potentially
leading to more efficient, stable, and exploratory RL agents, by explicitly optimizing features for
Bellman consistency across the function space.

10
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A THE BELLMAN OPERATOR SPECTRAL DECOMPOSITION THEOREM

We start by incorporating distributions over states/actions and parameters, let p(s, a) be a distribution
over S x A. In the finite case, let P; , be a diagonal matrix with \/IP(x(¢)) on the diagonal. Similarly,
let vg represent weighting by +//(#) (conceptually, an operator or a diagonal matrix if B, and m are

finite). We define the augmented feature and parameter matrices as ®p = P, ,® and 5} p= éPg.
The distribution-augmented Bellman matrix becomes:

TQ := P, o(TQ)Py = P, ,®OPy = ®pOp.
The following theorem highlights a structural connection between the (weighted) feature matrix,
(weighted) parameter matrix and the singular matrix of the Bellman matrix.

Theorem 1 (Bellman Operator Spectral Decomposition). Let ¢ : S x A — R? be a feature map
with Ty = 0. Let the feature covariance matrix under p(s, a) be

A= E(s,a)wp(s,a) [(;5(8, a)¢(5a a)T} = (I);(I)P
Let A = KAgK T be the eigenvalue decomposition of A, where Ay = diag({/\i}le) is diagonal

and K is an orthogonal matrix. Consider the SVD of the augmented Bellman matrix TQ = ULV,
then the SVD components satisfy:

1. The non-zero singular values in X (up to d) are related to the eigenvalues of A. Specifically, ¥
has the form diag(\/)\l, ey VA, 0, ) up to permutation. Let X3 = diag(\/)\l, RV )\d).

2. The corresponding left singular vectors (first d columns of U, denoted U) and right singular
vectors (first d columns of V, denoted V') satisfy:

Op=UyK" and O©p =KX, ,V'.

Proof. Under the assumption of zero Bellman error, we have that
TQ TQ=05053p0p=VE 0V
where the last equality follows from the SVD of 7 Q. Given that ®,®p = A we have:
O AOp =VETEV .
Both sides must have the same rank. Therefore, both matrices are at most of rank d and eigenvalues

A1, -+ ,Ag. Since the SVD is unique up to the ordering of singular values and corresponding
columns of U and V', we can set X singular value order to be diag(s/)\l, vy VA, 0, ), which forces

KAY?VT = @p, where V € R is a matrix whose columns are the first d columns of V/, which
correspond to the non-zero indexes in Y. Similarly, we have:

TQTQ ' =3p6p0L0), =USS U,
Plugging in the identity of © derived above yields:
OpKAK ®L=UXSTU".
This implies UAY/2K T = & p, which completes the proof. O

Remark 1. In the special case that A is a diagonal matrix, we get K = I and A = Ay.

B PROOF FOR PROPOSITION [I]

Proof.
(Sv a)ﬁ@ (57 a)dea

(5,a)¢(s,a) " 0(0)p(s,a)dsda

I
—— —
S S o

(s,a)¢(s,a)" p(s,a)dsdad(f)
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= A2(E(57 a)
O
C PROOF FOR PROPOSITION [2]
Proof. The equivalent objective for the ¢-th iteration of the power method is given by
win [ A26(5.0) = (TQ.(s.). Bl dsda-+ [ 41,50) — (TQu(). ()
’ (N

St Ey(o.0)[01(s,0)5(s5, )] = By | 0:(0)85(0)] =0 vi# j e [d]

The choice of the norm is arbitrary. Therefore, we can choose the norm induced by Al_% and A, ! for
the left and right terms respectively

/] t

= /{01 + q_S(s7a)TA2,tgz_5(s,a) —2¢(s, a)T /mg(s, a)0:(0)d0}dsda

= /C’l dsda + E ps,q) [0(s, a) " Ag (s, a)] = 2B, 6)p(s,a) [TQe,t(s, a)p(s,a)" 6,(0)

where (] is a term that does not depend on ¢. The same practice can be used for the right term in
Eq[7]

2
dsda
AS}

Ao 1g(s,a) — /7—7@9(5»@)9}(9)‘”

Euo) [B(6)TA1,60(0)| — 2B, (0)p(s.0) [TQo.(5,@)8(0) u(s,0)| + C:
where C is a constant which does not depend on . Therefore, the overall equivalent objective is
£(¢597V7p) :El((b) +E2(9) s.t ¢ € Mg‘xA?e € M%¢

where
L1(9) = Eys,0) [0(s,0) TA20(s, )] — 2B, 0)(5.0) [TQa,t(S, a)o(s, a)Tét(Q)}-

Lo(0) = B, (4 [é(a)TALté(e)} — 2 9)p(s.a) [TQe,t(s, a)8(0)T ¢y (s, a)} .

