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Abstract

Advances in single-cell sequencing have enabled high-resolution profiling of di-
verse molecular modalities, while integrating unpaired multi-omics single-cell
data remains challenging. Existing approaches either rely on pair information or
prior correspondences, or require computing a global pairwise coupling matrix,
limiting their scalability and flexibility. In this paper, we introduce a scalable and
flexible generative framework called single-cell Multi-omics Regularized Disen-
tangled Representations (scMRDR) for unpaired multi-omics integration. Specifi-
cally, we disentangle each cell’s latent representations into modality-shared and
modality-specific components using a well-designed β-VAE architecture, which
are augmented with isometric regularization to preserve intra-omics biological het-
erogeneity, adversarial objective to encourage cross-modal alignment, and masked
reconstruction loss strategy to address the issue of missing features across modali-
ties. Our method achieves excellent performance on benchmark datasets in terms of
batch correction, modality alignment, and biological signal preservation. Crucially,
it scales effectively to large-scale datasets and supports integration of more than
two omics, offering a powerful and flexible solution for large-scale multi-omics
data integration and downstream biological discovery.

1 Introduction

Recent advances in single-cell sequencing technologies have enabled the measurement of diverse
molecular modalities at single-cell resolution, such as gene expression (scRNA), chromatin acces-
sibility (scATAC), and protein abundance (scProtein). These complementary data sources offer a
comprehensive view of cellular states and dynamics. Although a few protocols allow limited joint
profiling using marker-based techniques, they still suffer from low feature coverage and reduced
flexibility due to the destructive nature of single-cell assays, making it remain technically challenging
to jointly measure multiple modalities within the same cell. Consequently, large-scale single-cell
datasets are typically unpaired across different modalities [33]. This unpaired nature, coupled with
significant technical noise such as batch effects, dropouts, and sequencing depth variation, makes
data integration in a shared biologically meaningful latent space a highly nontrivial task [27, 3].

The goal of multi-omics data integration is to map single-cell data in different omics into a shared
latent space, where representations across modalities are distributionally aligned while preserving
biological differences between cell types and correcting for technical variations due to experimental
batches (Fig.1a). Existing approaches explored joint dimension reduction (Fig.1b), like factor
analysis [1], or deep generative models [24]. However, they typically rely on paired or partially paired
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Figure 1: Method overview. (a) Multi-omics data integration. The goal is to integrate single-cell
data in different modalities into an aligned latent space while preserving biological information and
correcting technical noise. (b) Integration via joint dimension reduction (e.g., joint autoencoders).
It typically works with paired data (measurements on different omics within the same cell). (c)
Integration via manifold alignment between the geometric structures (e.g., KNN distance graphs)
of different omics. It does not require paired data, but is typically limited to small-scale datasets
involving only two omics modalities. (d) Our framework, based on disentangled representations, is
flexible to completely unpaired data and scalable to large datasets with more than two omics.

data [2, 6] to guide the integration, or require external prior knowledge [8] or pre-learned coupling
matrix [11] to bridge modalities, limiting their flexibility. On the other hand, some approaches
employ manifold alignment (Fig.1c), including optimal transport [14, 7] or unsupervised manifold
transformation [5, 39]. However, these methods, relying on computing a global pairwise coupling
matrix, typically restrict to integrating two modalities, and encounter serious computational issues in
large datasets due to the complexity of inter-modal alignment, struggling in scalability.

To address the challenges, we proposed a scalable and flexible generative model named single-cell
Multi-omics Regularized Disentangled Representations (scMRDR) to integrate unpaired multi-
omics single-cell data into a unified latent space (Fig.1d). Unlike existing methods, scMRDR
requires neither paired samples and prior information nor establishing global correspondences across
different modalities. Instead, we achieve the integration based on the disentanglement of each
sample’s latent code into shared and modality-specific components via a well-designed β-VAE
architecture, incorporating isometric regularities to ensure the conservation of biological information,
and adversarial training to encourage the fusion of different modalities, with masked loss function to
address the feature missing issue in different modalities (Fig.2).

Due to the single unified encoder-decoder architecture, scMRDR is flexible to completely unpaired
data and able to scale to large datasets with more than two modalities naturally. Applied to real-world
unpaired single-cell data, scMRDR demonstrates excellent performance in modality integration,
batch correction as well as bio-conservation, surpassing a broad range of existing methods. Moreover,
scMRDR scales robustly to large datasets, and readily accommodates additional omics layers. These
results collectively underscore scMRDR as a flexible and scalable framework for large-scale unpaired
single-cell data integration and the discovery of complex biological mechanisms.

