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Abstract

Deep neural networks have been criticized as fundamentally statistical systems that
fail to capture causal structure and perform causal reasoning. Here we demonstrate
that a GPT-style transformer trained for next-token prediction can simultaneously
discover instances of linear Gaussian structural causal models (SCMs) and learn
to answer counterfactual queries about those SCMs. First, we show that the
network generalizes to counterfactual queries about SCMs for which it has seen
interventional data but not any examples of counterfactual inference. The network
must, thus, have successfully composed discovered causal structures with a learned
counterfactual inference algorithm. Second, we decode the implicit “mental” SCM
from the network’s residual stream activations and manipulate it using gradient
descent with predictable effects on the network’s output. Our results suggest that
statistical prediction may be sufficient to drive the emergence of internal causal
models and causal inference capacities in deep neural networks.

1 Introduction

How can an Al system discover and learn to reason about causes and effects—the mechanisms
that remain invariant under local interventions [43.[35]]? Pearl [36, 38]] has argued that deep neural
networks (DNNs) trained using prediction objectives are intrinsically limited in their causal reasoning
capacities. His argument rests on Pearl’s Causal Hierarchy (PCH) [2], also known as the “Ladder of
Causation" [38]]. PCH describes three levels of causal capabilities—associational (£;), interventional
(L2), and counterfactual (£3)—and implies that answers to higher level queries are generally under-
determined by data or information from lower levels. According to Pearl [36], this hierarchy implies
that DNNs trained in a “statistical mode” to predict passive observations can only master associations
(L) and are prevented from reasoning about actions, experiments, and explanations (L2 and L3).

If true, Pearl’s claim would have important theoretical and practical implications regarding the
causal abilities of large language models (LLMs) and other foundation models. Such models are
typically pretrained using statistical objectives to predict held-out portions of passive streams of
data [8 140} [39, 6} I5]. For example, LLMs are trained to predict the next token in snippets drawn
from a diverse corpus of text. Following Pearl’s reasoning [36], at least initial pretrained versions of
foundation models should be limited to the level of associations (£1).

While PCH is an extremely valuable theoretical framework with wide-reaching implications, we do
not think that Pearl’s claim about DNNs directly follows from PCH. Training data for foundation
models contains rich information about the causal structure of the world. Natural language in
particular contains many descriptions of interventions and causal inferences (Fig. [T). “Passive” data,
then, is not equivalent to “observational” (£1) data. Notably, in a more recent interview, Pearl [37]]
acknowledges that text does contain £5/L3 information. Standard PCH logic, therefore, cannot rule
out the emergence of causal models in LLMs and other kinds of foundation models.
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“even if my head would go through,” thought poor Alice,
“it would be of very little use without my shoulders".

This bottle was not marked “poison,” so Alice ventured
to taste it ... “I must be shutting up like a telescope.” ...
she was now only ten inches high ...

“Well, I'll eat [the cake],” said Alice, “and if it makes me
grow larger, I can reach the key; and if it makes me grow
smaller, I can creep under the door; so either way I'll get
into the garden ...

[She] soon finished off the cake. ... “now I'm opening out
like the largest telescope that ever was! Good-bye, feet!”

Figure 1: Natural language includes descriptions of interventions and causal inference. Examples
from Alice’s Adventures in Wonderland [1], illustrated by John Tenniel. The drink makes Alice
shrink, while the cake causes her to grow; she also reasons counterfactually about fitting through the
tiny door. LLMs may discover causal structure—the mechanisms that remain invariant under local
interventions [43l 35]—and learn causal inference engines to predict the next token in such strings.

However, Pearl [37]] and others [S1]] have maintained that LLMs cannot possess causal models. The
underlying assumption seems to be that systems operating in a “statistical” or “model-free” mode
[36]—regardless of the data they operate on—cannot give rise to genuine internal causal models.
This reasoning emphasizes the nature of the training objective (prediction) while neglecting the
content of the training data (which includes causal information). Even when applied to text containing
causal information, the argument goes, prediction objectives can only capture statistical associations
(however richly and abstractly structured they may be) rather than causal understanding that supports
generalization to novel scenarios [37]. In other words, LLMs are “causal parrots” [S1]].

We propose an alternative hypothesis and provide an existence proof: The next-token prediction
objective, at least in some contexts, may drive LLMs to acquire real causal models and causal
reasoning capacities at the interventional (L2) and counterfactual (L3) levels. We test this hypothesis
empirically in a controlled setting. We generate text (in a simple artificial language) describing
interventional data and counterfactual inferences from a constrained class of linear Gaussian structural
causal models (SCMs). Generated text strings fall into one of two classes (Fig. [3): (1) DATA strings
describe the behavior of the referenced SCM under interventions; (2) INFERENCE strings describe
counterfactual inferences, given the referenced SCM. The strings reference the underlying SCMs
via arbitrary indices, and the SCM structure is never explicitly provided. We train a GPT-style
transformer model to predict the next token in these strings.

To reduce next-token prediction loss in our task, the model could adopt one of two strategies:
memorize the training examples, or discover the structure of the underlying SCMs and learn a more
general causal inference algorithm. To distinguish these two possibilities, we devise a “generalization
challenge” where the trained model has to generalize to counterfactual queries about a separate set of
test SCMs ( Dy ) for which the model has only been trained with interventional data, and not with
any counterfactual inference strings. The only way the model might correctly complete counterfactual
inference strings about these SCMs is if it had both (1) inferred the structure of the test SCMs from
the interventional data and (2) learned how to perform counterfactual inference for our class of SCMs.
We find that the trained model generalizes to the test SCMs, indicating it has not memorized the
answers, but has instead learned a counterfactual inference engine for our class of SCMS.

