

000 SPECTRAL BELLMAN METHOD: 001 002 UNIFYING REPRESENTATION AND EXPLORATION IN RL 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

010
011 Representation learning is critical to the empirical and theoretical success of
012 reinforcement learning. However, many existing methods are induced from model-
013 learning aspects, misaligning them with the RL task in hand. This work introduces
014 the Spectral Bellman Method, a novel framework derived from the Inherent Bell-
015 man Error (IBE) condition. It aligns representation learning with the fundamental
016 structure of Bellman updates across a *space* of possible value functions, making
017 it directly suited for value-based RL. Our key insight is a fundamental spectral
018 relationship: under the zero-IBE condition, the transformation of a *distribution*
019 of value functions by the Bellman operator is intrinsically linked to the feature
020 covariance structure. This connection yields a new, theoretically-grounded objec-
021 tive for learning state-action features that capture this Bellman-aligned covariance,
022 requiring only a simple modification to existing algorithms. We demonstrate that
023 our learned representations enable structured exploration by aligning feature co-
024 variance with Bellman dynamics, improving performance in hard-exploration and
025 long-horizon tasks. Our framework naturally extends to multi-step Bellman oper-
026 ators, offering a principled path toward learning more powerful and structurally
027 sound representations for value-based RL.

028 1 INTRODUCTION

029 Efficient reinforcement learning (RL) in complex environments hinges on two critical challenges:
030 learning effective representations and performing efficient exploration. While many approaches
031 tackle representation learning (Laskin et al., 2020; Schwarzer et al., 2021; Oh et al., 2015; Zhang
032 et al., 2021; Nabati et al., 2023; Barreto et al., 2017; Zhang et al., 2022) and exploration as separate
033 problems, a deeper synergy is needed, particularly for control tasks where features must support
034 both accurate value estimation and strategic data gathering. This work introduces a novel framework
035 to learn representations that inherently unify these aspects, paving the way for more powerful and
036 sample-efficient RL agents.

037 Our approach is rooted in the theory of Inherent Bellman Error (IBE) (Zanette et al., 2020a). The
038 IBE quantifies the suitability of a feature space for value-based RL by measuring the minimum error
039 in representing Bellman updates. A zero IBE condition, generalizing Linear MDPs (Jin et al., 2020),
040 is highly desirable as it implies the function space is closed under the Bellman operator. However,
041 directly discovering features that satisfy this condition *a priori* remains a significant challenge through
042 a min-max-min optimization (Modi et al., 2024), especially with general function approximator.
043 The challenge impedes the practical applications of IBE-based representation learning.

044 This paper introduces the **Spectral Bellman Method (SBM)**, a framework which makes low-IBE
045 representation learning tractable and addresses exploration upon the learned representation. Our
046 approach uses a fundamental spectral relationship of IBE: when the IBE is zero, the transformation
047 of a *distribution* of value functions by the Bellman operator is intrinsically linked to the covariance
048 structure of the features themselves. This connection reveals that features aligned with Bellman
049 updates naturally possess a covariance structure that can be exploited for structured exploration.
050 Leveraging this insight, we derive a novel, theoretically grounded objective function. Our method
051 learns state-action features whose covariance inherently captures this Bellman-aligned structure,
052 while avoiding the complicated optimization. The learned representations not only enhance value
053 approximation but also naturally facilitate structured exploration strategies. Specifically, we use
Thompson Sampling (TS) driven by the learned representation for efficient exploration.

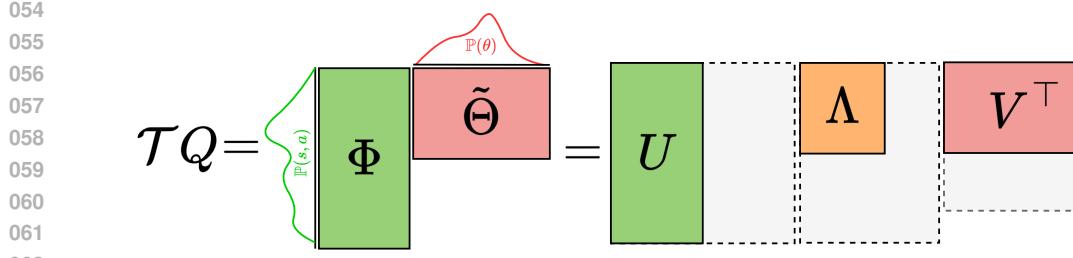


Figure 1: Spectral Representation of the optimal Bellman operator. Under zero IBE condition, the linear representation is equivalent to an SVD decomposition of rank d with a singular value matrix Λ .

Our contributions are as follows. **(1)** We propose a novel representation learning framework, the Spectral Bellman Method, which unifies representation learning with exploration, motivated by the structural implications of the Inherent Bellman Error. Our method requires only a simple modification to existing value-based RL algorithms. **(2)** We demonstrate the effectiveness of the Spectral Bellman Method and its learned representations on the Atari benchmark, including a subset of hard exploration games. **(3)** The extension of this representation learning approach to capture the structure of powerful multi-step Bellman operators and targets.

2 BACKGROUND: THE ZERO-IBE CONDITION AND EFFICIENT EXPLORATION

We consider a Markov Decision Process (MDP) (Puterman, 1990) $(\mathcal{S}, \mathcal{A}, \gamma, r, P)$ with state space \mathcal{S} , action space \mathcal{A} , discount $\gamma \in [0, 1]$, reward $r : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ ($|r(s, a)| \leq R_{\max}$), and transition kernel $P : \mathcal{S} \times \mathcal{A} \mapsto \Delta(\mathcal{S})$. The Q -function is $Q^\pi(s, a) = \mathbb{E}_{\pi, P}[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) | s_0 = s, a_0 = a]$. The goal is to find an optimal policy $\pi^* \in \arg \max_{\pi} \mathbb{E}_{a \sim \pi}[Q^\pi(s, a)]$.

The optimal Q -function $Q^*(s, a)$ satisfies $Q^*(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)}[\max_{a' \in \mathcal{A}} Q^*(s', a')]$. The optimal Bellman operator \mathcal{T} on $Q : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$ is defined by

$$\mathcal{T}Q(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a)} \left[\max_{a' \in \mathcal{A}} Q(s', a') \right]. \quad (\text{Optimal Bellman Operator})$$

This is a special case of the policy Bellman operator $\mathcal{T}^\pi Q(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot|s, a), a' \sim \pi(\cdot|s')}[Q(s', a')]$. Indeed, for a greedy policy π w.r.t Q , \mathcal{T} and \mathcal{T}^π are equivalent.

2.1 THE ZERO INHERENT BELLMAN ERROR CONDITION

Q^* is often approximated linearly with features $\phi : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}^d$ as $Q_\theta(s, a) = \phi(s, a)^\top \theta$ for $\theta \in \mathbb{R}^d$. We assume $\|\phi(s, a)\|_2 \leq 1$.

Definition 1 (Function Space and Parameter Bounds). *Let $\phi : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}^d$ be a feature map. We define the linear function space for Q -functions as:*

$$\mathcal{Q}_\phi = \{Q_\theta(s, a) = \phi(s, a)^\top \theta | \theta \in \mathcal{B}_\phi\}, \quad \mathcal{B}_\phi = \{\theta \in \mathbb{R}^d | \sup_{(s, a) \in \mathcal{S} \times \mathcal{A}} |\phi(s, a)^\top \theta| \leq D\},$$

for a bounded parameter set \mathcal{B}_ϕ , typically defined such that the resulting Q -values are bounded, for some maximum value D (e.g., $D = R_{\max}/(1 - \gamma)$).

Effective exploration for policy learning and data collection is crucial in RL, especially with large state/action spaces, where good representations are key (Jin et al., 2020; Zanette et al., 2020a; Azizzadenesheli et al., 2018). While policy learning has advanced (Schulman et al., 2017; Kapturowski et al., 2018; Badia et al., 2020), representation for exploration remains challenging (Laskin et al., 2020; Nabati et al., 2023; Ren et al., 2023). Our work offers a unified framework based on low Inherent Bellman Error (IBE) and spectral theory (Ren et al., 2023). We define IBE below.

Definition 2 (Inherent Bellman Error (IBE), (Zanette et al., 2020a)). *Given an MDP and a feature map ϕ , the Inherent Bellman Error (IBE) is defined as:*

$$\mathcal{I}_\phi := \sup_{Q \in \mathcal{Q}_\phi} \inf_{\tilde{Q} \in \mathcal{Q}_\phi} \|\mathcal{T}Q - \tilde{Q}\|_\infty = \sup_{\theta \in \mathcal{B}_\phi} \inf_{\tilde{\theta} \in \mathcal{B}_\phi} \|\mathcal{T}Q_\theta - Q_{\tilde{\theta}}\|_\infty.$$

If $\mathcal{I}_\phi = 0$, \mathcal{Q}_ϕ is closed under \mathcal{T} (up to projection onto \mathcal{B}_ϕ). \mathcal{I}_ϕ quantifies how well \mathcal{T} maps \mathcal{Q}_ϕ to itself. Zero IBE means any $\mathcal{T}Q_\theta$ for $Q_\theta \in \mathcal{Q}_\phi$ is perfectly representable by some $Q_{\tilde{\theta}} \in \mathcal{Q}_\phi$. This generalizes Linear MDPs (Jin et al., 2020), where \mathcal{T} maps any Q -function into \mathcal{Q}_ϕ .

108 2.2 FACILITATING EFFICIENT EXPLORATION WITH LOW-IBE FEATURES
109110 A representation with zero or low IBE facilitates efficient exploration. With expected feature $\phi_\pi =$
111 $\mathbb{E}_{(s,a) \sim d^\pi} [\phi(s, a)]$ under policy π (occupancy d^π), effective exploration aims to reduce uncertainty,
112 e.g., by minimizing $\|\phi_\pi\|_{\Sigma^{-1}}$ across policies. Zanette et al. (2020b) define maximum uncertainty:113 **Definition 3** (Max Uncertainty (Zanette et al., 2020b)). $\mathcal{U}(\sigma) := \max_{\pi, \|\xi\|_\Sigma \leq \sqrt{\sigma}} \phi_\pi^\top \xi :=$
114 $\max_\pi \sqrt{\sigma} \|\phi_\pi\|_{\Sigma^{-1}}$ 115 Informally, our goal is to reduce maximum uncertainty. This can be done by overestimating it via
116 sampling exploration noise $\xi \in \mathbb{R}^d \sim \mathcal{N}(0, \sigma \Sigma^{-1})$ per rollout (i.e., Thompson Sampling), where
117 $\|\xi\|_2 \leq \frac{R_{\max}}{1-\gamma}$ (Zanette et al., 2020b).118 Motivated by the IBE, in what follows we detail a method for learning low-IBE representations and
119 integrate them with exploration methods like Thompson Sampling (TS) to improve RL performance.
120121 3 SPECTRAL BELLMAN METHOD
122123 This section develops the Spectral Bellman Method (SBM), a novel approach for learning representations
124 that satisfy the zero-IBE condition (Definition 2). Our analysis reveals a fundamental connection
125 between the spectral properties of the optimal Bellman operator and the covariance structure of the
126 learned features. By leveraging this connection, inspired by the power iteration method, we derive a
127 new learning objective that overcomes the limitations of direct Bellman error minimization.128 3.1 ZERO-IBE OBJECTIVE
129130 Consider the mapping $\tilde{\theta}(\theta) : \mathcal{B}_\phi \rightarrow \mathcal{B}_\phi$, that maps a parameter $\theta \in \mathcal{B}_\phi$ into his correspond Bellman
131 minimizer $\tilde{\theta} \in \mathcal{B}_\phi$ (noting that for the optimal Q-function parameter, this is the identity map):
132

