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Abstract

Some have argued that deep neural networks are fundamentally statistical systems1

that fail to capture the causal generative processes that underlie their training data.2

Here we demonstrate that a GPT-style transformer trained for next-token prediction3

can simultaneously discover instances of linear Gaussian structural causal models4

(SCMs) and learn to answer counterfactual queries about them. First, we show that5

the network generalizes to counterfactual queries about SCMs for which it saw6

only strings describing noisy interventional data. Second, we decode the implicit7

SCM from the network’s residual stream activations and use gradient descent to8

intervene on that “mental” SCM with predictable effects on the model’s output. Our9

results suggest that statistical prediction may be sufficient to drive the emergence10

of internal causal models in neural networks trained on passively observed data.11

1 Introduction12

How can an AI system learn to reason about causes and effects—the mechanisms that remain invariant13

under local interventions [41, 33]? Pearl [34, 36] has argued that deep neural networks (DNNs)14

trained using prediction objectives are intrinsically limited in their causal reasoning capacities. His15

argument rests on Pearl’s Causal Hierarchy (PCH) [2], also known as the “Ladder of Causation"16

[36]. PCH describes three levels of causal capabilities—associational (L1), interventional (L2),17

counterfactual (L3)—and implies that answers to higher level queries are generally underdetermined18

by data or information from lower levels. According to Pearl [34], this hierarchy implies that DNNs19

trained in a “statistical mode” to predict passive observations can only master associations (L1) and20

are prevented from reasoning about actions, experiments, and explanations (L2 and L3).21

If true, Pearl’s claim would have important theoretical and practical implications regarding the22

causal abilities of large language models (LLMs) and other foundation models. Such models are23

typically pretrained using statistical objectives to predict held-out portions of passive streams of24

data [8, 38, 37, 6, 5]. For example, LLMs are trained to predict the next token in snippets drawn25

from a diverse corpus of text. Following Pearl’s reasoning [34], at least initial pretrained versions of26

foundation models should be limited to the level of associations (L1).27

While PCH provides an extremely valuable theoretical framework with wide-reaching implications,28

we do not think that Pearl’s claim about DNNs follows from PCH. First, the training data for29

foundation models contains information about the causal structure of the world. Natural language in30

particular contains many descriptions of interventions and causal inferences (Fig. 1). Such examples31

demonstrate that “passive” data is not necessarily equal to “observational” (L1) data. In fact, in32

a more recent interview, Pearl [35] acknowledges that text does contain L2/L3 information. This33

means that we cannot rule out the emergence of causal models in LLMs and other foundation models34

a priori, following standard PCH logic.35
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“even if my head would go through,” thought poor Alice, “it
would be of very little use without my shoulders".

This bottle was not marked “poison,” so Alice ventured to
taste it ... “I must be shutting up like a telescope.” ... she
was now only ten inches high ...

“Well, I’ll eat [the cake],” said Alice, “and if it makes me grow
larger, I can reach the key; and if it makes me grow smaller,
I can creep under the door; so either way I’ll get into the
garden ...

[She] soon finished off the cake. ... “now I’m opening out
like the largest telescope that ever was! Good-bye, feet!”

Figure 1: Natural language includes descriptions of interventions and causal inference. Examples
and illustrations from Alice’s Adventures in Wonderland [7]. The drink makes Alice shrink, while
the cake causes her to grow; she also reasons counterfactually about fitting through the tiny door.
LLMs may discover causal structure—the mechanisms that remain invariant under local interventions
[41, 33]—and learn causal inference engines to predict the next token in such strings.

However, Pearl [35] and others [49] have still maintained that LLMs cannot possess causal models.36

The underlying assumption seems to be that the modeling framework (deep neural networks) and/or the37

learning objective/setup (prediction of passively observed streams of data) are somehow intrinsically38

associated with the statistical (L1) level of the PCH. And in so far as LLMs can answer some39

interventional (L2) or counterfactual (L3) queries, they do so by citing information from their training40

corpus, but they do not possess causal models that would let them generalize [35]. In other words,41

they are “causal parrots” [49].42

Here we propose an alternative hypothesis and provide an existence proof: That the objective to43

predict the next token, at least in some contexts, may drive LLMs to acquire real emergent causal44

models and causal reasoning capacities at the interventional (L2) and counterfactual (L3) levels.45

We test this hypothesis empirically in a controlled setting. We generate text (in a made-up simple46

language) describing interventional data and counterfactual inferences from a constrained class47

of linear Gaussian structural causal models (SCMs). Generated text strings fall into one of two48

classes (Fig. 3): (1) DATA strings describe the behavior of the referenced SCM under interventions;49

(2) INFERENCE strings describe counterfactual inferences, given the referenced SCM. The strings50

reference the underlying SCMs via arbitrary indices, and the SCM structure is never explicitly51

provided. Given snippets of these strings, we train a GPT-style transformer model to predict the next52

token.53

To reduce next-token prediction loss in our task, the model could adopt one of two strategies:54

memorize the training examples, or discover the structure of the underlying SCMs and learn a more55

general causal inference algorithm. To distinguish these two possibilities, we devise a “generalization56

challenge” where the trained model has to generalize to counterfactual queries about a separate set57

of test SCMs (Dtest ) for which the model has only been trained with interventional data, and not58

with any counterfactual inference strings. The only way the model might perform counterfactual59

inferences about these SCMs is if it had (1) learned how to perform counterfactual inference for our60

class of SCMs and (2) inferred the structure of the test SCMs from the interventional data. We find61

that the trained model does indeed generalize to the test SCMs, indicating it has not memorized the62

answers, but has instead learned a more general counterfactual inference engine.63