For the practical unconstrained version of see Section [E]

D MULTI-STEP ALGORITHMS

D.1 THE h-STEP OPTIMAL BELLMAN OPERATOR

While the analysis in Section [3|focused on the standard one-step Bellman operator 7, the spectral
representation learning framework can be naturally extended to multi-step operators. Multi-step
methods are widely used in modern RL agents as they often accelerate learning by propagating
information more rapidly through trajectories (Sutton et al., 1998} |Pohlen et al., 2018; Schrittwieser
et al.| 2020). Consider the h-step optimal Bellman operator, defined recursively:

ThQ(s,a) — T(Th_lQ)(s’a) = T(S, a) + 'YES’NP(-\s,a) mgﬁTh_lQ(sl,a/) ) 8)
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The optimal Q-function Q* is also the fixed point of T" for any h > 1 (Efroni et al. [2018).
Furthermore, 7" is known to be a contraction mapping with factor 4" in the max-norm (Efroni et al.,
2018), which is potentially beneficial for stability. Evaluating 7" () generally requires access to a
model of the environment, either through a simulator or a learned model (Schrittwieser et al., 2020),
often approximated using planning techniques like Monte Carlo Tree Search (MCTS).

We can define the inherent Bellman error with respect to this h-step operator:
If; := sup inf H'Tth —QgHOO. 9)
0B dcB
Crucially, if the function space Q,, is closed under the one-step operator 7, it is also closed under
T".
Proposition 3 (h-step IBE Bound). Consider a feature map ¢. If the one-step IBE is T, then the
h-step IBE satisfies Ig < Z?fl 7i1¢ < ﬁlb' In particular, Ty = 0 iﬁ‘I(Z =0.

Proof. Using the definition Zy = sup, inf5 || 7Q — Q|| oo there exists Q1 such that || 7Q — Q1|oe <

T,. Similarly, there exists Q such that | TQ; — Q2o < Zy. Then, using the triangle inequality
and the ~y-contraction property of 7

1T%Q — Qallo = | T(TQ) — TC:21 +TQ1 —~C~22||og
SNT(TQ) = TQ:lloo + 1TQ1 — Q2]

<ANTQ = Qillos +Zp < ATy + Ly

Repeating this argument h times yields the bound Z (Z < Zi:ol YTy O

This proposition implies that if features ¢ yield low (or zero) one-step IBE, they also yield low
(or zero) h-step IBE. Therefore, the spectral representation learning objective in can be
directly applied by replacing the one-step operator 7 (0 ¢ with its h-step counterpart 7" Qg + (or
its approximation, e.g., via MCTS). This encourages learning features that linearly represent the
outcome of h-step lookahead planning.

D.2 PRACTICAL MULTI-STEP TARGETS

While 7" offers theoretical appeal, practical deep RL algorithms often employ sampled multi-step
targets derived from actual trajectories, such as n-step Q-learning targets or Retrace (Munos et al.,
2016). Let Qp(s,a) = ¢(s,a) "0 and mp(s) = argmax, Qg (s,a) (such that T™Qy = TQg). A
generic n-step target involves bootstrapping off (g after n steps.

However, using such targets within our spectral learning framework, which involves sampling
different 8 ~ v(0) poses a challenge in off-policy settings. The target policy 7y associated with each
sampled 0 will likely differ significantly from the behavior policy u used to generate the data in
the replay buffer D. This discrepancy can lead to high variance or instability, especially for longer
multi-step returns.

To mitigate this, off-policy correction techniques like Retrace(\) (Munos et al., 2016) are crucial.
Retrace provides a return target that mixes n-step returns and function approximation values, using

importance sampling ratios ¢ = S min{1 M}

» plalse)) -
oo k
RBQ@(Staat) = QO(St»at) +EM Z’Yk_t H Cj 61€ ) (10)
k=t Jj=t+1

where 0, = T™ Qg (sk, ar) — Qo(Sk, ar) is the TD error. In practice, the used target policy 75" is an
e-greedy version of 7 with ¢; and ¢ — 0 along the training process such that | 7™ Qg — T Qg ||s0 <
€t]| Qoo as suggested by (Munos et al.,2016).

