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ABSTRACT

Recently, as Artificial Intelligence (AI) develops, many companies in various in-
dustries are trying to use AI by grafting it into their domains. Also, for these com-
panies, various cloud companies (e.g., Amazon, Google, IBM, and Microsoft) are
providing AI services as the form of Machine-Learning-as-a-Service (MLaaS).
However, although these AI services are very advanced and well-made, security
vulnerabilities such as adversarial examples still exist, which can interfere with
normal AI services. This paper demonstrates a HYPOCRITE for hypocrisy that
generates homoglyph adversarial examples for natural language web services in
the physical world. This hypocrisy can disrupt normal AI services provided by the
cloud companies. The key idea of HYPOCRITE is to replace English characters
with other international characters that look similar to them in order to give the
dataset noise to the AI engines. By using this key idea, parts of text can be appro-
priately replaced with subtext with malicious meaning through black-box attacks
for natural language web services in order to cause misclassification. In order to
show attack potential by HYPOCRITE, this paper implemented a framework that
makes homoglyph adversarial examples for natural language web services in the
physical world and evaluated the performance under various conditions. Through
extensive experiments, it is shown that HYPOCRITE is more effective than other
baseline in terms of both attack success rate and perturbed ratio.

1 INTRODUCTION

Artificial Intelligence (AI) has shown the potential of convenience in many domains. With the ad-
vance of AI, people are living affluent lives by AI. AI can judge what is difficult for humans to make,
classify what humans struggle with, predict what humans can never measure, and even recommend
tasks that fall within a pattern (Naumov et al. (2019)). Due to the development of the AI industry, it
is not an exaggeration to say that mankind coexists with AI as many companies in various industries
are trying to use AI by grafting it into their domains. As the demand on AI increases, various cloud
service providers (e.g., Amazon Comprehend (Amazon), Google Cloud Natural Language (Google)
, Watson Natural Language Understanding (IBM), and Text Analytics (Microsoft) are providing
easy-to-use Machine-Learning-as-a-Service (Ribeiro et al. (2015)) to people and companies who
want to use AI services through their cloud. Among the MLaaS, Natural Language Processing
(NLP) based on text is one of the important AI services.

NLP, which contains various information such as emotional and semantic analysis of text-based
data (Dang et al. (2020); Kamath & Ananthanarayana (2016)), can be used to develop platforms for
various recommendation systems. For example, it is possible to provide effective data analysis to
corporate management based on quick information delivery by identifying the needs of users and
identifying only the core of a system or long article based on the sentiment analysis ?sentiment-
analysis) based on the user’s review. Like this various cloud service providers’ MLaaS superiority
is sufficiently proven through many studies.

However, although these AI services are very advanced and well-made, security vulnerabilities are
still existing. Because these security vulnerabilities can interfere with normal AI services, so cause
a fatal problem, the integrity of such services should be protected. This paper shows the security
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vulnerabilities for natural language web services in the physical world (Rodriguez et al. (2019)).
The key idea of the adversarial examples( Goodfellow et al. (2014); Creswell et al. (2018)) for natu-
ral language web services is to replace English characters with other similar international characters
(e.g., homoglyph) in order to give the dataset noise (Boucher et al. (2021)). By using this key idea,
parts of text can be appropriately replaced with subtext with malicious meaning through black-box
attacks(Ilyas et al. (2018)) for natural language web services in order to cause misclassification.

The main contributions of this paper are summarized as follows:

• Text adversarial examples for natural language web services in the Physical World:
In order to show the feasibility of our attack, we implemented a framework that can gener-
ate text adversarial examples for natural language web services in the physical world (see
Section 3).

• Untargeted attacks and targeted attacks: For various goals of the adversarial attacks, we
carried out the text adversarial attacks for not only non-targeted attacks (i.e., misclassifica-
tion) but also targeted attacks (i.e., targeted misclassification and source/target misclassifi-
cation) (see Section 3).