In addition to demonstrating generalization of counterfactual inference behavior, we use mechanistic
interpretability tools to probe the network’s representations. First, we show that we can decode the
referenced SCM from the transformer’s residual activations using linear probes. Second, we use
probes to manipulate the SCM in the “network’s mind” mid-computation using gradient descent on
the activations. These interventions have predictable effects on the network’s output, suggesting that
our probes capture a real SCM representation used by the model.

Existing critiques of LLMs’ causal capabilities do not clearly define what it would take for an LLM
to possess an internal causal model [37,51]. We establish three pieces of evidence that our trained



network possesses internal causal models: (1) it generalizes to unseen query-structure combinations,
(2) it learns decodable representations of causal structure, and (3) these representations can be causally
manipulated with predictable effects on the output. Together, our results provide an existence proof of
a DNN trained to predict passive streams of data that can nonetheless discover and use causal models.

2 Related work

Our work contributes to the broader discussion about the extent to which LLMs and other foundation
models understand the world [4}149[ 28, 150]. Pearl [35}136] and others [[12} 20} 38 144} [11] have argued
that human understanding derives from building and using powerful causal abstractions of the world.
Causal capacity of LLMs thus plays an important role in this larger debate about understanding.

Some have been skeptical about the causal abilities of LLMs. Referencing Pearl’s hierarchy, Zecevié
et al. [[51]] argue that LLMs are “causal parrots” that occasionally answer causal questions correctly
by capturing the “correlation of causal facts”. We agree that LLMs may learn to recite often repeated
causal claims or exploit correlations between certain words to answer causal queries. However, here
we present evidence that LLMs may also discover true causal structure from text and learn causal
inference engines that generalize to unseen structure and query combinations.

Empirical results on LLM causal capacity have been mixed [18} 52, [17]. Several datasets and
benchmarks have been created to make progress on this question [[15}16}42]. In contrast to evaluating
causal abilities of pre-trained LLMs, here we consider a relatively simple causal task (discovery
and inference within a constrained set of linear Gaussian SCMs) and train a small transformer from
scratch with full control over the training data. We then study not only the behavior of the model, but
also its internal representations. We are inspired by other probing and mechanistic interpretability
work [33L 19110, [31]], particularly on emergent world representations in transformers [22, 23] 132} 24],
and knowledge localization/editing [26} [14]].

We use the structural causal model (SCM) formalism [35] to synthesize our training data. Prior work
has shown that transformers trained on synthetic data can uncover hierarchical or compositional
structure. For instance, Murty et al. [29] show that transformers can learn hierarchical syntactic rules
through extended training, while Lake and Baroni [19] demonstrate systematic generalization to novel
combinations through meta-learning on algebraic reasoning tasks with compositional structure. SCMs
are distinct in that they encode mechanistic causal relationships that support interventional (£2) and
counterfactual (L3) reasoning within Pearl’s Causal Hierarchy [2]. Training on SCM generated data
allows us to put Pearl’s theoretical claims about the limitations of deep neural networks [38 36, |37/]]
to a direct test.

It is also worth mentioning neural-causal models [34} 47, 48| 46| that replace SCM functional
equations with differentiable neural components. Instead, we train standard transformers end-to-end
on next-token prediction on data generated from the SCMs, demonstrating that causal reasoning can
emerge from a purely language modeling objective.

Finally, our work complements a finding from Lampinen et al. [21]] that RL agents can learn “causal
strategies” from purely passive offline data, which the agents can then exploit by intervening at test
time to uncover causal structure. Interestingly, our results suggest that purely “passive” training on
next-token prediction without any interventions carried out by the model may be sufficient to discover
causal structure and learn a causal inference engine.

3 Methods

Our setup involves: (1) generating instances from a constrained class of linear Gaussian structural
causal models (SCMs) (section [3.1)); (2) generating text using those SCMs in a simple artificial
language that describes interventional data and counterfactual inferences (section [3.2); (3) setting
up a generalization challenge for the transformer by providing only interventional data strings for
some of the SCMs during training (section [3.3); (4) training a GPT-style transformer to predict the
next token in generated text (section [3.4). We then study the emergent behavior of the model and its
internal representations.
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Figure 2: Some examples of the 59,049 unique SCMs. Bias weights w;; are displayed on top of the
variables. Non-zero effect weights w;; are displayed on the edges between the variables.

3.1 Linear Gaussian structural causal models (SCMs)

We consider a constrained class of linear Gaussian structural causal models (SCMs) with 4 variables
V17 ‘/27 V37 ‘/zl:

U;j ~N(0,0%) witho =+/0.1~0.32 (1)
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Background variables U = {Uy, Us,Us, Uy} (sometimes referred to as “exogenous” or “noise’
variables) are sampled independently from a fixed Gaussian distribution. Each endogenous variable
V; is a linear function of the corresponding background variable U, bias term w;;, and a weighted
combination of parent values i<j w;; Vi, where w;; represents the effect of variable V; on V;. Note
that each SCM instance within our class is fully defined by a weight vector w with 10 ternary values:

w = [wn, W12, W13, W14, W22, W23, W24, w33,w34,w44] 3)

This weight vector w can be interpreted as the symbolic causal generative program for a particular
SCM within our SCM class. Foreshadowing the results, it turns out that we can linearly decode
w from the transformer’s residual stream activations and manipulate it using gradient descent with
predictable effects on model’s output.