Furthermore, to handle varying reward scales across different environments (e.g., in Atari), value
transformations are often applied (Pohlen et al., [2018). A common transformation is f(z) =
sign(z)(y/|z| + 1 — 1) + ex for small e. The target operator becomes R?Q = f(RPf~HQ)).
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While the strict condition Z, = 0 does not guarantee that RS Qg lies within Q4, we can still

hypothesize that learning features ¢ to linearly represent these practical, information-rich targets is
beneficial. We can heuristically apply SBM Loss|by replacing 7 Qg ; with Rﬁngt. This encourages

¢ to capture structure relevant to these robust, multi-step, off-policy corrected targets used in high-
performing agents like R2D2 (Kapturowski et al., 2018), even if the direct IBE connection is relaxed.

E IMPLEMENTATION DETAILS: SBM

E.1 UNCONSTRAINED L0OSS FOR[SBM L0SS]

The unconstrained objective (the Lagrangian) of [SBM Loss|is:
L(9,6;v,p) = L1() + L2(0) + Loren(9, ),

Eorth(¢7 é) = ]EGNV(Q) Zi;@e [d] )‘z 39 (9)0 (9):| +E(s a)~p(s,a) [El;ﬁje[d] /J/i,j¢i(3a a)¢j(sa Cl):| is
an orthogonality regularizer for a set of positive Lagrange multipliers {\; ;, 14 ; }, Zicld"

If ¢*, 6* is a solution to the primal problem in Equation , then there exist set of positive Lagrange
multipliers {A} ;, 7 ; }#jg[d] such that ¢*, 6* satisfies the KKT conditions: (1) VL(¢*,0%;v,p) =0
and (2) ® and © are orthogonal (Theorem 2.1 in|Wright| (2006)).

Lorin (@, 5) can be further relaxed into:

o’rth (ba Z )\1_] v(0) |:~ (9)5 (0):|) + Z ui,j(Ep(s,a) [¢i(83a)¢j(sva)})2?
i7j€[d] i7j€ld]
which can be simplified to the one proposed by Wu et al.| (2018):

Lortn(¢,0) =Eg o1 (6) Z 0:(0)0;(0)0;(6")6,(6")
i#j€ld]

=+ IE(s,a),(s’,a’)Np(s,a) Z ¢i(sa a)¢j (57 a)¢i(slv a/)(rbj (3l7 al)

i#j€ld]
E.2 IMPLEMENTATION DETAILS

Implementation of 6 in The update for 6 (implicitly or explicitly parameterized)
within the spectral representation learning phase is crucial. One could approximate 0 (9) by explicit
parameters (reset each time new 6 is sampled) or by a parameterized function (e.g. a neural network).
In this work, we implement @ as a residual network: 6(8) = 6 + A(6), where A(f) is a trainable
MLP model.

Moving Average of A. Practically, is designed to be optimized in mini-batch iterative
manner. Therefore, for better stability, we suggest using exponential moving average (EMA) updates:
Aty = aB 50 [01(s,a)pe(s,a) "] + (1 — a)Aq, (same for Ag) for some 8 € [0, 1]. This is a
solution for the constrained objective:

1 2
Aty € arg/{nm 3 A —Ep(s,0) [01(5,a)1(s,a) ] [ g A — Al,t|\§ ,
where 7 > 0 and o = ﬁ

Network Architecture. For the DQN architecture, we follow the architecture suggested by Mnih
et al.| (2013) for ¢(s, a) where the last layer’s output dimension was changed to d - |.A|. The output is
reshaped into a |A| x d matrix such that for any input state s, we get ¢(s, a) for each action a € A.

The network in the residual model 4 is a 3-layer MLP with dimensions of 2d — 2d — d.
For R2D2 architecture, we follow the ResNet architecture from Espeholt et al.|(2018]) for the feature
extraction from the visual observations e; = g(o;). We use an LSTM (put a reference to LSTM

here) network to process the sequence of observations. The LSTM head outputs a hidden state
my and a state ¢;: my, ¢ = f(er,my—1). The output feature ¢(h,a) is done by using an MLP
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with output dimension of |.A| x d, reshaped into a |.A| X d matrix such that for any input history

ht = (04,041, ...00), we get ¢(h, a) for each a € A. 0 with the same architecture in the DQN
case.

Evaluation Parameters. Each experiment ran for 10 different seeds. During evaluation, we ran the
policy 10 times.

Retrace Operator. We used the transformed retrace operator R? in our R2D2 experiments as target.

