
Transformers Learn In-Context by Gradient Descent

Johannes von Oswald 1 2 Eyvind Niklasson 2 Ettore Randazzo 2 João Sacramento 1

Alexander Mordvintsev 2 Andrey Zhmoginov 2 Max Vladymyrov 2

Abstract

At present, the mechanisms of in-context learning
in Transformers are not well understood and re-
main mostly an intuition. In this paper, we suggest
that training Transformers on auto-regressive ob-
jectives is closely related to gradient-based meta-
learning formulations. We start by providing a
simple weight construction that shows the equiva-
lence of data transformations induced by 1) a sin-
gle linear self-attention layer and by 2) gradient-
descent (GD) on a regression loss. Motivated
by that construction, we show empirically that
when training self-attention-only Transformers on
simple regression tasks either the models learned
by GD and Transformers show great similarity
or, remarkably, the weights found by optimiza-
tion match the construction. Thus we show how
trained Transformers become mesa-optimizers i.e.
learn models by gradient descent in their forward
pass. This allows us, at least in the domain of re-
gression problems, to mechanistically understand
the inner workings of in-context learning in op-
timized Transformers. Building on this insight,
we furthermore identify how Transformers sur-
pass the performance of plain gradient descent
by learning an iterative curvature correction and
learn linear models on deep data representations
to solve non-linear regression tasks. Finally, we
discuss intriguing parallels to a mechanism iden-
tified to be crucial for in-context learning termed
induction-head (Olsson et al., 2022) and show
how it could be understood as a specific case of
in-context learning by gradient descent learning
within Transformers.

1Department of Computer Science, ETH Zürich, Zürich,
Switzerland 2Google Research. Correspondence to: Johannes
von Oswald <voswaldj@ethz.ch>.

Proceedings of the 40 th International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

1. Introduction
In recent years Transformers (TFs; Vaswani et al., 2017)
have demonstrated their superiority in numerous bench-
marks and various fields of modern machine learning, and
have emerged as the de-facto neural network architecture
used for modern AI (Dosovitskiy et al., 2021; Yun et al.,
2019; Carion et al., 2020; Gulati et al., 2020). It has been hy-
pothesised that their success is due in part to a phenomenon
called in-context learning (Brown et al., 2020; Liu et al.,
2021): an ability to flexibly adjust their prediction based on
additional data given in context (i.e. in the input sequence
itself). In-context learning offers a seemingly different ap-
proach to few-shot and meta-learning (Brown et al., 2020),
but as of today the exact mechanisms of how it works are not
fully understood. It is thus of great interest to understand
what makes Transformers pay attention to their context,
what the mechanisms are, and under which circumstances,
they come into play (Chan et al., 2022b; Olsson et al., 2022).

In this paper, we aim to bridge the gap between in-context
and meta-learning, and show that in-context learning in
Transformers can be an emergent property approximating
gradient-based few-shot learning within its forward pass, see
Figure 1. For this to be realized, we show how Transformers
(1) construct a loss function dependent on the data given in
sequence and (2) learn based on gradients of that loss. We
will first focus on the latter, the more elaborate learning task,
in sections 2 and 3, after which we provide evidence for the
former in section 4.

We summarize our contributions as follows1:

• We construct explicit weights for a linear self-attention
layer that induces an update identical to a single step
of gradient descent (GD) on a mean squared error loss.
Additionally, we show how several self-attention layers
can iteratively perform curvature correction improving
on plain gradient descent.

• When optimized on linear regression datasets, we
demonstrate that linear self-attention-only Transform-

1Main experiments can be reproduced with notebooks
provided under the following link: https://github.com/
google-research/self-organising-systems/
tree/master/transformers_learn_icl_by_gd

1

https://github.com/google-research/self-organising-systems/tree/master/transformers_learn_icl_by_gd
https://github.com/google-research/self-organising-systems/tree/master/transformers_learn_icl_by_gd
https://github.com/google-research/self-organising-systems/tree/master/transformers_learn_icl_by_gd

Transformers Learn In-Context by Gradient Descent

0 20 40
GD Steps / Transformer Layers

0.0

0.1

0.2

Lo
ss

Gradient descent
Trained Transformer

Figure 1. Illustration of our hypothesis: gradient-based optimization and attention-based in-context learning are equivalent. Left:
Learning a neural network output layer by gradient descent on a dataset Dtrain. The task-shared meta-parameters θ are obtained by
meta-learning with the goal that after adjusting the neural network output layer, the model generalizes well on unseen data. Center:
Illustration of a Transformer that adjusts its query prediction on the data given in-context i.e. tθ(xquery;Dcontext). The weights of the
Transformer are optimized to predict the next token yquery. Right: Our results confirm the hypothesis that learning with K steps of gradient
descent on a dataset Dtrain (green part of the left plot) matches trained Transformers with K linear self-attention layers (central plot) when
given Dtrain as in-context data Dcontext.

ers either converge to our weight construction and
therefore implement gradient descent, or generate lin-
ear models that closely align with models trained by
GD, both in in- and out-of-distribution validation tasks.

• By incorporating multi-layer-perceptrons (MLPs) into
the Transformer architecture, we enable solving
nonlinear regression tasks within Transformers by
showing its equivalence to learning a linear model on
deep representations. We discuss connections to kernel
regression as well as nonparametric kernel smooth-
ing methods. Empirically, we compare meta-learned
MLPs and a single step of GD on its output layer with
trained Transformers and demonstrate striking similar-
ities between the identified solutions.

• We resolve the dependency on the specific token con-
struction by providing evidence that learned Trans-
formers first encode incoming tokens into a format
amenable to the in-context gradient descent learning
that occurs in the later layers of the Transformer.

These findings allow us to connect learning Transformer
weights and the concept of meta-learning a learning algo-
rithm (Schmidhuber, 1987; Hinton & Plaut, 1987; Bengio
et al., 1990; Chalmers, 1991; Schmidhuber, 1992; Thrun &
Pratt, 1998; Hochreiter et al., 2001; Andrychowicz et al.,
2016; Ba et al., 2016; Kirsch & Schmidhuber, 2021). In this
extensive research field, meta-learning is typically regarded
as learning that takes place on various time scales namely
fast and slow. The slowly changing parameters control and
prepare for fast adaptation reacting to sudden changes in the
incoming data by e.g. a context switch. Notably, we build
heavily on the concept of fast weights (Schmidhuber, 1992)
which has shown to be equivalent to linear self-attention
(Schlag et al., 2021) and show how optimized Transformers
implement interpretable learning algorithms within their
weights.

Another related meta-learning concept, termed MAML
(Finn et al., 2017), aims to meta-learn a deep neural network

initialization which allows for fast adaptation on novel tasks.
It has been shown that in many circumstances, the solution
found can be approximated well when only adapting the
output layer i.e. learning a linear model on a meta-learned
deep data representations (Finn et al., 2017; Finn & Levine,
2018; Gordon et al., 2019; Lee et al., 2019; Rusu et al., 2019;
Raghu et al., 2020; von Oswald et al., 2021). In section 3,
we show the equivalence of this framework to in-context
learning implemented in a common Transformer block i.e.
when combining self-attention layers with a multi-layer-
perceptron.

In the light of meta-learning we show how optimizing Trans-
former weights can be regarded as learning on two time
scales. More concretely, we find that solely through the
pressure to predict correctly Transformers discover learning
algorithms inside their forward computations, effectively
meta-learning a learning algorithm. Recently, this concept
of an emergent optimizer within a learned neural network,
such as a Transformer, has been termed “mesa-optimization”
(Hubinger et al., 2019). We find and describe one pos-
sible realization of this concept and hypothesize that the
in-context learning capabilities of language models emerge
through mechanisms similar to the ones we discuss here.

Transformers come in different “shapes and sizes”, operate
on vastly different domains, and exhibit varying forms of
phase transitions of in-context learning (Kirsch et al., 2022;
Chan et al., 2022a), suggesting variance and significant com-
plexity of the underlying learning mechanisms. As a result,
we expect our findings on linear self-attention-only Trans-
formers to only explain a limited part of a complex process,
and it may be one of many possible methods giving rise to
in-context learning. Nevertheless, our approach provides
an intriguing perspective on, and novel evidence for, an in-
context learning mechanism that significantly differs from
existing mechanisms based on associative memory (Ram-
sauer et al., 2020), or by the copying mechanism termed
induction heads identified by (Olsson et al., 2022). We,
therefore, state the following

2

Transformers Learn In-Context by Gradient Descent

Hypothesis 1 (Transformers learn in-context by gradient
descent). When training Transformers on auto-regressive
tasks, in-context learning in the Transformer forward pass is
implemented by gradient-based optimization of an implicit
auto-regressive inner loss constructed from its in-context
data.

We acknowledge work done in parallel, investigating the
same hypothesis. Akyürek et al. (2023) puts forward a
weight construction based on a chain of Transformer layers
(including MLPs) that together implement a single step of
gradient descent with weight decay. Similar to work done
by Garg et al. (2022), they then show that trained Transform-
ers match the performance of models obtained by gradient
descent. Nevertheless, it is not clear that optimization finds
Transformer weights that coincide with their construction.

Here, we present a much simpler construction that builds on
Schlag et al. (2021) and only requires a single linear self-
attention layer to implement a step of gradient descent. This
allows us to (1) show that optimizing self-attention-only
Transformers finds weights that match our weight construc-
tion (Proposition 1), demonstrating its practical relevance,
and (2) explain in-context learning in shallow two layer
Transformers intensively studied by Olsson et al. (2022).
Therefore, although related work provides comprehensive
empirical evidence that Transformers indeed seem to im-
plement gradient descent based learning on the data given
in-context, we will in the following present mechanistic
verification of this hypothesis and provide compelling ev-
idence that our construction, which implements GD in a
Transformer forward pass, is found in practice.

2. Linear self-attention can emulate gradient
descent on a linear regression task

We start by reviewing a standard multi-head self-attention
(SA) layer with parameters θ. A SA layer updates each
element ej of a set of tokens {e1, . . . , eN} according to

ej ← ej + SAθ(j, {e1, . . . , eN})

= ej +
∑
h

PhVhsoftmax(KT
h qh,j)

(1)

with Ph, Vh,Kh the projection, value and key matrices, re-
spectively, and qh,i the query, all for the h-th head. To sim-
plify the presentation, we omit bias terms here and through-
out. The columns of the value Vh = [vh,1, . . . , vh,N] and
key Kh = [kh,1, . . . , kh,N] matrices consist of vectors
vh,i = Wh,V ei and kh,i = Wh,Kei; likewise, the query is
produced by linearly projecting the tokens, qh,j = Wh,Qej .
The parameters θ = {Ph,Wh,V ,Wh,K ,Wh,Q}h of a SA
layer consist of all the projection matrices, of all heads.

The self-attention layer described above corresponds to
the one used in the standard Transformer model. Follow-

ing Schlag et al. (2021), we now introduce our first (and
only) departure from the standard model, and omit the
softmax operation in equation 1, leading to the linear self-
attention (LSA) layer ej ← ej + LSAθ(j, {e1, . . . , eN}) =
ej +

∑
h PhVhK

T
h qh,j We next show that with some sim-

ple manipulations we can relate the update performed by
an LSA layer to one step of gradient descent on a linear
regression loss.

Data transformations induced by gradient descent

We now introduce a reference linear model y(x) = Wx
parameterized by the weight matrix W ∈ RNy×Nx , and
a training dataset D = {(xi, yi)}Ni=1 comprising of input
samples xi ∈ RNx and respective labels yi ∈ RNy . The
goal of learning is to minimize the squared-error loss:

L(W) =
1

2N

N∑
i=1

∥Wxi − yi∥2. (2)

One step of gradient descent on L with learning rate η yields
the weight change

∆W = −η∇WL(W) = − η

N

N∑
i=1

(Wxi − yi)x
T
i . (3)

Considering the loss after changing the weights, we obtain

L(W +∆W) =
1

2N

N∑
i=1

∥(W +∆W)xi − yi∥2

=
1

2N

N∑
i=1

∥Wxi − (yi −∆yi)∥2
(4)

where we introduced the transformed targets yi −∆yi with
∆yi = ∆Wxi. Thus, we can view the outcome of a gradient
descent step as an update to our regression loss (equation 2),
where data, and not weights, are updated. Note that this
formulation is closely linked to predicting based on nonpara-
metric kernel smoothing, see Appendix A.8 for a discussion.