We generate all possible weight combinations (3 possible values for 10 weights), resulting in 310 =
59,049 unique SCM instances. Some example SCMs can be seen in Fig. [2]

Answers to counterfactual queries within the linear Gaussian SCM class can be computed analytically
(details provided in appendix [D.T). Efficient analytical estimates allow us to implement a text-
generative model that dynamically samples queries and computes answers for each training batch.

3.2 Generating text (training data)

Natural language includes descriptions of interventions, outcomes under those interventions, and
various causal inferences (Fig. [I)). Our text generation setup using a simple artificial language is
intended to emulate this aspect of natural language.

More concretely, we generate two types of strings (Fig. [3). Each string begins with a token that
describes its type (DATA or INFERENCE), followed by an SCM index encoded using 4 letter tokens
(e.g. AR T Q corresponds to SCM index 12002). Crucially, the SCM structure is never explicitly
provided—the SCM indices are assigned randomly and, by themselves, carry no information about
the underlying SCM. Therefore, the model has to discover the structure of the associated SCM
from the data. We use 0BS [Vi] [value] token sequence to represent an observation and DO [Vil]
[value] to represent an intervention. Numbers within [—10, 10] are encoded using numerical tokens
with one decimal point precision (e.g. 0.3, -7.5). Numbers that fall outside of that range are encoded
using -INF and +INF tokens. All strings end with an EOS token.

DATA strings answer: What happens if we intervene on X? (Lo information within PCH). They provide
noisy interventional data about the underlying SCMs. To construct a DATA string, we sample up to
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Figure 3: Top: Tokens in the vocabulary of the artificial language. Middle: Example strings from
the training data. We generate two types of strings using the SCMs. DATA strings provide noisy
samples from the SCM under interventions. INFERENCE strings provide examples of counterfactual
inference. Bottom: We hypothesized that the GPT-style transformer may learn interpretable internal
SCM representations to predict the next token.

two interventions with values drawn uniformly from U/[—5, 5], ensuring that the intervened variables
do not repeat in the same string. Given the referenced SCM and interventions, we compute the
analytical interventional distribution, and sample one realization from that distribution. We then
record the sampled variable values in a random order using [Vi] [value] token pairs. Thus, each
DATA string provides one sample “rollout” from the interventional distribution—a single realization
of what could happen under the intervention.

INFERENCE strings answer: In this specific world where we observed Y, what would have happened if
we had intervened on X? (L3 information within PCH). They provide examples of counterfactual
inference within our SCM class. To construct an INFERENCE string, we sample 1-2 observations
(also ~ U[—5, 5]) and 0-2 interventions. We then compute the analytical counterfactual distribution
(details in Appendix [D.T). In simple terms, counterfactual inference can be decomposed into three
steps: “abduction”, “action”, and “prediction” [35]]. We first condition on the observations yops and
find the posterior over the background variables p(U|Y = yobs) (abduction). We then alter the
factual SCM according to the interventions by fixing the intervened variables to constant values
X := @iy (action). Finally, we compute the counterfactual posterior distribution P(Vz, |Y = Yobs)s
given the new background variables and the intervened SCM (prediction). We then use a random
order to record the counterfactual mean and standard deviation for each variable using a [Vi] [mean]

[std] token sequence. Unlike DATA strings which provide single samples, INFERENCE strings require
computing the counterfactual posterior mean and standard deviation for a specific scenario.

Finally, we consider two variable naming schemes (fixed and shuffled) that map variable names (V1,
V2, V3, V4) to ground truth variables (Vi, Va, V3, V). In the fixed naming scheme, each name refers
to the same variable across SCMs: V1 — V1, V2 — V5, V3 — V3, V4 — V. In the shuffled naming
scheme, for each SCM we sample a permutation 7 uniformly from all 4! = 24 possible permutations,
which then maps names to variables: Vi — V;(;y. The shuffled naming scheme is challenging since
the model has to discover the name-to-variable mapping for each SCM—it cannot assume that, say,
the variable named V1 precedes V2 in the causal order. We use the shuffled naming scheme for the
main behavioral results (section[d.T)) to demonstrate that the model can indeed discover the underlying
SCM structures even without a global fixed naming scheme. However, probing models trained with
shuffled names is challenging (see appendix [D.2]for further explanation), so we used the fixed naming
scheme for the mechanistic interpretability analyses (sections 4.4).
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Figure 4: Generalization challenge. To generalize to unseen INFERENCE queries for SCMs with DATA
strings only (De ) the model has to: (1) learn a counterfactual inference engine from descriptions
of inferences with the Dy, SCM set, (2) build a representation for counterfactual inference and
interventional data strings that exploits the shared structure, (3) discover the structure of Dy SCMs
from interventional data.

3.3 Generalization challenge

We wanted to distinguish between two possibilities: (1) The model memorizes answers to causal
queries; (2) The model learns a causal inference engine for our SCM class. For this purpose,
we devised a “generalization challenge” by randomly choosing a held-out set of 1,000 SCMs
(denoted Dy ) for which the model only saw DATA strings during training (Fig. [). If the trained
model can answer counterfactual queries about this test set, it means that it has (1) learned a more
general counterfactual inference engine, (2) built a shared representation for interventional data and
counterfactual inference, and (3) discovered the causal structure of SCMs within the D set from
interventional data strings. In other words, it can compose the learned counterfactual inference engine
from Dy, strings with the discovered causal structure from interventional data strings in Dieg.