E.3 HYPERPARAMETERS

Table 3: Hyperparameters for SBM with DQN

v 0.99
Latent dimension d 256
Learning rate 3x 1071
Enviornment steps 100M
Batch size 256
Number of representation learning steps 512
Number of policy optimization steps 64
Optimizer Adam (Kingma,,2014) |
Oexp )\min(z)/d(l - '7)
Orep 1072
A 0.1
Reward clipping value 1.0
EMA parameter o 0.1

Table 4: Hyperparameters for SBM with R2D2

v 0.997
Latent dimension d 256
Learning rate 3x107%
Enviornment steps 100M
Batch size 64
Number of representation learning steps 512
Number of policy optimization steps 64
Number of policy optimization steps 64
Burn-in steps (Kapturowski et al.,[2018) 40
Trajectory training (max) length (Kapturowski et al.} [2018)) 120
Retrace parameter 5 - 0.95
Optimizer Adam (Kingma,[2014) |
Oexp )\mzn(z)/d(l _ 7)
0-72(21) 1072
A 0.1
EMA parameter o 0.1

18
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F ATARI SCORE TABLE

Game Human Random DQN SBM+DQN R2D2 R2D2+SBM
Alien 7127.70 227.80 1999.79 + 257.86 1237.28 + 108.98 6792.85 + 295.58 8389.99 + 384.19
Amidar 1719.50 5.80 433.66 £ 69.68 1159.18 £ 71.13 1575.45 £ 80.54 1596.91 + 64.33
Assault 742.00 222.40 847.49 £ 5491 1788.34 £ 61.37 2070.25 + 285.82 2068.98 + 362.52
Asterix 8503.30 210.00 6167.47 £ 1180.64 8681.20 4 1182.53 6224.40 £ 615.35 7547.14 4 438.34
Asteroids 47388.70 719.10 626.35 + 74.15 1137.84 + 69.64 1704.73 + 193.96 2246.42 £+ 159.39
Atlantis 29028.10 12850.00 497156.27 £ 4941.23  328266.40 + 7333477  903872.67 4+ 97353.82  959381.33 + 124777.47
Bankheist 753.10 14.20 320.85 + 15.96 1136.08 + 86.93 831.13 + 3491 983.09 + 38.44
Battlezone 37187.50 2360.00 17066.67 £ 1426.73 26840.00 £ 1594.43 53993.33 + 3267.35 65191.69 + 3059.30
Beamrider 16926.50 363.90 2341.12 4 384.89 5684.80 1+ 411.47 4116.11 4= 404.47 5531.92 + 299.30
Berzerk 2630.40 123.70 299.52 + 36.49 746.67 £ 10.03 897.26 + 92.56 841.47 £ 105.35
Bowling 160.70 23.10 21.72 £ 1.77 11.35 £2.58 228.65 £ 1.78 282.34 + 1.29
Boxing 12.10 0.10 56.62 £ 1.04 95.24 £ 0.62 85.84 £+ 1.17 100.00 =+ 0.00
Breakout 30.50 1.70 74.07 £ 14.16 32.47 £2.82 197.29 + 32.99 183.10 + 23.84
Centipede 12017.00 2090.90 2429.27 £ 545.55 3164.83 £ 208.75 15324.34 4+ 1810.83 16902.07 + 1891.82
Choppercommand 7387.80 811.00 610.13 £ 91.47 915.20 £ 62.60 1753.27 £ 213.60 1950.43 4 180.47
Crazyclimber 35829.40 10780.50 58781.87 + 4431.60 91828.00 £ 7361.21 107756.13 £ 4010.05 136573.43 + 3712.86
Demonattack 1971.00 152.10 4431.15 £ 562.47 8895.04 + 712.73 2748.50 + 397.09 2691.05 + 468.96
Doubledunk -16.40 -18.60 224 £ 145 -2.53 £ 1.87 7.04 £221 8.77 + 2.55
Enduro 860.50 0.00 638.51 + 41.65 2313.70 £ 131.03 1811.51 £ 47.32 2305.42 + 40.05
Fishingderby -38.70 -91.70 3.20 £2.76 -21.67 + 4.62 35.73 £ 2.75 33.77 £ 2.69
Freeway 29.60 0.00 19.07 £ 0.21 31.29 £ 0.30 30.82 £ 0.07 33.00 £ 0.14
Frostbite 4334.70 65.20 2585.60 £ 278.19 535.04 £ 117.30 7726.51 £ 220.78 8734.95 + 211.13
Gopher 2412.50 257.60 3546.45 + 694.18 21192.16 + 2595.47 9775.83 4 2535.30 11532.03 £ 2724.36