Crucially, we also probe inside the model and find internal representations of the underlying SCMs64

that can be decoded from the model’s residual activations. We show that we can manipulate these65

implicit SCMs in the “network’s mind” mid-computation using gradient descent with predictable66

effects on model’s output. Finally, we show that decoding accuracy does not necessarily track where67

in the model the information about the underlying SCMs is used.68

Importantly, existing critiques of LLMs’ causal capabilities rarely define what it means to “possess”69

a causal model [35, 49]. We address this definitional gap by proposing and demonstrating three70

capabilities that constitute “possessing” a causal model: (1) generalizing to unseen causal inference71
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query and structure combinations, (2) learning interpretable, decodable representations of the un-72

derlying causal structures that (3) can be causally manipulated with predictable effects on model73

output. Together, our results serve as a carefully crafted and studied existence proof demonstrating74

how DNNs trained to predict passive streams of data can nonetheless discover and learn to use causal75

models.76

2 Related work77

Our work contributes to the broader discussion in the literature about the extent to which LLMs78

and other foundation models understand the world [4, 47, 27, 48]. Pearl [33, 34] and others [12, 19,79

36, 42, 11] have argued that human understanding derives from building and using powerful causal80

abstractions of the world. Causal capacity of LLMs thus plays an important role in this larger debate81

about understanding.82

Some have been skeptical about the causal abilities of LLMs. Referencing Pearl’s hierarchy, Zečević83

et al. [49] argue that LLMs are “causal parrots” that occasionally correctly answer causal questions84

only by capturing the “correlation of causal facts”. We agree that LLMs may learn to recite often85

repeated causal claims or exploit correlations between certain words to answer causal queries.86

However, here we present evidence that LLMs may also discover true causal structure from text and87

learn causal inference engines that generalize to unseen structure and query combinations.88

Empirical results on LLM causal capacity have been mixed [18, 50, 17]. Several datasets and89

benchmarks have been created to make progress on this question [15, 16, 40]. In contrast to evaluating90

causal abilities of pre-trained LLMs, here we consider a relatively simple causal task (discovery91

and inference within a constrained set of linear Gaussian SCMs) and train a small transformer92

from scratch with full control over the training data. We then study not only its behavior, but also93

internal representations. We are inspired by other probing and mechanistic interpretability work94

[31, 9, 10, 29], particularly on emergent world representations in transformers [21, 22, 30, 23] and95

knowledge localization/editing [25, 14].96

In our setup, we use the structural causal model (SCM) formalism established by Pearl [33] to97

generate our training data, connecting to recent work on neural-causal models [32, 45, 46, 44].98

Finally, our work complements a finding from Lampinen et al. [20] that RL agents can learn “causal99

strategies” from purely passive offline data, which the agents can then exploit to uncover causal100

structure using interventions at test time. Interestingly, our results suggest that purely “passive”101

training on next-token prediction and no interventions (at least by the model) may be enough to102

discover causal structure and learn a causal inference engine.103

3 Methods104

Our setup involves: (1) generating instances of a constrained set of linear Gaussian structural105

causal models (SCMs) (section 3.1)); (2) generating text using those SCMs in a simple artificial106

language that describes interventional data and counterfactual inferences (section 3.2); (3) setting107

up a generalization challenge for the transformer by providing only interventional data strings for108

some of the SCMs during training (section 3.3); (4) training a GPT-style transformer to predict the109

next token in generated text (section 3.4). We then study the emergent behavior of the model and its110

internal representations.111

3.1 Linear Gaussian structural causal models (SCMs)112

We consider a constrained class of linear Gaussian structural causal models (SCMs) with 4 variables113

V1, V2, V3, V4:114

Uj ∼ N (0, σ2) with σ =
√
0.1 ≈ 0.32 (1)

Vj := Uj + wjj +
∑
i<j

wijVi where ∀i, j : wij ∈ {−1, 0, 1} (2)

Background variables U = {U1, U2, U3, U4} (sometimes referred to as “exogenous” or “noise”115

variables) are sampled independently from a fixed Gaussian distribution. Each endogenous variable116
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Figure 2: Some examples of the 59,049 unique SCMs. Bias weights wii are displayed on top of the
variables. Non-zero effect weights wij are displayed on the edges between the variables.

Vj is a linear function of the corresponding background variable Uj , bias term wjj , and a weighted117

combination of parent values
∑

i<j wijVi, where wij represents the effect of variable Vi on Vj . Note118

that each SCM instance within our class is fully defined by a weight vector w with 10 ternary values:119

w = [w11, w12, w13, w14, w22, w23, w24, w33, w34, w44] (3)

We hypothesized that the trained model may represent the SCMs using this (or similar) representation.120

Foreshadowing the results, it turns out that we can decode and overwrite this vector w in the model’s121

residual stream activations with predictable effects on model’s behavior.122

We generate all possible weight combinations (3 possible values for 10 weights), resulting in 310 =123

59,049 unique SCM instances. Some example SCMs can be seen in Figure 2.124

Answers to counterfactual queries within the linear Gaussian SCM class can be computed analytically125

(details provided in appendix D). Efficient analytical estimates allow us to implement a text-generative126

model that dynamically samples queries and computes answers for each training batch.127

3.2 Generating text (training data)128

Natural language includes descriptions of interventions, outcomes under those interventions, and129

descriptions of various causal inferences (Fig. 1). Our text generation setup using a simple artificial130

language is intended to emulate this aspect of natural language.131

More concretely, we generate two types of strings (Fig. 3). Each string begins with a token that132

describes its type (DATA or INFERENCE), followed by an SCM index encoded using 4 letter tokens (e.g.133

A R T Q corresponds to SCM index 12002). Thus SCM structure is never explicitly provided—SCMs134

are referenced only via these arbitrary indices. We use OBS [Vi] [value] token sequence to indicate135

an observation and DO [Vi] [value] to represent an intervention. Numbers within [−10, 10] are136

encoded using numerical tokens with one decimal point precision (e.g. 0.3, -7.5). Numbers that fall137

outside of that range are encoded using -INF and +INF tokens.138

DATA strings provide noisy samples of the underlying interventional distributions. To construct a139

