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Abstract

The advent of generative radiance fields has significantly promoted the development
of 3D-aware image synthesis. The cumulative rendering process in radiance fields
makes training these generative models much easier since gradients are distributed
over the entire volume, but leads to diffused object surfaces. In the meantime,
compared to radiance fields occupancy representations could inherently ensure
deterministic surfaces. However, if we directly apply occupancy representations to
generative models, during training they will only receive sparse gradients located
on object surfaces and eventually suffer from the convergence problem. In this
paper, we propose Generative Occupancy Fields (GOF), a novel model based on
generative radiance fields that can learn compact object surfaces without impeding
its training convergence. The key insight of GOF is a dedicated transition from
the cumulative rendering in radiance fields to rendering with only the surface
points as the learned surface gets more and more accurate. In this way, GOF
combines the merits of two representations in a unified framework. In practice,
the training-time transition of start from radiance fields and march to occupancy
representations is achieved in GOF by gradually shrinking the sampling region
in its rendering process from the entire volume to a minimal neighboring region
around the surface. Through comprehensive experiments on multiple datasets, we
demonstrate that GOF can synthesize high-quality images with 3D consistency and
simultaneously learn compact and smooth object surfaces. Our code is available at
https://github.com/SheldonTsui/GOF_NeurIPS2021.

1 Introduction

Deep generative adversarial networks [1–4] have demonstrated their superiority in synthesizing
photorealistic and striking images. However, these models are often constrained in the 2D domain,
struggling to generate 3D consistent images, let alone grasping the underlying 3D object shapes.
3D-aware image synthesis thus becomes an appealing and promising choice as it learns a 3D
representation explicitly from a collection of unposed images. Consequently, it can not only synthesize
3D consistent images by manually controlling the rendering camera poses, but also pave the way for
various downstream tasks such as shape editing and relighting.

Inspired by the success of neural radiance fields (NeRF) [5] in 3D scene modeling, recent 3D-aware
generative models, referred to as generative radiance fields (GRAFs), have applied NeRF as the
explicit 3D representation for image synthesis [6, 7]. With the help of NeRF, they are capable of
hallucinating photorealistic images in a 3D consistent manner. Moreover, since NeRF holds the
superior ability for rendering translucent objects by compositing colored densities along each ray
in its volume rendering process, it also significantly facilitates the training of GRAFs as gradients
are naturally distributed over the entire volume. However, they still incur an inevitable incapacity of
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Figure 1: (a) The cumulative rendering weights (color weights) of our approach GOF more focus on
the surface (y-axis) than previous methods like pi-GAN [6], which indicates our predicted volume
densities more concentrate on the object surfaces. (b) Owing to the diffused volume densities, the
preceding method pi-GAN captures messy surface normals and object shapes. Moreover, the image
rendered only with the surface points is quite noisy. In contrast, more surface-centralized densities
predicted by our method ensure compact and smooth object surfaces thus enable a high-quality
surface rendering during inference. (Zoom in for best view)

capturing an accurate and compact object surface. As shown in Fig. 1(a), the state-of-the-art GRAF
model pi-GAN is prone to predict diffused object surfaces, as the volume densities are smoothly
spread around the surfaces. Such diffused surfaces could significantly hamper the applications of
GRAF models in downstream tasks such as shape recovery. Moreover, under different light conditions,
the artifacts of surfaces could be amplified and inherited through the rendering process, resulting in
synthesized images that are messy and faulty.

In this work, we propose Generative Occupancy Fields (GOF), a novel GRAF-like image synthesis
model that can learn compact object surfaces. GOF is inspired by the design of occupancy networks
[8] that implicitly represents a 3D surface with the continuous decision boundary of a neural classifier.
In this way, occupancy networks are capable of effectively locating surfaces via root-finding and
encouraging the compactness of modeled surfaces inherently. However, GOF avoids directly applying
such a design to 3D-aware image synthesis. While occupancy networks require precise object
masks to train [9, 10], a more crucial factor is that they rely on the surface points for differentiable
rendering [11, 12, 9, 13]. A generative model equipped with occupancy representations will thus
meet severe convergence problems during training due to the sparsity of gradients. To unify the
merits of both NeRF and occupancy networks for 3D-aware image synthesis, GOF adopts the design
of GRAFs and at the same time leverages a nontrivial transition from the cumulative rendering
to rendering with only the surface points, i.e. start from radiance fields and march to occupancy
representations. Specifically, GOF will reinterpret the alpha values in the cumulative rendering
process as occupancy values, so that it can locate the learned surface via root-finding. Subsequently,
it can naturally encourage the compactness of learned surfaces by gradually shrinking the sampling
region in the rendering process from the entire volume to a minimal neighboring region around the
surface.