133
$$\tilde{\theta}(\theta) := \arg \min_{\tilde{\theta} \in \mathcal{B}_\phi} \|\mathcal{T}Q_\theta - Q_{\tilde{\theta}}\|_\infty$$

134 Our goal is to learn features $\phi(s, a) \in \mathbb{R}^d$ and a corresponding mapping $\tilde{\theta}(\theta)$ such that the function
135 space \mathcal{Q}_ϕ is closed under the Bellman operator, i.e., $\mathcal{I}_\phi = 0$. However, a straightforward idea for
136 minimizing the IBE leads to a complicated optimization (Modi et al., 2024), and thus, difficult to be
137 implemented for practical applications.138 Given a set of observations $\{s_i, a_i, \theta_i\}_{i=1}^N$ sampled from distributions $\rho(s, a)$ over state-action pairs
139 and $\nu(\theta)$ over input Q-function parameters, IBE condition implies the minimization of mean squared
140 error (MSE) between the Bellman backup of Q_θ and its representation in the learned feature space:

141
$$\mathcal{L}_{MSE}(\phi, \tilde{\theta}) = \mathbb{E}_{(s,a) \sim \rho(s,a), \theta \sim \nu(\theta)} \left[\left\| \mathcal{T}Q_\theta(s, a) - \phi(s, a)^\top \tilde{\theta}(\theta) \right\|_2^2 \right]. \quad (1)$$

142 However, even the minimization of Equation (1) is still challenging. First, the Bellman operator
143 \mathcal{T} is highly non-linear in Q_θ (which depends on the learned ϕ and θ) and the task parameters
144 θ , complicating the joint optimization landscape and risking suboptimal minima or poor features.
145 Second, this MSE objective neither leverages the underlying spectral properties of $\mathcal{T}Q_\theta$ nor inherently
146 promotes desirable structural properties in ϕ and $\tilde{\theta}$. To address these limitations, we next introduce a
147 spectral analysis of the Bellman operator to derive a more principled learning objective.
148149 The core distinction of SBM is its objective derived from the zero IBE condition, which seeks closure
150 of \mathcal{Q}_ϕ under the Bellman operator across a *distribution* of parameters. This contrasts with: (1)
151 methods focusing only on the optimal Q-function (Mnih et al., 2013; Kapturowski et al., 2018), which
152 may be unfeasible to learn directly (Du et al., 2019); (2) Learn a successor representation or Laplace
153 methods (Mahadevan, 2005; Barreto et al., 2017; Touati & Ollivier, 2021; Farebrother et al., 2023),
154 which are task-agnostic and not task-specific as our method.
155156 3.2 BELLMAN SPECTRAL DECOMPOSITION UNDER ZERO IBE
157158 To overcome the challenges of directly minimizing Equation (1), we analyze the spectral properties of
159 the optimal Bellman operator under the zero-IBE condition. This analysis will lead us to an algorithm
160 inspired by the power iteration method for singular value decomposition (Golub & Van Loan, 2013;
161 Trefethen & Bau, 2022), designed to efficiently learn a zero-IBE representation.162 For conceptual clarity, let us temporarily adopt a matrix perspective, assuming finite state-action
163 spaces ($|\mathcal{S} \times \mathcal{A}| = n$) and a finite parameter space ($|\mathcal{B}_\phi| = m$). Let $\kappa : [n] \rightarrow \mathcal{S} \times \mathcal{A}$ be a bijection

162 **Algorithm 1** Spectral Bellman Power Method

```

164 1: Initialize  $\tilde{\theta}_0, \phi_0$ 
165 2: for  $t = \{1, 2, \dots\}$  do
166 3:   Compute  $\Lambda_{1,t} = \mathbb{E}_{\rho(s,a)} [\phi_t(s,a)\phi_t(s,a)^\top]$ ,  $\Lambda_{2,t} = \mathbb{E}_{\nu(\theta)} [\tilde{\theta}_t\tilde{\theta}_t^\top]$ .
167 4:   Find  $\phi$  and  $\tilde{\theta}$  which satisfy the following constraints:
168    $\Lambda_{2,t}\bar{\phi}(s,a) = \langle \mathcal{T}\bar{Q}_\theta(s,a), \bar{\theta}_t(\cdot) \rangle$ ,  $(s,a) \in \mathcal{S} \times \mathcal{A}$ 
169    $\Lambda_{1,t}\bar{\theta}(\theta) = \langle \mathcal{T}\bar{Q}_\theta(\cdot), \bar{\phi}_t(\cdot) \rangle$ ,  $\theta \in \mathcal{B}_\phi$ 
170    $\langle \bar{\phi}_i(\cdot), \bar{\phi}_j(\cdot) \rangle = 0$ ,  $\langle \bar{\theta}_i(\cdot), \bar{\theta}_j(\cdot) \rangle = 0$ ,  $i \neq j \in [d]$ . (3)
171
172 5: end for

```

173 from indices to state-action pairs. We denote the feature matrix as $\Phi \in \mathbb{R}^{n \times d}$ (where the i -th row
174 is $\phi(\kappa(i))^\top$) and the matrix of input parameters as $\Theta = [\theta_1, \dots, \theta_m] \in \mathbb{R}^{d \times m}$. A Q-function Q_θ is
175 then $\Phi\theta$, and the collection of Q-functions for all $\theta_j \in \Theta$ is $Q = \Phi\Theta \in \mathbb{R}^{n \times m}$. Under the zero-IBE
176 condition, for every $\theta \in \mathcal{B}_\phi$, there exists a $\tilde{\theta}(\theta)$ such that $\mathcal{T}(\Phi\theta) = \Phi\tilde{\theta}(\theta)$. In matrix form, this
177 means $\mathcal{T}Q = \Phi\tilde{\theta}$, where $\tilde{\Theta} = [\tilde{\theta}(\theta_1), \dots, \tilde{\theta}(\theta_m)] \in \mathbb{R}^{d \times m}$. To incorporate the influence of the
178 sampling distributions $\rho(s, a)$ and $\nu(\theta)$, we augment the feature and parameter mappings:

$$\bar{\phi}(s, a) := \sqrt{\rho(s, a)}\phi(s, a), \quad \bar{\theta}(\theta) := \tilde{\theta}(\theta)\sqrt{\nu(\theta)}. \quad (2)$$

179 Consequently, the Bellman operator acting on a distribution of Q-functions can be thought of
180 through an augmented operator, $\mathcal{T}\bar{Q}_\theta(s, a) = \bar{\phi}(s, a)^\top \bar{\theta}(\theta)$. **In essence, the augmentation defined in**
181 **Equation (2) enables us to treat the distribution-weighted problem as a standard spectral decomposition**
182 **on the augmented space.**

183 We also define the feature covariance matrix $\Lambda_1 := \mathbb{E}_{(s,a) \sim \rho(s,a)} [\phi(s,a)\phi(s,a)^\top]$ and the post-
184 Bellman parameter covariance matrix $\Lambda_2 := \mathbb{E}_{\theta \sim \nu(\theta)} [\tilde{\theta}(\theta)\tilde{\theta}(\theta)^\top]$.

185 A key insight reveals a deep structural connection under the zero-IBE condition. Informally, when
186 the Bellman operator \mathcal{T} transforms a distribution of Q-functions (weighted by ρ and ν), the resulting
187 (weighted) feature matrix Φ and (weighted) post-Bellman parameter matrix $\tilde{\Theta}$ correspond to the
188 singular vectors of this transformation. Furthermore, their respective covariance matrices, Λ_1 and
189 Λ_2 , are aligned (i.e., $\Lambda_1 = \Lambda_2 =: \Lambda$), where Λ is intrinsically linked to the singular values of the
190 transformed Q-functions (see Figure 1 for further visualization). This structural alignment is crucial
191 and forms the basis of our method. We refer the reader to Section A for a formal statement and proof
192 of this connection.

193 This spectral relationship naturally motivates an approach analogous to the power iteration method for
194 finding dominant eigenvectors/singular vectors (Golub & Van Loan, 2013; Trefethen & Bau, 2022).
195 The following proposition captures identities central to such an iterative process (see Section B for
196 proof).

197 **Proposition 1.** *The following identities hold:*

$$\langle \mathcal{T}\bar{Q}_\theta(\cdot), \bar{\phi}(\cdot) \rangle = \Lambda_1 \bar{\theta}(\theta), \quad \langle \mathcal{T}\bar{Q}_\theta(s, a), \bar{\theta}(\cdot) \rangle = \Lambda_2 \bar{\phi}(s, a).$$

200 The above identities closely resemble the update rules of a power iteration algorithm (Sanger,
201 1988; Xie et al., 2015; Guo et al., 2025), but for eigenfunction learning for symmetric operator in
202 semi-supervised learning. This suggests an alternating optimization strategy for learning ϕ and $\tilde{\theta}$.
203 Algorithm 1 outlines this iterative procedure. In each round, covariance matrices are computed,
204 followed by solving linear equations to extract the updated representation ϕ and parameters $\tilde{\theta}$. This
205 spectral method offers significant advantages over direct minimization MSE loss (Equation (1)), as
206 we will discuss in Section 3.4. The alternating updates can stabilize the optimization by decomposing
207 the problem into simpler, often convex, subproblems. Moreover, by leveraging the power iteration
208 structure, our method aims for the faster convergence rates characteristic of such techniques, leading
209 more efficiently to the desired representation.

210 3.3 PRACTICAL SBM LEARNING

211 While Algorithm 1 provides a conceptual framework based on power iteration, directly solving the
212 system of linear equations in Equation (3) at each step can be computationally prohibitive, especially
213 in environments with large or infinite state-action spaces. To make this approach practical, we
214 formulate an objective function whose minimization effectively performs these power iteration steps.

216 Let $\Lambda_{1,t} = \mathbb{E}_{\rho(s,a)}[\phi_t(s,a)\phi_t(s,a)^\top]$ and $\Lambda_{2,t} = \mathbb{E}_{\nu(\theta)}[\tilde{\theta}_t(\theta)\tilde{\theta}_t(\theta)^\top]$ denote the empirical covariance
 217 matrices at iteration t . The SBM objective is given by
 218

$$219 \quad \mathcal{L}(\phi, \tilde{\theta}; \nu, \rho) = \mathcal{L}_1(\phi) + \mathcal{L}_2(\tilde{\theta}) \quad s.t. \quad \phi \in \mathcal{M}_{\mathcal{S} \times \mathcal{A}}^\rho, \tilde{\theta} \in \mathcal{M}_{\mathcal{B}_\phi}^\nu \quad (\text{SBM Loss})$$

220 where $\mathcal{L}_1(\phi) = \mathbb{E}_{\nu(\theta)\rho(s,a)}[\|\phi(s,a)\|_{\Lambda_{2,t}}^2 - 2\mathcal{T}Q_{\theta,t}(s,a)\phi(s,a)^\top\tilde{\theta}_t(\theta)]$ is the representation loss;
 221

222 $\mathcal{L}_2(\tilde{\theta}) = \mathbb{E}_{\nu(\theta)\rho(s,a)}[\|\tilde{\theta}(\theta)\|_{\Lambda_{1,t}}^2 - 2\mathcal{T}Q_{\theta,t}(s,a)\tilde{\theta}(\theta)^\top\phi_t(s,a)]$ is the parameter objective; and
 223

$$224 \quad \mathcal{M}_{\mathcal{X}}^{\mathbb{P}} = \{f : \mathcal{X} \rightarrow \mathbb{R}^d \mid \mathbb{E}_{x \sim \mathbb{P}}[f_i(x)f_j(x)] = 0 \quad \forall i \neq j \in [d]\}$$

225 is the orthogonal function space of functions over \mathcal{X} w.r.t probability $\mathbb{P} : \mathcal{X} \rightarrow [0, 1]$.
 226