• The performance evaluation of the proposed framework: Through extensive experi-
ments, it is shown that the proposed framework outperforms a baseline framework in terms
of both attack success rate and perturbed ratio (see Section 4).

• The impact of human understanding: To evaluate the attack text generated by our pro-
posed adversarial attack model, we used Amazon Mechanical Turk (Mturk) how difficult
it is to find the attacked word, we conducted a survey using the attack text and obtained and
analyzed the success rate of the attack on the survey problem (see Section 4.2.2).

The remainder of this paper is organized as follows. The background and related work of text adver-
sarial examples is given in Section 2. Section 3 describes the overview of the proposed adversarial
attack and explains the process of the text adversarial attack of generating text adversarial exam-
ples for natural language web services in the physical world. Section 4 evaluates the performance
of the our proposed framework through misclassification attacks for sentiment analysis of natural
language web services in the physical world. Section 5 discusses some research challenges for our
attack. Finally, Section 6 concludes this paper along with future work.

2 RELATED WORK

Research on Adversarial attacks for NLP models has been presented. In 2016, (Papernot et al.
(2016)) proposes a method to craft a sequential input on Recurrent Neural Network (RNN) mod-
els to manipulate an output of classifiers. (Ebrahimi et al. (2017)) presents a method to generate
adversarial examples for text classification by crafting a few characters of an input string. Unlike
(Ebrahimi et al. (2017)) whose attacks were white-box adversarial examples, (Gao et al. (2018))
used black-box adversarial text sequence to make deep learning-based classifiers misclassify. (Li
et al. (2018)) shows various methodologies to generate adversarial text for NLP models, and eval-
uates that popular NLP services for web services are vulnerable to those attacks. In our work, we
show a new methodology to generate adversarial text which is not considered in (Li et al. (2018)),
and also show that most of the NLP services are still vulnerable to our attack. (Wolff & Wolff (2020))
proposes homoglyph attacks generating adversarial examples to neural text detectors. Our attacks
are targeted to sentimental analysis services in the real world, and we try to perturb every unit of
target text (e.g., word, sentence, and paragraph) instead of replacing several letters with homoglyphs
in order to show the most effective way to generate adversarial examples.

3 ATTACK MODEL

This section presents the goal, overview, and attack process of HYPOCRITE. The goal of HYP-
OCRITE is to generate text adversarial examples for a sentiment analysis of natural language web
services in the physical world. In other words, the generated adversarial examples can cause mis-
classification from positive sentiment to negative sentiment or from negative sentiment to positive
sentiment.
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Figure 1: The homoglyph adversarial examples for sentiment analysis web services (i.e., Amazon
comprehend, Google cloud natural language AI, IBM Watson natural language understanding, and
Microsoft text analytics) generated by HYPOCRITE

3.1 HYPOCRITE OVERVIEW

In this subsection, the proposed HYPOCRITE for generating homoglyph adversarial examples is
described. The key idea of the HYPOCRITE is to replace English characters with other similar
international characters (i.e., homoglyph) in order to give dataset noise. Such dataset noise can cause
misclassification different from the original results. This is because the original meaning disappears
due to the noise. With this key idea, HYPOCRITE can generate homoglyph adversarial examples
by appropriately changing text from a word unit to a paragraph through a black-box attacks for
natural language web services. The homoglyph adversarial examples mean text that looks the same
to the human, but causes different results through AI services. Figure 1 shows the four homoglyph
adversarial examples for sentiment analysis web services (i.e., Amazon comprehend, Google cloud
natural language AI, IBM Watson natural language understanding, and Microsoft text analytics)
generated by HYPOCRITE. As homoglyph adversarial examples, characters with red color and bold
font mean homoglyph that looks the same to our eyes but has different Unicode values. As shown
in Figure 1, although they look like the same text to perception, the result of the sentiment analysis
web service is different from positive to negative, respectively. The user study on the perception of
human for adversarial examples is explained in detail in Section 4.2.2, and the score for each MLaaS
company’s sentiment analysis result is explained in detail in Section 4.1.
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3.2 ADVERSARIAL EXAMPLE GENERATION