3.4 Model architecture and training

We use the TransformerLens [30] implementation of a GPT 2-style decoder-only transformer. Trans-
formerLens is a mechanistic interpretability library that exposes the model’s internal activations for
reading and editing purposes during the forward pass. We utilize these features of TransformerLens
post-training when we decode SCM weights from model’s residual stream activations and intervene
on the SCM representation mid-computation.

Our transformer model has 12 layers, hidden size 512, 8 attention heads of size 64, MLP size 2048,
GELU activation function, and “Pre-LN” type layer normalization. We use AdamW [25] with
learning rate 1075, betas [0.9, 0.999], eps 10~8, and 0.001 weight decay. We set batch size to 128
and train for different number of epochs depending on whether the variable naming scheme is fixed
or shuffled (see[3.2). When variable names are fixed, we train for 300 epochs, reducing learning rate
to 1076 for the last 10 epochs. When variable names are shuffled, the model takes longer to converge,
so we train for 1,500 epochs, reducing learning rate to 10~° for the last 100 epochs. In each epoch,
we draw 10 DATA and 10 INFERENCE strings per SCM from our text generative model, resulting in
around 1.2 million strings per epoch. Note that there are 0 INFERENCE strings for Dy SCMs in the
training data.

4 Results

We show the following: (1) The trained model successfully generalizes to counterfactual queries
about those SCMs that only had interventional data strings (section[4.T). (2) We can decode the SCM
weights from residual stream activations within the model using linear and multi-layer perceptron
(MLP) probes (section [4.2). (3) We can use these probes to manipulate the underlying SCM
representation within residual activations using gradient descent with predictable effects on model’s
output (sections and[4.4). Our results suggest that the next-token prediction objective drives the
model to discover SCMs and learn an algorithm for counterfactual inference that generalizes within
our SCM class.
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4.1 Transformer generalizes counterfactual inference to SCMs for which it has seen only
interventional data

Our main behavioral test is a generalization challenge (3.3). The core intuition behind the challenge
is that SCMs from the Dy set are referenced only within DATA strings during training. If the
trained model can correctly complete strings with counterfactual queries about Di.ss SCMs, it means
that: (1) the model has learnt a counterfactual inference engine (not just memorized the answers to
counterfactual queries for the Dy, set), and (2) it has discovered the causal structure of D set
SCMs from noisy interventional data.

We evaluate the model by providing a causal query (string type, SCM index, observa-
tions/interventions) within its context window and letting the model predict the next-token. We
then calculate the absolute error between the predicted and the ground truth values (see appendix
for further details). For the main behavioral results we consider the more challenging shuffled
variable naming scheme, where we randomly permute the names across SCMs (see[3.2)). However,
behavioral results also hold when variable names are fixed (see appendix [E.3).

Fig. [5|shows the training trajectory for a few key metrics: the loss, absolute errors on interventional
data samples (evaluated on DATA strings), and absolute errors for counterfactual means and standard
deviations (evaluated on INFERENCE strings). The model eventually reaches near-optimal prediction
performance for both Dy, and Diey SCMs.

Fig. [6] zooms in on the last epoch and shows the trained model’s performance as a function of number
of interventions and observations provided in the query string. Overall, the network performs near
optimally on all accuracy metrics for all conditions. Most importantly, there is no performance gap
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Figure 6: Trained model’s errors as a function of number of interventions and observations in the
query. The model performs near optimally on all prediction tasks. Importantly, performance on
the Di.sx SCM set does not systematically differ from Dy.,;,—the model passes the generalization
challenge. Shaded regions indicate 95% bootstrapped confidence intervals for the mean across
evaluation examples.



between Dy, and Dy SCM sets—the model generalizes successfully to counterfactual queries
about Dy SCMs. We conclude that the network passes the generalization challenge, i.e. it does not
simply memorize strings in the training set, but learns a counterfactual inference engine for our SCM
class, discovers Di.c SCMs from strings describing interventional data, and successfully composes
the discovered structure with the learnt inference engine.

4.2 SCM weights can be decoded from residual stream activations

In the previous section, we established that the model can generalize to unseen query-structure
combinations. But what supports this behavior internally? Since the weight vector w (discussed in
[3.1) fully defines an SCM within our class, we hypothesized that the model may map SCM indices
to an internal representation that is closely related to this vector. To test this hypothesis, we trained
“probes” [} 3| [13]] that map model’s residual activations to elements of the SCM weight vector w.
Namely, we train a separate probe for each of the 12 transformer layers to each of the 10 SCM
weights, resulting in 120 separate classifiers. We decode from residual activations at the last SCM
index position as that position had the highest decoding accuracy—consistent with the idea that the
model “pulls up” the SCM representation given the full SCM index for downstream computation.

Inspired by [23| 32], we train both linear and multi-layer perceptron (MLP) probes. Linear probes
map the 512-dimensional layer [ residual stream activations x; directly to 3-way softmax output for
each weight w;; € {—1,0,1}, while MLP probes include a 256-dimensional hidden layer:

P (1) = softmax(W '), W e R (4)
Pt (1) = softmax(W3 ReLU(W{ zy), Wy € RM2X250 W, e RPOS - (5)

We split Dyin set (Fig. [4) into DP'* (57,049 SCMs) and DP> (1,000 SCMs) sets. We train the

train
probes on DM | obtaining last SCM index position residual activations using INFERENCE [SCM
index] input strings (see appendix [E.4|for details on probe training). We then test probe accuracy
on the Dy SCM set (Fig. . SCM weights can be decoded above chance (33%) using both linear
and MLP probes, suggesting that the transformer maps the arbitrary SCM index into a meaningful

structured representation of the underlying SCM.