DATA string, we sample up to two interventions with values drawn uniformly from U [−5, 5], ensuring140

that the intervened variable does not repeat in the same string. We then compute the analytical141

interventional distribution given the referenced SCM and interventions, and take one sample from142

that interventional distribution. We use a random order for the variables and record the sampled143

values for each variable using [Vi] [value] token pairs.144

   string type SCM index 0-2 interventions sample from the interventional distribution end of sequence

   string type SCM index 1-2 observations and counterfactual means and standard deviations end of sequence
0-2 interventions given observations and interventions

Figure 3: We generate two types of strings from the SCMs. DATA strings provide interventional data
about the referenced SCM. INFERENCE strings provide examples of counterfactual inference.
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SCM 
set

number
of SCMs INFERENCE strings DATA strings

Dtrain 58,049 (1) learning a counterfactual
inference engine

(2) building a
shared representation

Dtest 1,000 generalization
challenge!

(3) discovering causal structure
from interventional data

strings seen during training? ✓/✗

✓ ✓

✓✗

Figure 4: Generalization challenge. To generalize to unseen INFERENCE queries for SCMs with DATA
strings only (Dtest ) the model has to: (1) learn a counterfactual inference engine from descriptions
of inferences with the Dtrain SCM set, (2) build a representation for counterfactual inference and
interventional data strings that exploits the shared structure, (3) discover the structure of Dtest SCMs
from interventional data.

INFERENCE strings provide examples of counterfactual inference within our SCM class. To construct145

an INFERENCE string, we sample 1-2 observations (also ∼ U [−5, 5]) and 0-2 interventions. We then146

compute the analytical counterfactual distribution (details in Appendix D). Similarly as with DATA147

strings, we use a random order for the variables and record the counterfactual mean and standard148

deviation for each variable using a [Vi] [mean] [std] sequence. All strings end with an EOS token.149

3.3 Generalization challenge150

We wanted to distinguish between two possibilities: (1) The model memorizes answers to causal151

queries. (2) The model learns a more general causal inference engine. For this purpose, we devised152

a “generalization challenge” by randomly choosing a held-out set of 1,000 SCMs (denoted Dtest )153

for which the model only saw DATA strings during training (Fig. 4). If the trained model can answer154

counterfactual queries about this test set, it means that it has (1) learned a more general counterfactual155

inference engine, (2) built a shared representation for interventional data and counterfactual inference,156

and (3) discovered the causal structure of SCMs within the Dtest set from interventional data strings.157

In other words, it can compose the learned counterfactual inference engine from Dtrain strings with158

the discovered causal structure from interventional data strings in Dtest .159

3.4 Model architecture and training160

We use the TransformerLens [28] implementation of a GPT 2-style transformer decoder. Trans-161

formerLens is a mechanistic interpretability library that exposes the model’s internal activations for162

reading and editing purposes during the forward pass. We utilize these features of TransformerLens163

post-training when we decode SCM weights from model’s residual stream activations and intervene164

on the SCM representation mid-computation.165

Our transformer model has 12 layers, hidden size 512, 8 attention heads of size 64, MLP size 2048,166

GELU activation function, and "Pre-LN" type layer normalization. We use AdamW [24] with learning167

rate 1e-5, [0.9, 0.999] betas, 1e-8 epsilon, and 0.001 weight decay.168

We train the model for 300 epochs with batch size 128. In each epoch, we draw 10 DATA and 10169

INFERENCE strings per SCM from our text generative model (3.2), resulting in 1,160,980 strings per170

epoch. Note that SCMs in the Dtest set have 0 INFERENCE strings in the training data. For the last 10171

epochs, we reduce the learning rate to 1e-6 for better convergence.172

4 Results173

We show the following: (1) The trained model successfully generalizes to counterfactual queries174

about those SCMs that only had interventional data strings (section 4.1). (2) We can decode the SCM175

weights from residual stream activations within the model using linear and multi-layer perceptron176

(MLP) probes (section 4.2). (3) We can use these probes to manipulate the underlying SCM177

representation within residual activations using gradient descent with predictable effects on model’s178

output (sections 4.3 and 4.4). Our results suggest that the next-token prediction objective drives the179

model to discover SCMs and learn an algorithm for counterfactual inference that generalizes within180

our SCM class.181
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Figure 5: We track model loss and absolute error while predicting interventional DATA samples,
counterfactual INFERENCE means and standard deviations for both Dtrain and Dtest SCM sets. Dtest
SCM set metrics slightly lag behind, but eventually catch up with performance on the Dtrain set and
arrive at near optimal performance. Naive baseline represents predicting the average value. Shaded
regions show 95% bootstrapped confidence intervals for the mean across evaluation examples.

4.1 Transformer generalizes to SCMs with interventional data only182

Our main behavioral test is the “generalization challenge” (3.3). The core intuition behind the183

challenge is that SCMs from the Dtest set are referenced only within DATA strings during training. If184

the model can successfully generalize to counterfactual queries about the Dtest SCMs during test time,185

it means that: (1) it has learnt a more general counterfactual inference engine (not just memorized the186

answers to counterfactual queries for the Dtrain set), and (2) it has discovered the causal structure of187

Dtest set SCMs from noisy interventional data.188

Fig. 5 shows the training trajectory for a few key metrics, including the loss as well as the absolute189

error for predicting interventional data samples and counterfactual means and standard deviations190

(see Appendix E for the calculation of absolute error). While the metrics slightly lag behind for the191

Dtest SCM set, this is expected since the model is provided with noisy interventional samples and192

only half the number of strings for this set (i.e. 0 INFERENCE strings). However, the error for both193