Returning to self-attention mechanisms and Transformers,
we consider an in-context learning problem where we are
given N context tokens together with an extra query to-
ken, indexed by N + 1. In terms of our linear regression
problem, the N context tokens ej = (xj , yj) ∈ RNx+Ny

correspond to the N training points in D, and the N+1-th
token eN+1 = (xN+1, yN+1) = (xtest, ŷtest) = etest to the
test input xtest and the corresponding prediction ŷtest. We
use the terms training and in-context data interchangeably,
as well as query and test token/data, as we establish their
equivalence now.

3

Transformers Learn In-Context by Gradient Descent

Transformations induced by gradient descent and a
linear self-attention layer can be equivalent

We have re-cast the task of learning a linear model as di-
rectly modifying the data, instead of explicitly computing
and returning the weights of the model (equation 4). We
proceed to establish a connection between self-attention and
gradient descent. We provide a construction where learning
takes place simultaneously by directly updating all tokens,
including the test token, through a linear self-attention layer.
In other words, the token produced in response to a query
(test) token is transformed from its initial value W0xtest,
where W0 is the initial value of W , to the post-learning
prediction ŷ = (W0+∆W)xtest obtained after one gradient
descent step.
Proposition 1. Given a 1-head linear attention layer and
the tokens ej = (xj , yj), for j = 1, . . . , N , one can con-
struct key, query and value matrices WK ,WQ,WV as well
as the projection matrix P such that a Transformer step on
every token ej is identical to the gradient-induced dynam-
ics ej ← (xj , yj) + (0,−∆Wxj) = (xj , yj) + P V KT qj
such that ej = (xj , yj − ∆yj). For the test data token
(xN+1, yN+1) the dynamics are identical.

The simple construction can be found in Appendix A.1 and
we denote the corresponding self-attention weights by θGD.

Below, we provide some additional insights on what is
needed to implement the provided LSA-layer weight con-
struction, and further details on what it can achieve:

• Full self-attention. Our dynamics model training is
based on in-context tokens only, i.e., only e1, . . . , eN
are used for computing key and value matrices; the
query token eN+1 (containing test data) is excluded.
This leads to a linear function in xtest as well as to
the correct ∆W , induced by gradient descent on a
loss consisting only of the training data. This is a
minor deviation from full self-attention. In practice,
this modification can be dropped, which corresponds
to assuming that the underlying initial weight matrix
is zero, W0 ≈ 0, which makes ∆W in equation 8
independent of the test token even if incorporating it
in the key and value matrices. In our experiments, we
see that these assumptions are met when initializing
the attention weights θ to small values.

• Reading out predictions. When initializing the y-
entry of the test-data token with−W0xN+1, i.e. etest =
(xtest,−W0xtest), the test-data prediction ŷ can be eas-
ily read out by simply multiplying again by −1 the
updated token, since −yN+1 +∆yN+1 = −(yN+1 −
∆yN+1) = yN+1 + ∆WxN+1. This can easily be
done by a final projection matrix, which incidentally
is usually found in Transformer architectures. Impor-
tantly, we see that a single head of self-attention is

sufficient to transform our training targets as well as
the test prediction simultaneously.

• Uniqueness. We note that the construction is not
unique; in particular, it is only required that the prod-
ucts PWV as well as WKWQ match the construc-
tion. Furthermore, since no nonlinearity is present,
any rescaling s of the matrix products, i.e., PWV s and
WKWQ/s, leads to an equivalent result. If we correct
for these equivalent formulations, we can experimen-
tally verify that weights of our learned Transformers
indeed match the presented construction.

• Meta-learned task-shared learning rates. When
training self-attention parameters θ across a family of
in-context learning tasks τ , where the data (xτ,i, yτ,i)
follows a certain distribution, the learning rate can be
implicitly (meta-)learned such that an optimal loss re-
duction (averaged over tasks) is achieved given a fixed
number of update steps. In our experiments, we find
this to be the case. This kind of meta-learning to im-
prove upon plain gradient descent has been leveraged
in numerous previous approaches for deep neural net-
works (Li et al., 2017; Lee & Choi, 2018; Park & Oliva,
2019; Zhao et al., 2020; Flennerhag et al., 2020).

• Task-specific data transformations. A self-attention
layer is in principle further capable of exploiting statis-
tics in the current training data samples, beyond mod-
eling task-shared curvature information in θ. More
concretely, a LSA layer updates an input sample ac-
cording to a data transformation xj ← xj + ∆xj =
(I + P (X)V (X)K(X)TWQ)xj = Hθ(X)xj , with
X the Nx × N input training data matrix, when ne-
glecting influences by target data yi. Through Hθ(X),
a LSA layer can encode in θ an algorithm for carrying
out data transformations which depend on the actual
input training samples in X . In our experiments, we
see that trained self-attention learners employ a simple
form of H(X) and that this leads to substantial speed
ups in for GD and TF learning.

3. Trained Transformers do mimic gradient
descent on linear regression tasks

We now experimentally investigate whether trained
attention-based models implement gradient-based in-
context learning in their forward passes. We gradually build
up from single linear self-attention layers to multi-layer non-
linear models, approaching full Transformers. In this sec-
tion, we follow the assumption of Proposition 1 tightly and
construct our tokens by concatenating input and target data,
ej = (xj , yj) for 1 ≤ j ≤ N , and our query token by con-
catenating the test input and a zero vector, eN+1 = (xtest, 0).
We show how to lift this assumption in the last section of the

4

Transformers Learn In-Context by Gradient Descent

0 2000 4000
Training steps

0.20

0.25

0.30

0.35

0.40
Lo

ss
GD
Trained TF

0.80

0.85

0.90

0.95

1.00

Co
sin

e
sim

Model cos

0 1000 2000 3000 4000 5000
Training steps

0.0

0.5

1.0

1.5

2.0

2.5

L2
 N

or
m

Preds diff
Model diff

0.5 1.0 1.5 2.0
 where x U(,)

10 1

100

Lo
ss

Test on larger inputs
GD
Interpolated
Trained TF

Figure 2. Comparing one step of GD with a trained single linear self-attention layer. Outer left: Trained single LSA layer performance
is identical to the one of gradient descent. Center left: Almost perfect alignment of GD and the model generated by the SA layer after
training, measured by cosine similarity and the L2 distance between models as well as their predictions. Center right: Identical loss of
GD, the LSA layer model as well as the model obtained by interpolating between the construction and the optimized LSA layer weights
for different N = Nx. Outer right: The trained LSA layer, gradient descent and their interpolation show identically loss (in log-scale)
when provided input data different than during training i.e. with scale of 1. We display the mean/std. or the single runs of 5 seeds.

paper. The prediction ŷθ({eτ,1, . . . , eτ,N}, eτ,N+1) of the
attention-based model, which depends on all tokens and on
the parameters θ, is read-out from the y-entry of the updated
N + 1-th token as explained in the previous section.

The objective of training, visualized in Figure 1, is to mini-
mize the expected squared prediction error, averaged over
tasks minθ Eτ [||ŷθ({eτ,1, . . . , eτ,N}, eτ,N+1) − yτ,test||2].
We achieve this by minibatch online minimization (by Adam
(Kingma & Ba, 2014)): At every optimization step, we con-
struct a batch of novel training tasks and take a step of
stochastic gradient descent on the loss function:

L(θ) = 1

B

B∑
τ=1

||ŷθ({eτ,i}Ni=1, eτ,N+1)− yτ,test||2 (5)

where each task (context) τ consists of in-context
training data Dτ = {(xτ,i, yτ,i)}Ni=1 and test point
(xτ,N+1, yτ,N+1), which we use to construct our tokens
{eτ,i}N+1

i=1 as described above. We denote the optimal pa-
rameters found by this optimization process by θ∗. In our
setup, finding θ∗ may be thought of as meta-learning, while
learning a particular task τ corresponds to simply evaluat-
ing the model ŷθ({eτ,1, . . . , eτ,N}, eτ,N+1). Note that we
therefore never see the exact same training task twice during
training. See Appendix A.12, especially Figure 16 for an
analyses when using a fixed dataset size which we cycle
over during training.

We focus on solvable tasks and similarly to Garg et al.
(2022) generate data for each task using a teacher model
with parameters Wτ ∼ N (0, I). We then sample xτ,i ∼
U(−1, 1)nI and construct targets using the task-specific
teacher model, yτ,i = Wτxτ,i. In the majority of our exper-
iments we set the dimensions to N = nI = 10 and nO = 1.
Since we use a noiseless teacher for simplicity, we can ex-
pect our regression tasks to be well-posed and analytically
solvable as we only compute a loss on the Transformers
last token, which stands in contrast to usual autoregressive
training and the training setup of Garg et al. (2022). Full
details and results for training with a fixed training set size
may be found in Appendix A.12.

One-step of gradient descent vs. a single trained
self-attention layer

Our first goal is to investigate whether a trained single, linear
self-attention layer can be explained by the provided weight
construction that implements GD. To that end, we compare
the predictions made by a LSA layer with trained weights θ∗

(which minimize equation 5) and with constructed weights
θGD (which satisfy Proposition 1).

Recall that a LSA layer yields the prediction ŷθ(xtest) =
eN+1 +LSAθ({e1, . . . , eN}, eN+1) = ∆Wθ,Dxtest, which
is linear in xtest. We denote by ∆Wθ,D the matrix generated
by the LSA layer following the construction provided in
Proposition 1, with query token eN+1 set such that the initial
prediction is set to zero, ŷtest = 0. We compare ŷθ(xtest) to
the prediction of the control LSA ŷθGD(xtest), which under
our token construction corresponds to a linear model trained
by one step of gradient descent starting from W0 = 0. For
this control model, we determine the optimal learning rate η
by minimizing L(η) over a training set of 104 tasks through
line search, with L(η) defined analogously to equation 5.

More concretely, to compare trained and constructed LSA
layers, we sample Tval = 104 validation tasks and record
the following quantities, averaged over validation tasks: (1)
the difference in predictions measured with the L2 norm,
∥ŷθ(xτ,test) − ŷθGD(xτ,test)∥, (2) the cosine similarity be-
tween the sensitivities ∂ŷθGD (xτ,test)

∂xtest
and ∂ŷθ(xτ,test)

∂xtest
as well as

(3) their difference ∥∂ŷθGD (xτ,test)

∂xtest
− ∂ŷθ(xτ,test)

∂xtest
∥ again accord-

ing to the L2 norm, which in both cases yields the explicit
models computed by the algorithm. We show the results
of these comparisons in Figure 2. We find an excellent
agreement between the two models over a wide range of
hyperparameters. We note that as we do not have direct ac-
cess to the initialization of W in the attention-based learners
(it is hidden in θ), we cannot expect the models to agree
exactly.

Although the above metrics are important to show simi-
larities between the resulting learned models (in-context

5

Transformers Learn In-Context by Gradient Descent

vs. gradient-based), the underlying algorithms could still
be different. We therefore carry out an extended set of
analyses:

1. Interpolation. We take inspiration on recent work
(Benzing et al., 2022; Entezari et al., 2021) that showed
approximate equivalence of models found by SGD af-
ter permuting weights within the trained neural net-
works. Since our models are deep linear networks with
respect to xtest we only correct for scaling mismatches
between the two models – in this case the construction
that implements GD and the trained weights. As shown
in Figure 2, we observe (and can actually inspect by
eye, see Appendix Figure 9) that a simple scaling cor-
rection on the trained weights is enough to recover the
weight construction implementing GD. This leads to an
identical loss of GD, the trained Transformer and the
linearly interpolated weights θI = (θ + θGD)/2. See
details in Appendix A.3 on how our weight correction
and interpolation is obtained.