227 The term \mathcal{L}_1 updates ϕ to align with the Bellman-transformed Q-values, using the current estimate of
 228 parameter covariance $\Lambda_{2,t}$ and parameters $\tilde{\theta}_t$. The term \mathcal{L}_2 updates $\tilde{\theta}$ to best represent the Bellman-
 229 transformed Q-values given the current features ϕ_t and their covariance $\Lambda_{1,t}$. Indeed, minimizing the
 230 objective in SBM Loss is equivalent to applying the power method. This is formally shown by the
 231 following proposition.
 232

Proposition 2. *For any t , a solution θ_t^*, ϕ_t^* to the power method objective in Equation (3) if and only if it is a minimizer of the SBM Loss.*

234 A proof is provided in Section C. This equivalence means that by minimizing $\mathcal{L}(\phi, \tilde{\theta})$ using gradient-
 235 based methods, we are effectively performing the updates of the power iteration algorithm. In practice,
 236 we solve an unconstrained relaxed version of SBM Loss (see Section E for details).
 237

3.4 COMPARISON OF THE SBM LOSS TO THE BELLMAN MSE

239 To better understand the advantages of the SBM Loss over the naive MSE objective (Equation (1)),
 240 consider the following expansion of the MSE objective:
 241

$$\begin{aligned} & \min_{\phi, \tilde{\theta}} \mathbb{E}_{(s,a) \sim \rho(s,a), \theta \sim \nu(\theta)} \left[\left\| \mathcal{T}Q_\theta(s,a) - \phi(s,a)^\top \tilde{\theta}(\theta) \right\|_2^2 \right] \\ &= \min_{\phi, \tilde{\theta}} \mathbb{E}_{(s,a) \sim \rho(s,a), \theta \sim \nu(\theta)} \left[C - 2\mathcal{T}Q_\theta(s,a)\phi(s,a)^\top \tilde{\theta}(\theta) + \phi(s,a)^\top \tilde{\theta}(\theta) \tilde{\theta}(\theta)^\top \phi(s,a) \right] \\ & \propto \min_{\phi, \tilde{\theta}} \mathbb{E}_{(s,a) \sim \rho(s,a), \theta \sim \nu(\theta)} \left[\|\phi(s,a)\|_{\hat{\Lambda}}^2 - 2\mathcal{T}Q_\theta(s,a)\phi(s,a)^\top \tilde{\theta}(\theta) \right], \end{aligned}$$

247 where C is a constant independent of ϕ and $\tilde{\theta}$, and $\hat{\Lambda} = \tilde{\theta}(\theta)\tilde{\theta}(\theta)^\top$ is a noisy, single-sample estimate
 248 of the parameter covariance. The SBM objective offers distinct advantages. First, its separation into
 249 $\mathcal{L}_1(\phi)$ and $\mathcal{L}_2(\tilde{\theta})$ enables alternating optimization (inherent to the power method), decomposing the
 250 joint problem into tractable subproblems and promoting stability over simultaneous MSE updates.
 251 Second, SBM's quadratic terms ($\|\phi(s,a)\|_{\Lambda_{2,t}}^2, \|\tilde{\theta}(\theta)\|_{\Lambda_{1,t}}^2$) use moving average covariance matrices
 252 $\Lambda_{2,t}, \Lambda_{1,t}$ from the previous iteration, offering robust, statistically grounded regularization. In
 253 contrast, MSE's quadratic term $\|\phi(s,a)\|_{\hat{\Lambda}}^2$ uses the noisy, single-sample $\hat{\Lambda}$, lacking this stabilizing
 254 batch-averaged influence. Finally, SBM incorporates an explicit orthogonality regularizer $\mathcal{L}_{\text{orth}}$.
 255

256 These differences demonstrate SBM's more refined approach to representation learning over direct
 257 MSE minimization. These fundamental differences highlight how SBM offers a more refined approach
 258 for representation learning than direct MSE minimization, which is also justified empirically in (Guo
 259 et al., 2025).

3.5 EFFICIENT EXPLORATION USING THOMPSON SAMPLING

260 After covering spectral representation learning part, a learned representation can be leveraged to
 261 establish an efficient exploration method. In this work, we focus on Thompson Sampling (TS)
 262 (Osband et al., 2013; 2016; Azizzadenesheli et al., 2018; Zanette et al., 2020b), which is particularly
 263 suited for settings with low-IBE representations. Indeed, given a dataset $\mathcal{D} = \{s_i, a_i, r_i, s'_i\}_{i=1}^N$, a
 264 least-square estimator for an optimal parameter $\theta^* \in \mathcal{B}_\phi$ (such that $\mathcal{T}Q_{\theta^*} = Q_{\theta^*}$) can be found:
 265 arg max

$$266 \quad \hat{\theta}_{LS} \in \arg \max_{\theta \in \mathcal{B}_\phi} \mathbb{E}_{(s,a) \sim \mathcal{D}} [(\mathcal{T}Q_\theta(s,a) - \phi(s,a)^\top \theta)^2], \quad (4)$$

267 We conduct exploration following (Zanette et al., 2020b). Specifically, the weights $\hat{\theta}_{TS}$ for the
 268 behavior policy $\pi_{\hat{\theta}_{TS}}(s) = \arg \max_{a \in \mathcal{A}} \phi(s,a)^\top \hat{\theta}_{TS}$, are sampled from a posterior distribution,
 269

270 **Algorithm 2** Q-Learning with SBM
271

```

272 1: Initialize Q-function parameters  $\hat{\theta}_0$ , features  $\phi_0$ , and replay buffer  $\mathcal{D}$ .
273 2: for  $t = 1, 2, \dots$ , do
274 3:   Data Collection with TS Exploration:
275 4:     Generate  $\hat{\theta}_{TS} \sim \mathcal{N}(\hat{\theta}_t, \sigma_{exp} \Sigma_t^{-1})$  using current  $\hat{\theta}_t$  and  $\Sigma_t$  from  $\phi_t$  (Equation (5)).
276 5:     Collect data using policy  $\pi_{\hat{\theta}_{TS}}(s) = \arg \max_{a \in \mathcal{A}} \phi_t(s, a)^\top \hat{\theta}_{TS}$ , and add to  $\mathcal{D}$ .
277 6:   Policy Optimization:
278 7:     Update Q-function parameters:  $\hat{\theta}_{t+1} = \arg \min_{\theta} \mathcal{L}_{QL}(\theta; \phi_t)$  (Equation (6)), using  $\mathcal{D}$ .
279 8:   Representation Learning:
280 9:     Define  $\nu_t(\theta) = \mathcal{N}(\hat{\theta}_{t+1}, \sigma_{rep}^2 I)$  and  $\rho_t(s, a)$  as a probability over  $\mathcal{D}$  (e.g. uniform).
281 10:    Update features:  $\phi_{t+1} = \arg \min_{\phi} \mathcal{L}(\phi, \hat{\theta}; \nu_t(\theta), \rho_t(s, a))$  (SBM Loss).
282 11: end for

```

283 often referred to as the uncertainty set. Given the representation, the weights are sampled from the
284 posterior before each rollout according to:

$$\hat{\theta}_{TS} \sim \mathcal{N}(\hat{\theta}_{LS}, \sigma_{exp} \Sigma^{-1}); \quad \Sigma = \lambda I + \sum_{(s, a) \in \mathcal{D}} \phi(s, a) \phi(s, a)^\top, \quad (5)$$

285 for some positive λ . TS provides an easy-to-implement method that add an exploration noise to the
286 least-square estimate $\hat{\theta}_{LS}$ (i.e., $\hat{\theta}_{TS} = \hat{\theta}_{LS} + \xi$), which yields the sampling procedure in Equation (5)
287 and reduce the maximum uncertainty in Definition 3. We emphasize although we mainly consider
288 the TS for exploration, the learned spectral Bellman representation is also compatible UCB with the
289 same covariance Σ in equation 5, as discussed in (Zanette et al., 2020b; Modi et al., 2024; Zhang
290 et al., 2022). Having established the representation learning and exploration framework, we next
291 explore its practical integration into value-based reinforcement learning algorithms, using Q-learning
292 (Sutton et al., 1998) as an illustrative example due to its intrinsic connection with the optimal Bellman
293 operator.

294 **4 Q-LEARNING WITH SBM**

295 Put the representation learning and RL together, we obtain Algorithm 2, which describes the imple-
296 mentation of the Spectral Bellman Method (SBM) using Q-learning and Thompson Sampling (TS)
297 for exploration. The algorithm iteratively refines the policy and representation through three key
298 phases: **i**) data collection with TS exploration, **ii**) policy optimization, and **iii**) spectral representation
299 learning.

300 Algorithm 2 begins by initializing the Q-function parameters $\hat{\theta}_0$, feature mapping ϕ_0 , and an empty
301 replay buffer \mathcal{D} (Line 1). For every iteration t , the algorithm samples exploratory Q-function
302 parameters $\hat{\theta}_{TS}$ (Lines 3-5) using the current Q-parameters $\hat{\theta}_t$ (as the mean for the TS posterior, akin
303 to $\hat{\theta}_{LS}$ in Equation (4)) and the feature covariance Σ_t (derived from the current features ϕ_t as per
304 Equation (5)). The agent then interacts with the environment using a policy $\pi_{\hat{\theta}_{TS}}$ that is greedy with
305 respect to $Q_{\hat{\theta}_{TS}}(s, a) = \phi_t(s, a)^\top \hat{\theta}_{TS}$. The collected state-action-reward transitions are stored in the
306 replay buffer \mathcal{D} . This mechanism ensures that data collection is guided by the uncertainty captured in
307 the learned feature space. Following data collection, the Q-function parameters are updated from $\hat{\theta}_t$
308 to $\hat{\theta}_{t+1}$ (Lines 6-7). This update is achieved by minimizing the standard loss with Q-learning target:

$$\mathcal{L}_{QL}(\theta; \phi) = \mathbb{E}_{(s, a) \sim \mathcal{D}} [(\mathcal{T}Q_{\theta^-}(s, a) - \phi(s, a)^\top \theta)^2], \quad (6)$$

309 where θ^- are the target parameters. This loss utilize the current features ϕ_t and mini-batches of
310 data sampled from the replay buffer \mathcal{D} . This step refines the agent’s policy based on the existing
311 representation of state-action values.

312 Finally, in the final representation learning phase (Lines 8-10), the feature mapping is updated from ϕ_t
313 to ϕ_{t+1} by minimizing the SBM Loss. A critical aspect of this phase is the choice of the distribution
314 over parameters, $\nu(\theta)$ and over state-actions $\rho(s, a)$ Equation (2). $\nu(\theta)$ is centered around the newly
315 updated Q-parameters obtained from the policy optimization phase: $\nu(\theta) = \mathcal{N}(\hat{\theta}_{t+1}, \sigma_{rep}^2 I)$, where
316 σ_{rep}^2 is a variance hyperparameter. The state-action distribution $\rho(s, a)$ for the SBM loss is implicitly
317 defined by sampling transitions from the replay buffer \mathcal{D} . This adaptive focus of $\nu(\theta)$, as visualized

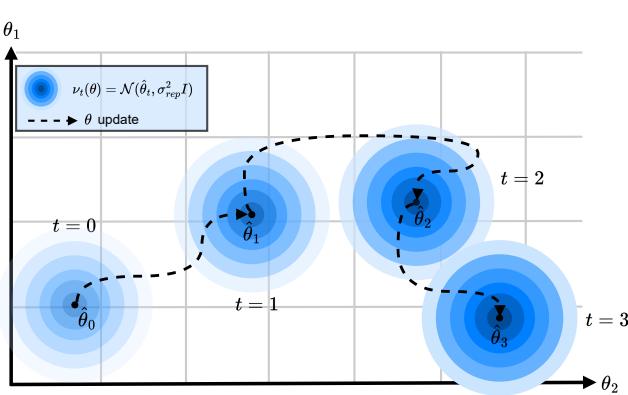


Figure 2: Visualization of the parameter sampling distribution $\nu_t(\theta) = \mathcal{N}(\hat{\theta}_t, \sigma_{rep}^2 I)$ for $d = 2$ over successive rounds. As Q-learning updates the mean $\hat{\theta}_t$, $\nu(\theta)$ shifts, focusing representation learning on parameters relevant to the current policy. Darker regions indicate higher probability density.

in Figure 2, ensures that the feature learning process concentrates on satisfying the low-IBE condition in regions of the parameter space that are most relevant to the current policy.