Dtrain and Dtest SCMs eventually reaches near-optimal performance.194

Fig. 6 shows accuracy of the fully trained model as a function of number of interventions and195

observations provided in the string. Overall the network performs near optimally on all accuracy196

metrics. The only more challenging scenario is counterfactual mean prediction with two observations197

and 1-2 interventions. However, we believe that training the model further could reduce this error as198

the loss was still going down slowly when we terminated training. Note also that average absolute199

error of ≈ 0.1 is still quite good given that numbers are encoded using one decimal point precision200

in the text. Most importantly, there is no systematic performance gap between Dtrain and Dtest SCM201

sets—the model generalizes successfully to counterfactual queries about Dtest SCMs. Finally, our202
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Figure 6: Trained model absolute errors as a function of number of interventions and observations in
the query. The model performs near optimally on all prediction tasks (with caveat for INFERENCE mean
prediction with two observations—see text for details). Shaded regions indicate 95% bootstrapped
confidence intervals for the mean across evaluation examples.
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results do not depend on the instance (see appendix B) or the fixed topological order assumption203

(see appendix C). We conclude that the network passes the generalization challenge, i.e. it does not204

simply memorize strings in the training set, but learns a more general counterfactual inference engine,205

discovers Dtest SCMs from strings describing interventional data, and successfully composes the206

discovered structure with the inference engine.207

4.2 SCM weights can be decoded from residual stream activations208

Since the weight vector w (discussed in 3.1) fully defines an SCM within our class, we hypothesized209

that the model may map SCM indices to an internal representation that is going to be closely related210

to this vector. So we train “probes” [1, 3, 13] that map model’s residual activations to elements of this211

vector. Namely, we train a separate probe for each of the 12 transformer layers to each of the 10 SCM212

weights, resulting in 120 separate classifiers. We chose to decode from residual activations at the last213

SCM index position as that position had the highest decoding accuracy—consistent with the idea that214

the model “pulls up” the SCM representation given the full SCM index for downstream computation.215

Inspired by [22, 30], we train both linear and multi-layer perceptron (MLP) probes. Linear probes216

map the 512-dimensional layer l residual stream activations xl directly to 3-way softmax output for217

each weight wij ∈ {−1, 0, 1}, while MLP probes include a 256-dimensional hidden layer:218

plinear
wij

(xl) = softmax(WTxl), W ∈ R512×3 (4)

pMLP
wij

(xl) = softmax(WT
2 ReLU(WT

1 xl), W1 ∈ R512×256, W2 ∈ R256×3 (5)

We split Dtrain set (Fig. 4) into Dprobe
train (57,049 SCMs) and Dprobe

valid (1,000 SCMs) sets. We train the219

probes on Dprobe
train , obtaining last SCM index position residual activations using INFERENCE [SCM220

index] input strings (see appendix E for details on probe training). We then test probe accuracy on221

the Dtest SCM set (Fig. 7). SCM weights can be decoded above chance (33%) using both linear222

and MLP probes, suggesting that the transformer maps the arbitrary SCM index into a meaningful223

structured representation of the underlying SCM.224

4.3 We can manipulate SCM representation in the residual stream225

Probing results should be interpreted carefully, especially for non-linear probes [39]. Although226

successful decoding establishes the presence of information, we do not know whether or how this227

information is used by downstream computation. We hypothesized that probes do in fact recover at228

least parts of the model’s representation of the underlying SCMs. If our hypothesis is correct, we229

should be able to control model’s behavior by overwriting the SCM representation in the “network’s230

mind” [10, 22, 26].231
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Figure 7: Average SCM weight decoding accuracy. Each cell corresponds to accuracy of the classifier
that takes residual stream activations of a single layer and predicts SCM weight wij ∈ {−1, 0, 1}.
Smaller values below indicate 95% bootstrapped confidence interval for the mean across the SCM
set. Chance performance is 33%. By layer 5-6, most SCM weights can be decoded by linear or MLP
probes above chance.
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Figure 8: Intervention setup.
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Figure 9: Linear probe intervention example (w12 = 0→ w12 = 1). Testing whether our intervention
on the representation is successful involves: (1) coming up with a causal query, (2) computing
analytical estimates before (w12 = 0) and after (w12 = 1) the corresponding intervention in the
ground truth SCM, and (3) checking whether the post-intervention model predictions agree with
analytical estimates. Model prediction flips for V2 and V4, aligning with analytical estimates. The
change in V4 prediction is particularly interesting since weight w12 in the underlying SCM has only
indirect effects on V4 (see SCM in Fig 8).

To test our hypothesis, we use the gradient signal from the decoders to intervene on the SCM232

representation mid-computation (Fig. 8). Fig. 9 provides an intervention example using the linear233

probe. We see that we can indeed successfully manipulate the representation—the model predictions234

post-intervention on the residual stream align with analytical estimates for the corresponding change235

in the ground truth SCM. Further details on our intervention setup and an intervention example236

using an MLP probe can be found in appendix E. The fact that we can manipulate the SCM weights237

suggests that the probes do in fact recover a “real” representation of the referenced SCM.238

4.4 Decoding accuracy does not imply controllability239

We introduce a quantitative metric (the “intervention score”) to investigate which SCM weights can240

be manipulated at which layers. Intuitively, the intervention score represents how well we can control241

model’s behavior by changing its residual stream activations at a particular layer. Given an SCM,242

weight change (wij → w′), residual stream intervention at layer l (l→ l′), and queried variable Vk:243

intervention
score =

1

β

(
pl→l′

model(token(E[V
wij→w′

k ]))︸ ︷︷ ︸
probability assigned to the correct token

after residual stream intervention

− pmodel(token(E[V
wij→w′

k ]))︸ ︷︷ ︸
probability already assigned to the correct
token before residual stream intervention

)
(6)

Note that this score can be negative when the model assigns some non-zero probability to the correct244

post-intervention token before the intervention, but the intervention on activations (l → l′) lowers245

that probability. Moreover, the model generally hedges its bets, so we normalize the quantity in the246
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big brackets by the average max probability β model assigns during normal operation (≈ 0.89). An247

average intervention score of 1 then corresponds to “perfect” interventions—the model gives correct248

answers with the same average confidence as during normal operation. Further details on computing249

intervention scores can be found in Appendix E.250
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Figure 10: Intervention scores are not coupled to decoding accuracy beyond layer 7 (compare to
Fig. 7). Each cell corresponds to the average intervention score for weight wij and layer l. Values
in smaller font indicate 95% bootstrapped confidence interval for the mean across queries, queried
variables Vi and weight changes wij → w′.