2. Out-of-distribution validation tasks. To test if our
in-context learner has found a generalizable update
rule, we investigate how GD, the trained LSA layer
and its interpolation behave when providing in-context
data in regimes different to the ones used during train-
ing. We therefore visualize the loss increase when (1)
sampling the input data from U(−α, α)Nx or (2) scal-
ing the teacher weights by α as αW when sampling
validation tasks. For both cases, we set α = 1 dur-
ing training. We again observe that when training a
single linear self-attention Transformer, for both inter-
ventions, the Transformer performs equally to gradient
descent outside of this training setups, see Figure 2 as
well Appendix Figure 6. Note that the loss obtained
through gradient descent also starts degrading quickly
outside the training regime. Since we tune the learning
rate for the input range [−1, 1] and one gradient step,
tasks with larger input range will have higher curvature
and the optimal learning rate for smaller ranges will
lead to divergence and a drastic increase in loss also
for GD.

3. Repeating the LSA update. Since we claim that a sin-
gle trained LSA layer implements a GD-like learning
rule, we further test its behavior when applying it re-
peatedly, not only once as in training. After we correct
the learning rate of both algorithms, i.e. for GD and
the trained Transformer with a dampening parameter
λ = 0.75 (details in Appendix A.6), we see an identi-
cal loss decrease of both GD and the Transformer, see
Figure 1.

To conclude, we present evidence that optimizing a single
LSA layer to solve linear regression tasks finds weights

that (approximately) coincide with the LSA-layer weight
construction of Proposition 1, hence implementing a step of
gradient descent, leading to the same learning capabilities
on in- and out-of-distribution tasks. We comment on the
random seed dependent phase transition of the loss during
training in Appendix A.11.

Multiple steps of gradient descent vs. multiple layers of
self-attention

We now turn to deep linear self-attention-only Transform-
ers. The construction we put forth in Proposition 1, can
be immediately stacked up over K layers; in this case, the
final prediction can be read out from the last layer as before
by negating the y-entry of the last test token: −yN+1 +∑K

k=1 ∆yk,N+1 = −(yN+1−
∑K

k=1 ∆yk,N+1) = yN+1+∑K
k=1 ∆WkxN+1, where yk,N+1 are the test token values

at layer k, and ∆yk,N+1 the change in the y-entry of the
test token after applying the k-th step of self-attention, and
∆Wk the k-th implicit change in the underlying linear model
parameters W . When optimizing such Transformers with
K layers, we observe that these models generally outper-
form K steps of plain gradient descent, see Figure 3. Their
behavior is however well described by a variant of gradient
descent, for which we tune a single parameter γ defined
through the transformation function H(X) which trans-
forms the input data according to xj ← H(X)xj , with
H(X) = (I − γXXT). We term this gradient descent
variant GD++ which we explain and analyze in Appendix
A.10.

To analyze the effect of adding more layers to the architec-
ture, we first turn to the arguably simplest extension of a
single SA layer and analyze a recurrent or looped 2-layer
LSA model. Here, we simply repeatably apply the same
layer (with the same weights) multiple times i.e. drawing
the analogy to learning an iterative algorithm that applies
the same logic multiple times.

Somewhat surprisingly, we find that the trained model sur-
passes plain gradient descent, which also results in decreas-
ing alignment between the two models (see center left col-
umn), and the recurrent Transformer realigns perfectly with
GD++ while matching its performance on in- and out-of
distribution tasks. Again, we can interpolate between the
Transformer weights found by optimization and the LSA-
weight construction with learned η, γ, see Figure 3 & 6.

We next consider deeper, non-recurrent 5-layer LSA-only
Transformers, with different parameters per layer (i.e. no
weight tying). We see that a different GD learning rate as
well as γ per step (layer) need to be tuned to match the
Transformer performance. This slight modification leads
again to almost perfect alignment between the trained TF
and GD++ with in this case 10 additional parameters and

6

Transformers Learn In-Context by Gradient Descent

(a) Comparing two steps of gradient descent with trained recurrent two-layer Transformers.

0 1000 2000 3000
Training steps

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Lo
ss

GD
GD+ +

Trained TF

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
sim

GD vs trained TF
Model cos

0 1000 2000 3000
Training steps

0.0

0.5

1.0

1.5

2.0

2.5

L2
 N

or
m

Preds diff
Model diff

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
sim

GD+ + vs trained TF
Model cos

0 1000 2000 3000
Training steps

0.0

0.5

1.0

1.5

2.0

2.5

L2
 N

or
m

Preds diff
Model diff

0.5 1.0 1.5 2.0
 where x U(,)

10 1

100

101

102

103

104

Lo
ss

Test on larger inputs
GD
GD+ +

Interpolated
Trained TF

(b) Comparing five steps of gradient descent with trained five-layer Transformers.

0 20000 40000
Training steps

0.1

0.2

0.3

0.4

Lo
ss

GD
GD+ + 5 steps
Trained TF

0.80

0.85

0.90

0.95

1.00

1.05

Co
sin

e
sim

GD vs trained TF
Model cos

0 20000 40000
Training steps

0.0

0.5

1.0

1.5

2.0

L2
 N

or
m

Preds diff
Model diff

0.80

0.85

0.90

0.95

1.00

1.05

Co
sin

e
sim

GD+ + vs trained TF
Model cos

0 20000 40000
Training steps

0.0

0.5

1.0

1.5

2.0

L2
 N

or
m

Preds diff
Model diff

0.5 1.0 1.5 2.0
 where x U(,)

10 2

10 1

100

101

Lo
ss

Test on larger inputs
GD
GD+ +

Trained TF

Figure 3. Far left column: The trained TF performance surpasses standard GD but matches GD++, our GD variant with simple iterative
data transformation. On both cases, we tuned the gradient descent learning rates as well as the scalar γ which governs the data
transformation H(X). Center left & center right columns: We measure the alignment between the GD as well as the GD++ models and
the trained TF. In both cases the TF aligns well with GD in the beginning of training but aligns much better with GD++ after training. Far
right column: TF performance (in log-scale) mimics the one of GD++ well when testing on OOD tasks (α ̸= 1).

loss close to 0, see Figure 3. Nevertheless, we see that the
naive correction necessary for model interpolation used in
the aforementioned experiments is not enough to interpolate
without a loss increase. We leave a search for better weight
corrections to future work. We further study Transformers
with different depths for recurrent as well as non-recurrent
architectures with multiple heads and equipped with MLPs,
and find qualitatively equivalent results, see Appendix Fig-
ure 7 and Figure 8. Additionally, in Appendix A.9, we
provide results obtained when using softmax SA layers as
well as LayerNorm, thus essentially retrieving the standard
Transformer architecture. We again observe and are able
to explain (after slight architectural modifications) good
learning performance and as well as alignment with the con-
struction of Proposition 1, though worse than when using
linear self-attention. These findings suggest that the in-
context learning abilities of the standard Transformer with
these common architecture choices can be explained by
the gradient-based learning hypothesis explored here. Our
findings also question the ubiquitous use of softmax atten-
tion, and suggest further investigation is warranted into the
performance of linear vs. softmax SA layers in real-world
learning tasks, as initiated by Schlag et al. (2021).

Transformers solve nonlinear regression tasks by
gradient descent on deep data representations

It is unreasonable to assume that the astonishing in-context
learning flexibility observed in large Transformers is ex-

plained by gradient descent on linear models. We now show
that this limitation can be resolved by incorporating one
additional element of fully-fledged Transformers: preceding
self-attention layers by MLPs enables learning linear models
by gradient descent on deep representations which motivates
our illustration in Figure 1. Empirically, we demonstrate
this by solving non-linear sine-wave regression tasks, see
Figure 4. Experimental details can be found in Appendix
A.7. We state

Proposition 2. Given a Transformer block i.e. a MLP m(e)
which transforms the tokens ej = (xj , yj) followed by an at-
tention layer, we can construct weights that lead to gradient
descent dynamics descending 1

2N

∑N
i=1 ||Wm(xi)− yi||2.

Iteratively applying Transformer blocks therefore can solve
kernelized least-squares regression problems with kernel
function k(x, y) = m(x)⊤m(y) induced by the MLP m(·).

A detailed discussion on this form of kernel regression as
well as kernel smoothing w/wo softmax nonlinearity through
gradient descent on the data can be found in Appendix
A.8. The way MLPs transform data in Transformers di-
verges from the standard meta-learning approach, where
a task-shared input embedding network is optimized by
backpropagation-through-training to improve the learning
performance of a task-specific readout (e.g., Raghu et al.,
2020; Lee et al., 2019; Bertinetto et al., 2019). On the other
hand, given our token construction in Proposition 1, MLPs
in Transformers intriguingly process both inputs and targets.
The output of this transformation is then processed by a sin-

7

Transformers Learn In-Context by Gradient Descent

gle linear self-attention layer, which, according to our theory,
is capable of implementing gradient descent learning. We
compare the performance of this Transformer model, where
all weights are learned, to a control Transformer where the
final LSA weights are set to the construction θGD which is
therefore identical to training an MLP by backpropagation
through a GD updated output layer.

Intriguingly, both obtained functions show again surprising
similarity on (1) the initial (meta-learned) prediction, read
out after the MLP, and (2) the final prediction, after altering
the output of the MLP through GD or the self-attention layer.
This is again reflected in our alignment measures that now,
since the obtained models are nonlinear w.r.t. xtest, only rep-
resent the two first parts of the Taylor approximation of the
obtained functions. Our results serve as a first demonstra-
tion of how MLPs and self-attention layers can interplay to
support nonlinear in-context learning, allowing to fine-tune
deep data representations by gradient descent. Investigating
the interplay between MLPs and SA-layer in deep TFs is
left for future work.

4. Do self-attention layers build regression
tasks?

The construction provided in Proposition 1 and the previ-
ous experimental section relied on a token structure where
both input and output data are concatenated into a single
token. This design is different from the way tokens are typi-
cally built in most of the related work dealing with simple
few-shot learning problems as well as in e.g. language mod-
eling. We therefore ask: Can we overcome the assumption
required in Proposition 1 and allow a Transformer to build
the required token construction on its own? This motivates

Proposition 3. Given a 1-head linear or softmax atten-
tion layer and the token construction e2j = (xj), e2j+1 =
(0, yj) with a zero vector 0 of dim Nx − Ny and concate-
nated positional encodings, one can construct key, query
and value matrix WK ,WQ,WV as well as the projection
matrix P such that all tokens ej are transformed into tokens
equivalent to the ones required in Proposition 1.

The construction and its discussion can be found in Ap-
pendix A.5. To provide evidence that copying is per-
formed in trained Transformers, we optimize a two-layer
self-attention circuit on in-context data where alternating
tokens include input or output data i.e. e2j = (xj) and
e2j+1 = (0, yj). We again measure the loss as well as the
mean of the norm of the partial derivative of the first layer’s
output w.r.t. the input tokens during training, see Figure 5.
First, the training speeds are highly variant given different
training seeds, also reported in Garg et al. (2022). Never-
theless, the Transformer is able to match the performance
of a single (not two) step gradient descent. Interestingly,

before the Transformer performance jumps to the one of
GD, token ej transformed by the first self-attention layer
becomes notably dependant on the neighboring token ej+1

while staying independent on the others which we denote as
eother in Figure 5.

0 10000 20000 30000 40000
Training steps

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Lo
ss

GD 1 step
TF 2 layers

0 10000 20000 30000 40000
Training steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

No
rm

 p
ar

t.
de

riv
at

iv
es

t(ej)/ ej

t(ej)/ ej + 1

t(ej)/ eother

Figure 5. Training a two layer SA-only Transformer using the
standard token construction. Left: The loss of trained TFs
matches one step of GD, not two, and takes an order of magnitude
longer to train. Right: Norm of the partial derivatives of the
output of the first self-attention layer w.r.t. input tokens. Before the
Transformer performance jumps to the one of GD, the first layer
becomes highly sensitive to the next token.

We interpret this as evidence for a copying mechanism of
the Transformer’s first layer to merge input and output data
into single tokens as required by Proposition 1. Then, in
the second layer the Transformer performs a single step of
GD. Notably, we were not able to train the Transformer
with linear self-attention layers, but had to incorporate the
softmax operation in the first layer. These preliminary find-
ings support the study of Olsson et al. (2022) showing that
softmax self-attention layers easily learn to copy; we con-
firm this claim, and further show that such copying allows
the Transformer to proceed by emulating gradient-based
learning in the second or deeper attention layers.

We conclude that copying through (softmax) attention layers
is the second crucial mechanism for in-context learning
in Transformers. This operation enables Transformers to
merge data from different tokens and then to compute dot
products of input and target data downstream, allowing for
in-context learning by gradient descent to emerge.