This alternating process of exploration, policy optimization, and representation learning allows the policy and the features to co-evolve. Improved features lead to more accurate value estimates and consequently better policies. In turn, an improved policy guides the representation learning towards more effective exploration.

Extension to Multi-Step Operators. The SBM framework naturally extends to h -step Bellman operators \mathcal{T}^h . A low one-step IBE implies a low h -step IBE (Section D). Thus, we can apply the SBM Loss by simply replacing the one-step backup $\mathcal{T}Q_{\theta,t}$ with a multi-step target, such as one from Retrace(λ) (Munos et al., 2016).

5 EXPERIMENTS

We evaluate the effectiveness of incorporating Spectral Bellman Representation learning into standard deep RL algorithms. We focus on challenging benchmarks and compare against established baselines.

5.1 SETTING

Environments: We use the Atari game suite (ALE, Bellemare et al. (2013)). We follow standard preprocessing steps, including frame stacking (4 frames), grayscale conversion, downsampling, and sticky actions unless specified otherwise. Performance is measured using mean and median Human Normalized Score (HNS) across all 55 games after 100 million environment steps.

To assess the impact of our method on exploration, we report aggregated HNS on a subset of particularly challenging Atari games identified by Badia et al. (2020). This subset includes games known for sparse rewards or requiring long-term credit assignment: *Montezuma’s Revenge*, *Pitfall!*, *Private Eye*, *Skiing*, *Freeway*, *Solaris*, *Venture*, *BeamRider* and *Pong*. We denote this benchmark as Atari Explore.

Implementation Details: Our spectral learning method is integrated into two representative deep RL agents: DQN (Mnih et al., 2013) and R2D2 (Kapturowski et al., 2018).

We minimize the Equation (SBM Loss) using stochastic gradient descent. This is also true for the Q-learning phase. Therefore, SBM was actually tested in a fully online setting similar to DQN. To satisfy the theoretical assumption $\|\phi(s, a)\|_2 \leq 1$ used in the background (Section 2.1), we apply norm clipping to the output of the feature encoder network. We follow Algorithm 2, performing alternating updates between the Q-learning objective (Equation (6)) and the spectral representation objective (SBM Loss). The distribution $\nu(\theta)$ is set to $\mathcal{N}(\hat{\theta}_{t+1}, \sigma_{rep}^2 I)$, as explained in Section 4. For specific hyperparameters and implementation details we refer the reader to Section E. We compare standard ϵ -greedy exploration with the TS approach described in Section 3.5. As R2D2 operates in a distributed setting with multiple asynchronous actors, the precision matrix Σ is shared across the actors while each of them sample $\hat{\theta}_{TS}$ before each epoch according to Equation (5). For R2D2

Method	Atari ALE		Atari Explore	
	Mean	Median	Mean	Median
DQN (Mnih et al., 2013)	1.62 ± 0.12	0.52	0.24 ± 0.03	0.11
Online PVN (ϵ -greedy)	1.72 ± 0.11	0.60	0.26 ± 0.03	0.21
Online PVN (TS)	1.84 ± 0.15	0.65	0.31 ± 0.04	0.23
SBM + DQN (ϵ -greedy)	1.80 ± 0.13	0.64	0.33 ± 0.03	0.23
SBM + DQN (TS)	2.23 ± 0.19	0.85	0.45 ± 0.05	0.24
R2D2 (Kapturowski et al., 2018)	3.21 ± 0.22	1.14	0.40 ± 0.06	0.22
SBM + R2D2 (ϵ -greedy)	3.3 ± 0.24	1.14	0.45 ± 0.05	0.22
SBM + R2D2 (TS)	3.53 ± 0.23	1.37	0.61 ± 0.03	0.30

Table 1: Aggregated Atari HNS at 100M steps. Our SBM method with TS is in bold.

Method	Atari ALE	Atari Explore
Features from DQN Loss (Azizzadenesheli et al., 2018)	1.73 ± 0.14	0.30 ± 0.03
Features from Naive MSE Loss	1.82 ± 0.12	0.37 ± 0.04
SBM w/o Orthogonality Reg.	2.11 ± 0.11	0.43 ± 0.05
SBM Full	2.23 ± 0.19	0.45 ± 0.05

Table 2: Ablation study on the DQN backbone with TS exploration.

experiments, the spectral objective is applied using a multi-step operator in the form of Retrace operator target (Munos et al., 2016) in place of $\mathcal{T}Q_{\theta,t}$ (see Section D). We found that choosing σ_{rep} is crucial for successful learning. We conducted a grid search and empirically found the best value to be $\sigma_{rep}^2 = 10^{-2}$.

In addition, in order to compare SBM to a Laplace based representation method, we compare SBM to PVN Farebrother et al. (2023). To fairly compare with SBM, we adapted PVN to our online learning setup. We alternate between policy optimization (DQN) and representation learning. The representation learning phase uses Random Network Indicators (RNI) to define auxiliary tasks, over the collected data, as in the original PVN. We used the same network architecture and latent dimension as our SBM experiments. We evaluated Online PVN with both ϵ -greedy and TS. Lastly, we made an ablation study with a DQN backbone. We examine SBM with features extracted with naive MSE loss in Equation (1) and not with our suggested spectral representation. Furthermore, we investigated the specific case where $\nu_t(\theta) = \delta(\theta - \hat{\theta}_t)$ under the naive MSE loss. This configuration effectively corresponds to standard DQN training in Equation (6) augmented with TS exploration, suggest by Azizzadenesheli et al. (2018). We also examine the effect of the orthogonality regularization by training SBM without it. All runs are done over 10 seeds.

5.2 MAIN RESULTS

Table 1 presents results comparing the baseline agents with their SBM counterparts, which incorporate spectral representation learning and exploration. Figure 3 presents the results against environment steps over the training. Per game results are presented in Section F.

DQN Comparison: We find SBM significantly outperforms vanilla DQN. Furthermore, combining spectral learning with TS exploration yields substantial gains, particularly on hard exploration tasks, suggesting that the learned representation effectively facilitates structured exploration. We observed that SBM underperforms compared to DQN in precision-control games such as Breakout. This is a characteristic side-effect of optimistic exploration strategies (like TS) in environments with 'narrow' optimal paths or instant-death conditions, where high-variance actions often lead to termination. This effect can be mitigated by annealing the exploration noise or switching to greedy evaluation once a sufficient performance threshold is reached.

R2D2 Comparison: We augment the R2D2 agent, which utilizes recurrent networks and Retrace targets, with our spectral representation learning objective applied to the Retrace target. R2D2 with SBM demonstrates improved performance over the baseline R2D2, with the most significant improvement observed when combined with TS, particularly on the Atari Explore subset.

Online PVN Comparison: While Online PVN improves over DQN, SBM with TS performs better, especially on Atari Explore. This is likely because Online PVN learns reward-agnostic features using successor measure representation, capturing state-action structure on various MDPs, whereas

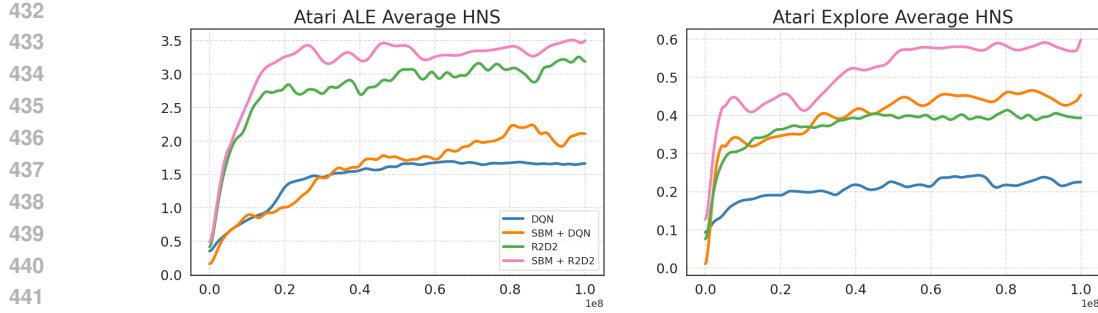


Figure 3: Average HNS over 100M steps. DQN and R2D2 against their SBM counterparts with TS across Atari ALE benchmark (left) and on the hard-exploration subset (right).

SBM learns reward-dependent features by enforcing closure under the optimal Bellman operator. SBM’s approach appears better for maximizing online rewards, while PVN’s may be more suited for adapting to varied reward tasks.

Ablation Study: The results are presented in Table 2. SBM-learned features yielded significantly better results compared to features learned by minimizing the naive MSE loss, highlighting the advantage of the spectral objective over direct Bellman error minimization. While limiting representation learning to the current policy (effectively the DQN objective) combined with TS exploration improves performance over vanilla ϵ -greedy DQN, it causes significant degradation compared to SBM or even the full Naive MSE loss. This indicates the critical importance of learning representations over a distribution of value functions rather than solely fitting the current policy. Additionally, performance without the orthogonality regularizer was slightly lower, suggesting that while beneficial, strict orthogonality is not the primary driver of SBM’s gains. The computational overhead of SBM is relatively small, resulting in a $\sim 20\%$ increase in compute time per 1M steps. This overhead primarily stems from training the $\hat{\theta}$ network and computing the inverse covariance for Thompson Sampling. Notably, the core representation learning cost mirrors vanilla baselines, while the Q-learning phase remains highly efficient by updating only linear weights.

6 RELATED WORK

Our work builds upon and distinguishes itself from several key areas in reinforcement learning.

Representation Learning in RL: Many auxiliary objectives, such as contrastive learning (Laskin et al., 2020; Schwarzer et al., 2021) and autoencoders (Kingma et al., 2019), don’t explicitly optimize for Bellman compatibility. Laplace-based methods, including Successor Features (Mahadevan, 2005; Barreto et al., 2017; Touati & Ollivier, 2021; Farebrother et al., 2023), often aim for task-agnostic, generalizable representations, potentially less potent for task-specific optimization as done in our work. Directly learning linear representations for the optimal Q-function can be sample inefficient under misspecification (Du et al., 2019; Azizzadenesheli et al., 2018). In contrast, SBM, derives its objective from structural properties under low IBE (Zanette et al., 2020a), targeting Bellman consistency across the function space, which makes the IBE-based model-free representation learning (Modi et al., 2024) eventually practical.

Linear MDPs and IBE: Linear MDPs (Jin et al., 2020; Yang & Wang, 2020) assume linear transitions and rewards in features, a practically challenging condition (Agarwal et al., 2020; Zhang et al., 2022; Ren et al., 2022). The IBE (Zanette et al., 2020a) relaxes this, measuring if the function space \mathcal{Q}_ϕ is nearly closed under the Bellman operator ($\mathcal{T}Q_\theta \approx Q_{\hat{\theta}}$). Low IBE, a more direct target than full MDP linearization, ensures theoretical guarantees; e.g., Zanette et al. (2020a) presented a planning-based algorithm achieving $\tilde{\mathcal{O}}(dH^{1.5}\sqrt{T} + \sqrt{dHT}\mathcal{I}_\phi)$ regret under low-IBE settings. While practical methods approximate linear MDPs by combining representation learning for RL with some dynamics assumptions (Zhang et al., 2022; Ren et al., 2022; Shribak et al., 2024; Fujimoto et al., 2025), our work is inspired by the $\mathcal{I}_\phi = 0$ condition’s structural implications, avoiding full Linear MDP decomposition which can be resource-intensive and require impractical latent dimensions with heuristic nonlinear correction in (Fujimoto et al., 2025).