The intervention scores in Fig. 10 suggest two things. First, the decoding accuracy is decoupled251

from the intervention scores beyond layer 7—changing residual stream activations (at the last SCM252

index position) beyond layer 7 does not have an effect on model output. Although the model does253

not appear to use the information beyond layer 7, it does not destroy it, either. Second, while the254

linear probe has lower overall decoding accuracy, it achieves higher intervention scores for some255

layer-and-weight pairs (particularly, for w11, see Fig. 16 for a contrast between linear and MLP256

intervention scores). Overall, the quantitative intervention results underscore the broader point that257

the presence of information does not imply that the model is using that information.258

5 Discussion259

By demonstrating that transformers can discover causal structure and learn causal inference engines260

solely through next-token prediction, we challenge fundamental assumptions about the limitations261

of neural networks trained to predict “passive” streams of data [34, 36, 35, 49]. While the learning262

setup may be passive, the data is often rich with implicit causal information that a purely predictive263

(but finite) model may want to discover and exploit. This raises broader questions that apply to264

all foundation models. For instance, do video generation models (e.g. OpenAI’s Sora [5]) learn265

simulators of the world—corresponding, at least informally, to L2 of Pearl’s Causal Hierarchy? Could266

we find abstract representations of physical objects and agents within their activations that we could267

intervene upon? If so, could we augment these models with causal reasoning capacities—allowing268

them to reason counterfactually (L3)? We are excited to explore these questions in future work.269

The primary limitations of our work are the artificial language setup and the constrained SCM class.270

Our setup, while designed to emulate how natural language implicitly conveys causal information271

about interventions and inferences, does not capture the full richness of real-world text and causal272

structures. However, this constrained setting was crucial for providing a clear and unambiguous273

“existence proof” that statistical prediction can, under the right conditions, give rise to causal models274

and reasoning. Future work could explore to what extent our results generalize to more naturalistic275

settings with vague natural language descriptions of the causal scenarios and more complex causal276

model classes, including non-linear SCMs.277

Conclusion. Our work provides a concrete existence proof that statistical prediction objectives can278

drive the emergence of causal models and causal reasoning. Through careful behavioral tests and279

mechanistic analysis, we demonstrated that next-token prediction can yield models that discover280

causal structure, build internal causal representations, and perform counterfactual inference. While281

our study focuses on a constrained setting, it opens new questions about the causal capabilities that282

may be emerging in today’s foundation models trained on vast datasets.283
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B Additional Instances420

As a robustness check, we trained three additional model instances from different random seeds421

(Fig. 11). All instances successfully generalize to counterfactual queries about Dtest SCMs, reaching422

near-optimal performance despite somewhat idiosyncratic training trajectories. ‘423
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Figure 11: Three additional model instances (different random seeds) all pass the generalization
challenge, reaching near-optimal counterfactual inference performance on Dtest SCMs. Same metrics
as in Fig. 5.

C Causal Discovery Without a Fixed Topological Order424

In our main results, the topological order of the variables was fixed across all SCM instances425

(V1 ≺ V2 ≺ V3 ≺ V4). For instance, V1 always referred to the root node. So the model could learn to426

exploit this order, substantially simplifying the causal discovery problem.427

To make sure that our results do not depend on the fixed variable order, we trained a model instance428

where the variable names are randomly permuted in each SCM, i.e. V1 can refer to the root node, or429

it can be the last variable in the SCM.430

Figures 12 and 13 demonstrate that the model generalizes to counterfactual queries about the431

Dtest SCMs even in this more challenging (and more typical) causal discovery scenario where the432

topological order cannot be assumed. Interestingly, consistent with our intuition that this scenario433

should be more difficult, the model takes much longer to converge and reach optimal performance434

(over 1000 epochs compared to 300 for the main results).435
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Figure 12: Setting without a fixed topological order of the variables. Interestingly, it takes much
longer for the model to converge in this setting (over 1000 epochs vs. 300 epochs), but our results do
not depend on the fixed topological order. Same metrics as in Fig. 5.
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Figure 13: Last epoch performance without a fixed topological order of the variables. Same metrics
as in Fig. 6.

D Methods Appendix436

Analytic counterfactual inference in linear Gaussian SCMs437

We implement analytic counterfactual inference for linear Gaussian SCMs, computing the quantity438

P (Vxint |Y = yobs), where Y = yobs are observed values in the factual world, and xint represents the439

intervention do(X = xint) in the counterfactual world. Counterfactual inference involves three steps440

[33]:441

1. Abduction – finding the posterior over the background variables given observed values442

p(U |X = xobs).443

2. Action – modifying the SCM according to the intervention; in our case, this corresponds to444

setting a subset of the endogenous variables to constant values in the structural equations445

X := xint and setting incoming weights to zero for intervened variables w→ wxint .446

3. Prediction – given the posterior over background variables U and the modified SCM,447

computing the counterfactual distribution over the endogenous variables V .448

To analytically compute answers in steps (1) and (3) for a Gaussian linear SCM, it is useful to define449

the "total effects" matrix T . Let Tji denote the total effect of the background variable Ui on the450

endogenous variable Vj , where i, j ∈ {1, . . . ,m} and m is the number of variables (in our case,451

m = 4). The entries of the total effects matrix T are defined recursively as follows:452

1. Base Cases: For i = 1, . . . ,m:453

• Tii = 1 (Direct effect Ui → Vi).454

• Tji = 0 for all j < i (No effect from Ui on preceding variables).455
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2. Recursive Step: For all j > i:

Tji =
∑
k

Tki × wkj

Note that T is a lower triangular matrix with ones on its diagonal. We can then use it to define the456

structural equations in matrix form:457

V = TU (7)

Let xobs ∈ Rn be the vector of n observed values. Let O = {o1, o2, . . . , on} be the ordered set of458

indices such that the r-th element of xobs, denoted (xobs)r, corresponds to the observed value of459

variable Vor . That is, Vor = (xobs)r for r = 1, . . . , n.460

We construct the observation matrix H ∈ Rn×m by selecting the rows of the total effects matrix T461

corresponding to the indices in O, maintaining the order defined by O.462

The posterior over the background variables given the observations p(U |xobs) = N (U ;µpost,Σpost)463

can be computed from the prior mean µprior and covariance Σprior using standard Gaussian condition-464

ing:465

K = ΣpriorH
T (HΣpriorH

T )−1 (8)
µpost = µprior +K(xobs −Hµprior) (9)
Σpost = Σprior −KHΣprior (10)

where K is the Kalman gain matrix.466

Let the counterfactual mean µcounter and covariance matrix Σcounter parameterize the counterfactual467

distribution P (Vxint |Y = yobs) = N (Vxint ;µcounter,Σcounter).468

To compute the counterfactual mean µcounter, we change the structural equations to incorporate469

interventions as assignments to constants (intervened values), and compute the variable values in470

topological order.471

To compute the covariance matrix Σcounter, we first compute a modified posterior covariance matrix472

over the background terms Σ̃post where we set all the rows and columns of the intervened variable to 0.473

We also compute the total effects matrix for intervened weights Txint . Then Σcounter = T̃xintΣ̃postT̃
T
xint

.474

For DATA strings, we take one sample from the counterfactual distribution. For INFERENCE strings, we475

provide counterfactual means and standard deviations (square root of Σcounter diagonal values).476

E Results Appendix477

4.1 Appendix: Details on absolute error calculation478

To calculate absolute error when predicting DATA samples, we prompt the model with:479

DATA [SCM index] [interventions] [query variable] → [sample prediction]480

and convert the highest probability next token to a numerical value. We then calculate mean absolute481

error (MAE) as MAEdata = 1
n

∑n
i |xi − x̂i|, where xi is sampled value as presented in the text, x̂i482

is model predicted value and n is the number of examples queries we are averaging over.483

To calculate prediction accuracy for INFERENCE mean and standard deviation, we prompt the model484

with:485

INFERENCE [SCM index] [observations & interventions] [query variable]486

→ [mean prediction] [std prediction]487

and auto-regressively predict two tokens. We interpret the first as the counterfactual mean prediction488

and the second as the standard deviation prediction. We convert both of these tokens to numerical489

values and use the same equations for mean absolute error (but now the ground truth tokens represent490

analytically derived mean and standard deviation).491
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In Fig. 5 we present model evaluations at every 10 epochs. For each evaluated epoch and metric we492

sample 1,000 Dtrain and 1,000 Dtest queries (where query is a combination of an SCM index, set of493

interventions, and a set of observations for INFERENCE strings). For the last epoch (zoomed in in Fig.494

6), we sample 10,000 Dtrain and 10,000 Dtest queries to get better estimates. For each query, we run495

the model with four different queried variables. We exclude intervened queried variables from the496

analysis since the answer is trivial (i.e. copy the intervened value from the query or predict zero for497

standard deviation) and the model makes no errors. Excluding intervened queried variables leaves498

≈ 2.9 strings per query, resulting in around 5,800 for each epoch (last one has about 58,000).499

4.2 Appendix: Probe training and probe accuracy on Dprobe
valid SCM set500

We probe the residual stream pre-activations in the transformer model. So layer 1 activations501

correspond to token embeddings with positional embeddings, layer 2 activations correspond to the502

output of layer 1, etc.503

We train both linear and MLP probes using AdamW optimizer [24] with batch size of 128, learning504

rate 0.001, eps 1e-08, betas [0.9, 0.99] and weight decay 0.0. Due to different convergence rates,505

linear probes were trained for 20 epochs, and MLP probes were trained for 40 epochs. We did not506

observe any signs of overfitting for either of the probes based on the validation set performance.507

We trained on Dprobe
train and tested on Dtest SCM sets (see Fig. 4.2). In Fig. 14 we provide probe508

decoding accuracy on the Dprobe
valid set. This is an easier generalization for the probes than the case in509

the main text since validation set examples come from the same Dtrain set used to train the probes.510

w11 w12 w13 w14 w22 w23 w24 w33 w34 w44
SCM weight

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r

0.33
[0.31, 0.36]

0.33
[0.30, 0.36]

0.33
[0.31, 0.36]

0.32
[0.30, 0.35]

0.32
[0.29, 0.35]

0.32
[0.29, 0.35]

0.32
[0.29, 0.35]

0.33
[0.30, 0.36]

0.35
[0.32, 0.38]

0.34
[0.30, 0.37]

0.36
[0.33, 0.39]

0.35
[0.32, 0.38]

0.34
[0.31, 0.37]

0.37
[0.34, 0.40]

0.36
[0.33, 0.39]

0.33
[0.31, 0.36]

0.34
[0.31, 0.37]

0.33
[0.31, 0.36]

0.34
[0.31, 0.38]

0.32
[0.29, 0.35]

0.49
[0.46, 0.52]

0.40
[0.37, 0.42]

0.36
[0.33, 0.39]

0.35
[0.32, 0.38]

0.39
[0.36, 0.42]

0.37
[0.34, 0.40]

0.34
[0.31, 0.38]

0.34
[0.31, 0.37]

0.38
[0.35, 0.41]

0.34
[0.31, 0.37]

0.79
[0.77, 0.82]

0.46
[0.43, 0.49]

0.38
[0.35, 0.41]

0.36
[0.34, 0.39]

0.43
[0.40, 0.47]