5. Discussion
Transformers show remarkable in-context learning behavior.
Mechanisms based on attention, associative memory and
copying by induction heads are currently the leading expla-
nations for this remarkable feature of learning within the
Transformer forward pass. In this paper, we put forward the
hypothesis, similar to Garg et al. (2022) and Akyürek et al.
(2023), that Transformer’s in-context learning is driven by
gradient descent, in short – Transformers learn to learn by
gradient descent based on their context. Viewed through
the lens of meta-learning, learning Transformer weights cor-
responds to the outer-loop which then enables the forward

8

Transformers Learn In-Context by Gradient Descent

4 2 0 2 4
x

0.4

0.2

0.0

0.2

0.4

0.6
y

GT
Data

GD init
GD step 1

Tr. TF init
Tr. TF step 1

0 20000 40000
Training steps

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Lo
ss

GD
Trained TF

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
sim

Partial cosine

0 20000 40000
Training steps

0.00

0.02

0.04

0.06

0.08

L2
 N

or
m

Preds diff
Partial diff

Figure 4. Sine wave regression: comparing trained Transformers with meta-learned MLPs for which we adjust the output layer
with one step of gradient descent. Left: Plots of the learned initial functions as well as the adjusted functions through either a layer
of self-attention or a step of GD. We observe similar initial functions as well as solutions for the trained TF compared fine-tuning a
meta-learned MLP. Center: The performance of the trained Transformer is matched by meta-learned MLPs. Left: We observe strong
alignment when comparing the prediction as well as the partial derivatives of the the meta-learned MLP and the trained Transformer.

pass to transform tokens by gradient-based optimization.

To provide evidence for this hypothesis, we build on Schlag
et al. (2021) that already provide a linear self-attention layer
variant with (fast-)inner loop learning by the error-correcting
delta rule (Widrow & Hoff, 1960). We diverge from their set-
ting and focus on (in-context) learning where we specifically
construct a dataset by considering neighboring elements in
the input sequence as input- and target training pairs, see
assumptions of Proposition 1. This construction could be
realized, for example, due to the model learning to imple-
ment a copying layer, see section 4 and proposition 3, and
allows us to provide a simple and different construction to
Schlag et al. (2021) that solely is built on the standard lin-
ear, and approximately softmax, self-attention layer but still
implements gradient descent based learning dynamics. We,
therefore, are able to explain gradient descent based learn-
ing in these standard architectures. Furthermore, we extend
this construction based on a single self-attention layer and
provide an explanation of how deeper K-layer Transformer
models implement principled K-step gradient descent learn-
ing, which deviates again from Schlag et al. and allows
us to identify that deep Transformers implement GD++, an
accelerated version of gradient descent.

We highlight that our construction of gradient descent and
GD++ is not suggestive but when training multi-layer self-
attention-only Transformers on simple regression tasks, we
provide strong evidence that the construction is actually
found. This allows us, at least in our restricted problems
settings, to explain mechanistically in-context learning in
trained Transformers and its close resemblance to GD ob-
served by related work. Further work is needed to incor-
porate regression problems with noisy data and weight reg-
ularization into our hypothesis. We speculate aspects of
learning in these settings are meta-learned – e.g., the weight
magnitudes to be encoded in the self-attention weights. Ad-
ditionally, we did not analyze logistic regression for which
one possible weight construction is already presented in
Zhmoginov et al. (2022).

Our refined understanding of in-context learning based on

gradient descent motives us to investigate how to improve
it. We are excited about several avenues of future research.
First, to exceed upon a single step of gradient descent in
every self-attention layer it could be advantageous to incor-
porate so called declarative nodes (Amos & Kolter, 2017;
Bai et al., 2019; Gould et al., 2021; Zucchet & Sacramento,
2022) into Transformer architectures. This way, we would
treat a single self-attention layer as the solution of a fully
optimized regression loss leading to possibly more efficient
architectures. Second, our findings are restricted to small
Transformers and simple regression problems. We are ex-
cited to delve deeper into research trying to understand how
further mechanistic understanding of Transformers and in-
context learning in larger models is possible and to what
extend. Third, we are excited about targeted modifications
to Transformer architectures, or their training protocols,
leading to improved gradient descent based learning algo-
rithms or allow for alternative in-context learners to be im-
plemented within Transformer weights, augmenting their
functionality, as e.g. in Dai et al. (2023). Finally, it would
be interesting to analyze in-context learning in HyperTrans-
formers (Zhmoginov et al., 2022) that produce weights for
target networks and already offer a different perspective on
merging Transformers and meta-learning. There, Transform-
ers transform weights instead of data and could potentially
allow for gradient computations of weights deep inside the
target network lifting the limitation of GD on linear models
analyzed here.

Acknowledgments

João Sacramento and Johannes von Oswald deeply thank
Angelika Steger for her support and guidance. The authors
also thank Seijin Kobayashi, Marc Kaufmann, Nicolas Zuc-
chet, Yassir Akram, Guillaume Obozinski and Mark Sandler
for many valuable insights throughout the project and Dale
Schuurmans and Timothy Nguyen for their valuable com-
ments on the manuscript. João Sacramento was supported
by an Ambizione grant (PZ00P3 186027) from the Swiss
National Science Foundation and an ETH Research Grant
(ETH-23 21-1).

9

Transformers Learn In-Context by Gradient Descent

References
Akyürek, E., Schuurmans, D., Andreas, J., Ma, T., and

Zhou, D. What learning algorithm is in-context learn-
ing? investigations with linear models. In The Eleventh
International Conference on Learning Representations,
2023. URL https://openreview.net/forum?
id=0g0X4H8yN4I.

Amos, B. and Kolter, J. Z. Optnet: Differentiable opti-
mization as a layer in neural networks. In International
Conference on Machine Learning, 2017.

Andrychowicz, M., Denil, M., Gomez, S., Hoffman, M. W.,
Pfau, D., Schaul, T., Shillingford, B., and de Freitas, N.
Learning to learn by gradient descent by gradient descent.
In Advances in Neural Information Processing Systems,
2016.

Ba, J., Hinton, G. E., Mnih, V., Leibo, J. Z., and Ionescu,
C. Using fast weights to attend to the recent past. In
Advances in Neural Information Processing Systems 29,
2016.

Bai, S., Kolter, J. Z., and Koltun, V. Deep equilibrium
models. Advances in Neural Information Processing
Systems, 2019.

Bengio, Y., Bengio, S., and Cloutier, J. Learning a
synaptic learning rule. Technical report, Université de
Montréal, Département d’Informatique et de Recherche
opérationnelle, 1990.

Benzing, F., Schug, S., Meier, R., von Oswald, J., Akram,
Y., Zucchet, N., Aitchison, L., and Steger, A. Random
initialisations performing above chance and how to find
them. OPT2022: 14th Annual Workshop on Optimization
for Machine Learning, 2022.

Bertinetto, L., Henriques, J. F., Torr, P. H. S., and Vedaldi, A.
Meta-learning with differentiable closed-form solvers. In
International Conference on Learning Representations,
2019.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan,
J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu,
J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin,
M., Gray, S., Chess, B., Clark, J., Berner, C., McCan-
dlish, S., Radford, A., Sutskever, I., and Amodei, D.
Language models are few-shot learners. arXiv preprint
arXiv:2005.14165, 2020.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov,
A., and Zagoruyko, S. End-to-end object detection with
transformers. In Computer Vision – ECCV 2020. Springer
International Publishing, 2020.

Chalmers, D. J. The evolution of learning: an experiment in
genetic connectionism. In Touretzky, D. S., Elman, J. L.,
Sejnowski, T. J., and Hinton, G. E. (eds.), Connectionist
Models, pp. 81–90. Morgan Kaufmann, 1991.

Chan, S. C. Y., Dasgupta, I., Kim, J., Kumaran, D.,
Lampinen, A. K., and Hill, F. Transformers general-
ize differently from information stored in context vs in
weights. arXiv preprint arXiv:2210.05675, 2022a.

Chan, S. C. Y., Santoro, A., Lampinen, A. K., Wang, J. X.,
Singh, A., Richemond, P. H., McClelland, J., and Hill, F.
Data distributional properties drive emergent in-context
learning in transformers. Advances in Neural Information
Processing Systems, 2022b.

Choromanski, K. M., Likhosherstov, V., Dohan, D., Song,
X., Gane, A., Sarlos, T., Hawkins, P., Davis, J. Q., Mo-
hiuddin, A., Kaiser, L., Belanger, D. B., Colwell, L. J.,
and Weller, A. Rethinking attention with performers. In
International Conference on Learning Representations,
2021. URL https://openreview.net/forum?
id=Ua6zuk0WRH.

Dai, D., Sun, Y., Dong, L., Hao, Y., Ma, S., Sui, Z., and Wei,
F. Why can GPT learn in-context? language models im-
plicitly perform gradient descent as meta-optimizers. In
ICLR 2023 Workshop on Mathematical and Empirical Un-
derstanding of Foundation Models, 2023. URL https:
//openreview.net/forum?id=fzbHRjAd8U.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby,
N. An image is worth 16x16 words: Transformers for
image recognition at scale. In International Conference
on Learning Representations, 2021. URL https://
openreview.net/forum?id=YicbFdNTTy.

Entezari, R., Sedghi, H., Saukh, O., and Neyshabur, B. The
role of permutation invariance in linear mode connectivity
of neural networks. arXiv preprint arXiv:2110.06296,
2021.

Finn, C. and Levine, S. Meta-learning and universality:
Deep representations and gradient descent can approx-
imate any learning algorithm. In International Confer-
ence on Learning Representations, 2018. URL https:
//openreview.net/forum?id=HyjC5yWCW.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional Conference on Machine Learning, 2017.

Flennerhag, S., Rusu, A. A., Pascanu, R., Visin, F., Yin,
H., and Hadsell, R. Meta-learning with warped gradi-
ent descent. In International Conference on Learning
Representations, 2020.

10

https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=Ua6zuk0WRH
https://openreview.net/forum?id=fzbHRjAd8U
https://openreview.net/forum?id=fzbHRjAd8U
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=HyjC5yWCW
https://openreview.net/forum?id=HyjC5yWCW

Transformers Learn In-Context by Gradient Descent

Garg, S., Tsipras, D., Liang, P., and Valiant, G. What
can transformers learn in-context? a case study of sim-
ple function classes. In Oh, A. H., Agarwal, A., Bel-
grave, D., and Cho, K. (eds.), Advances in Neural In-
formation Processing Systems, 2022. URL https:
//openreview.net/forum?id=flNZJ2eOet.

Gordon, J., Bronskill, J., Bauer, M., Nowozin, S., and
Turner, R. Meta-learning probabilistic inference for
prediction. In International Conference on Learning
Representations, 2019. URL https://openreview.
net/forum?id=HkxStoC5F7.

Gould, S., Hartley, R., and Campbell, D. J. Deep declarative
networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2021.

Gulati, A., Qin, J., Chiu, C.-C., Parmar, N., Zhang, Y., Yu,
J., Han, W., Wang, S., Zhang, Z., Wu, Y., and Pang,
R. Conformer: Convolution-augmented transformer for
speech recognition. arXiv preprint arXiv:2005.08100,
2020.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus). arXiv preprint arXiv:1606.08415, 2016.

Hinton, G. E. and Plaut, D. C. Using fast weights to deblur
old memories. 1987.

Hochreiter, S., Younger, A. S., and Conwell, P. R. Learning
to learn using gradient descent. In Dorffner, G., Bischof,
H., and Hornik, K. (eds.), Artificial Neural Networks
— ICANN 2001, pp. 87–94, Berlin, Heidelberg, 2001.
Springer Berlin Heidelberg. ISBN 978-3-540-44668-2.

Hubinger, E., van Merwijk, C., Mikulik, V., Skalse, J.,
and Garrabrant, S. Risks from learned optimization
in advanced machine learning systems. arXiv [cs.AI],
Jun 2019. URL http://arxiv.org/abs/1906.
01820.

Irie, K., Schlag, I., Csordás, R., and Schmidhuber, J. Going
beyond linear transformers with recurrent fast weight
programmers. CoRR, abs/2106.06295, 2021. URL
https://arxiv.org/abs/2106.06295.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization, 2014.