Bellman Error/Residual Minimization: Traditional value-based RL minimizes the Bellman error via methods like gradient TD (Sutton et al., 2009), residual algorithms (Baird, 1995), and target

486 networks (Mnih et al., 2013). Distributional RL (Bellemare et al., 2017) matches return distributions.
 487 Unlike these, our method doesn't directly minimize the residual for a single θ , but leverages structural
 488 relationships (specifically covariance alignment) emerging from assuming zero residual across a
 489 function distribution induced by $\nu(\theta)$.

490 **Exploration Strategies:** In contrast to count-based methods (Bellemare et al., 2016) and intrinsic
 491 motivation (Pathak et al., 2017), TS offers a Bayesian uncertainty approach, effective in linear settings
 492 (Agrawal & Goyal, 2013; Azizzadenesheli et al., 2018). Notably, Zanette et al. (2020b) analyzes TS
 493 for RL with low-IBE representations. Our contribution is synergistic: our spectral objective learns
 494 suitable representations ϕ , and TS naturally utilizes the resulting feature covariance Σ_t for more
 495 directed exploration.

496 7 CONCLUSION

497 We introduced Spectral Bellman Method (SBM), a theoretically-motivated method for spectral
 498 representation learning and efficient TS based exploration. Our spectral objective derived from the
 499 zero-IBE condition allows for theoretically-grounded representation. We show that the SBM is
 500 compatible with multi-step operators such as Retrace. Experiments on Atari demonstrate consistent
 501 improvements over baselines, especially on hard-exploration games and when applied to advanced
 502 agents (R2D2), validating our approach.

503 A key limitation includes the sensitivity of SBM over the parameter distribution, which needs to be
 504 tuned carefully. Also, a broader empirical validation beyond Atari would be beneficial (e.g., continu-
 505 ous control tasks). Future work may focus on strengthening the theoretical analysis (convergence,
 506 non-zero IBE), developing improved algorithms (better approximations of $\tilde{\theta}$, adaptive parameter
 507 sampling), and extending the framework to other settings (e.g., distributional or actor-critic methods).

508 In conclusion, SBM offers a promising avenue for representation learning and exploration, potentially
 509 leading to more efficient, stable, and exploratory RL agents, by explicitly optimizing features for
 510 Bellman consistency across the function space.

511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

540 REFERENCES

541

542 Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy, and Wen Sun. Flambe: Structural complexity and
543 representation learning of low rank mdps. *Advances in neural information processing systems*, 33:20095–
544 20107, 2020.

545 Shipra Agrawal and Navin Goyal. Thompson sampling for contextual bandits with linear payoffs. In *International
546 conference on machine learning*, pp. 127–135. PMLR, 2013.

547 Kamyar Azizzadenesheli, Emma Brunskill, and Animashree Anandkumar. Efficient exploration through bayesian
548 deep q-networks. In *2018 Information Theory and Applications Workshop (ITA)*, pp. 1–9. IEEE, 2018.

549 Adrià Puigdomènec Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi, Zhaohan Daniel
550 Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark. In *International conference
551 on machine learning*, pp. 507–517. PMLR, 2020.

552 Leemon Baird. Residual algorithms: Reinforcement learning with function approximation. In *Machine Learning
553 Proceedings 1995*, pp. 30–37. Elsevier, 1995.

554 André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P Van Hasselt, and David Silver.
555 Successor features for transfer in reinforcement learning. In *Advances in neural information processing
556 systems*, volume 30, 2017.

557 Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos. Unifying
558 count-based exploration and intrinsic motivation. In *Advances in neural information processing systems*,
559 volume 29, 2016.

560 Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environment: An
561 evaluation platform for general agents. *Journal of artificial intelligence research*, 47:253–279, 2013.

562 Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement learning. In
563 *International conference on machine learning*, pp. 449–458. PMLR, 2017.

564 Simon S Du, Sham M Kakade, Ruosong Wang, and Lin F Yang. Is a good representation sufficient for sample
565 efficient reinforcement learning? *arXiv preprint arXiv:1910.03016*, 2019.

566 Yonathan Efroni, Gal Dalal, Bruno Scherrer, and Shie Mannor. Beyond the one-step greedy approach in
567 reinforcement learning. In *International Conference on Machine Learning*, pp. 1387–1396. PMLR, 2018.

568 Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron, Vlad
569 Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted
570 actor-learner architectures. In *International conference on machine learning*, pp. 1407–1416. PMLR, 2018.

571 Jesse Farebrother, Joshua Greaves, Rishabh Agarwal, Charline Le Lan, Ross Goroshin, Pablo Samuel Castro,
572 and Marc G Bellemare. Proto-value networks: Scaling representation learning with auxiliary tasks. *arXiv
573 preprint arXiv:2304.12567*, 2023.

574 Scott Fujimoto, Pierluca D’Oro, Amy Zhang, Yuandong Tian, and Michael Rabbat. Towards general-purpose
575 model-free reinforcement learning. *arXiv preprint arXiv:2501.16142*, 2025.

576 Gene H. Golub and Charles F. Van Loan. *Matrix Computations - 4th Edition*. Johns Hopkins University Press,
577 Philadelphia, PA, 4th edition, 2013. doi: 10.1137/1.9781421407944.

578 Zhaohan Daniel Guo, Bernardo Avila Pires, Khimya Khetarpal, Dale Schuurmans, and Bo Dai. Representation
579 learning via non-contrastive mutual information. *arXiv preprint arXiv:2504.16667*, 2025.

580 Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I Jordan. Provably efficient reinforcement learning with
581 linear function approximation. In *Conference on learning theory*, pp. 2137–2143. PMLR, 2020.

582 Steven Kapturowski, Georg Ostrovski, John Quan, Remi Munos, and Will Dabney. Recurrent experience replay
583 in distributed reinforcement learning. In *International conference on learning representations*, 2018.

584 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*, 2014.

585 Diederik P Kingma, Max Welling, et al. An introduction to variational autoencoders. *Foundations and Trends®
586 in Machine Learning*, 12(4):307–392, 2019.

587 Michael Laskin, Aravind Srinivas, and Pieter Abbeel. Curl: Contrastive unsupervised representations for
588 reinforcement learning. In *International conference on machine learning*, pp. 5639–5650. PMLR, 2020.

594 Sridhar Mahadevan. Proto-value functions: Developmental reinforcement learning. In *Proceedings of the 22nd*
 595 *international conference on Machine learning*, pp. 553–560, 2005.

596

597 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and
 598 Martin Riedmiller. Playing atari with deep reinforcement learning. *arXiv preprint arXiv:1312.5602*, 2013.

599

600 Aditya Modi, Jinglin Chen, Akshay Krishnamurthy, Nan Jiang, and Alekh Agarwal. Model-free representation
 600 learning and exploration in low-rank mdps. *Journal of Machine Learning Research*, 25(6):1–76, 2024.

601

602 Rémi Munos, Tom Stepleton, Anna Harutyunyan, and Marc Bellemare. Safe and efficient off-policy reinforce-
 602 ment learning. *Advances in neural information processing systems*, 29, 2016.

603

604 Ofir Nabati, Guy Tennenholz, and Shie Mannor. Representation-driven reinforcement learning. In *International*
 604 *Conference on Machine Learning*, pp. 25588–25603. PMLR, 2023.

605

606 Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard L Lewis, and Satinder Singh. Action-conditional video
 607 prediction using deep networks in atari games. In *Advances in neural information processing systems*,
 608 volume 28, 2015.

609

610 Ian Osband, Daniel Russo, and Benjamin Van Roy. (more) efficient reinforcement learning via posterior sampling.
 610 *Advances in Neural Information Processing Systems*, 26, 2013.

611

612 Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration via bootstrapped
 612 dqn. *Advances in neural information processing systems*, 29, 2016.

613

614 Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by self-
 614 supervised prediction. In *International conference on machine learning*, pp. 2778–2787. PMLR, 2017.

615

616 Tobias Pohlen, Bilal Piot, Todd Hester, Mohammad Gheshlaghi Azar, Dan Horgan, David Budden, Gabriel
 617 Barth-Maron, Hado Van Hasselt, John Quan, Mel Večerík, et al. Observe and look further: Achieving
 618 consistent performance on atari. *arXiv preprint arXiv:1805.11593*, 2018.

619

620 Martin L Puterman. Markov decision processes. *Handbooks in operations research and management science*, 2:
 331–434, 1990.

621

622 Tongzheng Ren, Tianjun Zhang, Lisa Lee, Joseph E Gonzalez, Dale Schuurmans, and Bo Dai. Spectral
 622 decomposition representation for reinforcement learning. *arXiv preprint arXiv:2208.09515*, 2022.

623

624 Tongzheng Ren, Tianjun Zhang, Lisa Lee, Joseph E. Gonzalez, Dale Schuurmans, and Bo Dai. Spectral
 624 decomposition representation for reinforcement learning, 2023. URL <https://arxiv.org/abs/2208.09515>.

625

626

627 Terence D Sanger. Optimal unsupervised learning. *Neural Networks*, 1(Supplement-1):127, 1988.

628

629 Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon Schmitt,
 629 Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari, go, chess and shogi
 630 by planning with a learned model. *Nature*, 588(7839):604–609, 2020.

631

632 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimization
 632 algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

633

634 Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville, and Philip Bachman. Data-
 634 efficient reinforcement learning with self-predictive representations. In *International Conference on Learning*
 635 *Representations*, 2021.

636

637 Dmitry Shribak, Chen-Xiao Gao, Yitong Li, Chenjun Xiao, and Bo Dai. Diffusion spectral representation
 638 for reinforcement learning. In A. Globerson, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and
 639 C. Zhang (eds.), *Advances in Neural Information Processing Systems*, volume 37, pp. 110028–110056. Cur-
 640 ran Associates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/c6d8301d2235036e1d23081252158a79-Paper-Conference.pdf.

641

642 Richard S Sutton, Andrew G Barto, et al. *Reinforcement learning: An introduction*, volume 1. MIT press
 642 Cambridge, 1998.

643

644 Richard S Sutton, Hamid Reza Maei, Doina Precup, Shalabh Bhatnagar, David Silver, Csaba Szepesvári, and Eric
 645 Wiewiora. Fast gradient-descent methods for temporal-difference learning with linear function approximation.
 645 In *Proceedings of the 26th annual international conference on machine learning*, pp. 993–1000, 2009.

646

647 Ahmed Touati and Yann Ollivier. Learning one representation to optimize all rewards. *Advances in Neural*
 647 *Information Processing Systems*, 34:13–23, 2021.