4.3 We can manipulate SCM representation in the residual stream

Probing results should be interpreted carefully, especially for non-linear probes [41]. Although
successful decoding establishes the presence of information, we do not know whether or how this
information is used by downstream computation. We hypothesized that probes do in fact recover at
least parts of the model’s representation of the underlying SCMs. If our hypothesis is correct, we
should be able to control model’s behavior by overwriting the SCM representation in the “network’s
mind” [[10} 23} 27].

Linear probe MLP probe
decoding accuracy on Diest SCM set decoding accuracy on Diest SCM set
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Figure 7: Average SCM weight decoding accuracy. Each cell corresponds to accuracy of the classifier
that takes residual stream activations of a single layer and predicts SCM weight w;; € {—1,0,1}.
Values in smaller font below indicate 95% bootstrapped confidence interval for the mean across the
SCM set. Chance performance is 33%. By layer 5-6, most SCM weights can be decoded by linear or
MLP probes above chance.
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Figure 8: Top: Intervening on the internal SCM representation. Bottom: Linear probe intervention
example (w12 = 0 — wy2 = 1). To test whether our intervention successfully modifies the
representation, we: (1) specify a causal query, (2) compute analytical estimates for the counterfactual
mean before (wy2 = 0) and after (w2 = 1) the corresponding intervention in the ground truth SCM,
and (3) check whether the post-intervention model predictions match analytical estimates. Model
predictions flip for V5, and V, aligning with analytical estimates.

To test our hypothesis, we use the gradient signal from the probes to intervene on the SCM rep-
resentation mid-computation (Fig. [§). We can successfully manipulate the representation—the
model predictions post-intervention on the residual stream align with analytical estimates for the
corresponding change in the ground truth SCM, suggesting that the probes do in fact recover an actual
representation of the referenced SCM. Further details on our intervention setup and an intervention
example using an MLP probe can be found in appendix [E.3]

4.4 Decoding accuracy does not imply controllability

We introduce a quantitative metric (the “intervention score’) to measure how well we can control
the network’s behavior by changing its residual stream activations. Given an SCM, weight change
(wi; — ng), residual stream intervention at layer [ (z; — xg), and queried variable Vyeried:

inter i 1/ 22 p— wi;—w);
Iintervention —— (p 1— ’(token(E[V — 1_7])) _ pmodel(token(E[V — 1]])) ) (6)

score B model queried queried
probability assigned to the correct token probability already assigned to the correct
after residual stream intervention token before residual stream intervention

Note that this score can be negative when the model assigns a non-zero probability to the correct
post-intervention token before the intervention, but the intervention on activations (I — 1) lowers
that probability. Moreover, the model generally hedges its bets, so we normalize the quantity in the



big brackets by the average max probability 5 model assigns during normal operation (= 0.89). An
average intervention score of 1 then corresponds to “perfect” interventions—the model gives correct
answers with the same average confidence as during normal operation. Further details on computing
intervention scores can be found in Appendix [E.6

Linear probe MLP probe
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Figure 9: Intervention scores are not coupled to decoding accuracy beyond layer 7 (compare to Fig.
. Each cell corresponds to the average intervention score for weight w;; and layer [. Values in
smaller font indicate 95% bootstrapped confidence interval for the mean across queries, queried
variables V; and weight changes w;; — w;j

Quantitative intervention analysis allows us to localize where the SCM representation is used (Fig. ).
Note that the decoding accuracy is decoupled from the intervention scores beyond layer 7—changing
residual stream activations (at the last SCM index position) beyond layer 7 does not have an effect on
model output. Furtermore, while the linear probe has lower overall decoding accuracy, it achieves
higher intervention scores for some layer-SCM weight pairs (particularly, for w11, see Fig. [I4]for a
contrast between linear and MLP intervention scores).

5 Discussion

By demonstrating that transformers can discover causal structure and learn causal inference engines
solely through next-token prediction, we challenge fundamental assumptions about the limitations of
neural networks trained to predict “passive” streams of data 36,138} 137,I51]]. Although the learning is
passive in the sense that the model cannot perform actions in the world, the data is often rich with
causal information, reflecting interventions and causal inferences performed by other agents. Even a
purely predictive model may discover the underlying causal structure and learn causal inference to
meet its prediction objective.

This raises broader questions that apply to all foundation models. For instance, do video generation
models (e.g. OpenATI’s Sora [5]) learn simulators of the world—corresponding, at least informally, to
Lo of Pearl’s Causal Hierarchy? Can we find abstract representations of physical objects and agents
within their activations that we can intervene upon? If so, can we augment these models with causal
reasoning capacities, so as to enable them to reason counterfactually (L£3)? We are excited to explore
these questions in future work.

The primary limitations of our work are the artificial language setup and the constrained SCM
class. Our setup, while designed to emulate how natural language conveys causal information about
interventions and inferences, does not capture the full richness of real-world text and causal structures.
However, this constrained setting was crucial for providing a clear and unambiguous “existence proof™
that statistical prediction can, in principle, give rise to causal models and reasoning. Future work
could explore to what extent our results generalize to natural language descriptions of the causal
scenarios and more complex causal model classes, including non-linear SCMs.

