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Abstract

Many graph neural networks have been developed to learn graph representations in either
Euclidean or hyperbolic space, with all nodes’ representations embedded in a single space.
However, a graph can have hyperbolic and Euclidean geometries at different regions of the
graph. Thus, it is sub-optimal to indifferently embed an entire graph into a single space.
In this paper, we explore and analyze two notions of local hyperbolicity, describing the
underlying local geometry: geometric (Gromov) and model-based, to determine the preferred
space of embedding for each node. The two hyperbolicities’ distributions are aligned using
the Wasserstein metric such that the calculated geometric hyperbolicity guides the choice
of the learned model hyperbolicity. As such our model Joint Space Graph Neural Network
(JSGNN) can leverage both Euclidean and hyperbolic spaces during learning by allowing
node-specific geometry space selection. We evaluate our model on both node classification
and link prediction tasks and observe promising performance compared to baseline models.

1 Introduction

Graph neural networks (GNNs) are neural networks that learn from graph-structured data. Many works
such as Graph Convolutional Network (GCN) (Kipf & Welling, 2016), Graph Attention Network (GAT)
(Veličković et al., 2018), GraphSAGE (Hamilton et al., 2017) and their variants operate on the Euclidean
space and have been applied in many areas such as recommender systems (Ying et al., 2018; Chen et al.,
2022a), chemistry (Gilmer et al., 2017) and financial systems (Sawhney et al., 2021). Despite their remarkable
accomplishments, their performances are still limited by the representation ability of Euclidean space. They
are unable to achieve the best performance in situations when the data exhibit non-Euclidean characteristics
such as scale-free, tree-like, or hierarchical structures (Yang et al., 2022).

As such, hyperbolic spaces have gained traction in research as they have been proven to better embed tree-like,
hierarchical structures compared to the Euclidean geometry Bachmann et al. (2019); Cho et al. (2019).
Intuitively, encoding non-Euclidean structures such as trees in the Euclidean space would result in more
considerable distortion since the number of nodes in a tree increases exponentially with the depth of the tree
while the Euclidean space only grows polynomially (Zhu et al., 2020). In such cases, the hyperbolic geometry
serves as an alternative to learning those structures with comparably smaller distortion as the hyperbolic
space has the exponential growth property (Yang et al., 2022). As such, hyperbolic versions of GNNs such as
HGCN (Chami et al., 2019), HGNN (Liu et al., 2019), HGAT (Zhang et al., 2021a) and LGCN (Zhang et al.,
2021b) have been proposed.

Nevertheless, real-world graphs are often complex. They are neither solely made up of Euclidean nor non-
Euclidean structures alone but a mixture of geometrical structures. Consider a localized version of geometric
hyperbolicity, a concept from geometry group theory measuring how tree-like the underlying space is for each
node in the graph (refer to Section 3.1 for more details). We observe a mixture of local geometric hyperbolicity
values in most of the benchmark datasets we employ for our experiments as seen in Fig. 2. This implies
that the graphs contain a mixture of geometries and thus, it is not ideal to embed the graphs into a single
geometry space, regardless of Euclidean or hyperbolic as it inevitably leads to undesired structural inductive
biases and distortions (Yang et al., 2022).
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Taking a graph containing both lattice-like and tree-like structures as an example, Fig. 1c and Fig. 1f
shows that 15 of the blue-colored nodes in the tree structure are calculated to have 2-hop local geometric
hyperbolicity value of zero, while 12 of the purple nodes have a value of one and the other 3 purple nodes
(at the center of the lattice) have a value of two (the smaller the hyperbolicity value, the more hyperbolic).
This localized metric can therefore serve as an indication during learning on which of the two spaces is more
suitable to embed the respective nodes.

(a) (b) (c)

(d) (e) (f)

Figure 1: Example graphs. (a) Lattice-like graph. (b) A tree. (c) A combined graph containing both lattice
and tree structure. (d-f) The histograms reflect the geometric hyperbolicity in the respective graphs.

Here we address this mixture of geometry in a graph and propose Joint Space Graph Neural Network (JSGNN)
that performs learning on a joint space consisting of both Euclidean and hyperbolic geometries. To achieve
this, we first update all the node features in both Euclidean and hyperbolic spaces independently, giving
rise to two sets of updated node features. Then, we employ exponential and logarithmic maps to bridge the
two spaces and an attention mechanism is used as a form of model hyperbolicity, taking into account the
underlying structure around each node and the corresponding node features. The learned model hyperbolicity
is guided by geometric hyperbolicity and is used to “softly decide” the most suitable embedding space for
each node and to reduce the two sets of updated features into only one set. Ideally, a node should be either
hyperbolic or Euclidean and not both simultaneously, thus, we also introduce an additional loss term to
achieve this non-uniform characteristic. Related works are discussed in Appendix D.

2 Background

In this section, we give a brief overview of hyperbolic geometry that will be used in the paper. Readers are
referred to Lee (2018) for further details. Moreover, we review GAT and its hyperbolic version.

2.1 Hyperbolic geometry

A hyperbolic space is a non-Euclidean space with constant negative curvature. There are different but
equivalent models to describe the same hyperbolic geometry. In this paper, we work with the Poincaré ball
model, in which all points are inside a ball. The hyperbolic space with constant negative curvature c is
denoted by (Dn

c , g
c
x). It consists of the n-dimensional hyperbolic manifold Dn

c = {x ∈ Rn : c∥x∥ < 1} with the
Riemannian metric gc

x = (λc
x)2gE , where λc

x = 2/(1 − c∥x∥2) and gE = In is the Euclidean metric.
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(a) (b) (c) (d)

(e) (f) (g)

Figure 2: Distributions of geometric hyperbolicity for all datasets, obtained by computing δGv,∞ on each
nodes’ 2-hop subgraph.

At each x ∈ Dn
c , there is a tangent space TxDn

c , which can be viewed as the first-order approximation of the
hyperbolic manifold at x (Bachmann et al., 2019). The tangent space is then useful to perform Euclidean
operations that we are familiar with but are undefined in hyperbolic spaces. A hyperbolic space and the
tangent space at a point are connected through the exponential map expc

x : TxDn
c → Dn

c and logarithmic map
logc

x : Dn
c → TxDn

c , specifically defined as follows:

expc
x(v) = x ⊕c

(
tanh

(√
c
λc

x∥v∥
2

)
v√
c∥v∥

)
, (1)

logc
x(y) = 2√

cλc
x

tanh−1(
√
c∥ − x ⊕c y∥) −x ⊕c y

∥ − x ⊕c y∥
, (2)

where x,y ∈ Dn
c ,v ∈ TxDn

c and ⊕c is the Möbius addition. For convenience, we write D for Dn
c if no confusion

arises.

A salient feature of hyperbolic geometry is that it is “thinner” than Euclidean geometry. Visually, more points
can be squeezed in a hyperbolic subspace having the same shape as its Euclidean counterpart, due to the
different metrics in the two spaces. We discuss the graph version in Section 3.1 below.