Gravitar 3351.40 173.00 160.00 =+ 49.53 242.00 £ 56.17 3370.03 £ 226.38 3316.33 £ 195.74
Hero 30826.40 1027.00 16431.15 + 1016.03 21358.04 £ 1150.31 25955.32 + 31.69 29876.39 + 34.87
Icehockey 0.90 -11.20 -4.88 4+ 0.69 -543 +1.13 6.49 £+ 1.71 6.80 + 1.34
Jamesbond 302.80 29.00 445.87 4 40.24 646.80 £ 40.03 721.93 £ 78.90 734.88 + 88.68
Kangaroo 3035.00 52.00 2999.47 4 333.14 7840.80 + 680.31 11265.80 + 478.40 12907.43 + 561.41
Krull 2665.50 1598.00 4504.32 £ 207.00 11408.32 + 248.90 21415.33 £ 3964.59 23311.90 + 3284.52
Kungfumaster 22736.30 258.50 3136.00 + 843.01 19676.80 £ 1179.52 34325.20 + 1823.20 43780.17 + 1773.79
Montezumarevenge 4753.30 0.00 0.00 £ 0.00 642.40 £ 113.34 879.67 £ 219.29 1176.24 1 181.95
Mspacman 6951.60 307.30 2289.07 £ 296.70 2578.40 £ 186.92 6960.41 + 353.38 8120.56 + 378.52
Namethisgame 8049.00 2292.30 5047.89 + 687.45 4769.60 £ 397.33 4038.58 £ 263.41 4894.12 £ 341.02
Phoenix 7242.60 761.40 4967.68 £ 753.66 6285.84 + 153.60 4347.37 £ 355.99 3987.71 + 444.14
Pitfall 6463.70 -229.40 -59.76 4+ 10.22 -14.03 4 8.35 -5.22 £2.51 -3.69 + 3.23
Pong 14.60 -20.70 10.28 £+ 0.76 19.87 £ 0.22 18.62 +0.14 20.47 £+ 0.18
Privateeye 69571.30 24.90 -547.84 4+ 84.07 -181.95 £ 90.23 38212.54 + 1274.77 51369.59 + 1178.57
Qbert 13455.00 163.90 5128.53 £ 978.90 8241.20 + 1016.85 20062.47 £ 835.18 18471.19 + 703.67
Riverraid 17118.00 1338.50 6721.28 £ 510.13 12111.44 + 712.36 7401.33 £ 308.99 9564.36 £ 282.00
Roadrunner 7845.00 11.50 33083.73 + 1722.53 46015.20 + 2269.45 42994.47 4 2159.38 41576.14 4 2726.37
Robotank 11.90 2.20 27.99 £+ 5.36 17.86 £2.72 60.61 £ 1.81 62.75 + 1.47
Seaquest 42054.70 68.40 2896.64 £ 363.70 2261.60 + 209.35 3343.95 + 195.17 3156.72 + 234.17
Skiing -4336.90 -17098.10 -15384.64 4 278.75 -15214.91 + 1750.84 -27300.00 £ 0.00 -17024.68 £ 0.00
Solaris 12326.70 1236.30 1680.21 £ 421.35 3806.07 £ 44.73 3110.99 + 378.79 4061.02 + 491.34
Spaceinvaders 1668.70 148.00 1108.05 £ 267.36 1904.32 + 138.75 1585.83 £ 198.53 1433.51 £ 226.71
Stargunner 10250.00 664.00 33361.07 + 2218.71 6512.00 £ 849.11 2723.93 + 548.09 2621.41 + 690.72
Tennis -8.30 -23.80 11.69 + 047 1331 £0.25 12.44 £+ 2.66 14.26 £ 1.87
Timepilot 5229.20 3568.00 5230.93 £ 337.32 7594.40 £ 321.73 8032.27 + 499.41 9550.81 £ 547.06
Tutankham 167.60 11.40 124.80 £ 7.70 189.64 £ 10.34 112.05 £ 18.01 134.66 + 19.94
Upndown 11693.20 533.40 4451.84 £ 81643 10883.84 £ 913.45 77144.95 £ 12594.93 99513.17 + 9181.75
Venture 1187.50 0.00 43947 £+ 115.21 1182.97 £ 19.43 1365.00 + 45.61 1949.20 + 39.73
Videopinball 17667.90 0.00 97079.34 £ 22379.44  310351.10 + 53324.81 16346.69 + 2432.50 14943.88 + 1760.91
Wizardofwor 4756.50 563.50 955.73 £ 453.05 2129.60 £ 136.21 10283.00 + 1960.67 9889.49 + 2038.26
Yarsrevenge 54576.90 3092.90 25562.24 + 3743.63 27827.71 £ 2219.92 60559.04 + 3913.49 73644.13 + 3133.18
Zaxxon 9173.30 32.50 5619.20 £ 466.03 3238.40 + 384.70 13134.33 + 1342.95 17187.17 + 1224.38
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