Algorithm 1: Non-Targeted Adversarial Ex-
ample Generation
resulttext ← get sentiment(target model,
text);
units← [word, sentence, paragraph];
for unit ∈ units do

tokens← tokenize(resulttext, unit);
for token ∈ tokens do

resulttoken ←
get sentiment(target model,
token);

if min sentiment(resulttoken) is not
original sentiment then

Append resulttoken to
attackers;

end
end
attackers← Sort(attackers) according

to descending of original sentiment;
for resulttoken ∈ attackers do

AE ←
make adversarial example(resulttext,
resulttoken);
resultAE ←

get sentiment(target model, AE);
if sentiment of resultAE is changed

then
return AE;

else
if original sentiment score of
resultAE is less than original
sentiment score of resulttext
then

resulttext ← resultAE ;
end

end
end

end

Algorithm 2: Targeted Adversarial Example
Generation
resulttext ← get sentiment(target model,
text);
unitss← [word, sentence, paragraph];
for unit ∈ units do

tokens← tokenize(resulttext, unit);
for token ∈ tokens do

resulttoken ←
get sentiment(target model,
token);

if max sentiment(resulttoken) is not
target sentiment then

Append resulttoken to
attackers;

end
end
attackers← Sort(attackers) according

to ascending of target sentiment;
for resulttoken ∈ attackers do

AE ←
make adversarial example(resulttext,
resulttoken);
resultAE ←

get sentiment(target model, AE);
if sentiment of resultAE is target
sentiment then

return AE;
else

difftarget ← target sentiment
score of resultAE − target
sentiment score of resulttext;

diffmax ← max sentiment score
of resultAE − max sentiment
score of resulttext;

if difftarget is more than 0 and
difftarget is more than
diffmax then

resulttext ← resultAE ;
end

end
end

end

This subsection describes the process of our HYPOCRITE that generates homoglyph adversarial
examples for sentiment analysis web services in the physical world. The adversarial example gener-
ation is classified into a non-targeted adversarial example generation and a targeted adversarial ex-
ample generation. The non-targeted adversarial example generation means to generate homoglyph
adversarial examples that misclassify a positive sentiment into sentiments other than the positive
sentiment, or a negative sentiment into sentiments other than the negative sentiment. The targeted
adversarial example generation means to generate homoglyph adversarial examples that misclas-
sify a positive sentiment into target sentiments (e.g., negative, neutral, and mixed), or a negative
sentiment into target sentiments (e.g., positive, neutral, and mixed). Algorithms 1 and 2 show an
adversarial example generation algorithm of the HYPOCRITE. As shown in Algorithms 1 and 2,
for the adversarial example generation, HYPOCRITE consists of five steps: (i) Get score of original
text (i) Tokenize the text, (iii) Get score of the tokens and sorting, (iv) Make adversarial examples,
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and (v) Verify the effectiveness of the adversarial examples. Through this process, the non-targeted
and targeted adversarial examples are generated, respectively.

4 EXPERIMENTS

4.1 EXPERIMENTAL-SETUP

Dataset We used IMDB Dataset to evaluate our attacks on sentimental analysis (Maas et al. (2011)).
IMDB contains 25,000 reviews for each positive and negative label, respectively. In our experiments,
to determine the effect of text length on the success of the adversarial example, the dataset used in
the experiment was divided into seven sections by length. The first section is 500 characters or less,
and the second section is 500 characters or more and 800 characters or less. The third section is 800
characters or more and 1,100 characters or less, and the fourth section is 1,100 characters or more
and 1,400 characters or less. The fifth section is 1,400 characters or more and 1,700 characters or
less, and the sixth section is 1,700 characters or more and 2,100 characters or less. The last seventh
sections are over 2,100 characters.Then, we randomly sampled 96 review data per divided section.
The number of sample reviews (96 reviews) in our evaluation was determined by a statistically
recommended sample size when the confidential level is 95%, the population size is 50,000, and the
margin of error is 10%.