Kirsch, L. and Schmidhuber, J. Meta learning backpropaga-
tion and improving it. In Beygelzimer, A., Dauphin, Y.,
Liang, P., and Vaughan, J. W. (eds.), Advances in Neural
Information Processing Systems, 2021. URL https:
//openreview.net/forum?id=hhU9TEvB6AF.

Kirsch, L., Harrison, J., Sohl-Dickstein, J., and Metz, L.
General-purpose in-context learning by meta-learning
transformers. In Sixth Workshop on Meta-Learning at the

Conference on Neural Information Processing Systems,
2022. URL https://openreview.net/forum?
id=t6tA-KB4dO.

Lee, K., Maji, S., Ravichandran, A., and Soatto, S. Meta-
learning with differentiable convex optimization. In
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2019.

Lee, Y. and Choi, S. Gradient-based meta-learning with
learned layerwise metric and subspace. In International
Conference on Machine Learning, 2018.

Li, Z., Zhou, F., Chen, F., and Li, H. Meta-SGD: Learning
to learn quickly for few shot learning. arXiv preprint
arXiv:1707.09835, 2017.

Liu, P., Yuan, W., Fu, J., Jiang, Z., Hayashi, H., and Neubig,
G. Pre-train, prompt, and predict: A systematic survey of
prompting methods in natural language processing. arXiv
preprint arXiv:2107.13586, 2021.

Nadaraya, E. A. On estimating regression. Theory of Prob-
ability & its Applications, 9(1):141–142, 1964.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., Conerly, T., Drain, D., Ganguli, D., Hatfield-Dodds,
Z., Hernandez, D., Johnston, S., Jones, A., Kernion,
J., Lovitt, L., Ndousse, K., Amodei, D., Brown, T.,
Clark, J., Kaplan, J., McCandlish, S., and Olah, C. In-
context learning and induction heads. arXiv preprint
arXiv:2209.11895, 2022.

Park, E. and Oliva, J. B. Meta-curvature. In Advances in
Neural Information Processing Systems, 2019.

Power, A., Burda, Y., Edwards, H., Babuschkin, I., and
Misra, V. Grokking: Generalization beyond overfitting
on small algorithmic datasets. abs/2201.02177, 2022.

Raghu, A., Raghu, M., Bengio, S., and Vinyals, O. Rapid
learning or feature reuse? Towards understanding the
effectiveness of MAML. In International Conference on
Learning Representations, 2020.

Ramsauer, H., Schäfl, B., Lehner, J., Seidl, P., Widrich,
M., Adler, T., Gruber, L., Holzleitner, M., Pavlović, M.,
Sandve, G. K., Greiff, V., Kreil, D., Kopp, M., Klambauer,
G., Brandstetter, J., and Hochreiter, S. Hopfield networks
is all you need. arXiv preprint arXiv:2008.02217, 2020.

Rusu, A. A., Rao, D., Sygnowski, J., Vinyals, O., Pascanu,
R., Osindero, S., and Hadsell, R. Meta-learning with
latent embedding optimization. In International Confer-
ence on Learning Representations, 2019.

Schlag, I., Irie, K., and Schmidhuber, J. Linear transformers
are secretly fast weight programmers. In ICML, 2021.

11

https://openreview.net/forum?id=flNZJ2eOet
https://openreview.net/forum?id=flNZJ2eOet
https://openreview.net/forum?id=HkxStoC5F7
https://openreview.net/forum?id=HkxStoC5F7
http://arxiv.org/abs/1906.01820
http://arxiv.org/abs/1906.01820
https://arxiv.org/abs/2106.06295
https://openreview.net/forum?id=hhU9TEvB6AF
https://openreview.net/forum?id=hhU9TEvB6AF
https://openreview.net/forum?id=t6tA-KB4dO
https://openreview.net/forum?id=t6tA-KB4dO

Transformers Learn In-Context by Gradient Descent

Schmidhuber, J. Evolutionary principles in self-referential
learning, or on learning how to learn: the meta-meta-...
hook. Diploma thesis, Institut für Informatik, Technische
Universität München, 1987.

Schmidhuber, J. Learning to control fast-weight memories:
An alternative to dynamic recurrent networks. Neural
Computation, 4(1):131–139, 1992. doi: 10.1162/neco.
1992.4.1.131.

Thrun, S. and Pratt, L. Learning to learn. Springer US,
1998.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Attention
is all you need, 2017.

von Oswald, J., Zhao, D., Kobayashi, S., Schug, S., Caccia,
M., Zucchet, N., and Sacramento, J. Learning where to
learn: Gradient sparsity in meta and continual learning.
In Advances in Neural Information Processing Systems,
2021.

Watson, G. S. Smooth regression analysis. Sankhyā: The
Indian Journal of Statistics, Series A, pp. 359–372, 1964.

Widrow, B. and Hoff, M. E. Adaptive switching circuits.
In 1960 IRE WESCON Convention Record, Part 4, pp.
96–104, New York, 1960. IRE.

Yun, S., Jeong, M., Kim, R., Kang, J., and Kim, H. J. Graph
transformer networks. In Wallach, H., Larochelle, H.,
Beygelzimer, A., dÁlché-Buc, F., Fox, E., and Garnett,
R. (eds.), Advances in Neural Information Processing
Systems, 2019.

Zhang, A., Lipton, Z. C., Li, M., and Smola, A. J. Dive into
deep learning. arXiv preprint arXiv:2106.11342, 2021.

Zhao, D., Kobayashi, S., Sacramento, J., and von Oswald, J.
Meta-learning via hypernetworks. In NeurIPS Workshop
on Meta-Learning, 2020.

Zhmoginov, A., Sandler, M., and Vladymyrov, M. Hy-
perTransformer: Model generation for supervised and
semi-supervised few-shot learning. In Chaudhuri, K.,
Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato,
S. (eds.), Proceedings of the 39th International Confer-
ence on Machine Learning, volume 162 of Proceedings
of Machine Learning Research, pp. 27075–27098. PMLR,
17–23 Jul 2022. URL https://proceedings.mlr.
press/v162/zhmoginov22a.html.

Zucchet, N. and Sacramento, J. Beyond backpropagation:
bilevel optimization through implicit differentiation and
equilibrium propagation. Neural Computation, 34(12),
December 2022.

12

https://proceedings.mlr.press/v162/zhmoginov22a.html
https://proceedings.mlr.press/v162/zhmoginov22a.html

Transformers Learn In-Context by Gradient Descent

A. Appendix
A.1. Proposition 1

First, we highlight the dependency on the tokens ei of the linear self-attention operation

ej ← ej + LSAθ({e1, . . . , eN}) = ej +
∑
h

PhVhK
T
h qh,j = ej +

∑
h

Ph

∑
i

vh,i ⊗ kh,iqh,j

= ej +
∑
h

PhWh,V

∑
i

eh,i ⊗ eh,iW
T
h,KWh,Qej (6)

with ⊗ the outer product between two vectors. With this we can now easily draw connections to one step of gradient descent
on L(W) = 1

2N

∑N
i=1 ∥Wxi − yi∥2 with learning rate η which yields weight change

∆W = −η∇WL(W) = − η

N

N∑
i=1

(Wxi − yi)x
T
i . (7)

We first restate

Proposition 1. Given a 1-head linear attention layer and the tokens ej = (xj , yj), for j = 1, . . . , N , one can construct
key, query and value matrices WK ,WQ,WV as well as the projection matrix P such that a Transformer step on every
token ej is identical to the gradient-induced dynamics ej ← (xj , yj) + (0,−∆Wxj) = (xi, yi) + P V KT qj such that
ej = (xj , yj −∆yj). For the test data token (xN+1, yN+1) the dynamics are identical.

We provide the weight matrices in block form: WK = WQ =

(
Ix 0
0 0

)
with Ix and Iy the identity matrices of size Nx and

Ny respectively. Furthermore, we set WV =

(
0 0
W0 −Iy

)
with the weight matrix W0 ∈ RNy×Nx of the linear model we

wish to train and P = η
N I with identity matrix of size Nx +Ny. With this simple construction we obtain the following

dynamics (
xj

yj

)
←

(
xj

yj

)
+

η

N
I

N∑
i=1

((
0 0
W0 −Iy

)(
xi

yi

))
⊗
((

Ix 0
0 0

)(
xi

yi

))(
Ix 0
0 0

)(
xj

yj

)

=

(
xj

yj

)
+

η

N
I

N∑
i=1

(
0

W0xi − yi

)
⊗

(
xi

0

)(
xj

0

)
=

(
xj

yj

)
+

(
0

−∆Wxj

)
. (8)

for every token ej = (xj , yj) including the query token eN+1 = etest = (xtest,−W0xtest) which will give us the desired
result.

A.2. Comparing the out-of-distribution behavior of trained Transformers and GD

We provide more experimental results when comparing GD with tuned learning rate η and data transformation scalar γ and
the trained Transformer on other data distributions than provided during training, see Figure 6. We do so by changing the
in-context data distribution and measure the loss of both methods averaged over 10.000 tasks when either changing α that
1) affects the input data range x ∼ U(−α, α)Nx or 2) the teacher by αW with W ∼ N (0, I). This setups leads to results
shown in the main text, in the first two columns of Figure 6 and in the corresponding plots of Figure 7. Although the match
for deeper architectures starts to become worse, overall the trained Transformers behaves remarkably similar to GD and
GD++ for layer depth greater than 1.

Furthermore, we try GD and the trained Transformer on input distributions that it never has seen during training. Here, we
chose by chance of 1/3 either a normal, exponential or Laplace distribution (with JAX default parameters) and depict the
average loss value over 10.000 tasks where the α value now simply scales the input values that are sampled from one of
the distributions αx. The teacher scaling is identical to the one described above. See for results the two right columns of
Figure 6, where we see almost identical behavior for recurrent architectures with less good match for deeper non-recurrent

13

Transformers Learn In-Context by Gradient Descent

(a) Comparing one step of gradient descent with trained one layer Transformers on OOD data.

0.5 1.0 1.5 2.0
 where x U(,)

10 1

100

Lo
ss

Test on larger inputs
GD
Interpolated
Trained TF

1 2 3 4 5
W where W N(0, I)

10 1

100

Lo
ss

Test on larger targets

GD
Interpolated
Trained TF

1 2 3 4 5
 where x

10 2

10 1

100

101

Lo
ss

Test on larger inputs

GD
Interpolated
Trained TF

1 2 3 4 5
W where W N(0, I)

10 2

10 1

100

Lo
ss

Test on larger targets

GD
Interpolated
Trained TF

(b) Comparing two steps of gradient descent with trained recurrent two layer Transformers on OOD data.

0.5 1.0 1.5 2.0
 where x U(,)

10 1

100

101

Lo
ss

Test on larger inputs
GD
Interpolated
Trained TF

1 2 3 4 5
W where W N(0, I)

10 2

10 1

100

Lo
ss

Test on larger targets

GD
GD+ +

Interpolated
Trained TF

1 2 3 4 5
 where x

10 2

10 1

100

101

Lo
ss

Test on larger inputs
GD
GD+ +

Interpolated
Trained TF

1 2 3 4 5
W where W N(0, I)

10 2

10 1

Lo
ss

Test on larger targets

GD
GD+ +

Interpolated
Trained TF

(c) Comparing five steps of gradient descent with trained five layer Transformers on OOD data.

0.5 1.0 1.5 2.0
 where x U(,)

10 2

10 1

100

101

Lo
ss

Test on larger inputs
GD
GD+ +

Trained TF

1 2 3 4 5
W where W N(0, I)

10 2

10 1

100

101

Lo
ss

Test on larger targets

GD
GD+ +

Trained TF

1 2 3 4 5
 where x

10 3

10 2

10 1

100

101

Lo
ss

Test on larger inputs
GD
GD+ +

Trained TF

1 2 3 4 5
W where W N(0, I)

10 3

10 2

10 1

100

Lo
ss

Test on larger targets

GD
GD+ +

Trained TF

Figure 6. Left & center left column: Comparing Transformers, GD and their weight interpolation on rescaled training distributions. In
all setups, the trained Transformer behaves remarkably similar to GD or GD++. Right & center right: Comparing Transformers, GD
and their weight interpolation on data distributions never seen during training. Again, in all setups, the trained Transformer behaves
remarkably similar to GD or GD++ with less good match for deep non-recurrent Transformers far away from training regimes.

architectures far away from the training range of α = 1. Note that for deeper Transformers (K > 2) the corresponding
GD and GD++ version, see for more experimental details Appendix section A.12, we include a harsh clipping of the
token values after every step of transformation between [−10, 10] (for the trained TF and GD) to improve training stability.
Therefore, the loss increase is restricted to a certain value and plateaus.