2.2 Graph attention and message passing

Consider a graph G = (V,E), where V is the set of vertices, E is the set of edges, and each node in V
is associated with a node feature hv. Recall that GAT is a GNN that updates node representations using
message passing by updating edge weights concurrently. Specifically, for one layer of GAT (Veličković et al.,
2018), the node features are updated as follows:

h
′

v = σ
( ∑

j∈N(v)

αvjWhj

)
, (3)

αvj = exp(evj)∑
k∈N(v) exp(evk) , (4)

evj = LeakyReLU(a⊺[Whv ∥ Whj ]), (5)

where ∥ denotes the concatenation operation, σ denotes an activation function, a represents the learnable
attention vector, W is the weight matrix for a linear transformation and α denotes the normalized attention
scores.

This model has been proven to be successful in many graph-related machine learning tasks.
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2.3 Hyperbolic attention model

To derive a hyperbolic version of GAT, we adopt the following strategy. We perform feature aggregation in
the tangent spaces of points in the hyperbolic space. Features are mapped between hyperbolic space and
tangent spaces using the pair of exponential and logarithmic functions: expc

x and logc
x.

With this, we denote Euclidean features as hR and hyperbolic features as hD. Then one layer of message
propagation in the hyperbolic GAT is as follows (Zhu et al., 2020):

h
′

v,D = σ
( ∑

j∈N(v)

αvj logc
o(W ⊗c hj,D ⊕c b)

)
, (6)

evj = LeakyReLU
(

a⊺
[
ĥv ∥ ĥj

]
× dD(hv,D, hj,D)

)
, (7)

dD(hv,D, hj,D) = 2√
c

tanh−1(
√
c∥ − hv,D ⊕c hj,D∥), (8)

αvj = softmaxj(evj), (9)

where dD is the normalized hyperbolic distance, ĥj = logc
o(W ⊗c hj,D), while ⊗c and ⊕c represent the Möbius

matrix multiplication and addition, respectively.

3 Joint Space Learning

In this section, we propose our joint space learning model. The model relies on comparing two different
notions of hyperbolicity: geometric hyperbolicity and model hyperbolicity. We start by introducing the former,
which also serves as the motivation for the design of our GNN model.

3.1 Local geometry and geometric hyperbolicity

Gromov’s δ-hyperbolicity is a mathematical notion from geometry group theory to measure how tree-like a
metric space is in terms of metric or distance structure (Adcock et al., 2013; Chami et al., 2019). The precise
definition is given as follows.
Definition 1 (Gromov 4-point δ-hyperbolicity (Bridson & Haefliger, 1999) p.410). For a metric space X
with metric d(·, ·), it is δ-hyperbolic, where δ ≥ 0 if the four-point condition holds:

d(x, y) + d(z, t) ≤
max{d(x, z) + d(y, t), d(z, y) + d(x, t)} + 2δ,

(10)

for any x, y, z, t ∈ X. X is hyperbolic if it is δ-hyperbolic for some δ ≥ 0.

This condition of δ-hyperbolicity is equivalent to the Gromov thin triangle condition. For example, any tree
is (0-)hyperbolic, and Rn, where n ≥ 2 is not hyperbolic. However, if X is a compact metric space, then X is
always δ-hyperbolic for some δ large enough such as δ = diameter(X). Therefore, it is insufficient to just
label X as hyperbolic or not. We want to quantify hyperbolicity such that a space with smaller hyperbolicity
resembles more of a tree.

Inspired by the four-point condition, we define the ∞-version and the 1-version of hyperbolicity as follows.
Definition 2. For a compact metric space X and x, y, z, t ∈ X, denote infδ≥0{(10) holds for x, y, z, t} by
τX(x, y, z, t). Define

δX,∞ = sup
x,y,z,t∈X

τX(x, y, z, t),

δX,1 = Ex,y,z,t∼Unif(X4)[τX(x, y, z, t)],

where Unif represents the uniform distribution.
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In order for these invariants to be useful for graphs, we require them to be almost identical for graphs with
similar structures. We shall see that this is indeed the case. Before stating the result, we need a few more
concepts.

Let G be the space of weighted, undirected simple graphs. Though for most experiments, the given graphs are
unweighted. However, aggregation mechanisms such as attention essentially generate weights for the edges.
Therefore, for both theoretical and practical reasons, it makes sense to expand the graph domain to include
weighted graphs.

For each G = (V,E) ∈ G, it has a canonical path metric dG, and dG makes G into a metric space including
non-vertex points on the edges. For ϵ > 0, there is the subspace Gϵ of G consisting of graphs whose edge
weights are greater than ϵ.

On the other hand, there is a metric on the space G and Gϵ, called the Gromov-Hausdorff metric (Bridson &
Haefliger (1999) p.72). To define it, we first introduce the Hausdorff distance. Let X and Y be two subsets of
a metric space (M,d). Then the Hausdorff distance dH(X,Y ) between X and Y is

dH(X,Y ) = max{sup
x∈X

d(x, Y ), sup
y∈Y

d(X, y)},

where d(x, Y ) = infy∈Y d(x, y), d(X, y) = infx∈X d(x, y). The Hausdorff distance measures in the worst case,
how far away a point in X is away from Y and vice versa.

In general, we want to also compare spaces that do not a priori belong to a common ambient space. For
this, if X,Y are two compact metric spaces, then their Gromov-Hausdorff distance dGH(X,Y ) is defined
as the infimum of all numbers dH(f(X), g(Y )) for all metric spaces M and all isometric embeddings
f : X → M, g : Y → M . Intuitively, the Gromov-Hausdorff distance measures how far X and Y are from
being isometric. The following is proved in the Appendix.
Proposition 1. Suppose G and its subspaces have the Gromov-Hausdorff metric. Then δG,∞ is Lipschitz
continuous w.r.t. G ∈ G and δG,1 is continuous w.r.t. G ∈ Gϵ for any ϵ > 0.

Consider a graph G. We fix either δG,∞ or δG,1 as a measure of hyperbolicity, and apply to each local
neighborhood of G. To be more precise, it is studied (Chen et al., 2020b; Rong et al., 2020) that many
popular GNN models have a shallow structure. It is customary to have a 2-layer network possibly due to
oversmoothing (Chen et al., 2020a; Chamberlain et al., 2021b; Zeng et al., 2021) and oversquashing (Topping
et al., 2022) phenomena. In such models, each node only aggregates information in a small neighborhood.

Therefore, if we fix a small k and let Gv be the subgraph of the k-hop neighborhood of v ∈ V , then it is more
appropriate to study the hyperbolicity δv, either δGv,∞ or δGv,1, of Gv. For our experiments, the former is
utilized. We call δv the geometric hyperbolicity at node v. The collection ∆V = {δv : v ∈ V } allows us to
obtain an empirical distribution µG of geometric hyperbolicity on the sample space R≥0.

For instance, we can build histograms to acquire the distributions as observed in Fig. 2. We see, for example,
for Cora, a substantial number of nodes have small (local) hyperbolicity, in contrast with many works that
claim Cora to be relatively Euclidean due to its high global hyperbolicity value (Chami et al., 2019; Liu et al.,
2022a). On the other hand, Airport is argued to be globally hyperbolic, but a large proportion of nodes has
large local hyperbolicity. However, this is not a contradiction as we are considering the local structures of the
graph. We call µG the distribution of geometric hyperbolicity. It depends only on G and k.