Thanks to the unified integration of radiance fields and occupancy representations, GOF can benefit
from the representation effectiveness of radiance fields while ensuring the compactness of learned
object surfaces through the shrinking process. As presented in Fig. 1(a), in GOF the distribution of
cumulative rendering weights concentrates more closely around object surfaces compared to that of
pi-GAN, eventually resulting in a compact and smooth surface. Moreover, GOF can thus alternatively
render an image only with points on the learned surfaces like occupancy networks as illustrated in
Fig. 1 (b). And during inference such a rendering scheme has the potential to alleviate the burden
of sampling a large number of points along each ray for synthesizing a single image. Through
exhaustive experiments on synthetic and real-world datasets, we demonstrate that GOF can achieve
state-of-the-art performance on 3D-aware image synthesis. Meanwhile, it is capable of capturing
compact and accurate 3D shapes that empower its applications in various downstream tasks such as
3D shape reconstruction. We validate this point by quantitative results of 3D shape reconstruction
on the Synface dataset. Finally, we have also verified the ability of GOF in rendering high-quality
images with only the surface points, which is hardly achievable in previous approaches.
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2 Related Work

Neural implicit function for 3D representations. A plethora of works [14, 8, 15–21] has exploited
neural implicit functions for 3D geometry modeling. Among these works, neural radiance fields
(NeRF) [5] has attracted growing attention due to its compelling results on novel view synthesis. It
leverages an MLP network to approximate the radiance fields of static 3D scenes. And by learning to
reconstruct existing views, it is capable of capturing 3D geometric details from only 2D supervision.
A series of succeeding variants of NeRF have been proposed to improve it, including utilizing
the spatial sparsity to reduce its computational complexity [22, 23], refining the rendering process
to improve its efficiency [24, 25], as well as adopting reflectance decompositions to enhance its
modeling capacity [26, 27]. There are also works that capitalize on the differentiable rendering of
neural implicit functions for 3D reconstruction [11, 12, 9, 13, 28, 29]. Specifically, SDFDiff [12]
relies on the interpolation of eight neighboring SDF samples around the surface intersection to
obtain the derivatives, while Atzmon et al [28] use a sample network to relate samples’ positions
to network parameters and thus achieve an improved generalization ability. More interestingly, by
adopting occupancy representations, DVR [11] and IDR [9] show volumetric rendering is inherently
differentiable so that network parameters can be optimized directly with derived analytic gradients.
Different from methods aforementioned above, GOF is a generative model for 3D-aware image
synthesis that can learn 3D representations from a set of 2D images with unknown camera poses.

Generative 3D-aware image synthesis. In order to synthesize 3D consistent images, researchers
have explored a lot on how to incorporate 3D representations into the classical GAN model [1]. Some
methods [30–32] resort to learning from 3D data directly, yet the requirement of 3D supervision
limits their practical applicability. A more appealing alternative is thus learn from unposed 2D
images in an unsupervised manner. Preceding works along this line of research adopt voxels as their
intermediate 3D representations [33–35] and achieve explicit control over the pose of synthesized
images. Inspired by the superior representation capacity of radiance fields over voxels, recent attempts
[6, 7, 36] have replaced voxels with neural radiance fields [5] to improve the fidelity of synthesized
3D consistent images. Despite the striking performance, these models, referred to as generative
radiance fields (GRAFs), tend to predict diffused object surfaces, which impedes its applicability in
various downstream tasks. In this work, GOF aims at resolving this problem of GRAFs by combining
them with the perspective of occupancy networks [8] and recent successes of recovering smooth and
accurate shapes from natural images [37–40]. Recently, three concurrent works, UNISURF [10],
NeuS [41] and VolSDF [42], also combine implicit surfaces and radiance fields in a unified framework,
sharing similar spirits with our proposed GOF but different in tasks and focuses. Specifically, They
focus on multi-view 3D reconstruction and attempt to alleviate the requirement of training-time
precise masks through the integration of radiance fields and occupancy representations. Nevertheless,
they still require images with ground-truth poses for training. By contrast, GOF targets on the
challenging task of 3D-aware image synthesis, where the synthesized images should be not only
natural and vivid, but also consistent in the 3D space. By integrating radiance fields and occupancy
representations, GOF is able to facilitate the convergence of GRAFs and ensure the compactness of
learned object surfaces. Compared to existing GRAFs, the applicability of GOF is thus significantly
broadened.