A.3. Linear mode connectivity between the weight construction of Prop 1 and trained Transformers

In order to interpolate between the construction θGD and the trained weights of the Transformer θ, we need to correct for
some scaling ambiguity. For clarification, we restate here the linear self-attention operation for a single head

ej ←ej + PWV

∑
i

ei ⊗ eiW
T
KWQej (9)

= ej +WPV

∑
i

ei ⊗ eiWKQej (10)

Now, to match the weight construction of Prop. 1 we have the aim for the matrix product WKQ to match an identify matrix
(except for the last diagonal entry) after re-scaling. Therefore we compute the mean of the diagonal of the matrix product
of the trained Transformer weights WKQ which we denote by β. After resealing both operations i.e. WKQ ← WKQ/β
and WPV ← WPV β we interpolate linearly between the matrix products of GD as well as these rescaled trained matrix
products i.e. WI,KQ = (WGD,KQ+WTF,KQ)/2 as well as WI,PV = (WGD,PV +WTF,PV)/2. We use these parameters
to obtain results throughout the paper denote with Interpolated. We do so for GD as well as GD++ when comparing to

14

Transformers Learn In-Context by Gradient Descent

0 5000 10000 15000
Training steps

0.1

0.2

0.3

0.4

Lo
ss

GD
GD+ +

Trained TF

0.80

0.85

0.90

0.95

1.00

1.05

Co
sin

e
sim

GD vs trained TF
Model cos

0 5000 10000 15000
Training steps

0.0

0.5

1.0

1.5

2.0

L2
 N

or
m

Preds diff
Model diff

0.80

0.85

0.90

0.95

1.00

1.05

Co
sin

e
sim

GD+ + vs trained TF
Model cos

0 5000 10000 15000
Training steps

0.0

0.5

1.0

1.5

2.0

L2
 N

or
m

Preds diff
Model diff

0.5 1.0 1.5 2.0
 where x U(,)

10 1

100

101

Lo
ss

Test on larger inputs
GD
Interpolated
Trained TF

1 2 3 4 5
W where W N(0, I)

10 2

10 1

100

Lo
ss

Test on larger targets

GD
GD+ +

Interpolated
Trained TF

1 2 3 4 5
 where x

10 2

10 1

100

101

Lo
ss

Test on larger inputs
GD
GD+ +

Interpolated
Trained TF

1 2 3 4 5
W where W N(0, I)

10 2

10 1

Lo
ss

Test on larger targets

GD
GD+ +

Interpolated
Trained TF

Figure 7. Comparing ten steps of gradient descent with trained recurrent ten-layer Transformers. Results comparable to recurrent
Transformer with two layers, see Figure 3, but now with 10 repeated layers. We again observe for deeper recurrent linear self-attention
only Transformers that overall GD++ and the trained Transformer align very well with one another and are again interpolatable leading
to very similar behavior insight as well as outside training situations. Note the inferior performance to the non-recurrent five-layer
Transformer which highlights the importance on specific learning rate as well γ parameter per layer/step.

Figure 8. Comparing twelve steps of GD++ with a trained twelve-layer Transformers with MLPs and 4 headed linear self-attention
layer. Results comparable to the deep recurrent Transformer, see Figure 7, but now with 12 independent Transformer blocks including
MLPs and 4-head linear self-attention. We omit LayerNorm. We again observe a close resemblance of the trained Transformers and
GD++. We hypotheses that even when equipped with multiple heads and MLPs, Transformers approximate GD++.

15

Transformers Learn In-Context by Gradient Descent

1 2 3 4 5 6 7 8 9 1011

1
2
3
4
5
6
7
8
9

10
11

Weights of WT
KWV

1 2 3 4 5 6 7 8 9 1011

1
2
3
4
5
6
7
8
9

10
11

Weight of PWV

1.0

0.5

0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1 2 3 4 5 6 7 8 9 1011

1
2
3
4
5
6
7
8
9

10
11

Weights of WT
KWV

1 2 3 4 5 6 7 8 9 1011

1
2
3
4
5
6
7
8
9

10
11

Weight of PWV

1

0

1

1

0

1

Figure 9. Visualizing the weight matrices of trained Transformers. Left & outer left: Weight matrix products of a trained single linear
self-attention layer. We see (after scalar correction) a perfect resemblance of our construction. Right & outer right: Weight matrix
products of a trained 3-layer recurrent linear self-attention Transformer. Again, we see (after scalar correction) a perfect resemblance of
our construction and an additional curvature correction i.e. diagonal values in PWV of the same magnitude except the last entry that
functions as the learning rate.

recurrent Transformers. Note that for non-recurrent Transformers, we face more ambiguity that we have to correct for
since e.g. scalings influence each other across layer. We also see this in practice and are not able (only for some seeds) to
interpolate between weights with our simple correction from above. We leave the search for more elaborate corrections for
future work.

A.4. Visualizing the trained Transformer weights

The simplicity of our construction enables us to visually compare trained Transformers and the construction put forward
in Proposition A.1 in weight space. As discussed in the previous section A.3 there is redundancy in the way the trained
Transformer can construct the matrix products leading to the weights corresponding to gradient descent. We therefore
visualize WKQ = WT

KWQ as well as WPV = PKWV in Figure 9.

A.5. Proof and discussion of Proposition 3

We state here again Proposition 3, provide the necessary construction and a short discussion.
Proposition 3. Given a 1-head linear- or softmax attention layer and the token construction e2j = (xj), e2j+1 = (0, yj)
with a zero vector 0 of dim Nx −Ny and concatenated positional encodings, one can construct key, query and value matrix
WK ,WQ,WV as well as the projection matrix P such that all tokens ej are transformed into tokens equivalent to the ones
required in proposition 1.

To get a simple and clean construction, we choose wlog xj ∈ R2N+1 and (0, yj) ∈ R2N+1 as well as model the positional
encodings as unit vectors pj ∈ R2N+1 and concatenate them to the tokens i.e. ej = (xj/2, pj). We wish for a construction
that realizes

ej ←
(
xj/2

pj

)
+ PV KTWQ

(
xj/2

pj

)
(11)

=

(
xj/2

pj

)
+

(
0

yj/2+1 − pj

)
. (12)

This means that a token replaces its own positional encoding by coping the target data of the next token to itself leading
to ej = (xj/2, 0, yj/2+1), with slight abusive of notation. This can simply be realized by (for example) setting P = I ,

WV =

(
0 0
Ix −Ix,off

)
,WK =

(
0 0
0 Ix

)
and WQ =

(
0 0
0 ITx,off

)
with Ix,off the lower diagonal identity matrix fo size

Nx. Note that then simply KTWQej = pj+1 i.e. it chooses the j + 1 element of V which stays pj+1 if we apply the
softmax operation on KT qj . Since the j + 1 entry of V is (0, yj/2+1 − pj) we obtain the desired result.

For the (toy-)regression problems considered in this manuscript, the provided result would give N/2 tokens for which we
also copy (parts) of xj underneath yj . This is desired for modalities such as language where every two tokens could be
considered an in-and output pair for the implicit autoregressive inner-loop loss. These tokens do not have be necessarily next
to each other, see for this behavior experimental findings presented in (Olsson et al., 2022). For the experiments conducted
here, one solution is to zero out these tokens which could be constructed by a two-head self-attention layer that given uneven
j simply subtracts itself resulting in a zero token. For all even tokens, we use the construction from above which effectively
coincides with the token construction required in Proposition 1.

16

Transformers Learn In-Context by Gradient Descent

Rolling out experiment with different dampening strength

0 10 20 30 40 50
GD Steps / Transformer Layers

0.0

0.1

0.2

Lo
ss

Dampening = 1
GD
Trained TF

0 10 20 30 40 50
GD Steps / Transformer Layers

0.0

0.1

0.2

Lo
ss

Dampening = 0.875
GD
Trained TF

0 20 40
GD Steps / Transformer Layers

0.0

0.1

0.2

Lo
ss

Dampening = 0.75
GD
Trained TF

Figure 10. Roll-out experiments: applying a trained single linear self-attention layer multiple times. We observe that different
dampening strengths affect the generalization of both methods with slightly better robustness for GD which matching performance for 50
steps when λ = 0.75.

A.6. Dampening the self-attention layer

As an additional out-of-distribution experiment, we test the behavior when repeating a single LSA-layer trained to lower
our objective, see equation 5, with the aim to repeat the learned learning/update rule. Note that GD as well as the self-
attention layer were optimized to be optimal for one step. For GD we line search the otpimal learning rate η on 10.000
task. Interestingly, for both methods we observe quick divergence when applied multiple times, see left plot of Figure
10. Nevertheless, both of our update functions are described by a linear self-attention layer for which we can control the
norm, post training, by a simple scale which we denote as λ. This results in the new update ytest + λ∆Wxtest for GD
and ytest + λPV KTWQxtest for the trained self-attention layer which effectively re-tunes the learning rate for GD and the
trained self-attention layer. Intriguingly, both methods do generalize similarly well (or poorly) on this out-of-distribution
experiment when changing λ, see again Figure 10. We show in Figure 1 the behavior for λ = 0.75 for which we see both
methods steadily decreasing the loss within 50 steps.

A.7. Sine wave regression

For the sine wave regression tasks, we follow (Finn et al., 2017) and other meta-learning literature and sample for each
task an amplitude a ∼ U(0.1, 5) and a phase ρ ∼ U(0, π). Each tasks consist of N = 10 data points where inputs are
sampled x ∼ U(−5, 5) and targets computed by y = a sin(ρ+ x). We choose here for the first time, for GD as well as for
the Transformer, an input embedding emb that maps tokens ei = (xi, yi) into a 40 dimensional space emb(ei) = Wembei
through an affine projection without bias. We skip the first self-attention layer but, as usually done in Transformers, then
transform the embedded tokens through an MLP m with a single hidden layer, widening factor of 4 (160 hidden neuros) and
GELU nonlinearity (Hendrycks & Gimpel, 2016) i.e. ej ← m(emb(ej)) + emb(ej).

We interpret the last entry of the transformed tokens as the (transformed) targets and the rest as a higher-dimensional input
data representation on which we train a model with a single gradient descent step. We compare the obtained meta-learned
GD solution with training a Transformer on the same token embeddings but instead learn a self-attention layer. Note that the
embeddings of the tokens, including the transformation through the MLP, are not dependent on an interplay between the
tokens. Furthermore, the initial transformation is dependent on ei = (xi, yi), i.e., input as well as on the target data except
for the query token for which ytest = 0. This means that this construction is, except for the additional dependency on targets,
close to a large corpus of meta-learning literature that aims to find a deep representation optimized for (fast) fine tuning
and few-shot learning. In order to compare the meta-training of the MLP and the Transformer, we choose the same seed
to initialize the network weights for the MLPs and the input embedding trained by meta-learning i.e. backprop through
training or the Transformer. This leads to the plots and almost identical learned initial function and updated functions shown
in Figure 4.

A.8. Proposition 2 and connections between gradient descent, kernelized regression and kernel smoothing

Let’s consider the data transformation induced by an MLP m̃(x) and a residual connection commonly used in Transformer
blocks i.e. ej ← ej + m̃(ej) = (xj , yj) + (m̃(xj), 0) = (m(xj), yj) with m(xj) = xj + m̃(xj) and m̃ not changing the
targets y. When simply applying Proposition 1, it is easy to see that given this new token construction, a linear self-attention
layer can induce the token dynamics ej ← (m(xj), yj)+(0,−∆Wm(xj)) with ∆W = −η∇L(W) given the loss function
L(W) = 1

2N

∑N
i=1 ||Wm(xi)− yi||2.