3.2 Space selection and model hyperbolicity

In this section, we describe the backbone of our model and introduce the notion of model hyperbolicity. Our
model consists of two branches, one using Euclidean geometry and the other using hyperbolic geometry. We
primarily use GAT (cf. Section 2.2) for the Euclidean model and HGAT (cf. Section 2.3) for the hyperbolic
model. Other pairs of Euclidean or hyperbolic models (e.g., GCN and HGCN) can also be applied to the
corresponding branches. In Section 4.3, we show the experimental results on two variants of JSGNN.

After the respective message propagation, we would have two sets of updated node embeddings, the Euclidean
embedding ZR and the hyperbolic embedding ZD. The two sets of embeddings are combined into a single
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(a)

(b)

Figure 3: Comparison between JSGNN and GIL (Zhu et al., 2020) in leveraging Euclidean and hyperbolic
spaces. Both models utilizes GAT in Section 2.2 and HGAT in Section 2.3 for message passing in Euclidean
and hyperbolic space respectively. (a) Soft space selection mechanism of JSGNN where trainable selection
weights βv,R, βv,D are non-uniform, effectively selecting the better of the two spaces considered. (b) Feature
interaction mechanism of GIL where ζ, ζ ′ ∈ R are trainable weights and dD, dR are the hyperbolic distance
(cf. (8)) and Euclidean distance respectively. The node embeddings of both spaces in GIL are adjusted
based on distance, potentially introducing more noise to the branches as there is minimal information in the
sub-optimal space to “enhance” the representation in the better space.

embedding Z = {zv, v ∈ V } through an attention mechanism that serves as a space selection procedure. The
attention mechanism is performed in a Euclidean space. Thus, the hyperbolic embeddings are first mapped
into the tangent space using the logarithmic map. Mathematically, the normalized attention score indicating
whether a node should be embedded in the hyperbolic space βv,D or Euclidean space βv,R is as follows:

wv,R = q⊺ tanh(Mzv,R + b), (11)
wv,D = q⊺ tanh(M logc

o(zv,D) + b), (12)

βv,R = exp(wv,R)
exp(wv,R) + exp(wv,D) , (13)

βv,D = exp(wv,D)
exp(wv,R) + exp(wv,D) , (14)

where q refers to the learnable space selection attention vector, M is a learnable weight matrix, b denotes a
learnable bias and βv,D +βv,R = 1, for all v ∈ V . The weights βv,D and βv,R are conditioned to be non-uniform
as illustrated in Section 3.4. The two sets of space-specific node embeddings can then be combined via a
convex combination using the learned weights as follows:

zv = βv,Rzv,R + βv,D logc
o(zv,D),∀ v ∈ V. (15)

This gives one layer of the model architecture of JSGNN, as illustrated in Fig. 3.

The parameter βv,R, v ∈ V controls whether the combined output, consisting of both hyperbolic and Euclidean
components, should rely more on the hyperbolic components or not. We call βv,R the model hyperbolicity at
the node v. The notion of model hyperbolicity depends on node features as well as the explicit GNN model.
Similar to geometric hyperbolicity, the collection ΓG = {βv,R : v ∈ V } gives rise to an empirical distribution
νG on [0, 1]. We call νG the distribution of model hyperbolicity.
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To motivate the next subsection, from (15), we notice that the output depends smoothly on βv,R. If we
wish to have a similar output for nodes with similar neighborhood structures and features, we want their
selection weights to have similar values. On the other hand, we have seen (cf. Proposition 1) that geometric
hyperbolicities, which can be computed given G, are similar for nodes with similar neighborhoods. It suggests
that we may use geometric hyperbolicities to “guide” the choice of model hyperbolicities.

3.3 Model hyperbolicity vs. geometric hyperbolicity

We have introduced geometric and model hyperbolicities in the previous subsections. In this subsection, we
explore the interconnections between these two notions.

Let Θ be the parameters of a proposed GNN model. We assume that the model has the pipeline shown in
Fig. 4. Given node features {hv, v ∈ V } and model parameters Θ, the model generates (embedding) features
{zv, v ∈ V } and selection weights or model hyperbolicity {βv,R, v ∈ V } in the intermediate stage. For each
v ∈ V , there is a combination function ϕv such that the final output {ŷv, v ∈ V } satisfies ŷv = ϕv(zv, βv).

Figure 4: The model pipeline is shown in the (blue) dashed box, while the geometric hyperbolicity can be
computed independently of the model.

In principle, we want to compare {βv,R, v ∈ V } and {δv, v ∈ V } so that the geometric hyperbolicity guides the
choice of model hyperbolicity. However, comparing pairwise βv and δv for each v ∈ V may lead to overfitting.
An alternative is to compare their respective distributions νG and µG, or even coarser statistics (e.g., mean)
of νG and µG (cf. Fig. 5). The latter may lead to underfitting. We perform an ablation study on the different
comparison methods in Section 4.5.

Figure 5: Different ways of comparing geometric and model hyperbolicities.

We advocate choosing the middle ground by comparing the distributions µG and νG. The former can be
computed readily as long as the ambient graph G is given, while the latter is a part of the model that plays a
crucial role in feature aggregation at each node. Therefore, µG can be pre-determined but not νG. We propose
to use the known µG to constrain νG and thus the model parameters Θ. A widely used comparison tool is the
Wasserstein metric.
Definition 3 (Wasserstein distance). Given p ≥ 1, the p-Wasserstein distance metric Villani (2008) measures
the difference between two different probability distributions Gao et al. (2021). Let Π(νG, µG) be the set of all
joint distributions for random variables x and y where x ∼ νG and y ∼ µG. Then the p-Wasserstein distance
between µG and νG is as follows:

Wp(νG, µG) =
{

inf
γ∈Π(νG,µG)

E(x,y)∼γ∥x− y∥p

}1/p

. (16)
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To compute the Wasserstein distance exactly is costly given that the solution of an optimal transport
problem is required (Rowland et al., 2019; Chen et al., 2022b). However, for one-dimensional distributions,
the p-Wasserstein distance can be computed by ordering the samples from the two distributions and then
computing the average p-distance between the ordered samples (Kolouri et al., 2019; Rowland et al., 2019).

In ideal circumstances, considering the distributions do not lose much information. We first notice that for
both βv,R and δv, a smaller value means more hyperbolic in an appropriate sense. Suppose βv,R is increasing
w.r.t. δv, i.e., δv ≤ δu implies that βv,R ≤ βu,R. Then, W2(µG, νG) =

√
1

|V |
∑

v∈V |βv,R − δv|2.

3.4 Non-uniformity of selection weights

A node is considered to be more suitable to be embedded in the hyperbolic space when βv,D > βv,R. Meanwhile
when βv,D ≤ βv,R, the node is considered to be Euclidean. Nevertheless, to align with our motivation that each
node can be better embedded in one of the two spaces and the less suitable space would result in distortion
in representation, we require JSGNN to learn non-uniform attention weights, meaning that each pair of
attention weights (βv,D, βv,R) should significantly deviate from the uniform distribution. This is because soft
selection without a non-uniformity constraint may result in the assignment of nodes to be partially Euclidean
and partially hyperbolic with βv,R ≈ βv,D ≈ 0.5. Hence, we include an additional component to the standard
loss function encouraging non-uniform learned weights as follows:

Lnu = − 1
|V |

∑
v∈V

(
β2

v,R + β2
v,D

)
. (17)

Since −1 ≤ −(β2
v,R + β2

v,D) ≤ −0.5 and βv,R + βv,D = 1, minimizing the term would favor non-uniform
attention weights for each node.