3 Methodology

We propose generative occupancy fields (GOF), a novel synthesis model, belonging to generative
radiance fields and aiming to learn from unposed images. Conditioned on a latent code z ∼ pz, our
generator gθ can generate a 3D radiance field R, from which we can render a realistic image with a
sampled camera pose ξ ∼ pξ and simultaneously recover smooth and compact object surfaces. In the
following, we first present the background of neural radiance fields, and then introduce our proposed
GOF model in detail.

3.1 Neural Radiance Fields

We adopt neural radiance fields (NeRF) as our explicit 3D representation for image synthesis, owing
to its strong performance in novel view synthesis on complex scenes. NeRF represents a static scene
as per-point volume densities and view-dependent RGB colors. Given a 3D point x ∈ R3 in space
and a view direction d ∈ R3, NeRF capitalizes on a multi-layer perceptron (MLP) to predict the
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Figure 2: Shrinking process. During the training, the sampling interval ∆ is initially a half of the
distance between near tn and far bounds tf and shrinks gradually to a pre-defined value ∆min. For
inference, we can use cumulative rendering by sampling points in the minimal interval ∆min and
alternatively render only with the surface points.

volume density σ(x) ∈ R and the emitted color c(x,d) ∈ R3. To render a novel view for the scene,
NeRF leverages the classic volume rendering technique [43] to estimate the color of each pixel. It
starts by accumulating the colored densities of N points {xi = o + tid} sampled within near and
far bounds [tn, tf ] along the camera ray r(t) = o + td, where o stands for the camera origin. The
integrated color is then estimated via alpha composition as follows:

Ĉ(r) =

N∑
i=1

Ti

(
1− exp

(
− σ(xi)δi

))
c(xi,d), where Ti = exp(−

i−1∑
j=1

σ(xj)δj), (1)

where δi = |xi+1 − xi| is the distance between adjacent points. Note that, equation (1) is naturally
differentiable and NeRF can be directly optimized through the reconstruction error of existing views.

3.2 3D Surface-Aware Image Synthesis via Generative Occupancy Fields

To apply NeRF as the 3D representation, the proposed generative occupancy fields (GOF) incorporates
an additional latent code z ∼ pz into NeRF, such that synthesizing an image follows a reformulated
cumulative rendering process:

Ĉ(r, z) =
N∑
i=1

Ti

(
1−exp

(
−σθ(xi, z)δi

))
cθ(xi,d, z), where Ti = exp(−

i−1∑
j=1

σθ(xj , z)δj). (2)

However, directly training GOF according to Eq.(2) fails to maintain the surface compactness as
reported in previous approaches [6, 7]. Actually, such a defect arises from an inevitable “shape-color
ambiguity” of the cumulative rendering process, i.e., small perturbations on surfaces still lead to
realistic RGB images which are enough to fool the discriminator.

Owing to the constrained range of poses seen at training, the discriminator is less motivated to further
concentrate the color weights wi = Ti

(
1− exp(−σθ(xi, z)δi)

)
aforementioned in Fig. 1 (a) on the

exact object surface. On the other hand, we observe that although leading to diffused surfaces at
the end, color weights wi gradually concentrate around the object surface as the training proceeds.
Inspired by this observation, in GOF we propose a training-time operation to facilitate the concentra-
tion of color weights wi. The basic idea is gradually shrinking the sample region in the cumulative
rendering process from the entire volume to a narrow interval around the surface, so that color weights
are enforced to continuously move towards the exact surface.

To enable the proposed training-time shrinking process, GOF is required to locate the surface by
thresholding the predicted densities σθ(x, z), assuming points on the surface have the largest densities,
However, values of the densities predicted in generative radiance fields could range from 0 to 50,
making it hard to determine an effective threshold τ during the whole training period. On the other
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hand, in the cumulative rendering process shown in Eq.(2), we found that the intermediate alpha
values used for numerical stability inherently fall in a fixed value range as:

αθ(xi, z) = 1− exp(−σθ(xi, z)δi) ∈ [0, 1]. (3)

More importantly, these alpha values αθ(x, z) come close to 1 for points in the occupied space while
approaching 0 for points in the free space, making them resemble the occupancy values [8] in both
quantity and semantics. Inspired by the similarity, we thus propose to reformulate generative radiance
fields by predicting alpha values αθ(x, z) directly instead of volume densities σθ(x, z). In the mean
time, we reinterpret the alpha values as occupancy values, and subsequently locate surfaces with
root-finding, a more effective strategy originated in occupancy networks [11]. According to the above
reformulation and reinterpretation, we thus dub our method as Generative Occupancy Fields.