Conclusion. Our work provides a concrete existence proof that statistical prediction objectives can
drive the emergence of causal models and causal reasoning. Through careful behavioral tests and
mechanistic interpretability analyses, we demonstrated that next-token prediction can yield models
that discover causal structure, build internal causal representations, and perform counterfactual
inference. While our study focuses on a constrained setting, it opens new questions about the causal
capabilities that may be emerging in today’s foundation models trained on vast datasets.
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A Code

https://github.com/eivinasbutkus/causal-discovery-and-inference-through-nex
t-token-prediction

B Compute Resources

Our model requires approximately 3GB VRAM and can be trained on consumer-grade hardware.
Each epoch processes approximately 1.2 million examples in 10 minutes. We used one NVIDIA
L40 GPU to train the final models within a university cluster using PyTorch 2.3. Evaluations, probe
training, and interventional analyses were performed using a desktop machine with NVIDIA GeForce
RTX 2080 Ti (10GB VRAM).

C Broader Impacts

Positive impacts: Our work provides evidence that statistical prediction objectives can drive emer-
gence of causal models in neural networks. This advances scientific understanding of the relationship
between statistical learning and causal reasoning, and puts less weight on the hypothesis that LLMs
are merely “stochastic parrots” or “causal parrots” that can never, in principle, build causal abstrac-
tions through pure prediction objectives. Our mechanistic interpretability approach could inform
future methods for auditing whether deployed Al systems have learned appropriate causal models for
their domains.

Potential risks: Our results demonstrate an existence proof in a controlled setting (linear Gaussian
SCMs with artificial language), which should not be misinterpreted as evidence that current LLMs
have robust causal reasoning across all real-world domains. Misunderstanding our findings as a
general guarantee could lead to overconfidence in deploying LLMs for high-stakes applications
(medical diagnosis, policy decisions) where erroneous causal inferences could cause significant harm.
Extensive domain-specific validation remains necessary before deploying Al systems that make
causal judgments.

D Methods Appendix

D.1 Analytic counterfactual inference in linear Gaussian SCMs

We implement analytic counterfactual inference for linear Gaussian SCMs, computing the quantity
P(Vz,.|Y = Yobs), Where Y = yqps are observed values in the factual world, and @iy represents the
intervention do(X = @) in the counterfactual world. Counterfactual inference involves three steps
[35]:

1. Abduction — finding the posterior over the background variables given observed values
pU]Y = yobs).

2. Action — modifying the SCM according to the intervention; in our case, this corresponds to
setting a subset of the endogenous variables to constant values in the structural equations
X := xin and setting incoming weights to zero for intervened variables w — w, .

3. Prediction — given the posterior over background variables U and the modified SCM,
computing the counterfactual distribution over the endogenous variables V.

To analytically compute answers in steps (1) and (3) for a Gaussian linear SCM, it is useful to define
the "total effects”" matrix 1. Let T);; denote the total effect of the background variable U; on the
endogenous variable V;, where ¢,7 € {1,...,m} and m is the number of variables (in our case,
m = 4). The entries of the total effects matrix T are defined recursively as follows:

1. Base Cases: For each target variable V; where j = 1,...,m:
* Tj; =1 (Directeffect U; — V).
« Tj; =0 foralli > j (No effect from later noise variables).
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2. Recursive Step: For each target variable V; and each noise source U; where i < j:
J—1
Ty = ZTM X W
k=i

Note that T is a lower triangular matrix with ones on its diagonal. Let b = [w11, wag, w33, w44]T
denote the vector of bias terms. We can then use 7" and b to define the structural equations in matrix
form:

V=TU+b )
Let yobs € R™ denote the vector of n observed variable values, and let Zy,s € {1,...,m} be the set
of indices of observed variables.

The observation matrix H € R™*™ is formed by selecting the rows of the total effects matrix T°
corresponding to the observed variables:

H = T[IobSa :} (8)

This gives us the linear relationship yon,s = HU for posterior inference. Note that bias terms here are
treated as implicit in the observations rather than explicitly subtracted, which is a slight simplification.

The posterior over the background variables given the observations p(U |yops) = N (U; posts Zpost)
can be computed from the prior mean fiyrior and covariance X0, using standard Gaussian condition-

ing:

K = Epriorqu (HzpriorHT) -t 9
Hpost = Mprior + K(yobs - Hllerior) (10)
z)post = z:prior - K-Hzprior (11)

where K is the Kalman gain matrix.

Let the counterfactual mean fieouner and covariance matrix couner parameterize the counterfactual
distribution P(Vwim|Y = yobs) = N(Vw;m; Hcounter s z:counter)‘

To compute the counterfactual mean ficounter, W€ compute each variable in topological order as:

(Tint) 5 if variable j is intervened upon

. 12
(Bpost)j + wjj + ZKj Wij (Meounter)i  Otherwise (12)

(H'counter)j = {

To compute the covariance matrix X quneer, We first construct a modified posterior covariance matrix
Y post by setting all rows and columns corresponding to intervened variables to zero. We also
compute the total effects matrix T, using the modified weight matrix W, (with incoming edges
to intervened variables removed). Then:
S T

Ecounter = T:cim EpostTwim (13)
For DATA strings, we take one sample from the counterfactual distribution. For INFERENCE strings, we
provide counterfactual means and standard deviations (square root of X quner diagonal values).

D.2 Motivating fixed variable names across SCMs for mechanistic interpretability analyses

We present behavioral results for both variable naming schemes: shuffled ({@.1)) and fixed (E.3). We
find that the model passes our generalization challenge in both cases. However, we found that the
probe decoding accuracy (mapping from activations to the SCM weights) was generally lower for the
shuffled naming scheme, so we focused the mechanistic interpretability analyses on the case when
variable names are fixed.