17

Transformers Learn In-Context by Gradient Descent

Interestingly, for the test token etest = (xtest, 0) this induces, after a multiplication with −1, an initial prediction after a single
Transformer block given by

ŷ = ∆Wm(xtest) = −η∇WL(0)m(xtest) =

N∑
i=1

yim(xi)
Tm(xtest) =

N∑
i=1

yik(xi, xtest) (13)

with m(xi)
Tm(xtest) = k(xi, xtest) ∈ R interpreted as a kernel function. Concluding, we see that the combination of MLPs

and a single self-attention layer can lead to dynamics induced when descending a kernelized regression (squared error) loss
with a single step of gradient-descent.

Interestingly, when choosing W0 = 0, we furthermore see that a single self-attention layer or Transformer block can be
regarded as doing nonparametric kernel smoothing ŷ =

∑N
i=1 yik(xi, xtest) based on the data given in-context (Nadaraya,

1964; Watson, 1964). Note that we made a particular choice of kernel function here and that this view still holds when
m(xj) = 1 i.e. consider Transformers without MLPs or leverage the well-known view of softmax self-attention layer as
a kernel function used to measure similarity between tokens (e.g. Choromanski et al., 2021; Zhang et al., 2021). Thus,
implementing one step of gradient descent through a self-attention layer (w/wo softmax nonlinearity) is equivalent to
performing kernel smoothing estimation. We however argue that this nonparametric kernel smoothing view of in-context
learning is limited, and arises from looking only at a single self-attention layer. When considering deeper Transformer
architectures, we see that multiple Transformer blocks can iteratively transform the targets based on multiple steps of
gradient descent leading to minimization of a kernelized squared error loss L(W). One way to obtain a suitable construction
is by neglecting MLPs everywhere except in the first Transformer block. We leave the study of the exact mechanics,
especially how the Transformer makes use of possibility transforming the targets through the MLPs, and the possibility of
iteratively changing the kernel function throughout depth for future study.

A.9. Linear vs. softmax self-attention as well LayerNorm Transformers

Although linear Transformers and their variants have been shown to be competitive with their softmax counterpart (Irie
et al., 2021), the removal of this nonlinearity is still a major departure from classic Transformers and more importantly from
the Transformers used in related studies analyzing in-context learning. In this section we investigate whether and when
gradient-based learning emerges in trained softmax self-attention layers, and we provide an analytical argument to back our
findings.

First, we show, see Figure 12, that a single layer of softmax self-attention is not able to match GD performance. We tuned
the learning rate as well as the weight initialization but found no significant difference over the hyperparameters we used
througout this study. In general, we hypothesize that GD is an optimal update given the limited capacity of a single layer of
(single-head) self-attention. We therefore argue that the softmax induces (at best) a linear offset of the matrix product of
training data and query vector

softmax(KT qj) = (ek
T
1 qj , . . . , ek

T
Nqj)T /(

∑
i

ek
T
i qj) (14)

= (ex
T
1 WKQxj , . . . , ex

T
NWKQxj)T /(

∑
i

ex
T
i WKQxj) (15)

≈ (1 + xT
1 WKQxj , . . . , 1 + xT

NWKQxj)
T /(

∑
i

1 + xT
i WKQxj) (16)

∝ KT qj + ϵ (17)

proportional to a factor dependent on all {xτ,i}N+1
i=1 . We speculate that the dependency on the specific task τ , for large

Nx vanishes or that the x-dependent value matrix could introduce a correcting effect. In this case the softmax operation
introduces an additive error w.r.t. to the optimal GD update. To overcome this disadvantageous offset, the Transformer can
(approximately) introduce a correction with a second self-attention head by a simple subtraction i.e.

P1V1softmax(KT
1 WQxj) + P2V2softmax(KT

2 WQxj) (18)

≈ PV ((1 + xT
1 W1,KQxj , . . . , 1 + xT

NW1,KQxj)− (1 + xT
1 W2,KQxj , . . . , 1 + xT

NW2,KQxj)) (19)

= PV (xT
1 (W1,KQ −W2,KQ)xj , . . . , x

T
N (W1,KQ −W2,KQ)xj) (20)

∝ PV KT qj . (21)

18

Transformers Learn In-Context by Gradient Descent

1 2 3 4 5 6 7 8 9 1011

1
2
3
4
5
6
7
8
9

10
11

1W1, KQ

1 2 3 4 5 6 7 8 9 1011

1
2
3
4
5
6
7
8
9

10
11

2W2, KQ

4

2

0

2

4

4

2

0

2

4

1 2 3 4 5 6 7 8 9 1011

1
2
3
4
5
6
7
8
9

10
11

1W1, KQ + 2W2, KQ

4

2

0

2

4

Figure 11. Visualizing the correction to the softmax operation when training Transformers on regression tasks. The left and center
plot show the matrix product WKQ = WT

KWQ including its scaling by η induced through PWV of the two heads of the trained softmax
self-attention layer. We observe that both of the matrices are approximate diagonal almost perfect sign reversed values on the off-diagonal
terms. After adding the matrices (right plot), we observe a diagonal matrix and therefore to much improved approximation of our
construction and therefore gradient descent dynamics.

Here we assume that PV 1) subsumes the dividing factor of the softmax and that 2) is the same (up to scaling) for each
head. Note that if (W1,KQ −W2,KQ) is diagonal, and P and V chosen as in the Proposition of Appendix A.1, we recover
our gradient descent construction.

We base this derivation on empirical findings, see Figure 12, that, first of all, show the softmax self-attention performance
increases drastically when using two heads instead of one. Nevertheless, the self-attention layer has difficulties to match the
loss values of a model trained with GD. Furthermore, this architecture change leads to a very much improved alignment
of the trained model and GD. Second, we can observe that when training a two-headed softmax self-attention layer on
regression tasks the correction proposed above is actually observed in weight space, see Figure 11. Here, we visualize
the matrix product within the softmax operation Wh,KQ per head which we scale with the last diagonal entry of PhWh,V

which we denote by ηh = PhWh,V (−1,−1). Intriguingly, this results in an almost perfect cancellation (right plot) of the
off-diagonal terms and therefore in sum to an improved approximation of our construction, see the derivation above.

We would like to reiterate that the stronger inductive bias for copying data of the softmax layer remains, and is not invalidated
by the analysis above. Therefore, even for our shallow and simple constructions they indeed fulfill an important role in
support for our hypotheses: The ability to merge or copy input and target data into single tokens allowing for their dot
product computation necessary for the construction in Proposition 1, see Section 4 in the main text.

We end this section by analysing Transformers equipped with LayerNorm which we apply as usually done before the
self-attention layer: Overall, we observe qualitatively similar results to Transformers with softmax self-attention layer i.e.
a decrease in performance compared to GD accompanied with a decrease in alignment between models generated by the
Transformer and models trained with GD, see Figure 14. Here, we test again a single linear self-attention layer succeeding
LayerNorm as well as two layers where we skip the first LayerNorm and only include a LayerNorm between the two.
Including more heads does not help substantially. We again assume the optimality of GD and argue that information of
targets and inputs present in the tokens is lost by averaging when applying LayerNorm. This naturally leads to decreasing
performance compared to GD, see first row of Figure 14. Although the alignment to GD and GD++, especially for two
layers, is high, we overall see inferior performance to one or two steps of GD or two steps of GD++. Nevertheless, we
speculate that LayerNorm might not only stabilize Transformer training but could also act as some form of data normalization
procedure that implicitly enables better generalization for larger inputs as well as targets provided in-context, see OOD
experiments in Figure 14.

Overall we conclude that common architecture choices like softmax and LayerNorm seem supoptimal for the constructed
in-context learning settings when comparing to GD or linear self-attention. Nevertheless, we speculate that the potentially
small performance drops of in-context learning are negligible when turning to deep and wide Transformers for which these
architecture choices have empirically proven to be superior.

19

Transformers Learn In-Context by Gradient Descent

(a) Comparing one step of GD with a trained softmax one-headed self-attention layer.

0 2000 4000
Training steps

0.20

0.25

0.30

0.35

0.40

Lo
ss

GD
Trained TF

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

Model cos

0 1000 2000 3000 4000 5000
Training steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

L2
 N

or
m

Preds diff
Model diff

0.5 1.0 1.5 2.0
 where x U(,)

10 1

100

Lo
ss

Test on larger inputs
GD
Trained TF

1 2 3 4 5
W where W N(0, I)

10 1

100

101

Lo
ss

Test on larger targets

GD
Trained TF

(b) Comparing one step of GD with a trained softmax two-headed self-attention layer.

0 2500 5000 7500 10000
Training steps

0.20

0.25

0.30

0.35

0.40

Lo
ss

GD
Trained TF

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

Model cos

0 2000 4000 6000 8000 10000
Training steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

L2
 N

or
m

Preds diff
Model diff

0.5 1.0 1.5 2.0
 where x U(,)

10 1

100

Lo
ss

Test on larger inputs
GD
Trained TF

1 2 3 4 5
W where W N(0, I)

10 1

100

Lo
ss

Test on larger targets

GD
Trained TF

Figure 12. Comparing trained two-headed and one-headed single-layer softmax self-attention with 1 step of gradient descent on
linear regression tasks. Left column: Softmax self-attention is not able to match gradient descent performance with hand-tuned learning
rate, but adding a second attention head significantly reduces the gap, as expected by our analytical argument. Center left: The alignment
suffers significantly for single-head softmax SA. We observe good but not as precise alignment when compared to linear Transformers for
the two-headed softmax SA layer. Center right & right: The two-headed self-attention compared to the single-head layer shows similar
robust out-of-distribution behavior compared to gradient descent.

A.10. Details of curvature correction

We give here a precise construction showing how to implement in a single head, a step of GD and the discussed data
transformation, resulting in GD++. Recall again the linear self-attention operation with a single head

ej ←ej + PWV

∑
i

ei ⊗ eiW
T
K . (22)

We provide again the weight matrices in block form of the construction of Prop. 1 but now enabling additionally our

described data transformation: WK = WQ =

(
Ix 0
0 0

)
with Ix the identity matrix of size Nx, Iy od size Ny resp.

Furthermore, we set WV =

(
Ix 0
W −Iy

)
with the weight matrix W ∈ RNy×Nx of the linear model we wish to train and

P =

(
−γIx 0
0 η

N

)
. This leads to the following update

(
xj

yj

)
←

(
xj

yj

)
+

(
−γIx 0
0 η

N

) N∑
i=1

((
Ix 0
W −Iy

)(
xi

yi

))
⊗
((

Ix 0
0 0

)(
xi

yi

))(
Ix 0
0 0

)(
xj

yj

)

=

(
xj

yj

)
+

(
−γIx 0
0 η

N

) N∑
i=1

(
xi

Wxi − yi

)
⊗

(
xi

0

)(
xj

0

)
=

(
xj

yj

)
+

(
−γXXTxj

−∆Wxj

)
. (23)

for every token ej = (xj , yj) including the query token eN+1 = etest = (xtest, 0) which will give us the desired result.

Why does GD++ perform better? We give here one possible explanation of the superior performance of GD++ compared
to GD. Note that there is a close resemblance of the GD transformation and a heavily truncated Neuman series approximation
of the inverse XXT . We provide here a more heuristic explanation for the observed acceleration.

Given γ ∈ R, GD++ transforms every input according to xi ← xi − γXXTxi = (I − γXXT)xi. We can therefore look
at the change of squared regression loss L(W) = 1

2

∑N
i=0(Wxi − yi)

2 induced by this transformation i.e. L++(W) =

20

Transformers Learn In-Context by Gradient Descent

Figure 13. GD++ analyses. Left: We visualize the change of the eigenspectrum induced by the input data transformation of GD++ for
different γ observed in practice. Center: Given we know the maximum and minimum of eigenvalues λ1, λn of the loss Hessian XXT

with X = (x0, . . . , xN) for different N , we compare the original condition number (depicted by *’s at γ = 0) and the condition number
(in log scale) of the GD++ altered loss Hessian when varying γ. We plot in dotted lines the γ values that we observe in practice which
are close the optimal ones i.e. the local minimum derived through our analysis. Right: ForN = 25, we plot for different γ values the
distribution of condition numbers κ = λ1/λn for 10000 tasks and observe favorable κ values close to 1 when approaching the γ = 0.099
value was found in practice. The κ values quickly explode for γ > 0.1.