As GOF estimates alpha values instead of volume densities, the original volume rendering process in
Eq.(2) conditioned on the latent code z is reformulated as

Ĉ(r, z) =

N∑
i=1

αθ(xi, z)
∏
j<i

(
1− αθ(xj , z)

)
cθ(xi,d, z), (4)

where the value range of αθ(xi, z) is guaranteed with a sigmoid function. And to locate the surface
via root-finding, for a specific ray r(t) = o+td we will evenly sampleM points {xk = o+tkd; k =
1, ...,M} that partition the entire volume [tn, tf ] into M equally-spaced bins. After obtaining the
corresponding alpha values {αθ(xk, z); k = 1, ...,M} by querying the generator gθ, the surface S is
located in the kS-th bin where αθ changes for the first time from free space (αθ < τ) to occupied
space (αθ < τ):

kS = argmin
k

(
αθ(xk, z) < τ ≤ αθ(xk+1, z)

)
, (5)

where τ is a pre-defined threshold. In practice, we empirically set τ as 0.5. In order to find the
surface point xs = o + tsd more precisely, we further apply the above secant method iteratively
for ms times, resulting in a fine-grained bin [xkS ,xkS+1]. It’s worth noting that the M sampled
points are only used for root-finding. Thus they do not require the computation of gradients in the
implementation.

Based on the located surface S, we can thus successfully conduct the proposed shrinking process,
which is schematically elaborated in Fig. 2. Specifically, when sampling N points for Eq.(4) at each
training step, we will only sample within a region neighboring the surface [ts −∆, ts + ∆]:

ti ∼ U
[
ts −∆ +

2i− 2

N
∆, ts −∆ +

2i

N
∆

]
, where i = 1, 2, ..., N. (6)

∆ is the sampling interval, which is set to ∆init = (tf − tn)/2 at the beginning, a half of the distance
between near tn and far bounds tf . And it will decrease monotonically with an exponential decay rate
γ until it drops to a pre-defined minimal value ∆min. Formally, ∆n = max(∆init exp(−γn),∆min)
for n-th decaying step. Additionally, during training when the estimated ts is too close to the near
or the far bound so that the sampling region [ts −∆, ts + ∆] exceeds the original range [tn, tf ], we
will shift the region [ts −∆, ts + ∆] back to within [tn, tf ]. As shown in Fig. 2, at the beginning of
training, points sampled for Eq.(4) will cover the entire volume, leading to dispersed gradients which
facilitate the convergence of GOF. And as the training goes, the predicted surface will become more
and more accurate, which is the outcome of gradually refining the sampling region, and in turn also
makes the above shrinking operation valid.

Thanks to the dedicated shrinking process, the color weights wi can successfully concentrate on
the object surface as illustrated in Fig. 1(a). As a result, GOF is capable of synthesizing high-
fidelity images in a 3D-consistent manner and simultaneously capturing compact object surfaces.
During inference, to synthesize an image under a random camera pose ξ ∼ pξ, the generator gθ will
fetch a truncated latent code ẑ and sample N points {xi} on each ray within the minimal region
[ts−∆min, ts+∆min] for the rendering as in Eq.(4). An important benefit of learning a compact object
surface is that we can effectively reduce the number of sampled points for rendering, even using only
one point on each ray, i.e. the surface point. As shown in Fig. 1 (b), the image rendered with only the
surface point is almost indistinguishable from that with multiple points. Such equivalence can be
guaranteed theoretically when ∆min → 0, and we include the proof in the supplementary material.
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3.3 Loss Functions

Instead of training on posed 2D images, the proposed GOF leverages a corpus of unposed images for
3D-aware image synthesis, where multiple loss functions are adopted.