One potential reason why decoding accuracy is lower when variable names are shuffled is that there is
a fundamental inherent ambiguity in how variables get mapped to the model’s internal representation.
Even if the model maintains a consistent ordered internal representation (e.g. four representational
“slots” for the four variables), for certain SCMs there are multiple equivalent ways to assign variables
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to these slots. This poses a challenge for our simplistic probes that assume a fixed canonical mapping
between variables and internal representational positions.

Consider an SCM that has no effects between variables, i.e. all the weights between variables are
zero. For such an SCM, there are 4! = 24 equivalent ways to assign the four variables to the four
internal representational slots. Since there are no causal dependencies, any assignment produces
identical behavior. When variable names are shuffled randomly across SCMs, at least for certain
variables within certain SCMs, the training data does not determine a unique assignment—the model
is free to choose any of the equally valid internal assignments. Our probes, trained assuming a fixed
mapping, struggle to decode weights consistently across these varying assignments.

In contrast, when variable names are fixed across all SCMs, this ambiguity is resolved—the model
can use the variable names themselves as anchors to establish a consistent mapping. For instance, the
model can learn to always represent the variable named V1 in the first internal slot, V2 in the second
slot, and so on, regardless of the causal structure. This provides a canonical mapping that our probes
can reliably decode.

Future work could consider more sophisticated probes (e.g. transformer-based) that can be conditioned
on variable names without assuming any fixed mapping. For instance, a query for such a probe could
take the form [activations] [Vi] [Vj], where the target is the SCM weight (effect) between vari-
ables named Vi and Vj. Bias weights could be similarly queried by [activations] [Vi] [Vi].

E Results Appendix

E.1 Details on absolute error calculation

We chose mean absolute error (MAE) to measure model accuracy mostly for interpretability and
robustness reasons. Unlike mean squared error (MSE), MAE is in the same units as the values being
predicted and treats all prediction errors proportionally. MAE is less sensitive to occasional large
outliers than MSE or RMSE (which heavily penalize large errors due to squaring), making it a more
robust metric when occasional large deviations occur in the predictions.

To calculate absolute error when predicting DATA samples, we prompt the model with:
DATA [SCM index] [interventions] [query variable] (— [sample prediction])

and convert the highest probability next token to a numerical value. We then calculate MAE,, =
LS | — &;], where a; is the ground-truth sampled value for example i, &; is the model’s
predicted value, and n is the total number of evaluation examples.

To calculate absolute error for INFERENCE mean and standard deviation, we prompt the model with:

INFERENCE [SCM index] [observations & interventions] [query variable]
(— [mean prediction] [std prediction] )

and auto-regressively predict two tokens. We interpret the first as the counterfactual mean prediction
and the second as the standard deviation prediction. We convert both tokens to numerical values
and calculate MAE using the same formula, where ground truth values are the analytically derived
counterfactual means and standard deviations.

Note that optimal absolute error is non-zero for two reasons. First, DATA strings provide noisy samples
from interventional distributions, which cannot be predicted perfectly even with perfect knowledge of
the SCM. Second, both observations/interventions in the query and predictions are encoded with one
decimal point precision in the text. We compute the optimal prediction by performing exact causal
inference on the encoded (one decimal point) query values, encoding the output, and comparing to
the ground truth full precision values (the actual sample for DATA strings; the analytically computed
mean/std for INFERENCE strings).

Note that optimal absolute error is non-zero for two reasons. First, DATA strings provide noisy samples
of interventional distributions and it is obviously impossible to predict those perfectly. Second, for
both DATA and INFERENCE strings, we encode tokens with one decimal point precision. We take that
into account to compute the optimal prediction: we calculate the analytical estimate given the one
decimal point precision values actually encoded in the string and compare that to the ground truth.
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In Fig. [5] we present model evaluations at every 10 epochs. For each evaluated epoch and metric
we sample 1,000 Dy.in and 1,000 Dy queries (where a single query is a combination of an SCM
index, set of interventions, and a set of observations for INFERENCE strings). For the last epoch
(Fig. |§|) we sample 10,000 Dy, and 10,000 Dyey queries to obtain more precise estimates. For
each query, we run the model with four different queried variables. We exclude intervened queried
variables from the analysis since the answer is trivial—the model can achieve perfect accuracy by
simply copying the intervened value from the query and predicting zero for standard deviation.
Since queries contain varying numbers of interventions (0-2), excluding intervened variables leaves
approximately 2.9 variables per query on average. This results in around 5,800 evaluations for each
epoch (approximately 58,000 for the final epoch).

E.2 Behavioral results hold across instances

As a robustness check, we trained two additional model instances (Fig. [I0]shows all three instances
for comparison). All instances successfully generalize to counterfactual queries about Dy SCMs,
reaching near-optimal performance despite somewhat idiosyncratic training trajectories.
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Figure 10: All three model instances pass the generalization challenge, reaching near-optimal
counterfactual inference performance on Di.ss SCMs (instance 1 from main text shown alongside
instances 2 and 3 for comparison). Same metrics as in Fig. E}

E.3 Behavioral results hold when variable names are fixed across SCMs

Our behavioral results generalize to the somewhat simpler case when variable names are fixed across
SCMs, which removes the variable-to-slot mapping ambiguity discussed in Appendix [D.2](Fig. [TT).
Note that it takes less than 300 epochs to converge to near-optimal performance in this case.
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Figure 11: Training trajectories for the fixed variable naming scheme. The model converges to
near-optimal performance faster than in the shuffled case. Same metrics as in Fig. E}

E.4 Probe training and probe accuracy on DP0¢ SCM set

We probe the residual stream pre-activations in the transformer model. So layer 1 activations x
correspond to token embeddings with positional embeddings, layer 2 activations z2 correspond to the
output of layer 1, etc.