In summary, we may combine hyperbolicity matching discussed in Section 3.3 and the non-uniformity loss to
form the loss function to optimize JSGNN.

Loverall = Ltask + ωnuLnu + ωwasW2(νG, µG), (18)

where Ltask is the task-specific loss, while ωnu and ωwas are balancing factors. For the node classification
task, Ltask refers to the cross-entropy loss over all labeled nodes while for link prediction, it refers to the
cross-entropy loss with negative sampling. This completes the description of the JSGNN model.

We speculate that the non-uniform component Lnu should push the model hyperbolicities towards the two
extremes 0 and 1. On the other hand, as we have seen in Section 3.3, to compute W2(νG, µG), we need to
order (δv)v∈V , (βv,R)v∈V respectively, and compute their pairwise differences. Therefore, W2(νG, µG) aligns
the shapes of νG and µG.

4 Experiments

In this section, we evaluate JSGNN on node classification (NC) and link prediction (LP) tasks. Dataset
statistics, model settings, and model complexity are discussed in Appendix A and Appendix B.

4.1 Datasets

A total of seven benchmark datasets are employed for both NC and LP. Specifically, three citation datasets:
Cora, Citeseer, Pubmed; a flight network: Airport; a disease propagation tree: Disease; an Amazon co-purchase
graph dataset: Photo; and a coauthor dataset: CS.

4.2 Baselines

For JSGNN, we consider two variants: GAT as the Euclidean model with HGAT as the hyperbolic model,
and GCN as the Euclidean model with HGCN as the hyperbolic model. We compare against the following
models: (a) Euclidean methods: GCN (Kipf & Welling, 2016), GraphSAGE (Hamilton et al., 2017) and
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Table 1: Node classification result on Cora, Citeseer and Pubmed datasets. Performance score averaged over
ten runs. The best performance is boldfaced while the second-best performance is underlined.

Method Standard split 60/20/20% split
Cora Citeseer Pubmed Cora Citeseer Pubmed

GCN 81.53 ± 0.84 70.47 ± 0.64 78.30 ± 0.63 91.99 ± 0.79 84.13 ± 0.98 88.79 ± 1.63
GAT 81.68 ± 1.06 70.96 ± 0.96 78.05 ± 0.50 91.63 ± 0.57 83.93 ± 0.85 89.99 ± 1.31
GraphSAGE 76.59 ± 1.06 65.26 ± 2.91 77.90 ± 0.71 91.25 ± 0.22 84.08 ± 0.25 89.62 ± 0.18
CurvGN 81.58 ± 0.51 71.14 ± 0.67 78.17 ± 0.48 91.60 ± 0.25 84.18 ± 0.37 86.65 ± 0.14
CGNN 82.15 ± 0.60 71.31 ± 1.16 78.34 ± 0.83 91.96 ± 0.27 84.29 ± 0.34 86.86 ± 0.16
HGNN 79.28 ± 0.77 70.00 ± 0.74 77.45 ± 1.40 89.73 ± 0.84 80.27 ± 0.21 88.27 ± 0.51
HGCN 78.68 ± 0.77 67.25 ± 1.45 76.72 ± 0.92 91.57 ± 0.28 83.68 ± 0.52 86.83 ± 0.31
HGAT 78.81 ± 1.49 68.16 ± 1.34 77.43 ± 1.20 90.27 ± 0.81 81.29 ± 0.79 86.27 ± 0.47
LGCN 78.93 ± 0.79 68.59 ± 0.64 78.08 ± 0.65 92.55 ± 0.57 85.03 ± 0.28 89.59 ± 0.11
κ-GCN (D16) 78.64 ± 0.83 67.17 ± 0.73 78.01 ± 0.67 89.16 ± 0.59 84.57 ± 0.20 88.37 ± 0.37
DeepHGCN 80.66 ± 0.89 72.11 ± 0.60 78.13 ± 1.67 88.51 ± 1.52 80.45 ± 0.36 86.90 ± 0.42
κ-GCN (D16 × R16) 78.71 ± 1.02 66.96 ± 1.13 77.67 ± 0.74 88.85 ± 0.88 84.04 ± 0.81 85.59 ± 0.53
GIL 79.97 ± 1.93 67.54 ± 1.23 76.62 ± 0.81 91.90 ± 0.84 82.39 ± 0.90 87.39 ± 0.21
JSGNN (GCN+HGCN) 81.79 ± 0.80 70.55 ± 1.09 78.38 ± 0.74 93.26 ± 0.92 84.95 ± 0.31 89.68 ± 0.60
JSGNN (GAT+HGAT) 82.94 ± 0.55 71.26 ± 1.13 78.57 ± 0.90 93.10 ± 0.86 85.10 ± 0.64 90.53 ± 0.32

Table 2: Node classification result on CS, Photo, Airport and Disease datasets. OOM corresponds to out-of-
memory.

Method CS Photo Airport Disease
GCN 96.53 ± 0.10 94.05 ± 0.27 79.62 ± 1.28 83.32 ± 1.37
GAT 96.36 ± 0.38 94.45 ± 0.92 83.07 ± 1.52 86.05 ± 1.08
GraphSAGE 96.45 ± 0.91 96.13 ± 1.61 81.73 ± 0.98 83.47 ± 1.77
CurvGN 96.91 ± 0.09 94.21 ± 0.22 87.25 ± 0.88 84.35 ± 3.20
CGNN 96.27 ± 0.08 93.93 ± 0.18 87.21 ± 1.08 85.75 ± 2.08
HGNN 96.72 ± 0.19 94.74 ± 0.66 84.37 ± 1.19 87.40 ± 1.66
HGCN 96.58 ± 0.10 95.27 ± 0.25 89.39 ± 1.52 87.93 ± 1.61
HGAT 96.65 ± 0.15 96.62 ± 0.28 89.31 ± 1.09 90.04 ± 1.50
LGCN OOM 96.71 ± 0.24 88.53 ± 1.26 91.15 ± 1.02
κ-GCN (D16) 97.04 ± 0.10 95.56 ± 0.54 89.08 ± 1.15 92.39 ± 0.73
DeepHGCN 95.80 ± 0.88 94.37 ± 1.43 90.24 ± 1.88 90.38 ± 1.76
κ-GCN (D16 × R16) 96.97 ± 0.10 94.31 ± 0.41 88.38 ± 0.62 89.47 ± 1.56
GIL 95.83 ± 0.30 94.41 ± 0.57 90.78 ± 1.74 90.67 ± 1.98
JSGNN (GCN+HGCN) 97.08 ± 0.04 95.69 ± 0.22 90.59 ± 1.75 90.73 ± 1.44
JSGNN (GAT+HGAT) 97.40 ± 0.14 97.16 ± 0.44 90.33 ± 1.61 90.88 ± 1.54

GAT (Veličković et al., 2018); (b) hyperbolic models: HGCN (Chami et al., 2019), HGNN (Liu et al.,
2019), HGAT (Zhang et al., 2021a), LGCN (Zhang et al., 2021b), DeepHGCN (Liu et al., 2024) and κ-GCN
(D16) (Bachmann et al., 2019), which is a constant (negative) curvature graph neural network based on
the κ-stereographic model; (c) CurvGN (Ye et al., 2020) and CGNN (Li et al., 2021), which utilizes graph
curvature information to filter messages differently based upon different local structures; (d) mixed models:
GIL (Zhu et al., 2020) and κ-GCN (D16 ×R16), which similar to JSGNN, leverages multiple spaces or a mixed
curvature space. κ-GCN (D16 × R16) employs a two-component product space of negative and zero curvature.