GAN Loss. Following pi-GAN [6], a GAN loss is used where GOF synthesizes fake images by
randomly sampling camera poses ξ from a dataset-related distribution pξ and rendering according to
Eq.(4). Denote I as a real image from the data distribution pD, the non-saturating GAN loss can be
described as follows:

Lorigin(θD, θG) = Ez∼pz,ξ∼pξ

[
f
(
DθD (GθG(z, ξ))

)]
+ EI∼pD

[
f(−DθD (I)) + λ|∇DθD (I)|2

]
,

where f(u) = − log(1 + exp(−u)).

(7)

However, Lorigin alone is not sufficient to guide the training, which may lead to messy images with
smoke-like artifacts. Therefore, two more regularizations are incorporated to reduce artifacts and
further smooth the learned surfaces.

Normal Regularization. The first regularization is a prior on the surface normal smoothness, which
is specially useful for learning from 2D real-world images [11]. In GOF, this normal prior is only
employed for the surface points xs ∈ S to encourage a natural and smooth surface:

Lnormal =
∑
xs∈S

||nθ(xs, z)− nθ(xs + ε, z)||2, (8)

where ε is a small random 3D perturbation and nθ denotes the normal vector, which can be computed
by nθ(x, z) = ∇xαθ(x, z)/||∇xαθ(x, z)||2.

Opacity Regularization. Since alpha values predicted in GOF can be regarded as occupancy values,
ideally the entropy of them should be 0 so that αθ(x, z) values will equal 1 for points in the occupied
space and 0 for points in the free space. We thus apply the second opacity regularization, aiming to
reduce the entropy of predicted alpha values:

Lopacity =
1

N

N∑
i=1

log(αθ(xi, z)) + log(1− αθ(xi, z)). (9)

In summary, the final loss function for training GOF can be written as:

L(θ, φ) = Lorigin(θ, φ) + λnormalLnormal + λopacityLopacity, (10)

where λnormal and λopacity are both balancing coefficients.

4 Experiments

Implementation Details. Unless stated otherwise, in all experiments we set N , the number of points
sampled for rendering, to 12, and set M , the number of bins used in root-finding, to 12. As discussed
in Sec.3.2, we apply an iterative process in root-finding. In practice, the number of iterations is set to
ms = 3 times. During inference, GOF requires M +ms +N queries to obtain the color of a pixel,
while existing methods require 2N queries due to the use of a hierarchical sampling strategy. Recall
it is sufficient for GOF to sample only the surface point to render an image, GOF is thus capable of
using just M +ms + 1 queries, potentially speeding up the rendering process in off-line applications.
More training and implementation details can be found in the supplemental material.

Datasets. To assess our method comprehensively, we conduct experiments on three datasets, namely
CelebA [44], BFM [45], and Cats [46]. Specifically, CelebA is a high-resolution face dataset
containing 200, 000 diverse face images. Following pi-GAN [6], we crop all images in CelebA
from the top of the hair to the bottom of the chin as a pre-processing step. As for the Cats dataset,
it contains 6, 444 cat faces of size 128 × 128. Finally, BFM is a synthetic face dataset rendered
with Basel Face Model, where each face is paired with a ground-truth depth map, making it a good
benchmark for quantitatively evaluating the quality of learned surfaces.

Comparison with baselines. To validate the effectiveness of GOF, we compare it with two represen-
tative GRAF methods, namely GRAF [7] and pi-GAN. Firstly, Fig. 3 demonstrates the qualitative
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Table 1: Quantitative results (128× 128 px) on BFM, CelebA and Cats datasets, on three metrics
Fréchet Inception Distance (FID), Inception Score (IS) and the weighted variance of sampled depth
Σti(×10−4).

BFM CelebA Cats

FID↓ IS↑ Σti ↓ FID↓ IS↑ Σti ↓ FID↓ IS↑ Σti ↓
GRAF [7] 45.2 1.49 4.64 41.4 1.86 6.51 28.6 1.65 5.47
pi-GAN [6] 16.4 2.49 8.16 15.1 2.63 14.58 16.6 2.09 5.91

Ours (w/o Lnormal) 15.6 2.85 2.66 17.0 2.29 7.15 16.1 1.92 6.06
Ours (w/o Lopacity) 17.1 2.61 3.37 14.4 2.91 4.94 14.3 2.35 4.42
Ours 15.3 2.89 2.54 14.2 2.87 4.58 14.1 2.48 4.28
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Figure 3: Qualitative comparison on BFM (top), CelebA (middle), and Cats (bottom) datasets. Our method
synthesizes realistic images while ensuring compact object surfaces.

comparison between these three methods, where we include the synthesized images, the learned
surfaces in the form of 3D meshes, as well as the corresponding normal maps. As can be observed,
GRAF struggles to render good images, let alone estimate compact and reasonable underlying sur-
faces. Compared to GRAF, pi-GAN can synthesize images and estimate corresponding surfaces with
improved quality. However, messy parts can be clearly recognized on its learned surfaces and normal
maps, indicating it is incapable of capturing the compact 3D geometric details. In contrast to both
pi-GAN and GRAF, the proposed GOF is shown to hallucinate realistic images with 3D consistency
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Table 2: Comparisons on the compactness and
accuracy of learned surfaces.