We train both linear and MLP probes using AdamW optimizer [25] with batch size of 128, learning
rate 0.001, eps 1078, betas [0.9, 0.99], and weight decay 0.0. Due to different convergence rates,
linear probes were trained for 20 epochs, and MLP probes were trained for 40 epochs. We did not
observe any signs of overfitting for either of the probes based on the validation set performance.

We trained on DP°™ and tested on Dyese SCM sets (see Fig. . In Fig. we provide probe decoding

train
accuracy on the DY set. This is an easier generalization for the probes than the case in the main

valid
text since validation set examples come from the same Dy, set used to train the probes.

E.5 Intervention algorithm and MLP intervention example

For all intervention experiments we only consider the INFERENCE counterfactual mean prediction task
since that is the most challenging for the model (see Fig. [6).

Our intervention setup (Algorithm [I]) is directly inspired by Li et al. [23]]. The basic idea is to update
the residual activations using gradient descent by minimizing the divergence between the weight
predicted by the probe and the desired weight. While linear probes may allow simpler intervention
schemes [32], we wanted to ensure a fair comparison between linear and MLP probes.

For the linear intervention example (Fig. [§), we intervened on layer 3 with learning rate o = 0.08.
For the MLP example (Fig. [I3), we intervened on layer 5 with learning rate o = 0.08.
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Figure 12: SCM weight decoding validation accuracy on DP"* set. Probe accuracy is slightly higher

than for the Dy set presented in the main text. This is expected because the probe does not need to

. b .
generalize as much—both D2 an D?Zide come from the same Dy, SCM set. Values in smaller

font indicate 95% bootstrapped confidence interval for the mean across the SCM set.

Algorithm 1 Gradient-Based Residual Stream Intervention

Require: Model M, probe P, weight index (i, j), target weight w’, layer ¢, learning rate c, steps k

I a+ x¢[:,4,:]. clone() > Extract activations at the last SCM index position
2: Adam(a, Ir = a) > Initialize Adam optimizer for a
3t Yprev < P(a,0) > Store initial probe predictions
4: for stepi = 1to k do

5: y < P(a,{) > Current probe predictions
6: Liarger < CrossEntropy(y;;, w’) > Push target weight probe prediction to w’
7: Lothers <= KL(Y\ij, Yprev\is) > Push other probes to maintain initial predictions
8: L L:target + Lothers

9: Update a using gradient descent on £
10: end for
11: x4[:,4,:] + a
12: return Model output logits

E.6 Intervention score details

For intervention score calculation, we only consider mean prediction in INFERENCE strings. Note

also that we only consider cases where post-intervention analytic mean is different from the pre-

intervention analytic mean (E[V, w”_m”} # E[V,"]), i.e. we only consider variables for which the

ground truth intervention “does something”.

Query: INFERENCE A R T Q OBS V1 -0.8 OBS V4 -0.3 DO V3 0.9 [Vi] [mean prediction]

V1 mean V2 mean V3 mean V4 mean
2 Py
0.8 =
1 K
< 0.6 3
X 0 I
8 0.4 &
-1 c
0.2 g
2 S
0.0
0 1 10 20 30 0 1 10 20 30 0 1 10 20 30 0 1 10 20 30
gradient descent steps analytical result
on residual stream activations . . . .
before intervention _ _ afterintervention
(w12 =0) (w2 =1)

Figure 13: MLP probe intervention example (w2 = 0 — w;2 = 1) for the same query as in the
main text (Fig. [§).
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Figure 14: Intervention score contrast between linear (blue) and MLP probes (red) (intervention score
for MLP probe subtracted from the score for linear probe). While linear probes have lower decoding
accuracy (Fig. [7]and [T2), MLP probes do not strictly dominate them in terms of intervention scores.
Values in smaller font indicate 95% bootstrapped confidence interval across queries, queried variables
Vi and weight changes w;; — w;]

We set normalization factor 8 = 0.89 in eq. [6|by computing the average max probability the model
assigns when predicting the mean.

We first generate a set of 200 queries that are fixed across all layers and SCM weights. We then
evaluate intervention scores for each query and for each layer-SCM weight combination by changing
the weight to all possible values w;; — wj; € {—1,0, 1} with number of steps & = 30 and learning
rate a = 0.08. We found these values to result in generally good interventions qualitatively and
we found quantitatively that intervention scores were quite robust to, say, changing number of
steps to k = 20. However, in future work we should consider a much more extensive intervention
hyperparameter sweep. For instance, it may be that certain layer-SCM weight combinations require a
completely different number of steps k or learning rate .

F Miscellaneous

F.1 Visualizing trained model embeddings

Embedding weights (PCA) Embedding weights (t-SNE)

Dimension 2
Dimension 2
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Figure 15: We visualize the trained transformer token embedding weights using PCA and t-SNE [43]]
(instance 1, shuffled variable names version). The model seems to learn the number line (numerical
tokens color-coded based on their absolute value). The model keeps negative and positive versions of
the same absolute value nearby, possibly because the prediction task requires sign flipping (when
parent value is negative and weight is —1).
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