4.3 Node classification

For the node classification task, each of the nodes in a dataset belongs to one of the C classes in the dataset.
With the final set of node representations, we aim to predict the labels of nodes that are in the testing set.

To test the performance of each model under both semi-supervised and fully-supervised settings, two data
splits are used in the node classification task for the Cora, Citeseer and Pubmed datasets. In the first split, we
followed the standard split for semi-supervised settings used in Kipf & Welling (2016); Veličković et al. (2018);
Monti et al. (2017); Chamberlain et al. (2021b); Zhu et al. (2020); Chamberlain et al. (2021a); Hamilton et al.
(2017); Liu et al. (2022b); Feng et al. (2020). The train set consists of 20 train examples per class while the
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Table 3: Link prediction result averaged over ten runs.
Method Cora Citeseer Pubmed Airport Disease
GCN 88.22 ± 1.01 90.60 ± 1.10 87.63 ± 3.25 91.79 ± 1.48 61.60 ± 3.76
GAT 85.47 ± 2.28 85.31 ± 1.89 85.30 ± 1.46 93.70 ± 0.65 61.23 ± 2.75
GraphSAGE 88.94 ± 0.81 91.61 ± 1.00 88.42 ± 1.14 91.63 ± 0.81 68.31 ± 2.94
CurvGN 94.40 ± 2.13 95.38 ± 2.33 94.55 ± 0.89 93.90 ± 0.37 95.47 ± 0.81
CGNN 94.26 ± 1.36 96.54 ± 0.78 94.71 ± 3.14 95.13 ± 0.97 95.35 ± 1.22
HGNN 91.48 ± 0.38 93.63 ± 0.14 92.95 ± 0.35 96.31 ± 0.30 82.98 ± 0.98
HGCN 93.72 ± 0.26 96.72 ± 1.69 96.68 ± 0.04 97.55 ± 0.08 87.14 ± 1.34
HGAT 94.06 ± 0.11 95.60 ± 0.20 95.78 ± 0.05 97.86 ± 0.08 86.61 ± 1.67
LGCN 93.10 ± 0.30 93.40 ± 0.70 95.45 ± 0.08 97.88 ± 0.19 95.99 ± 0.58
κ-GCN (D16) 92.43 ± 0.63 94.38 ± 0.51 94.89 ± 0.07 96.78 ± 0.19 93.58 ± 0.31
κ-GCN (D16 × R16) 91.32 ± 0.38 92.87 ± 0.27 93.53 ± 0.06 97.17 ± 0.10 90.15 ± 0.77
GIL 98.04 ± 1.64 99.95 ± 0.09 92.50 ± 0.50 97.20 ± 1.04 100.00 ± 0.00
JSGNN (GCN+HGCN) 98.83 ± 0.92 99.97 ± 0.09 97.67 ± 0.03 98.94 ± 0.91 100.00 ± 0.00
JSGNN (GAT+HGAT) 99.43 ± 0.21 99.98 ± 0.05 96.95 ± 0.03 99.26 ± 1.23 99.97 ± 0.08

validation set and test set consist of 500 samples and 1,000 samples, respectively.1 Meanwhile, in the second
split, all labels are utilized and the percentages of training, validation, and test sets are set as 60/20/20%. For
the Photo and CS datasets, the labeled nodes are also split into three sets where 60% of the nodes made up
the training set, and the rest of the nodes were divided equally to form the validation and test sets. Airport
and Disease datasets were split in similar settings as Zhu et al. (2020).

In Table 1 and Table 2, the mean accuracy with standard deviation is reported for node classification, except
for the case of Airport and Disease datasets where the mean F1 score is reported. Our empirical results
demonstrate that JSGNN frequently outperforms the baselines, especially HGAT and GAT which are the
building blocks of JSGNN. Even though the performance of the variant JSGNN (GCN+HGCN) is often
slightly lower than JSGNN (GAT+HGAT), we have similarly observed it to consistently outperform its
building blocks GCN and HGCN. This is not necessarily observed for other mixed space models. Thus,
this shows the superiority of not only using both Euclidean and hyperbolic spaces but also our method of
incorporating the two spaces for graph learning as compared to GIL and κ-GCN (D16 × R16).

We also observe that Euclidean models such as GCN, GAT, GraphSAGE, CurvGN and CGNN perform better
than hyperbolic models in general on the Cora, Citeseer, and Pubmed datasets for both splits. Meanwhile,
hyperbolic models achieve better results on the CS, Photo, Airport, and Disease datasets. This means that
Euclidean features are more significant for representing Cora, Citeseer and Pubmed datasets while hyperbolic
features are more significant for the others. Nevertheless, JSGNN is able to perform relatively well across all
datasets. We note that JSGNN exceeds the performance of single-space baselines on all datasets except for
Disease. This can be explained by the fact that Disease consists of a perfect tree and thus, does not exhibit
different hyperbolicities in the graph. However, JSGNN still outperforms 3 hyperbolic benchmarks and all
the other mixed models.

We also particularly note that the difference in results between single-space models using only the Euclidean
embedding space and hyperbolic models is not significant. This means that many of the node labels can be
potentially predicted even without the best representation from the right space. This might be the reason
why the gain in performance for the node classification task is not exceptional from embedding nodes in the
better space. Nevertheless, we still see improvements in predictions for cases where there is a mixture of local
hyperbolicities. Moreover, embedding nodes in a more suitable space can benefit other tasks that require
more accurate representations such as link prediction.

4.4 Link prediction

We employ the Fermi-Dirac decoder with a distance function to model the probability of an edge based on our
final output embedding, similar to Zhu et al. (2020); Sun et al. (2022); Chami et al. (2019). The probability

1Note that the top results on https://paperswithcode.com/sota/node-classification-on-cora used different data splits
(either semi-supervised settings with a larger number of training samples or fully-supervised settings such as the 60/20/20%
split) which give much higher accuracies
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Table 4: Ablation study of JSGNN (GAT+HGAT) for node classification task. Cora, Citeseer and Pubmed
on the standard split.