Method SIDE ↓ MAD ↓
Supervised 0.412 10.84

Unsup3d [37] 0.795 16.51
GRAF [7] 1.866 26.69
pi-GAN [6] 0.727 20.46
GAN2Shape [38] 0.759 14.94
Ours 0.779 13.81

Table 3: Comparisons on the geometry proper-
ties of learned surfaces. We report mean cur-
vature(MC)(×10−3) and mean geodesic dis-
tance(MGD) between random points to assess
the geometry properties of recovered surfaces.

BFM CelebA Cats

MC ↓ pi-GAN 16.84 25.94 34.05
Ours 12.25 23.13 30.14

MGD ↓ pi-GAN 0.483 0.450 0.494
Ours 0.226 0.231 0.317

Figure 4: Generated images and their 3D meshes on CelebA and Cats datasets.

and simultaneously learn smooth surface normals as well as compact object surfaces, which verifies
the benefit of adopting the transition from radiance fields to occupancy fields. More qualitative results
of synthesized images and corresponding surfaces are included in Fig. 4.

To quantitatively evaluate the quality of generated images, we report the Fréchet Inception Distance
(FID) scores and Inception Score (IS) scores in Table 1. On these two metrics, GOF demonstrates
substantial improvements over baseline methods. To further measure the compactness of learned
surfaces, the concentration of color weights wi as mentioned in Fig. 1 (a) is also computed. Specifi-
cally, We sample N = 36 equally-spaced points {xi = o + tid} within near and far bounds [tn, tf ]
and calculate the corresponding color weights wi, i = 1, 2, ..., N . Actually, the weighted variance of
these samples’ depth ti reflects the concentration of color weights in a single image:

Σti =
N

(N − 1)
∑N
i=1 wi

∑N

i=1
wi(ti − t̄)2, where t̄ =

∑
witi

/∑
wi.

Intuitively, a smaller variance implies the learned surface is more compact. Finally, for each method,
the overall concentration of color weights is averaged over 1000 randomly synthesized images at the
256× 256 resolution. The results in terms of this new metric are also included in Table 1.

For the quality of learned surfaces, we first evaluate the compactness and accuracy of surfaces on the
BFM dataset, since it contains ground-truth depth maps. Specifically, 50K images are generated by
each method, together with their corresponding depth maps. For each method, we train a separate
CNN on these generated images and depth maps to predict depths from images. Subsequently, we can
measure the accuracy of learned surfaces by running the CNN on the test split of BFM and comparing
its outputs to the ground-truth depth maps using the scale-invariant depth error (SIDE) and the mean
angle deviation (MAD). While MAD focuses more on the compactness of surfaces, SIDE emphasizes
more on the accuracy of depth. As shown in Table 2, GOF significantly outperforms baseline methods
on the MAD metric and is comparable to strong baselines on the SIDE metric. Moreover, we also
report mean curvature (MC) and mean geodesic distance (MGD) between random points to assess
the geometry properties of learned surfaces. The lower these two metrics, the smoother recovered
object surfaces. Owing to the absence of such two metrics on ground-truth surfaces for reference, we
consider the smoother surfaces better conform to ground-truth cases. The reported values on these
two metrics are averaged over 100 randomly synthesized 3D meshes. Quantitative comparisons in
Table 3 demonstrate our method GOF can preserve better geometry properties.
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BFM CelebA Cats

Figure 5: Rendering with only surface points. Images (right) rendered only with surface points are indistin-
guishable from those (left) obtained with cumulative rendering.

(a) BFM (b) CelebA

Figure 6: Qualitative ablation on proposed priors (upper row w/o Lopacity, bottom row w/o Lnormal).