0.43
[0.40, 0.46]

0.38
[0.35, 0.41]

0.39
[0.36, 0.42]

0.46
[0.42, 0.49]

0.36
[0.33, 0.39]

0.95
[0.94, 0.96]

0.60
[0.57, 0.62]

0.42
[0.39, 0.45]

0.38
[0.35, 0.41]

0.52
[0.49, 0.55]

0.58
[0.55, 0.61]

0.44
[0.41, 0.48]

0.44
[0.42, 0.48]

0.58
[0.55, 0.61]

0.42
[0.39, 0.45]

1.00
[0.99, 1.00]

0.72
[0.70, 0.75]

0.50
[0.47, 0.53]

0.41
[0.37, 0.43]

0.65
[0.62, 0.68]

0.69
[0.66, 0.72]

0.52
[0.49, 0.55]

0.51
[0.49, 0.55]

0.65
[0.62, 0.68]

0.46
[0.43, 0.50]

1.00
[1.00, 1.00]

0.76
[0.74, 0.79]

0.59
[0.56, 0.62]

0.45
[0.42, 0.48]

0.70
[0.68, 0.73]

0.77
[0.75, 0.80]

0.60
[0.57, 0.63]

0.56
[0.53, 0.59]

0.69
[0.66, 0.71]

0.50
[0.47, 0.53]

0.99
[0.99, 1.00]

0.75
[0.73, 0.78]

0.65
[0.62, 0.68]

0.55
[0.52, 0.58]

0.70
[0.67, 0.73]

0.73
[0.70, 0.75]

0.65
[0.62, 0.68]

0.52
[0.49, 0.55]

0.67
[0.64, 0.70]

0.48
[0.45, 0.51]

0.98
[0.98, 0.99]

0.76
[0.74, 0.79]

0.65
[0.63, 0.69]

0.62
[0.59, 0.65]

0.69
[0.66, 0.72]

0.72
[0.69, 0.75]

0.66
[0.63, 0.69]

0.49
[0.46, 0.52]

0.67
[0.64, 0.70]

0.45
[0.42, 0.48]

0.98
[0.97, 0.99]

0.73
[0.71, 0.76]

0.67
[0.64, 0.70]

0.65
[0.62, 0.68]

0.65
[0.62, 0.68]

0.71
[0.68, 0.74]

0.65
[0.62, 0.68]

0.47
[0.44, 0.50]

0.68
[0.65, 0.71]

0.46
[0.43, 0.49]

0.97
[0.96, 0.98]

0.73
[0.70, 0.75]

0.66
[0.63, 0.69]

0.65
[0.62, 0.68]

0.65
[0.62, 0.68]

0.69
[0.67, 0.73]

0.65
[0.62, 0.68]

0.44
[0.41, 0.48]

0.67
[0.64, 0.70]

0.45
[0.42, 0.48]

0.96
[0.95, 0.98]

0.72
[0.69, 0.75]

0.66
[0.63, 0.69]

0.64
[0.62, 0.67]

0.62
[0.60, 0.65]

0.67
[0.64, 0.70]

0.66
[0.63, 0.69]

0.43
[0.40, 0.46]

0.66
[0.63, 0.69]

0.46
[0.43, 0.49]

Linear probe
decoding accuracy on Dtrain SCM set

w11 w12 w13 w14 w22 w23 w24 w33 w34 w44
SCM weight

1
2
3
4
5
6
7
8
9

10
11
12

La
ye

r

0.34
[0.31, 0.37]

0.31
[0.28, 0.34]

0.31
[0.28, 0.34]

0.34
[0.31, 0.37]

0.33
[0.30, 0.36]

0.34
[0.31, 0.37]

0.33
[0.30, 0.36]

0.34
[0.31, 0.36]

0.32
[0.29, 0.35]

0.32
[0.30, 0.35]

0.35
[0.32, 0.38]

0.34
[0.31, 0.37]

0.33
[0.31, 0.37]

0.32
[0.29, 0.35]

0.36
[0.33, 0.39]

0.36
[0.33, 0.39]

0.32
[0.29, 0.35]

0.32
[0.29, 0.34]

0.29
[0.27, 0.32]

0.32
[0.30, 0.35]

0.63
[0.60, 0.67]

0.39
[0.36, 0.42]

0.37
[0.34, 0.40]

0.34
[0.31, 0.37]

0.38
[0.35, 0.41]

0.38
[0.35, 0.41]

0.35
[0.32, 0.38]

0.32
[0.29, 0.35]

0.39
[0.36, 0.42]

0.36
[0.33, 0.39]

0.89
[0.87, 0.91]

0.55
[0.52, 0.59]

0.40
[0.37, 0.43]

0.38
[0.34, 0.41]

0.56
[0.52, 0.59]

0.50
[0.47, 0.54]

0.41
[0.38, 0.44]

0.42
[0.39, 0.45]

0.48
[0.45, 0.51]

0.37
[0.34, 0.40]

0.98
[0.98, 0.99]

0.88
[0.86, 0.90]

0.61
[0.58, 0.63]

0.46
[0.43, 0.49]

0.87
[0.85, 0.89]

0.75
[0.72, 0.78]

0.54
[0.50, 0.57]

0.53
[0.50, 0.56]

0.65
[0.62, 0.68]

0.45
[0.42, 0.48]

1.00
[1.00, 1.00]

0.98
[0.98, 0.99]

0.87
[0.85, 0.89]

0.70
[0.68, 0.73]

0.98
[0.97, 0.99]

0.93
[0.92, 0.95]

0.81
[0.79, 0.84]

0.78
[0.76, 0.81]

0.93
[0.91, 0.94]

0.63
[0.60, 0.66]

1.00
[1.00, 1.00]

1.00
[0.99, 1.00]

0.98
[0.98, 0.99]

0.89
[0.87, 0.91]

1.00
[0.99, 1.00]

0.99
[0.98, 0.99]