Method CS Photo Cora Citeseer Pubmed Airport Disease
JSGNN (GAT+HGAT) 97.40 ± 0.14 97.16 ± 0.44 82.94 ± 0.55 71.26 ± 1.13 78.57 ± 0.90 90.33 ± 1.61 90.88 ±1.54
w/o NU & W2 97.15 ± 0.10 95.95 ± 0.41 81.65 ± 1.08 70.87 ± 1.22 78.14 ± 1.02 89.67 ± 1.26 89.85 ± 1.61
w/o W2 97.33 ± 0.20 96.51 ± 0.67 82.36 ± 0.78 71.15 ± 1.17 78.50 ± 0.53 90.02 ± 1.63 90.66 ± 2.22
w/o NU 97.38 ± 0.15 96.42 ± 0.37 82.67 ± 0.51 70.86 ± 1.45 78.48 ± 0.47 89.98 ± 1.72 90.37 ± 2.12

that an edge exists is given by P(evj ∈ E | Θ) = (e(d(xi,xj)−r)/t + 1)−1 where r, t > 0 are hyperparameters
and d is the distance function. The edges of the datasets are randomly split into 85/5/10% for training,
validation, and testing. The average ROC AUC for link prediction is recorded in Table 3. We observe that
JSGNN (GAT+HGAT) performs better than the baselines in most cases. For the link prediction task, we
notice that hyperbolic models consistently outperform Euclidean models by a significant margin. Moreover,
Euclidean methods such as CurvGN and CGNN benefit from using topological information during learning.
Empirical results also suggest that predicting the existence of edges seems to benefit from dual space models,
i.e., GIL and JSGNN, except for the case of κ-GCN (D16 × R16).

This finding is similar to that reported in Bachmann et al. (2019); Xiong et al. (2022) where despite slightly
different settings, the constant (negative) curvature κ-stereographic model frequently outperforms the κ-GCN
leveraging on the product of multiple constant curvature spaces. We hypothesize that the simple concatenation
to combine the embeddings of the two different component spaces in κ-GCN (D16 ×R16) might be insufficient
and might have resulted in noise from the other space being passed to the negatively curved space which was
performing well standalone as seen in κ-GCN (D16). As such, our aim to learn to select the better space for
each node is potentially capable of offering better representations with reduced distortions.

4.5 Ablation study

We conduct an ablation study on the node classification task by introducing three variants of JSGNN
(GAT+HGAT) to validate the effectiveness of the different components introduced:

• Without the non-uniformity constraint (w/o NU): This does not enforce the model to learn non-
uniform selection weights.

• Without the Wasserstein metric (w/o W2): The learning of model hyperbolicity is not guided by
geometric hyperbolicity.

• Without the non-uniformity loss and Wasserstein distance (w/o NU & W2): Only guided by the
cross entropy loss, i.e., ωnu = 0, ωwas = 0 (cf. (18)).

Table 4 summarizes the results of our study, from which we observe that all variants of JSGNN (GAT+HGAT)
with some components discarded perform worse than the full model. Moreover, JSGNN (GAT+HGAT)
without W2 always achieves better results than JSGNN (GAT+HGAT) without NU and W2, signifying
the importance of selecting the better of the two spaces instead of combining the features with relatively
uniform weights. Similarly, JSGNN (GAT+HGAT) without NU performs better than JSGNN (GAT+HGAT)
without NU and W2 in most cases, suggesting that incorporating geometric hyperbolicity through distribution
alignment does help to improve the model.

To further analyze our model, we present a study regarding our method of incorporating the guidance of
geometric hyperbolicity through distribution alignment. The result is as seen in Table 5. We test and analyze
empirically different variants of our model based on the different comparisons shown in Fig. 5. Pairwise
match indicates minimizing the mean squared error between elements of ΓG and ∆V (without sorting) while
mean match minimizes the squared loss between the means of ΓG and ∆V . We observe that comparing the
distributions of νG and µG consistently outperforms comparing their mean, demonstrating the insufficiency of
utilising coarse statistics for supervision. Secondly, pairwise matching gave better results than mean matching,
though still lower than distribution matching, suggesting the importance of fine-scale information yet, a need
to avoid potential overfitting.
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Table 5: Node classification results of different comparison methods to incorporate geometric hyperbolicity to
guide model hyperbolicity.

Dataset Pairwise match Distribution Mean match
Cora 82.35 ± 1.06 82.94 ± 0.55 81.36 ± 1.50
Citeseer 70.06 ± 2.05 71.26 ± 1.13 69.64 ± 1.18
Pubmed 78.46 ± 0.86 78.57 ± 0.90 78.08 ± 0.62
Aiport 90.13 ± 1.53 90.33 ± 1.61 89.31 ± 2.22
Disease 90.66 ± 1.91 90.88 ± 1.54 87.53 ± 6.24
Photo 96.17 ± 0.23 97.16 ± 0.44 95.96 ± 0.59
CS 97.20 ± 0.16 97.40 ± 0.14 97.17 ± 0.11

4.6 Analysis of hyperbolicities

We have speculated the effects of different components of our proposed model at the end of Section 3.4.
To verify that our model can learn model hyperbolicity that is non-uniform and similar in distribution as
geometric hyperbolicity, we analyze the learned model hyperbolicities (βv,R)v∈V of JSGNN (GAT+HGAT)
and the model w/o NU & W2 for the node classification task. Specifically, we extract the learned values from
the first two layers of JSGNN and its variant for ten separate runs. The learned values from the first two
layers were then averaged before determining W2(νG,Unif) and W2(νG, µG).

In Fig. 6, it can be inferred that JSGNN’s learned model hyperbolicity is always less uniform than that of the
model w/o NU & W2 given JSGNN’s larger W2(νG,Unif) score, demonstrating a divergence from uniform
distribution. Meanwhile, for most cases, JSGNN’s W2(νG, µG) is smaller than that of the model w/o NU &
W2, suggesting that the shape between νG and µG of JSGNN is relatively more similar. At times, JSGNN’s
W2(νG, µG) is larger than the model w/o NU & W2, suggesting a tradeoff between NU and W2 as we choose
the optimal combination for the model’s best performance.

(a) (b)

Figure 6: Analysis of hyperbolicities on different datasets. (a) W2(νG,Unif). (b) W2(νG, µG).

5 Conclusion

In this paper, we have explored the learning of GNNs in a joint space setting given that different regions of
a graph can have different geometrical characteristics. In these situations, it would be beneficial to embed
different regions of the graph in different spaces that are better suited for their underlying structures, to
reduce the distortions incurred while learning node representations. Our method JSGNN utilizes a soft
attention mechanism with non-uniformity constraint and distribution alignment between model and geometric
hyperbolicities to select the best space-specific feature for each node. This indirectly finds the space that is
best suited for each node. Experimental results of node classification and link prediction demonstrate the
effectiveness of JSGNN against various baselines. In future work, we aim to further improve our model with
an adaptive mechanism to determine the appropriate, node-level specific neighborhood to account for each
node’s hyperbolicity.
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A Dataset statistics and model settings

Dataset statistics are provided in Table 6.