648 Lloyd N Trefethen and David Bau. *Numerical linear algebra*. SIAM, 2022.
 649
 650 Stephen J Wright. Numerical optimization, 2006.
 651
 652 Yifan Wu, George Tucker, and Ofir Nachum. The laplacian in rl: Learning representations with efficient
 653 approximations. *arXiv preprint arXiv:1810.04586*, 2018.
 654
 655 Bo Xie, Yingyu Liang, and Le Song. Scale up nonlinear component analysis with doubly stochastic gradients.
 656 *Advances in Neural Information Processing Systems*, 28, 2015.
 657
 658 Lin Yang and Mengdi Wang. Reinforcement learning in feature space: Matrix bandit, kernels, and regret bound.
 659 In *International Conference on Machine Learning*, pp. 10746–10756. PMLR, 2020.
 660
 661 Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer, and Emma Brunskill. Learning near optimal policies
 662 with low inherent bellman error. In *International Conference on Machine Learning*, pp. 10978–10989. PMLR,
 663 2020a.
 664
 665 Andrea Zanette, Alessandro Lazaric, Mykel J Kochenderfer, and Emma Brunskill. Provably efficient reward-
 666 agnostic navigation with linear value iteration. *Advances in Neural Information Processing Systems*, 33:
 667 11756–11766, 2020b.
 668
 669 Amy Zhang, Rowan Thomas McAllister, Roberto Calandra, Yarin Gal, and Sergey Levine. Learning invariant
 670 representations for reinforcement learning without reconstruction. In *International Conference on Learning
 671 Representations*, 2021.
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701

702 A THE BELLMAN OPERATOR SPECTRAL DECOMPOSITION THEOREM
703

704 We start by incorporating distributions over states/actions and parameters, let $\rho(s, a)$ be a distribution
705 over $\mathcal{S} \times \mathcal{A}$. In the finite case, let $P_{s,a}$ be a diagonal matrix with $\sqrt{\mathbb{P}(\kappa(i))}$ on the diagonal. Similarly,
706 let ν_θ represent weighting by $\sqrt{\nu(\theta)}$ (conceptually, an operator or a diagonal matrix if \mathcal{B}_ϕ and m are
707 finite). We define the augmented feature and parameter matrices as $\Phi_P = P_{s,a}\Phi$ and $\tilde{\Theta}_P = \tilde{\Theta}P_\theta$.
708 The distribution-augmented Bellman matrix becomes:
709

$$710 \quad \overline{\mathcal{T}Q} := P_{s,a}(\mathcal{T}Q)P_\theta = P_{s,a}\Phi\tilde{\Theta}P_\theta = \Phi_P\tilde{\Theta}_P.$$

711 The following theorem highlights a structural connection between the (weighted) feature matrix,
712 (weighted) parameter matrix and the singular matrix of the Bellman matrix.
713

714 **Theorem 1** (Bellman Operator Spectral Decomposition). *Let $\phi : \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}^d$ be a feature map
715 with $\mathcal{I}_\phi = 0$. Let the feature covariance matrix under $\rho(s, a)$ be*

$$716 \quad \Lambda := \mathbb{E}_{(s,a) \sim \rho(s,a)} [\phi(s, a)\phi(s, a)^\top] = \Phi_P^\top\Phi_P.$$

717 Let $\Lambda = K\Lambda_0K^\top$ be the eigenvalue decomposition of Λ , where $\Lambda_0 = \text{diag}(\{\lambda_i\}_{i=1}^d)$ is diagonal
718 and K is an orthogonal matrix. Consider the SVD of the augmented Bellman matrix $\overline{\mathcal{T}Q} = U\Sigma V^\top$,
719 then the SVD components satisfy:

720 1. The non-zero singular values in Σ (up to d) are related to the eigenvalues of Λ . Specifically, Σ
721 has the form $\text{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_d}, 0, \dots)$ up to permutation. Let $\Sigma_d = \text{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_d})$.
722
723 2. The corresponding left singular vectors (first d columns of U , denoted \tilde{U}) and right singular
724 vectors (first d columns of V , denoted \tilde{V}) satisfy:
725

$$726 \quad \Phi_P = \tilde{U}\Sigma_d K^\top \quad \text{and} \quad \tilde{\Theta}_P = K\Sigma_d \tilde{V}^\top.$$

727 *Proof.* Under the assumption of zero Bellman error, we have that

$$728 \quad \overline{\mathcal{T}Q}^\top \overline{\mathcal{T}Q} = \tilde{\Theta}_P^\top \Phi_P^\top \Phi_P \tilde{\Theta}_P = V\Sigma^\top \Sigma V^\top$$

729 where the last equality follows from the SVD of $\overline{\mathcal{T}Q}$. Given that $\Phi_P^\top \Phi_P = \Lambda$ we have:
730

$$731 \quad \tilde{\Theta}_P^\top \Lambda \tilde{\Theta}_P = V\Sigma^\top \Sigma V^\top.$$

732 Both sides must have the same rank. Therefore, both matrices are at most of rank d and eigenvalues
733 $\lambda_1, \dots, \lambda_d$. Since the SVD is unique up to the ordering of singular values and corresponding
734 columns of U and V , we can set Σ singular value order to be $\text{diag}(\sqrt{\lambda_1}, \dots, \sqrt{\lambda_d}, 0, \dots)$, which forces
735 $K\Lambda_0^{1/2}\tilde{V}^\top = \tilde{\Theta}_P$, where $\tilde{V} \in \mathbb{R}^{n \times d}$ is a matrix whose columns are the first d columns of V , which
736 correspond to the non-zero indexes in Σ . Similarly, we have:
737

$$738 \quad \overline{\mathcal{T}Q}\overline{\mathcal{T}Q}^\top = \Phi_P \tilde{\Theta}_P \tilde{\Theta}_P^\top \Phi_P^\top = U\Sigma\Sigma^\top U^\top.$$

739 Plugging in the identity of $\tilde{\Theta}$ derived above yields:
740

$$741 \quad \Phi_P K \Lambda_0 K^\top \Phi_P^\top = U\Sigma\Sigma^\top U^\top.$$

742 This implies $\tilde{U}\Lambda^{1/2}K^\top = \Phi_P$, which completes the proof. \square
743

744 **Remark 1.** In the special case that Λ is a diagonal matrix, we get $K = I$ and $\Lambda = \Lambda_0$.
745

746 B PROOF FOR PROPOSITION 1
747

748 *Proof.*

$$749 \quad \langle \overline{\mathcal{T}Q}_\theta(\cdot), \bar{\phi}(\cdot) \rangle_{\rho(s,a)} = \int \bar{\phi}(s, a) \overline{\mathcal{T}Q}_\theta(s, a) ds da
750 \\ = \int \phi(s, a) \phi(s, a)^\top \bar{\theta}(\theta) \rho(s, a) ds da
751 \\ = \int \phi(s, a) \phi(s, a)^\top \rho(s, a) ds da \bar{\theta}(\theta)
752 \\ = \Lambda_1 \tilde{\theta}(\theta).$$

$$\begin{aligned}
756 \quad & \langle \overline{\mathcal{T}Q}_\cdot(s, a), \bar{\theta}(\cdot) \rangle_{\nu(\theta)} = \int \bar{\theta}(\theta) \overline{\mathcal{T}Q}_\theta(s, a) d\theta \\
757 \quad & = \int \tilde{\theta}(\theta) \bar{\phi}(s, a)^\top \tilde{\theta}(\theta) \nu(\theta) d\theta \\
758 \quad & = \int \tilde{\theta}(\theta) \tilde{\theta}(\theta)^\top \nu(\theta) d\theta \bar{\phi}(s, a) \\
759 \quad & = \Lambda_2 \bar{\phi}(s, a).
\end{aligned}$$

□

766 C PROOF FOR PROPOSITION 2

767 *Proof.* The equivalent objective for the t -th iteration of the power method is given by

$$\begin{aligned}
768 \quad & \min_{\phi, \bar{\theta}} \int \|\Lambda_{2,t}\phi(s, a) - \langle \mathcal{T}Q_\cdot(s, a), \tilde{\theta}_t(\cdot) \rangle\|^2 dsda + \int \|\Lambda_{1,t}\bar{\theta}(\theta) - \langle \mathcal{T}Q_\theta(\cdot), \phi_t(\cdot) \rangle\|^2 d\theta \\
769 \quad & \text{s.t. } \mathbb{E}_{\rho(s,a)}[\phi_i(s, a)\phi_j(s, a)] = \mathbb{E}_{\nu(\theta)}[\tilde{\theta}_i(\theta)\tilde{\theta}_j(\theta)] = 0 \quad \forall i \neq j \in [d]
\end{aligned} \tag{7}$$

770 The choice of the norm is arbitrary. Therefore, we can choose the norm induced by $\Lambda_{1,t}^{-1}$ and $\Lambda_{2,t}^{-1}$ for
771 the left and right terms respectively

$$\begin{aligned}
772 \quad & \int \left\| \Lambda_{2,t}\bar{\phi}(s, a) - \int \overline{\mathcal{T}Q}_\theta(s, a)\bar{\theta}_t(\theta) d\theta \right\|_{\Lambda_{2,t}^{-1}}^2 dsda \\
773 \quad & = \int \{C_1 + \bar{\phi}(s, a)^\top \Lambda_{2,t}\bar{\phi}(s, a) - 2\bar{\phi}(s, a)^\top \int \overline{\mathcal{T}Q}_\theta(s, a)\bar{\theta}_t(\theta) d\theta\} dsda \\
774 \quad & = \int C_1 dsda + \mathbb{E}_{\rho(s,a)}[\phi(s, a)^\top \Lambda_{2,t}\phi(s, a)] - 2\mathbb{E}_{\nu(\theta)\rho(s,a)}[\mathcal{T}Q_{\theta,t}(s, a)\phi(s, a)^\top \tilde{\theta}_t(\theta)]
\end{aligned}$$

775 where C_1 is a term that does not depend on ϕ . The same practice can be used for the right term in
776 Eq 7

$$\mathbb{E}_{\nu(\theta)}[\tilde{\theta}(\theta)^\top \Lambda_{1,t}\tilde{\theta}(\theta)] - 2\mathbb{E}_{\nu(\theta)\rho(s,a)}[\mathcal{T}Q_{\theta,t}(s, a)\tilde{\theta}(\theta)^\top \phi_t(s, a)] + C_2$$

777 where C_2 is a constant which does not depend on $\tilde{\theta}$. Therefore, the overall equivalent objective is

$$\mathcal{L}(\phi, \theta; \nu, \rho) = \mathcal{L}_1(\phi) + \mathcal{L}_2(\tilde{\theta}) \quad \text{s.t. } \phi \in \mathcal{M}_{\mathcal{S} \times \mathcal{A}}^\rho, \tilde{\theta} \in \mathcal{M}_{\mathcal{B}_\phi}^\nu$$

778 where

$$\begin{aligned}
779 \quad & \mathcal{L}_1(\phi) = \mathbb{E}_{\rho(s,a)}[\phi(s, a)^\top \Lambda_{2,t}\phi(s, a)] - 2\mathbb{E}_{\nu(\theta)\rho(s,a)}[\mathcal{T}Q_{\theta,t}(s, a)\phi(s, a)^\top \tilde{\theta}_t(\theta)], \\
780 \quad & \mathcal{L}_2(\tilde{\theta}) = \mathbb{E}_{\nu(\theta)}[\tilde{\theta}(\theta)^\top \Lambda_{1,t}\tilde{\theta}(\theta)] - 2\mathbb{E}_{\nu(\theta)\rho(s,a)}[\mathcal{T}Q_{\theta,t}(s, a)\tilde{\theta}(\theta)^\top \phi_t(s, a)].
\end{aligned}$$

□

781 For the practical unconstrained version of SBM Loss see Section E.

782 D MULTI-STEP ALGORITHMS

783 D.1 THE h -STEP OPTIMAL BELLMAN OPERATOR

784 While the analysis in Section 3 focused on the standard one-step Bellman operator \mathcal{T} , the spectral
785 representation learning framework can be naturally extended to multi-step operators. Multi-step
786 methods are widely used in modern RL agents as they often accelerate learning by propagating
787 information more rapidly through trajectories (Sutton et al., 1998; Pohlen et al., 2018; Schrittwieser
788 et al., 2020). Consider the h -step optimal Bellman operator, defined recursively:

$$789 \quad \mathcal{T}^h Q(s, a) = \mathcal{T}(\mathcal{T}^{h-1} Q)(s, a) = r(s, a) + \gamma \mathbb{E}_{s' \sim P(\cdot | s, a)} \left[\max_{a' \in \mathcal{A}} \mathcal{T}^{h-1} Q(s', a') \right]. \tag{8}$$

The optimal Q-function Q^* is also the fixed point of \mathcal{T}^h for any $h \geq 1$ (Efroni et al., 2018). Furthermore, \mathcal{T}^h is known to be a contraction mapping with factor γ^h in the max-norm (Efroni et al., 2018), which is potentially beneficial for stability. Evaluating $\mathcal{T}^h Q$ generally requires access to a model of the environment, either through a simulator or a learned model (Schrittwieser et al., 2020), often approximated using planning techniques like Monte Carlo Tree Search (MCTS).