Rendering only with surface points. As mentioned in Sec. 3.2, GOF is able to render an image
using only the surface points. To verify this, we showcase in Fig. 5 images rendered by GOF using
multiple points and only the surface point. As can be observed, images synthesized with these
two strategies are nearly indistinguishable from each other. Thus, GOF possesses the potential to
significantly reduce the number of generator queries when synthesizing an image. To compare the
efficiency straightforwardly, we estimate the rendering speed of 256× 256 images for both pi-GAN
and GOF on a single Intel Xeon(R) CPU. On average, pi-GAN costs about 78s per image, while GOF
takes about 56s, saving approximately 28% of the time. Owing to the reduction in the burden of
queries, GOF enables a light rendering scheme that is promising for applications on mobile devices.

Ablation studies. We here analyze the effects of the proposed regularizations Lnormal and Lopacity.
Table 1 includes the quantitative ablation study on these priors. We also include qualitative samples in
Fig. 6, which contains images synthesized by GOF without one regularization item. As shown in the
BFM cases 6(a), removing opacity prior leads to the smoke-like artifacts around the cheek part and
the absence of normal regularization might degrade the quality of learned normal maps. While testing
on the real-world dataset 6(b), undesirable specular highlights emerge on the face and the hollows
appear on the corresponding shapes if without the normal regularization. Moreover, we observe that
removing opacity prior on CelebA dataset will make the face surfaces too flat and unnatural. It is
worth noting that although the performance of GOF is deteriorated due to the absence of these priors,
images and surfaces produced by GOF are still of reasonable quality when compared to that from
previous approaches, indicating the transition from radiance fields to occupancy fields is the main
cause that leads to the success of GOF. Moreover, we showcase the degenerated results on BFM
dataset if our model is trained without the shrinking process. As illustrated in Fig. 7, despite the
realistic generated images, there emerges random noise on the corresponding normal maps and some
nasty dents appear on the face shapes, which demonstrates that the combination of our proposed
occupancy representation and the shrinking sampling procedure ensures the surface compactness.
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Image Normal 3D mesh 

Figure 7: GOF results without the
shrinking process. Noise emerges on
normals and dents appear on shapes.

Real image Reconstruction Normal 3D mesh View synthesis 

Figure 8: GAN inversion results on real images. GOF can recon-
struct the target images and simultaneously learn the corresponding
normal maps as well as 3D shapes.
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Figure 9: Relighting results. Our method GOF generates desirable images under various light conditions
while baseline results are far from satisfactory.

Inverse rendering. Through GAN inversion, our method is also capable of inverse rendering as
shown in Fig. 8. Given a real image, GOF can reconstruct the target image successfully and realize
free view synthesis by controlling the viewpoints. Besides, the recovered normal maps as well as 3D
shapes pave the way for downstream tasks such as relighting and editing.

Relighting. In Fig. 9 we provide the relighting results based on the learned normal maps by explicitly
controlling the lighting directions. As our method and baselines can’t predict the corresponding
albedo, the face-forwarding image is considered as the pseudo albedo. Thanks to better learned
normal maps, our method GOF presents promising images under different light conditions. In
contrast to ours, baseline methods like pi-GAN [6] tend to generate messy normal maps with obvious
checkerboard-like artifacts, leading to noisy and dissatisfied relighting results.

Limitations. While training on real-world datasets, our method GOF might present similar dents in
the hair regions as in existing approaches [6]. Besides, the adopted FiLMed-SIREN backbone in the
generator will lead to stripe artifacts in the generated images especially when they are rendered only
with surface points. Meanwhile, surface rendering mode will make furry cat images over-smooth and
less realistic. Moreover, our method is more suitable for solid objects with only one surface.

5 Conclusion

In this work, we propose generative occupancy fields (GOF), a novel generative radiance fields for
3D-aware image synthesis. The crux of GOF is a dedicated transition from the cumulative rendering
in radiance fields to rendering with only the surface points. Such a transition is inspired by the
resemblance between the alpha values in radiance fields and the occupancy values in occupancy
networks, so that we can reinterpret one as the other. In practice, such a transition is achieved during
training by gradually shrinking the sampling region in the rendering process of GOF from the entire
volume to a minimal neighboring region around the surface, where the surface is located via root-
finding on predicted alpha values. Thanks to the transition, surfaces learned by GOF continuously
converge during the training, ensuring their compactness at the end. On three diverse datasets, GOF
is shown to demonstrate great superiority in synthesizing 3D consistent images and in the meantime
capturing compact surfaces, significantly broadening the application of generative radiance fields in
downstream tasks.
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