Table 6: Dataset statistics.
Dataset Nodes Edges Classes Features
Cora 2708 5429 7 1433
Citeseer 3327 4732 6 3703
Pubmed 19717 44338 3 500
Aiport 3188 18631 4 4
Disease 1044 1043 2 1000
Photo 7650 119081 8 745
CS 18333 81894 15 6805

For all models, the hidden units are set to 16. We set the early stopping patience to 100 epochs with a
maximum limit of 2000 epochs. The hyperparameter settings for the baselines are the same as Zhu et al.
(2020) if given. The only difference is that the hyperparameter h-drop for GIL in Zhu et al. (2020) (which
determines the dropout to the weight associated with the hyperbolic space embedding) is set to 0 for all
datasets as setting a large value essentially explicitly chooses one single space. Else, the hyperparameters are
chosen to yield the best performance. For JSGNN, we perform a grid search on the following search spaces:
Learning rate: [0.01, 0.005]; Dropout probability: [0.0, 0.1, 0.5, 0.6]; Number of layers: [1, 2, 3]; ωnu and
ωwas: [1.0, 0.5, 0.2, 0.1, 0.01, 0.005]; q (cf. (11)): [16, 32, 64]. The Wasserstein-2 distance is employed in all
variants of JSGNN.

B Complexity

The most time-consuming part of the experiment was calculating the geometric hyperbolicity for each
node. However, since this computation is based on the four-point Gromov formula, it can be optimized
by parallelization, as each node’s calculation is independent. This step is performed only once during
pre-processing thus, it is not included in the model’s time complexity.

For the message passing module, the time complexity is O(|E| + |E|) for sparse graphs where |E| denotes the
number of edges in the graph. The attention operation for selecting the optimal space is also computationally
efficient. The constraints on the attention score, guided by hyperbolicity and non-uniformity, do not introduce
additional trainable parameters and are simply additional terms to the loss function.

C Proof of Proposition 1

Proof. We first consider δG,∞. For two graphs G1 = (V1, E1) and G2 = (V2, E2), let f1 : G1 → M , f2 : G2 →
M be isometeric embeddings into a metric space (M,d) such that dGH(G1, G2) = dH(f1(G1), f2(G2)). Denote
dGH(G1, G2) by η. For x, y, z, t in G1, there are x′, y′, z′, t′ ∈ G2 such that d(f1(x), f2(x′)), d(f1(y), f2(y′)),
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d(f1(z), f2(z′)), d(f1(t), f2(t′)) are all bounded by η. We now estimate:

dG1(x, y) + dG1(z, t) = d(f1(x), f1(y)) + d(f1(z), f1(t))
≤ d(f2(x′), f2(y′)) + d(f2(z′), f2(t′)) + 4η
= dG2(x′, y′) + dG1(z′, t′) + 4η
≤ max{dG2(x′, z′) + dG2(y′, t′), dG2(z′, y′) + dG2(x′, t′)}

+ 2δG2,∞ + 4η
≤ max{d(f1(x), f1(z)) + d(f1(y), f1(t)),
d(f1(z), f1(y)) + d(f1(x), f1(t))}

+ 2δG2,∞ + 8η
= max{dG1(x, z) + dG1(y, t), dG1(z, y) + dG1(x, t)}

+ 2δG2,∞ + 8η.

(19)

Therefore, δG1,∞ ≤ δG2,∞ + 4η. By the same argument swapping the role of G1 and G2, we have δG2,∞ ≤
δG1,∞ + 4η. Therefore |δG1,∞ − δG2,∞| ≤ 4η and δG,∞ is Lipschitz continuous w.r.t. G.

The proof of the continuity of δG,1 is more involved. Consider G1 and G2 in Gϵ. Let f1, f2, (M,d), η be as
earlier and assume η ≪ ϵ, for example, η = αϵ for α is smaller than all the numerical constants in the rest of
the proof.

We adopt the following convention: for any non-vertex point of a graph, its degree is 2. By subdividing the
edges of G1 and G2 if necessary, we may assume that the length of each edge e in E1 or E2 satisfies ϵ/2 ≤ e < ϵ.
As a consequence, for (u, v) in E1 (resp. E2), dG1(u, v) (resp. dG2(u, v)) is the same as the length of (u, v).
We define a map ϕ : G1 → G2 as follows. For v ∈ G1, there is a v′ in G2 such that dGH(f1(v), f2(v′)) ≤ η.
Then we set ϕ(v) = v′. The map ϕ is injective on the vertex set V1. Indeed, for u ̸= v ∈ V1, dG1(u, , v) ≥ ϵ/2
and hence dG2(ϕ(u), ϕ(v)) ≥ ϵ/2 − 2η > 0. The strategy is to modify ϕ by a small perturbation such that the
resulting function ψ : G1 → G2 is a homeomorphism that is almost an isometry.

For v ∈ V1, let Nv be the 5η neighborhood of v. It is a star graph and its number of branches is the same
as the degree of v, say k. Let v1, . . . , vk be the endpoints of Nv. The convex hull (of shortest paths) Cv of
{ϕ(v1), . . . , ϕ(vk)} in G2 is also a star graph. This is because Cv is contained in the 7η neighborhood of ϕ(v)
and it contains at most 1 vertex in V2.

We claim that Cv has the same number of branches as Nv. First of all, Cv cannot have fewer branches. For
otherwise, there is a ϕ(vi) in the path connecting ϕ(v) and ϕ(vj) for some j ̸= i. Hence,

dG2(ϕ(vi), ϕ(vj)) ≤ dG2(ϕ(vi), ϕ(v)) ≤ 7η
< 10η − 2η = dG1(vi, vj) − 2η.

This is a contradiction with the property of ϕ. It cannot have more branches than k as it is the convex hull of
at most k points.

We next consider different cases for k. For k ̸= 2, as Cv is a star graph, it has a unique node v′ with degree k
(in Cv), and dG1(v′, ϕ(vj)) > 0, 1 ≤ j ≤ j. We claim that v′ has degree exact k in G2. Suppose on the contrary,
its degree in G2 is larger than k. Then there is a branch not contained in Cv. Let w′ be a node on the new
branch such that 6η ≤ dG2(w′, ϕ(v)) ≤ 7η. Moreover, there is a node w in Nv such that 4η ≤ dG1(w, v) ≤ 9η
and w′ = ϕ(w). Moreover, w is on the branch containing vj for some j, and hence dG1(w, vj) ≤ 4η. Therefore,

dG1(w, vj) ≤ 6η − 2η
< dG2(v′, ϕ(vj)) + dG2(w′, v′) − 2η
= dG2(ϕ(w), ϕ(vj)) − 2η,

which is a contradiction. In this case, we define ψ(v) = v′ ∈ G2. If k = 2 when Nv is a path, by a similar
argument, we have that Cv is a path. We set ψ(v) = ϕ(v). An illustration is given in Fig. 7.

For each v ∈ V1, we now enlarge the neighborhood and consider its ϵ/6-neighborhood N ′
v. It does not contain

another vertex and hence is also a star graph. Moreover, if v ̸= u ∈ V1, then N ′
v ∩ N ′

u = ∅ for otherwise
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v

Nv

φ(v)
ψ(v)

Cv

Figure 7: Illustration of ψ.

dG1(u, v) ≤ ϵ/3, which is impossible. We may similarly consider the ϵ/6-neighborhoods C ′
u, C

′
v of ψ(u) and

ψ(v). Both C ′
u and C ′

v do not contain any vertex in V2 with degree ̸= 2.