We can define the inherent Bellman error with respect to this h -step operator:

$$\mathcal{I}_\phi^h := \sup_{\theta \in \mathcal{B}} \inf_{\tilde{\theta} \in \mathcal{B}} \|\mathcal{T}^h Q_\theta - Q_{\tilde{\theta}}\|_\infty. \quad (9)$$

Crucially, if the function space \mathcal{Q}_ϕ is closed under the one-step operator \mathcal{T} , it is also closed under \mathcal{T}^h .

Proposition 3 (h -step IBE Bound). *Consider a feature map ϕ . If the one-step IBE is \mathcal{I}_ϕ , then the h -step IBE satisfies $\mathcal{I}_\phi^h \leq \sum_{i=0}^{h-1} \gamma^i \mathcal{I}_\phi \leq \frac{1}{1-\gamma} \mathcal{I}_\phi$. In particular, $\mathcal{I}_\phi = 0$ iff $\mathcal{I}_\phi^h = 0$.*

Proof. Using the definition $\mathcal{I}_\phi = \sup_Q \inf_{\tilde{Q}} \|\mathcal{T}Q - \tilde{Q}\|_\infty$, there exists \tilde{Q}_1 such that $\|\mathcal{T}Q - \tilde{Q}_1\|_\infty \leq \mathcal{I}_\phi$. Similarly, there exists \tilde{Q}_2 such that $\|\mathcal{T}\tilde{Q}_1 - \tilde{Q}_2\|_\infty \leq \mathcal{I}_\phi$. Then, using the triangle inequality and the γ -contraction property of \mathcal{T} :

$$\begin{aligned} \|\mathcal{T}^2 Q - \tilde{Q}_2\|_\infty &= \|\mathcal{T}(\mathcal{T}Q) - \mathcal{T}\tilde{Q}_1 + \mathcal{T}\tilde{Q}_1 - \tilde{Q}_2\|_\infty \\ &\leq \|\mathcal{T}(\mathcal{T}Q) - \mathcal{T}\tilde{Q}_1\|_\infty + \|\mathcal{T}\tilde{Q}_1 - \tilde{Q}_2\|_\infty \\ &\leq \gamma \|\mathcal{T}Q - \tilde{Q}_1\|_\infty + \mathcal{I}_\phi \leq \gamma \mathcal{I}_\phi + \mathcal{I}_\phi. \end{aligned}$$

Repeating this argument h times yields the bound $\mathcal{I}_\phi^h \leq \sum_{i=0}^{h-1} \gamma^i \mathcal{I}_\phi$. \square

This proposition implies that if features ϕ yield low (or zero) one-step IBE, they also yield low (or zero) h -step IBE. Therefore, the spectral representation learning objective in SBM Loss can be directly applied by replacing the one-step operator $\mathcal{T}Q_{\theta,t}$ with its h -step counterpart $\mathcal{T}^h Q_{\theta,t}$ (or its approximation, e.g., via MCTS). This encourages learning features that linearly represent the outcome of h -step lookahead planning.

D.2 PRACTICAL MULTI-STEP TARGETS

While \mathcal{T}^h offers theoretical appeal, practical deep RL algorithms often employ sampled multi-step targets derived from actual trajectories, such as n -step Q-learning targets or Retrace (Munos et al., 2016). Let $Q_\theta(s, a) = \phi(s, a)^\top \theta$ and $\pi_\theta(s) = \arg \max_a Q_\theta(s, a)$ (such that $\mathcal{T}^{\pi_\theta} Q_\theta = \mathcal{T}Q_\theta$). A generic n -step target involves bootstrapping off Q_θ after n steps.

However, using such targets within our spectral learning framework, which involves sampling different $\theta \sim \nu(\theta)$ poses a challenge in off-policy settings. The target policy π_θ associated with each sampled θ will likely differ significantly from the behavior policy μ used to generate the data in the replay buffer \mathcal{D} . This discrepancy can lead to high variance or instability, especially for longer multi-step returns.

To mitigate this, off-policy correction techniques like Retrace(λ) (Munos et al., 2016) are crucial. Retrace provides a return target that mixes n -step returns and function approximation values, using importance sampling ratios $c_k = \beta \min\{1, \frac{\pi_\theta(a_k|s_k)}{\mu(a_k|s_k)}\}$:

$$\mathcal{R}^\beta Q_\theta(s_t, a_t) = Q_\theta(s_t, a_t) + \mathbb{E}_\mu \left[\sum_{k=t}^{\infty} \gamma^{k-t} \left(\prod_{j=t+1}^k c_j \right) \delta_k \right], \quad (10)$$

where $\delta_k = \mathcal{T}^{\pi_\theta} Q_\theta(s_k, a_k) - Q_\theta(s_k, a_k)$ is the TD error. In practice, the used target policy $\pi_\theta^{\epsilon_t}$ is an ϵ -greedy version of π_θ with ϵ_t and $t \rightarrow 0$ along the training process such that $\|\mathcal{T}^{\pi_\theta^{\epsilon_t}} Q_\theta - \mathcal{T}Q_\theta\|_\infty \leq \epsilon_t \|Q_\theta\|_\infty$ as suggested by (Munos et al., 2016).

Furthermore, to handle varying reward scales across different environments (e.g., in Atari), value transformations are often applied (Pohlen et al., 2018). A common transformation is $f(x) = \text{sign}(x)(\sqrt{|x|+1} - 1) + \epsilon x$ for small ϵ . The target operator becomes $\mathcal{R}_f^\beta Q = f(\mathcal{R}^\beta f^{-1}(Q))$.

864 While the strict condition $\mathcal{I}_\phi = 0$ does not guarantee that $\mathcal{R}^\beta Q_\theta$ lies within \mathcal{Q}_ϕ , we can still
 865 hypothesize that learning features ϕ to linearly represent these practical, information-rich targets is
 866 beneficial. We can heuristically apply SBM Loss by replacing $\mathcal{T}Q_{\theta,t}$ with $\mathcal{R}^\beta Q_{\theta,t}$. This encourages
 867 ϕ to capture structure relevant to these robust, multi-step, off-policy corrected targets used in high-
 868 performing agents like R2D2 (Kapturowski et al., 2018), even if the direct IBE connection is relaxed.
 869

870 E IMPLEMENTATION DETAILS: SBM

872 E.1 UNCONSTRAINED LOSS FOR SBM LOSS

874 The unconstrained objective (the Lagrangian) of SBM Loss is:

$$875 \mathcal{L}(\phi, \theta; \nu, \rho) = \mathcal{L}_1(\phi) + \mathcal{L}_2(\tilde{\theta}) + \mathcal{L}_{orth}(\phi, \tilde{\theta}),$$

877 $\mathcal{L}_{orth}(\phi, \tilde{\theta}) = \mathbb{E}_{\theta \sim \nu(\theta)} \left[\sum_{i \neq j \in [d]} \lambda_{i,j} \tilde{\theta}_i(\theta) \tilde{\theta}_j(\theta) \right] + \mathbb{E}_{(s,a) \sim \rho(s,a)} \left[\sum_{i \neq j \in [d]} \mu_{i,j} \phi_i(s, a) \phi_j(s, a) \right]$ is
 878 an orthogonality regularizer for a set of positive Lagrange multipliers $\{\lambda_{i,j}, \mu_{i,j}\}_{i \neq j \in [d]}$.
 879

880 If $\phi^*, \tilde{\theta}^*$ is a solution to the primal problem in Equation (7), then there exist set of positive Lagrange
 881 multipliers $\{\lambda_{i,j}^*, \mu_{i,j}^*\}_{i \neq j \in [d]}$ such that $\phi^*, \tilde{\theta}^*$ satisfies the KKT conditions: (1) $\nabla \mathcal{L}(\phi^*, \theta^*; \nu, \rho) = 0$
 882 and (2) Φ and $\tilde{\Theta}$ are orthogonal (Theorem 2.1 in Wright (2006)).

884 $\mathcal{L}_{orth}(\phi, \tilde{\theta})$ can be further relaxed into:

$$885 \mathcal{L}_{orth}(\phi, \tilde{\theta}) = \sum_{i \neq j \in [d]} \lambda_{i,j} (\mathbb{E}_{\nu(\theta)} [\tilde{\theta}_i(\theta) \tilde{\theta}_j(\theta)])^2 + \sum_{i \neq j \in [d]} \mu_{i,j} (\mathbb{E}_{\rho(s,a)} [\phi_i(s, a) \phi_j(s, a)])^2,$$

887 which can be simplified to the one proposed by Wu et al. (2018):

$$889 \mathcal{L}_{orth}(\phi, \tilde{\theta}) = \mathbb{E}_{\theta, \theta' \sim \nu(\theta)} \left[\sum_{i \neq j \in [d]} \tilde{\theta}_i(\theta) \tilde{\theta}_j(\theta) \tilde{\theta}_i(\theta') \tilde{\theta}_j(\theta') \right] \\ 890 + \mathbb{E}_{(s,a), (s',a') \sim \rho(s,a)} \left[\sum_{i \neq j \in [d]} \phi_i(s, a) \phi_j(s, a) \phi_i(s', a') \phi_j(s', a') \right].$$

896 E.2 IMPLEMENTATION DETAILS

897 **Implementation of $\tilde{\theta}$ in SBM Loss.** The update for $\tilde{\theta}$ (implicitly or explicitly parameterized)
 898 within the spectral representation learning phase is crucial. One could approximate $\tilde{\theta}(\theta)$ by explicit
 899 parameters (reset each time new θ is sampled) or by a parameterized function (e.g. a neural network).
 900 In this work, we implement $\tilde{\theta}$ as a residual network: $\tilde{\theta}(\theta) = \theta + \Delta(\theta)$, where $\Delta(\theta)$ is a trainable
 901 MLP model.

903 **Moving Average of Λ .** Practically, SBM Loss is designed to be optimized in mini-batch iterative
 904 manner. Therefore, for better stability, we suggest using exponential moving average (EMA) updates:
 905 $\Lambda_{1,t+1} = \alpha \mathbb{E}_{\rho(s,a)} [\phi_t(s, a) \phi_t(s, a)^\top] + (1 - \alpha) \Lambda_{1,t}$ (same for Λ_2) for some $\beta \in [0, 1]$. This is a
 906 solution for the constrained objective:

$$907 \Lambda_{1,t+1} \in \arg \min_{\Lambda} \frac{1}{2} \|\Lambda - \mathbb{E}_{\rho(s,a)} [\phi_t(s, a) \phi_t(s, a)^\top]\|_2^2 + \frac{\eta}{2} \|\Lambda - \Lambda_{1,t}\|_2^2,$$

909 where $\eta > 0$ and $\alpha = \frac{1}{1+\eta}$.

911 **Network Architecture.** For the DQN architecture, we follow the architecture suggested by Mnih
 912 et al. (2013) for $\phi(s, a)$ where the last layer's output dimension was changed to $d \cdot |\mathcal{A}|$. The output is
 913 reshaped into a $|\mathcal{A}| \times d$ matrix such that for any input state s , we get $\phi(s, a)$ for each action $a \in \mathcal{A}$.
 914 The network in the residual model $\tilde{\theta}$ is a 3-layer MLP with dimensions of $2d \rightarrow 2d \rightarrow d$.