Targeted Models

Label Score metric Decision

Amazon Positive, Negative, Neutral, Mixed 0 <Score <1
(For each label)

Label
(The biggest score)

Google - -1 <Score <1
(Total score) Score

IBM Positive, Negative, Neutral -1 <Score <1
(Total score) Score

Microsoft Positive, Negative, Neutral, Mixed 0 <Score <1
(For each label)

Label
(The biggest score)

Table 1: Four targeted models. Label stands for labels pro-
vided by each system, Score metric for sentimental score
used by the system, and Decision for final output provided
by the system.

To evaluate our attacks, we per-
formed the attacks on four senti-
mental analysis services (Amazon,
Google, IBM, and Microsoft) in real
world. Since every service had dif-
ferent sentimental labels and scoring
systems, we briefly described label-
ing and scoring metric for each sys-
tem in Table 1.

Amazon and Microsoft use four sen-
timental labels (Positive, Negative,
Neutral, and Mixed), and the systems
provide each score for all the labels.
In addition, the final output as the re-
sult is the label which is the biggest score among the sentimental labels.

On the other hand, IBM uses three sentimental labels (i.e., Positive, Negative, and Neutral) and
Google dose not provide any exact label. Both systems provide overall score of the input texts as
final output ranging from -1 to 1 (The score closer to -1 means negative, and to 1 means positive).
As there is no sentimental decision provided from the systems, we considered the score less than 0
as negative, and more than 0 as positive.

Baseline To compare the performance of our attack, we evaluate our attack with an attack which
is the most similar method to ours (Wolff & Wolff (2020)). In (Wolff & Wolff (2020)), the attack
is targeted to the neural text detectors. Therefore, we performed the baseline attack to our targeted
systems and measure the performance of the attack.

Evaluation Metrics In order to evaluate the algorithmic performance, we adopt two metrics such
as attack success rate and perturbed rate. The average attack success rate is defined as the ratio of
generated adversarial examples that cause misclassification to randomly selected samples. In order
to show diversity, we evaluated the performance under various misclassification conditions such as
non-targeted misclassification and targeted misclassification. The perturbed rate is defined as the
ratio of replaced characters to the total characters throughout the sentence.

4.2 RESULTS

This section contains a summary of the performance of a targeted attack and non-targeted attack
through the black-box attack against four different platforms such as Amazon, Google, IBM, and
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Web Service
Platform Source Destination

Attack Model
HYPOCRITE HOMOGLYPH

Success Rate (%) Perturbed Rate (%) Success Rate (%) Perturbed Rate(%)

Amazon

Positive

Non-targeted 100 5.64 68.75 15.52
Negative 86.46 6.61 27.23 15.37
Neutral 92.26 17.62 37.05 15.51
Mixed 59.67 13.41 7.29 15.09

Negative

Non-targeted 94.2 13.05 27.08 15.22
Positive 47.47 11.41 2.98 12.6
Neutral 81.75 17.98 18.15 15.07
Mixed 60.71 10.65 2.83 13.14

Google

Positive
Non-targeted 99.40 7.24 78.27 6.62

Negative 81.85 14.52 24.11 8.43
Neutral 99.40 5.92 77.98 6.63

Negative
Non-targeted 100.00 5.26 55.65 6.75

Positive 94.49 15.64 6.70 8.26
Neutral 99.85 5.92 55.80 6.68

IBM

Positive
Non-targeted 99.55 8.81 61.90 15.33

Negative 98.81 8.21 58.04 15.38
Neutral 22.77 47.62 4.32 13.82

Negative
Non-targeted 98.22 11.78 7.44 13.23

Positive 98.21 11.40 5.51 12.98
Neutral 22.02 46.24 1.34 10.68

Microsoft

Positive

Non-targeted 97.77 12.84 64.22 15.34
Negative 64.22 15.34 18.89 15.27
Neutral 92.90 36.77 21.49 15.68
Mixed 80.79 2.59 21.75 14.91