As N ′
v and C ′

v are star graphs with the same number of branches, there is an isometry (also denoted by)
ψ : N ′

v → C ′
v such that dG2(ψ(w), ϕ(w)) ≤ 2η. By disjointedness of ϵ/6 neighborhoods, we may combine all

the maps above together to obtain ψ : ∪v∈V1N
′
v → ∪v∈V1C

′
v.

For the rest of G1, consider any edge (u, v) ∈ E1. Without loss of generality, let u1 and v1 be the leaves
of N ′

u and N ′
v contained in (u, v). We claim that the shortest open path connecting ψ(u1) and ψ(v1) is

disjoint from ∪v∈V1C
′
v. For otherwise, dG1(u1, v1) ≥ 2ϵ/3, while dG2(ϕ(u1), ϕ(u2)) ≤ dG2(ψ(u1), ψ(u2))−4η ≥

ϵ/2 + 2ϵ/6 − 4η. Therefore, 2ϵ/3 − 2η ≥ 5ϵ/6 − 4η, which is impossible as η ≪ ϵ.

Let Pu,v and Qu,v be the shortest paths connecting u1, v1 and ψ(u1), ψ(v1) respectively (illustrated in Fig. 8).
Then the length of Pu,v and Qu,v differ at most by 4η. We may further extend ψ : Pu,v → Qu,v by a
linear scaling such that dG2(ψ(w), ϕ(w)) ≤ 3η for w ∈ Pu,v. For different edges (u, v), (u′, v′), it is apparent
Qu,v ∩Qu′,v′ are disjoint, as the minimal distance between points on Pu,v and Pu′,v′ is at least ϵ/3. Therefore,
we obtain a continuous injection ψ : G1 → G2, which maps homeomorphically onto its image.

u

v

ψ(u)

ψ(v)
Pu,v Qu,v

N ′
u

N ′
v

C ′
u

C ′
v

Figure 8: Illustration of Pu,v and Qu,v.

We claim that ψ is onto. If not, there is a vertex v′ ∈ V2 that is not in ψ(V1) but it has a neighboring vertex
u′ = ψ(u). However, this implies that the degree of u′ is strictly larger than that of u, which is impossible as
we have shown.

In summary, ψ : G1 → G2 is a homeomorphism such that |dG1(u, v) − dG2(u, v)| ≤ 6η for any u, v ∈ G1.
Moreover, ψ is piecewise linear whose gradient ψ′ is 1 in the interior of N ′

v, v ∈ V1 and satisfies
ϵ
6 − 6η

ϵ
6

≤ ψ′(w) ≤
ϵ
6 + 6η

ϵ
6

, (20)

for w contained in the interior of some Pu,v, (u, v) ∈ E1.

We are ready to estimate |δG1,1 − δG2,1|. Let |Gi| be the total edge weights of Gi, i = 1, 2. For convenience,
we denote a typical tuple (u, v, w, t) ∈ G4

1 as a vector v, and (ψ(u), ψ(v), ψ(w), ψ(t)) by ψ(v). The map ψ :
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G4
1 → G4

2,v 7→ ψ(v) inherits the properties of its counterpart ψ, which is a piecewise linear homeomorphism.
In particular, its Jacobian J(v) is defined almost everywhere. Using Definition 2, we have:

|δG1,1 − δG2,1|

=
∣∣∣∣∣
∫

v∈G4
1

|G1|−4τG1(v) dv

−
∫

v∈G4
1

|G2|−4J(v)τG2(ψ(v)) dv|

≤ sup
v∈G4

1

|τG1(v) − |G1|4

|G2|4
J(v)τG2

(
ψ(v)

)∣∣∣∣∣.
(21)

Similar to (19), we estimate

sup
v∈G4

1

|τG1(v) − τG2

(
ψ(v)

)
| ≤ 24η. (22)

Moreover, we have seen in the proof that ψ can only have distortion when restricted to Pu,v for (u, v) ∈ E1.
As

2ϵ
3 − 6η

2ϵ
3

≤ |Pu,v|/|Qu,v| ≤
2ϵ
3 + 6η

2ϵ
3

,

the same bounds holds for |G1|/|G2|. Both upper and lower bounds can be arbitrarily close to 1 if η is small
enough. Similarly, by (20), J(v) as a fourth power of ψ′ can also be made arbitrarily close to 1. In conjunction
with (21) and (22), |δG1,1 − δG2,1| can be arbitrarily small if η is chosen to be small enough. This proves that
δG,1 is continuous in G.

D Related works

In this appendix, models that utilize multiple spaces and advanced topological information such as curvature
are reviewed.

CurvGN (Ye et al., 2020) and Curvature Graph Neural Network (CGNN) (Li et al., 2021) learn to reweigh
messages propagated between nodes, in Euclidean space, using curvature information. Curvature measures
how easily information flows between two nodes. These works assume that the edges with low curvatures
indicate the class boundaries, thus low weights are assigned when the edges are of low curvature. In our work,
we use Gromov hyperbolicity instead of Ollivier’s Ricci curvature to choose the appropriate space and we do
not reweigh the edges.

To the best of our knowledge, the closest works to ours are Geometry Interaction Learning (GIL) (Zhu et al.,
2020) and κ-GCN (Bachmann et al., 2019). κ-GCN utilizes the (Cartesian) product space to model data
in different spaces and employs the κ-stereographic model in each of the spaces. The Cartesian product
enables a combinatorial construction of the mixed curvature space, thus the representations are first learned
independently in the respective spaces and then concatenated (Sun et al., 2022). In terms of implementation,
this is similar to our framework but instead of concatenation, we introduce a space selection mechanism
guided by hyperbolicity to fuse the representations.

On the other hand, GIL proposes a feature interaction scheme to leverage different spaces and a probability
assembling module to combine the classification probabilities for obtaining the final prediction. The feature
interaction scheme is where the node features in the respective two spaces are enhanced based on the
distance similarity of the two sets of spatial embeddings. The larger the distance between the different spatial
embeddings, the more significant the portion of features from the other space is summed to itself as seen in
Fig. 3. However, this may introduce noise to the respective spaces, which we explain further below.

Our approach differs from GIL (Zhu et al., 2020) in some key aspects. Firstly, we leverage the distribution of
geometric hyperbolicity to guide our model to learn to decide if each node better embedded in a Euclidean or
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hyperbolic space instead of performing feature interaction learning. This is done by aligning the distribution of
the learned model hyperbolicity and geometric hyperbolicity using the Wasserstein distance. Our motivation
is that if a node can be best embedded in one of the two spaces, encoding it in another space other than
the optimal one would result in comparably larger distortions. Minimal information would be present in
the sub-optimal space to help “enhance” the representation in the better space. Hence, promoting feature
interaction could possibly introduce more noise to the corresponding spaces. The ideal situation is then to
learn normalized selection weights that are non-uniform for each node so that we select for each node a
single, comparably better space’s output embedding. To achieve this, we introduce an additional loss term
that promotes non-uniformity. Lastly, we do not require probability assembling since we only have one set of
output features at the end of the selection process.
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