915 For R2D2 architecture, we follow the ResNet architecture from Espeholt et al. (2018) for the feature
 916 extraction from the visual observations $e_t = g(o_t)$. We use an LSTM (put a reference to LSTM
 917 here) network to process the sequence of observations. The LSTM head outputs a hidden state
 918 m_t and a state c_t : $m_t, c_t = f(e_t, m_{t-1})$. The output feature $\phi(h, a)$ is done by using an MLP

918 with output dimension of $|\mathcal{A}| \times d$, reshaped into a $|\mathcal{A}| \times d$ matrix such that for any input history
 919 $h_t = (o_t, o_{t-1}, \dots, o_0)$, we get $\phi(h_t, a)$ for each $a \in \mathcal{A}$. $\tilde{\theta}$ with the same architecture in the DQN
 920 case.

921
 922 **Evaluation Parameters.** Each experiment ran for 10 different seeds. During evaluation, we ran the
 923 policy 10 times.

924 **Retrace Operator.** We used the transformed retrace operator \mathcal{R}_f^β in our R2D2 experiments as target.
 925

926 **E.3 HYPERPARAMETERS**
 927

928 Table 3: Hyperparameters for SBM with DQN
 929

γ	0.99
Latent dimension d	256
Learning rate	3×10^{-4}
Environment steps	100M
Batch size	256
Number of representation learning steps	512
Number of policy optimization steps	64
Optimizer	Adam (Kingma, 2014)
σ_{exp}	$\lambda_{min}(\Sigma)/d(1 - \gamma)$
σ_{rep}^2	10^{-2}
λ	0.1
Reward clipping value	1.0
EMA parameter α	0.1

944 Table 4: Hyperparameters for SBM with R2D2
 945

γ	0.997
Latent dimension d	256
Learning rate	3×10^{-4}
Environment steps	100M
Batch size	64
Number of representation learning steps	512
Number of policy optimization steps	64
Number of policy optimization steps	64
Burn-in steps (Kapturowski et al., 2018)	40
Trajectory training (max) length (Kapturowski et al., 2018)	120
Retrace parameter β	0.95
Optimizer	Adam (Kingma, 2014)
σ_{exp}	$\lambda_{min}(\Sigma)/d(1 - \gamma)$
σ_{rep}^2	10^{-2}
λ	0.1
EMA parameter α	0.1

F ATARI SCORE TABLE

Game	Human	Random	DQN	SBM+DQN	R2D2	R2D2+SBM
Alien	7127.70	227.80	1999.79 \pm 257.86	1237.28 \pm 108.98	6792.85 \pm 295.58	8389.99 \pm 384.19
Amidar	1719.50	5.80	433.66 \pm 69.68	1159.18 \pm 71.13	1575.45 \pm 80.54	1596.91 \pm 64.33
Assault	742.00	222.40	847.49 \pm 54.91	1788.34 \pm 61.37	2070.25 \pm 285.82	2068.98 \pm 362.52
Asterix	8503.30	210.00	6167.47 \pm 1180.64	8681.20 \pm 1182.53	6224.40 \pm 615.35	7547.14 \pm 438.34
Asteroids	47388.70	719.10	626.35 \pm 74.15	1137.84 \pm 69.64	1704.73 \pm 193.96	2246.42 \pm 159.39
Atlantis	29028.10	12850.00	497156.27 \pm 4941.23	328266.40 \pm 73334.77	903872.67 \pm 97353.82	959381.33 \pm 124777.47
Bankheist	753.10	14.20	320.85 \pm 15.96	1136.08 \pm 86.93	831.13 \pm 34.91	983.09 \pm 38.44
Battlezone	37187.50	2360.00	17066.67 \pm 1426.73	26840.00 \pm 1594.43	53993.33 \pm 3267.35	65191.69 \pm 3059.30
Beamrider	16926.50	363.90	2341.12 \pm 384.89	5684.80 \pm 411.47	4116.11 \pm 404.47	5531.92 \pm 299.30
Berzerk	2630.40	123.70	299.52 \pm 36.49	746.67 \pm 10.03	897.26 \pm 92.56	841.47 \pm 105.35
Bowling	160.70	23.10	21.72 \pm 1.77	11.35 \pm 2.58	228.65 \pm 1.78	282.34 \pm 1.29
Boxing	12.10	0.10	56.62 \pm 1.04	95.24 \pm 0.62	85.84 \pm 1.17	100.00 \pm 0.00
Breakout	30.50	1.70	74.07 \pm 14.16	32.47 \pm 2.82	197.29 \pm 32.99	183.10 \pm 23.84
Centipede	12017.00	2090.90	2429.27 \pm 545.55	3164.83 \pm 208.75	15324.34 \pm 1810.83	16902.07 \pm 1891.82
Choppercommand	7387.80	811.00	610.13 \pm 91.47	915.20 \pm 62.60	1753.27 \pm 213.60	1950.43 \pm 180.47
Crazyclimber	35829.40	10780.50	58781.87 \pm 4431.60	91828.00 \pm 7361.21	107756.13 \pm 4010.05	136573.43 \pm 3712.86
Demonattack	1971.00	152.10	4431.15 \pm 562.47	8895.04 \pm 712.73	2748.50 \pm 397.09	2691.05 \pm 468.96
Doubledunk	-16.40	-18.60	-2.24 \pm 1.45	-2.53 \pm 1.87	7.04 \pm 2.21	8.77 \pm 2.55
Enduro	860.50	0.00	638.51 \pm 41.65	2313.70 \pm 131.03	1811.51 \pm 47.32	2305.42 \pm 40.05
Fishingderby	-38.70	-91.70	3.20 \pm 2.76	-21.67 \pm 4.62	35.73 \pm 2.75	33.77 \pm 2.69
Freeway	29.60	0.00	19.07 \pm 0.21	31.29 \pm 0.30	30.82 \pm 0.07	33.00 \pm 0.14
Frostbite	4334.70	65.20	2585.60 \pm 278.19	535.04 \pm 117.30	7726.51 \pm 220.78	8734.95 \pm 211.13
Gopher	2412.50	257.60	3546.45 \pm 694.18	21192.16 \pm 2595.47	9775.83 \pm 2535.30	11532.03 \pm 2724.36
Gravitar	3351.40	173.00	160.00 \pm 49.53	242.00 \pm 56.17	3370.03 \pm 226.38	3316.33 \pm 195.74
Hero	30826.40	1027.00	16431.15 \pm 1016.03	21358.04 \pm 1150.31	25955.32 \pm 31.69	29876.39 \pm 34.87
Icehockey	0.90	-11.20	-4.88 \pm 0.69	-5.43 \pm 1.13	6.49 \pm 1.71	6.80 \pm 1.34
Jamesbond	302.80	29.00	445.87 \pm 40.24	646.80 \pm 40.03	721.93 \pm 78.90	734.88 \pm 88.68
Kangaroo	3035.00	52.00	2999.47 \pm 333.14	7840.80 \pm 680.31	11265.80 \pm 478.40	12907.43 \pm 561.41
Krull	2665.50	1598.00	4504.32 \pm 207.00	11408.32 \pm 248.90	21415.33 \pm 3964.59	23311.90 \pm 3284.52
Kungfumaster	22736.30	258.50	3136.00 \pm 843.01	19676.80 \pm 1179.52	34325.20 \pm 1823.20	43780.17 \pm 1773.79
Montezumarevenge	4753.30	0.00	0.00 \pm 0.00	642.40 \pm 113.34	879.67 \pm 219.29	1176.24 \pm 181.95
Mspacman	6951.60	307.30	2289.07 \pm 296.70	2578.40 \pm 186.92	6960.41 \pm 353.38	8120.56 \pm 378.52
Namethisgame	8049.00	2292.30	5047.89 \pm 687.45	4769.60 \pm 397.33	4038.58 \pm 263.41	4894.12 \pm 341.02
Phoenix	7242.60	761.40	4967.68 \pm 753.66	6285.84 \pm 153.60	4347.37 \pm 355.99	3987.71 \pm 444.14
Pitfall	6463.70	-229.40	-59.76 \pm 10.22	-14.03 \pm 8.35	-5.22 \pm 2.51	-3.69 \pm 3.23
Pong	14.60	-20.70	10.28 \pm 0.76	19.87 \pm 0.22	18.62 \pm 0.14	20.47 \pm 0.18
Privateeye	69571.30	24.90	-547.84 \pm 84.07	-181.95 \pm 90.23	38212.54 \pm 1274.77	51369.59 \pm 1178.57
Obert	13455.00	163.90	5128.53 \pm 978.90	8241.20 \pm 1016.85	20062.47 \pm 835.18	18471.19 \pm 703.67
Riverraid	17118.00	1338.50	6721.28 \pm 510.13	12111.44 \pm 712.36	7401.33 \pm 308.99	9564.36 \pm 282.00
Roadrunner	7845.00	11.50	33083.73 \pm 1722.53	46015.20 \pm 2269.45	42994.47 \pm 2159.38	41576.14 \pm 2726.37
Robotank	11.90	2.20	27.99 \pm 5.36	17.86 \pm 2.72	60.61 \pm 1.81	62.75 \pm 1.47
Seaquest	42054.70	68.40	2896.64 \pm 363.70	2261.60 \pm 209.35	3343.95 \pm 195.17	3156.72 \pm 234.17
Skiing	-4336.90	-17098.10	-15384.64 \pm 278.75	-15214.91 \pm 1750.84	-27300.00 \pm 0.00	-17024.68 \pm 0.00
Solaris	12326.70	1236.30	1680.21 \pm 421.35	3806.07 \pm 44.73	3110.99 \pm 378.79	4061.02 \pm 491.34
Spaceinvaders	1668.70	148.00	1108.05 \pm 267.36	1904.32 \pm 138.75	1585.83 \pm 198.53	1433.51 \pm 226.71
Stargunner	10250.00	664.00	33361.07 \pm 2218.71	6512.00 \pm 849.11	2723.93 \pm 548.09	2621.41 \pm 690.72
Tennis	-8.30	-23.80	11.69 \pm 0.47	13.31 \pm 0.25	12.44 \pm 2.66	14.26 \pm 1.87
Timepilot	5229.20	3568.00	5230.93 \pm 337.32	7594.40 \pm 321.73	8032.27 \pm 499.41	9550.81 \pm 547.06
Tutankham	167.60	11.40	124.80 \pm 7.70	189.64 \pm 10.34	112.05 \pm 18.01	134.66 \pm 19.94
Upndown	11693.20	533.40	4451.84 \pm 816.43	10883.84 \pm 913.45	77144.95 \pm 12594.93	99513.17 \pm 9181.75
Venture	1187.50	0.00	439.47 \pm 115.21	1182.97 \pm 19.43	1365.00 \pm 45.61	149.20 \pm 39.73
Videopinball	17667.90	0.00	97079.34 \pm 22379.44	310351.10 \pm 53324.81	16346.69 \pm 2432.50	14943.88 \pm 1760.91
Wizardofworf	4756.50	563.50	955.73 \pm 453.05	2129.60 \pm 136.21	10283.00 \pm 1960.67	9889.49 \pm 2038.26
Yarsrevenge	54576.90	3092.90	25562.24 \pm 3743.63	27827.71 \pm 2219.92	60559.04 \pm 3913.49	73644.13 \pm 3133.18
Zaxxon	9173.30	32.50	5619.20 \pm 466.03	3238.40 \pm 384.70	13134.33 \pm 1342.95	17187.17 \pm 1224.38

1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079