Negative

Non-targeted 99.85 5.36 33.78 15.28
Positive 96.43 21.73 3.57 10.82
Neutral 92.28 36.96 4.91 12.89
Mixed 88.69 3.87 25.89 14.92

Table 2: Overall performance evaluation of our attack model and baseline attack model
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Figure 2: The impact of the Amazon web service platform according to non-targeted and targeted
adversarial attacks

Microsoft. Table 2 shows the successful attack rate and perturbed rate of each attack. Broadly, our
attack is divided into two types such as targeted attack and non-targeted attack. Non-targeted attack
means misclassifying the original sentiment classification into another classification other than the
existing one. On the other hand, the targeted attack is to perturb a positive or negative classification
so that it may be perceived as the specific destination. As shown in Table 2, although the perturbation
rates are similar, HYPOCRITE generally performs higher than the baseline (i.e., HOMOGLYPH).
We will describe the impact of Web service platform in the next subsection in detail.

4.2.1 THE IMPACT OF WEB SERVICE PLATFORM

Amazon This section demonstrates the performance of adversary success rate for Amazon. As
shown in Figure 2 shown, HYPOCRITE generally shows better performance than HOMOGLYPH
on target and non-target attacks. To be detailed, on positive to non (i.e., non-targeted attack) attack,
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Figure 3: The impact of the Google web service platform according to non-targeted and targeted
adversarial attacks
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Figure 4: The impact of the IBM web service platform according to non-targeted and targeted
adversarial attacks

when HOMOGLYPH performed up to 68.75%, HYPOCRITE performed 100%. Both models’ per-
formances of negative to non are lower than positive to non. When HOMOGLYPH performed 27.08
percent, HYPOCRITE still performed a superior success rate of 94.20 percent. In targeted attack
cases, except for negative to positive, positive to mix, and negative to mix, comparing with HO-
MOGLYPH showed less than 40 percent, HYPOCRITE performed significantly high performance.
Both models are having low performance on negative to positive, positive to mix, negative to mix
but HYPOCRITE is showing significantly higher performance than HOMOGLYPH about 20 times
difference. Both models’ impact changes belonging to length dependency were hardly be found.

Google This section consists of performances of attacks against Google. Figure 3 shows the impact
of the text length in Google web service platform. As shown in Fig. 3, since Google API does not
provide for targeted attacks with results of mixed, there are only two scenarios for each targeted
attack (positive or negative to opposite and neutral). In case of non-targeted attack, HYPOCRITE is
showing utmost performance with approximate 100% performance and in contrast, HOMOGLYPH
in Google is showing about performance of 66.96%. In targeted attack case, similar to non-targeted
attack case, HYPOCRITE also shows good performance in target attack scenarios. Although HYP-
OCRITE appears relatively low performance in positive to negative, it still performs 2 to 3 times
higher than HOMOGLYPH. Lastly, within the text length perspective, HOMOGLYPH performed
decreased with length, HYPOCRITE shows consistently high performance regardless of length.
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Figure 5: The impact of the Microsoft web service platform according to non-targeted and targeted
adversarial attacks

IBM This section shows another performance against IBM through figure 4. As shown in Figure 4,
there is a significant different between two model in non-targeted attack. While HOMOGLYPH is
showing intermediate performance in positive to non, it shows fairly low performance. In contrast,
HYPOCRITE shows fairly high performance in both scenarios of non-targeted attack. In targeted
attack case, unusual result can be found. There were no significant differences compared to other
platforms within the result of positive to negative and negative to positive that HYPOCRITE demon-
strated better performance than HOMOGLYPH. Yet, unlike other web service platforms, both HYP-
OCRITE and HOMOGLYPH show poor performance in positive to neutral and negative to neutral.
Indeed, during our experiments, the original text was not classified as neutral by IBM. Nevertheless,
the baseline showed a result close to 0%, whereas HYPOCRITE showed an average of 22.3%.