0.93
[0.92, 0.94]

0.90
[0.88, 0.92]

0.98
[0.97, 0.99]

0.71
[0.68, 0.74]

1.00
[1.00, 1.00]

1.00
[1.00, 1.00]

0.98
[0.97, 0.99]

0.94
[0.93, 0.96]

0.99
[0.99, 1.00]

0.98
[0.97, 0.99]

0.95
[0.94, 0.96]

0.93
[0.92, 0.95]

0.98
[0.97, 0.99]

0.72
[0.69, 0.75]

1.00
[1.00, 1.00]

0.99
[0.99, 1.00]

0.98
[0.97, 0.99]

0.94
[0.93, 0.95]

0.99
[0.99, 1.00]

0.98
[0.97, 0.99]

0.93
[0.92, 0.95]

0.92
[0.90, 0.94]

0.96
[0.95, 0.97]

0.72
[0.69, 0.75]

1.00
[1.00, 1.00]

1.00
[0.99, 1.00]

0.98
[0.97, 0.99]

0.94
[0.92, 0.95]

0.99
[0.98, 1.00]

0.98
[0.97, 0.99]

0.93
[0.91, 0.94]

0.91
[0.90, 0.93]

0.96
[0.95, 0.97]

0.70
[0.68, 0.73]

1.00
[1.00, 1.00]

1.00
[0.99, 1.00]

0.97
[0.96, 0.98]

0.92
[0.90, 0.93]

0.98
[0.98, 0.99]

0.97
[0.96, 0.98]

0.92
[0.91, 0.94]

0.89
[0.88, 0.91]

0.96
[0.94, 0.97]

0.71
[0.68, 0.73]

0.99
[0.99, 1.00]

0.99
[0.98, 1.00]

0.96
[0.94, 0.97]

0.89
[0.87, 0.91]

0.98
[0.97, 0.99]

0.96
[0.95, 0.97]

0.90
[0.88, 0.92]

0.87
[0.85, 0.89]

0.95
[0.94, 0.96]

0.67
[0.64, 0.70]

MLP probe
decoding accuracy on Dtrain SCM set

Figure 14: SCM weight decoding validation accuracy on Dprobe
valid set. Probe accuracy is slightly higher

than for Dtest set presented in the main text. This is expected because the probe does not need to
generalize as much—both Dprobe

train and Dprobe
valid come from the same Dtrain SCM set. Smaller values

below indicate 95% bootstrapped confidence interval for the mean across the SCM set.

4.3 Appendix: Intervention algorithm and MLP intervention example511

For all intervention experiments we only consider the INFERENCE counterfactual mean prediction task512

since that is the most challenging for the model (see Fig. 6).513

Our intervention setup (Algorithm 1) is directly inspired by Li et al. [22].514

For linear intervention example (Fig. 9), we intervened on layer 3 with learning rate α = 0.08. For515

MLP example (Fig. 15), we intervened on layer 5 with learning rate α = 0.08.516

4.4 Appendix: Intervention score details517

For intervention score calculation, we only consider mean prediction in INFERENCE strings. Note518

also that we only consider cases where post-intervention analytic mean is different from the pre-519

intervention analytic mean (E[V
wij→w′

k ] ̸= E[V
wij

k ]), i.e. we only consider variables for which the520

ground truth intervention “does something”.521

We set normalization factor β = 0.89 in eq. 6 by computing the average max probability the model522

assigns when predicting the mean.523
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Algorithm 1 Gradient-Based Residual Stream Intervention

Require: Model M , probe P , weight index (i, j), target weight w′, layer l, learning rate α, steps k
1: a← hℓ[:, 4, :].clone() ▷ Extract activations at the last SCM index position
2: Adam(a, lr = α) ▷ Initialize optimizer
3: yprev ← P (a, ℓ) ▷ Store initial probe predictions
4: for step i = 1 to k do
5: y← P (a, ℓ) ▷ Current probe predictions
6: Ltarget ← CrossEntropy(yij , w

′) ▷ Push target weight probe prediction to w′

7: Lothers ← KL(y\ij ,yprev\ij) ▷ Push other probes to maintain initial predictions
8: L ← Ltarget + Lothers
9: Update a using gradient descent on L

10: end for
11: hℓ[:, 4, :]← a
12: return Model output logits

Query: INFERENCE A R T Q OBS V1 -0.8 OBS V4 -0.3 DO V3 0.9 [Vi] [mean prediction]
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Figure 15: MLP probe intervention example (w12 = 0 → w12 = 1) for the same query as in the
main text (Fig. 9).

We first generate a set of 200 queries that are fixed across all layers and SCM weights. We then524

evaluate intervention scores for each queries and for each layer-SCM weight combination by changing525

the weight to all possible values wij → w′ ∈ {−1, 0, 1} with number of steps k = 30 and learning526

rate α = 0.08. We found these values to results in generally good interventions qualitatively and527

we found quantitatively that intervention scores were quite robust to, say, changing number of528

steps to k = 20. However, in future work we should consider a much more extensive intervention529

hyperparameter sweep. For instance, it may be that certain layer-SCM weight combinations require a530

completely different number of steps k or learning rate α.531

F Miscellaneous532

Visualizing trained model embeddings533
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Figure 16: Intervention score contrast between linear (blue) and MLP probes (red) (intervention score
for MLP probe subtracted from the score for linear probe). While linear probe has lower decoding
accuracy (Fig. 7 and 14), MLP probe does not strictly dominate it in terms of intervention scores.
Smaller values below indicate 95% bootstrapped confidence interval across queries, queried variables
Vi and weight changes wij → w′.
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Figure 17: We visualize the trained transformer token embedding weights using PCA and t-SNE [43].
The model seems to learn the number line (numerical tokens color coded based on their absolute
value). The model keeps negative and positive versions of the same absolute value nearby, possibly
because the prediction task requires sign flipping (when parent value is negative and weight is −1).
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