1
2

∑N
i=0(W (I − γXXT)xi − yi)

2 = 1
2 (W (I − γXXT)X − Y)2 which in turn leads to a change of the loss Hessian from

∇2L = XXT to ∇2L++ = (I − γXXT)X((I − γXXT)X)T .

Given the original Hessian H = XXT = UΣUT with it’s set of sorted eigenvalues {λ1, . . . , λn} and λi ≥ 0 on the
diagonal matrix Σ we can express the new Hessian through U,Σ i.e. H++ = (I − γXXT)X((I − γXXT)X)T =
(I − γUΣUT)UΣUT (I − γUΣUT)T .

We can simplify H++ further as

H++ = (I − γUΣUT)UΣUT (I − γUΣUT)T = U(Σ− γΣ2)UTU(I − γΣ)UT (24)

= U(Σ− 2γΣ2 + γ2Σ3)UT (25)

Given the eigenspectrum {λ1, . . . , λn} of H , we obtain an (unsorted) eigenspecturm for H++ with {λ1 − 2γλ2
1 +

γ2λ3
1, . . . , λn − 2γλ2

n + γ2λ3
n} which we visualize in Figure 13 for different γ observed in practice. We hypotheses

that the Transformer chooses γ in a way that on average, across the distribution of tasks, the data transformation (iteratively)
decreases the condition number λ1/λn leading to accelerated learning. This could be achieved, for example, by keeping
the smallest eigenvalue λn ≈ λ++

n fixed and choosing γ such that the largest eigenvalue of the transformed data λ++
1 is

reduced, while the original λ1 stays within [λ++
1 , λ++

n].

To support our hypotheses empirically, we computed the minimum and maximum eigenvalues of XXT across 10000 tasks
while changing the number of datapoints N ∈ [10, 25, 50, 100] i.e. X = (x0, . . . , xN) leading to better conditioned loss
Hessians i.e. [1e−10, 0.097, 0.666, 2.870] and [4.6, 7.712, 10.845, 17.196] as the minimum and maximum eigenvalues of
XXT across all tasks where we cut the smallest eigenvalue for N = 10 at 1e−10. Furthermore, we extract the γ values
from the weights of optimized recurrent 2-layer Transformers trained on different task distributions and obtain γ values of
[0.179, 0.099, 0.056, 0.029], see again Figure 13. Note that the observed eigenvalues stay within [0, 1/γ] i.e. the two roots
of f(λ, γ) = λ− 2γλ2 + γ2λ3.

Given the derived function of eigenvalue change f(λ, γ), we compute the condition number of H++ by dividing the novel
maximum eigenvalues λ++

1 = f(1/(3γ), γ) where λ = 1/(3γ) as the local maximum of f(λ, γ), for fixed γ, and the novel
minimum eigenvalue λ++

n = min(f(λ1, γ), f(λn, γ)). Note that with too small γ, we move the original λn closer to the
root of f(λ, γ) i.e. λ = 1/γ and therefore can change the smallest eigenvalue.

Given the task distribution and its corresponding eigenvalue distribution, we see that choosing γ reduces the new condition
number κ++ = λ++

1 /λ++
n which leads to better conditioned learning, see center plot of Figure 13. Note that the optimal γ

based on our derivation above is based on the maximum and minimum eigenvalue across all tasks and does not take the
change of the eigenvalue distribution into account. We argue therefore that the simplicity of the arguments above does
not capture the task statistics and distribution shifts entirely and therefore obtains a slightly larger γ as an optimal value.

21

Transformers Learn In-Context by Gradient Descent

(a) Comparing one step of GD with a single-layer LSA Transformer with LayerNorm.

0 5000 10000 15000
Training steps

0.20

0.25

0.30

0.35

0.40

Lo
ss

GD
Trained TF

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

Model cos

0 5000 10000 15000
Training steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

L2
 N

or
m

Preds diff
Model diff

0.5 1.0 1.5 2.0
 where x U(,)

10 1

100

101

Lo
ss

Test on larger inputs
GD
Trained TF

1 2 3 4 5
W where W N(0, I)

10 1

100

101

Lo
ss

Test on larger targets

GD
Trained TF

(b) Comparing two steps of GD with a two-layer LSA Transformer with LayerNorm.

0 5000 10000 15000
Training steps

0.10

0.15

0.20

0.25

0.30

Lo
ss

GD
GD+ +

Trained TF

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
sim

GD vs trained TF
Model cos

0 5000 10000 15000
Training steps

0.0

0.5

1.0

1.5

L2
 N

or
m

Preds diff
Model diff

0.5

0.6

0.7

0.8

0.9

1.0

Co
sin

e
sim

GD+ + vs trained TF
Model cos

0 5000 10000 15000
Training steps

0.0

0.5

1.0

1.5

L2
 N

or
m

Preds diff
Model diff

0.5 1.0 1.5 2.0
 where x U(,)

10 1

100

101

102

103

Lo
ss

Test on larger inputs
GD
GD+ +

Trained TF

Figure 14. Comparing trained 1-layer and 2-layer Transformers with LayerNorm and 1 step or 2 steps of gradient descent resp.
Left column: The Transformers is not able to match the gradient descent performance with hand-tuned learning rate. Alignment
plots: The alignment suffers significantly when comparing to linear self-attention layers although still reasonable alignment is obtained
which decreases slightly when comparing to GD++ for the two-layer Transformer.Center right & right: The LayerNorm Transformer
outperforms when GD when providing training input data that is significantly larger than the data provided during training.

We furthermore visualize the condition number change for N = 25 and 10000 tasks in the right plot of Figure 13 and
observe the distribution moving to desirable κ values close to 1. For γ values larger than 0.1 the distribution quickly exhibits
exploding condition numbers.

A.11. Phase transitions

We comment shorty on the curiously looking phase transitions of the training loss observed in many of our experiments,
see Figure 2. Nevertheless, simply switching from a single-headed self-attention layer to a two-headed self-attention layer
mitigates the random seed dependent training instabilities in our experiments presented in the main text, see left and center
plot of Figure 15.

Furthermore, these transitions look reminiscent of the recently observed ”grokking” behaviour (Power et al., 2022).
Interestingly, when carefully tuning the learning rate and batchsize we can also make the Transformers trained in these linear
regression tasks grokk. For this, we train a single Transformer block (self-attention layer and MLP) on a limited amount of
data (8192 tasks), see right plot of Figure 15, and observe grokking like train and test loss phase transitions where test set
first increases drastically before experiencing a sudden drop in loss almost matching the desired GD loss of 0.2. We leave a
thorough investigation of these phenomena for future study.

A.12. Experimental details

We use for most experiments identical hyperparameters that were tuned by hand which we list here

• Optimizer: Adam (Kingma & Ba, 2014) with default parameters and learning rate of 0.001 for Transformer with depth
K < 3 and 0.0005 otherwise. We use a batchsize of 2048 and applied gradient clipping to obtain gradients with global
norm of 10. We used the Optax library.

• Haiku weight initialisation (fan-in) with truncated normal and std 0.002/K where K the number of layers.

• We did not use any regularisation and observed for deeper Transformers with K > 2 instabilities when reaching GD
performance. We speculate that this occurs since the GD performance is, for the given training tasks, already close
to divergence as seen when providing tasks with larger input ranges. Therefore, training Transformers also becomes

22

Transformers Learn In-Context by Gradient Descent

Figure 15. Phase transitions during training. Left: Loss based on 10 different random seeds when optimizing a single-headed self-
attention layer. We observe for some seeds very long initial phases of virtually zero progress after which the loss drops suddenly to the
desired GD loss. Center: The same experiment but optimizing a two-headed self-attention layer. We observe fast and robust convergence
to the loss of GD. Right: Training a single Transformer block i.e. a self-attention layer with MLP and a reduced training set size of 8192
tasks. We observe grokking like train and test loss phase transitions where test set first increases drastically before experiencing a sudden
drop in loss almost matching the desired GD loss of 0.2.

instable when we approach GD with an optimal learning rate. In order to stabilize training, we simply clipped the token
values to be in the range of [−10, 10].

• When applicable we use standard positional encodings of size 20 which we concatenated to all tokens.

• For simplicity, and to follow the provided weight construction closely, we did use square key, value and query parameter
matrix in all experiments.

• The training length varied throughout our experimental setups and can be read off our training plots in the article.

• When training meta-parameters for gradient descent i.e. η and γ we used an identical training setup but usually training
required much less iterations.

• In all experiments we choose inital W0 = 0 for gradient descent trained models.

Inspired by (Garg et al., 2022), we additionally provide results when training a single linear self-attention layer on a fixed
number of training tasks. Therefore, we iterate over a single fixed batch of size B instead of drawing new batch of tasks at
every iteration. Results can be found in Figure 16. Intriguingly, we find that (meta-)gradient descent finds Transformer
weights that align remarkable well with the provided construction and therefore gradient descent even when provided with an
arguably very small number of training tasks. We argue that this again highlights the strong inductive bias of the LSA-layer
to match (approximately) gradient descent learning in its forward pass.

23

Transformers Learn In-Context by Gradient Descent

(a) Comparing 1 step of gradient descent with training a LSA-layer on 128 tasks.

0 1000 2000 3000 4000 5000
Training steps

1

2

3

4

5

Lo
ss

GD
Trained TF

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

Model cos

0 1000 2000 3000 4000 5000
Training steps

0

2

4

6

8

10

L2
 N

or
m

Preds diff
Model diff

0.5 1.0 1.5 2.0
 where x U(,)

0.1

Lo
ss

Test on larger inputs
GD
Interpolated
Trained TF

1 2 3 4 5
W where W N(0, I)

0.1

Lo
ss

Test on larger targets

GD
Interpolated
Trained TF

(b) Comparing 1 step of gradient descent with training a LSA-layer on 512 tasks.

0 2000 4000
Training steps

0.20

0.25

0.30

0.35

0.40

Lo
ss

GD
Trained TF

0.0

0.2

0.4

0.6

0.8

1.0
Co

sin
e

sim
Model cos

0 1000 2000 3000 4000 5000
Training steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

L2
 N

or
m

Preds diff
Model diff

0.5 1.0 1.5 2.0
 where x U(,)

0.1

Lo
ss

Test on larger inputs
GD
Interpolated
Trained TF

1 2 3 4 5
W where W N(0, I)

0.1

Lo
ss

Test on larger targets

GD
Interpolated
Trained TF

(c) Comparing 1 step of gradient descent with training a LSA-layer on 2048 tasks.

0 2000 4000
Training steps

0.20

0.25

0.30

0.35

0.40

Lo
ss

GD
Trained TF

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

Model cos

0 1000 2000 3000 4000 5000
Training steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

L2
 N

or
m

Preds diff
Model diff

0.5 1.0 1.5 2.0
 where x U(,)

0.1

Lo
ss

Test on larger inputs
GD
Interpolated
Trained TF

1 2 3 4 5
W where W N(0, I)

0.1

Lo
ss

Test on larger targets

GD
Interpolated
Trained TF

(d) Comparing 1 step of gradient descent training a LSA-layer on 8192 tasks.

0 2000 4000
Training steps

0.20

0.25

0.30

0.35

0.40

Lo
ss

GD
Trained TF

0.0

0.2

0.4

0.6

0.8

1.0

Co
sin

e
sim

Model cos

0 1000 2000 3000 4000 5000
Training steps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

L2
 N

or
m

Preds diff
Model diff

0.5 1.0 1.5 2.0
 where x U(,)

0.1

Lo
ss

Test on larger inputs
GD
Interpolated
Trained TF

1 2 3 4 5
W where W N(0, I)

0.1

Lo
ss

Test on larger targets

GD
Interpolated
Trained TF

Figure 16. Comparing trained Transformers with GD and their weight interpolation when training the Transformer on a fixed
training set size B. Across our alignment measures as well as our tests on out-of-training behaviour, trained Transformers fail to align
with GD when provided with a very small amount of tasks. Nevertheless, we see already almost perfect alignment in our base setting
N = Nx = 10 when provided with B > 2048 tasks. In all settings, we train the Transformer on (non-stochastic) gradient descent
iterating over a single batch of tasks of size B equal to the number provided in the Figure titles (128, 512, 2048, 8192).

24