Microsoft This section demonstrates the performance of adversary attack against Microsoft. As
shown in Figure 5, HYPOCRITE shows eminently better performance than HOMOGLYPH on
target and non-target attacks. In fact, on positive to non (i.e., non-attack, while HOMOGLYPH
performed up to 64.22 percent, HYPOCRITE performed 100 percent. Even though HOMO-
GLYPH performed 33.78 percent on negative to non, HYPOCRITE performed 99.85 percent
which is near to 100 percent. In targeted attack cases, HYPOCRITE showed generally high
success rates that are above 90 percent except positive to mix and negative to mix. Com-
pare to that, HOMOGLYPH’s highest performance is only 25.89 percent. Even HYPOCRITE
showed less performance on negative to mix and positive to mix, it still performed above 80
percent when HOMOGLYPH only performed around 20 percent. The reason why the perfor-
mance of the attack targeting mixed is lower than other attacks is that the shorter text length
provokes the lower performance therefore, the overall success rate of HYPOCRITE decreases.

Figure 6: The user study for perception
of the homoglyph adversarial examples
generated by HYPOCRITE

4.2.2 USER STUDY

We conducted a survey of homoglyph adversarial exam-
ples using Amazon Mechanical Turk (Mturk) to evaluate
the effectiveness of our attack model, and we asked public
users to find the words that are changed by homoglyph.

In addition, in order to investigate the effect of text length
on the success of the adversarial attack, the IMDB dataset
used in the experiment was divided into 7 groups by
length. The survey was conducted with random questions
selected from each group.

To calculate the success rate of the adversarial example
of our model, we defined the attack success rate by quan-
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tifying the number of attack words found by the experi-
mental participants in the given text. Figure 6 shows the
specific average attack success rate of expriment partici-
pants per platform and the average attack success rate per
text length group. Looking at Figure 6, the longer the text is given to the participant, the higher the
attack success rate. In particular, the first group had the lowest at 93.63%, and the seventh group
with the longest text length was the highest at 98.33%. This shows that the shorter the target text of
an adversarial attack, the easier it is for users to recognize the attack.

Through a user study, it was found that the adversarial attack text made by our proposed model was
difficult to distinguish with the human eye, so even though it was actually an adversarial attack, it
was very difficult for users to recognize.in the user study we experimented with, after informing
the user that the word was wrong, we asked the user to look for the wrong or strange word, but in
real life (i.e., the situation where the mistake is not told in advance)even if there is a mistake in the
word, it is expected that the success rate of the attack targeting the user will be further increased
by the word superiority effect (Baron & Thurston (1973)) that unconsciously recognizes the word
correctly.

5 RESEARCH CHALLENGES

Effectiveness of perturbed letters in every word In our work, we perturbed the whole words to
generate adversarial examples. However, every single letter in the words could be perturbed with a
letter which looks the same but has a different unicode value. From the results in Wolff & Wolff
(2020) that replacing all the vowels to generate the adversarial examples was the most effective
attack, there might be a significant pattern in letter perturbation of the words to make the adversarial
attack more effective. In other words, when the letter which has a significant effect on the success
of the attack, the attack will be more effective.

The financial cost to evaluate the results To test the performance of our attacks, we used sentiment
analysis APIs provided by real world companies. However, every time we checked the results using
APIs, the use of APIs should be payed. Therefore, we had to sample a part of the whole dataset, and
also could not try the further experiments which deal with perturbing letters to find which letters are
important to the score of sentimental analysis.

6 CONCLUSION

In this paper, we studied adversarial attacks using homoglyph against natural language web services
in the physical world. The experimental results demonstrate that our HYPOCRITE is more effective
than other baseline in terms of both attack success rate and perturbed ratio for four popular web
service platforms. Also, through the user study, we showed our homoglyph adversarial examples
was difficult for users to recognize as a perturbed text. As future work, we will extend the field of
our HYPOCRITE to attack to various web services with natural language in addition to sentiment
analysis.
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