We summarize the contributions as follows: (1) Through in-depth analysis of existing works in the
field of multi-omics integration, we identify their limitations in flexibility and scalability, and propose
a generative framework with a unified single encoder-decoder β-VAE to disentangle latent represen-
tations; (2) We propose a joint optimization goal, incorporating isometric regularization, adversarial
training, and masked loss to facilitate modality fusion while preserving biological signals; (3) We
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validate scMRDR through extensive experiments on multiple real-world datasets, demonstrating its
strong flexibility and scalability on large-scale datasets and more complex multi-omics integration
tasks, as well as its practical significance in downstream biological analyses (such as spatial position
imputation).

2 Related work

Integrating multi-omics data has been extensively studied, with methods typically falling into two
broad categories. Joint dimension reduction methods, including statistical models such as factor
analysis based method like MOFA [1], canonical correlation analysis (CCA)-based methods like
Seurat v3 [30], as well as deep generative models such as scVI-based [24] adaptations, assume access
to matched (paired) measurements across omics layers, enabling supervised or semi-supervised
learning of joint representations. For example, MultiVI [2] integrates paired multi-omic data by
directly averaging latent embeddings inferred by encoders of respective modalities. However, the
need for explicit pairing limits their applicability in cases where cross-modality correspondences
are incomplete or noisy. JAMIE [11] incorporates the manifold alignment approach into the VAE
framework, and UniPort [6] takes advantage of partially paired features and coupled VAE, but they
still confront computational intensity in dealing with large-scale clinical or experimental datasets.

Another prominent line of work aligns modalities through unsupervised manifold matching, optimiz-
ing for geometric consistency between latent spaces. UnionCom [5] aligns modalities by constructing
a kNN graph and applying unsupervised linear manifold alignment, while CMOT [39] adopts non-
linear manifold alignment with partial supervision. SCOT [14] leverages Gromov-Wasserstein
optimal transport (GWOT) on similarity matrices and uses barycentric projection for integration, with
following revised versions such as Pamona [7] and SCOTv2 [13] by imposing regularizations on
GWOT, while SCOOTR [15] aligns both samples and features using co-optimal transport (COOT).
These methods typically require constructing pairwise similarities and a global coupling matrix,
restricting scalability to large datasets due to computational bottlenecks, and in practice, they are often
validated only on limited sample sizes or toy examples. Moreover, they often focus on the integration
of two modalities, leaving the integration of more omics layers an underexplored challenge.

Recent works, such as scTFBridge [34], scMaui [20], and InClust+ [35], have discussed integration
based on latent decomposition. However, they still rely on designs like partial pairing supervision,
stacked encoders, and cross-modal contrastive learning, limiting their scalability in completely
unpaired and multi-omics contexts. In contrast, we aim to achieve the decoupling via a unified β-VAE
composed of a single encoder-decoder, treating observations in different omics equally as a single
sample, thereby ensuring flexibility and scalability in completely unpaired data across multiple omics.
Theoratically, such disentangled subspaces are unidentifiable (i.e., not unique) without additional
constraints [21]. We leverage this unidentifiability and, by imposing isometric and adversarial
regularization, constrain the modality-shared subspace to be the one that preserves the maximum
sample structure information from the entire space while aligning different modalities.

3 Methods

3.1 Preliminary: Disentangled VAE

Variational Autoencoders (VAEs) [22] are a class of generative models that learn a probabilistic
mapping between observed data x and latent variable space z via variational inference by introducing
an encoder network to parametrize the variational posterior qϕ(z | x) and a decoder network to
reconstruct the generative process pθ(x | z). The model is trained by maximizing the evidence lower
bound (ELBO) on the marginal log-likelihood:

ELBOVAE(x) = Eqϕ(z|x)[log pθ(x | z)]−KL(qϕ(z | x) ∥ p(z)), (1)

where KL(q ∥ p) denotes the Kullback–Leibler (KL) divergence between distributions q and p. The
first term encourages faithful data reconstruction, while the second regularizes the latent space to
align with the prior.
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Figure 2: Overview of the proposed scMRDR. We employ β-VAE to disentangle omics-specific
and omics-shared latent representations, and impose isometric loss and adversarial training as
regularization to encourage modality integration and bio-conservation.

Classical VAE often conflates modality-shared and modality-specific signals in the latent space,
impeding interpretability and downstream analyses. To improve disentanglement in the learned latent
representations, β-VAE [19] introduces a hyperparameter β > 1 to upweight the KL divergence term
in the VAE objective

ELBOβ-VAE(x) = Eqϕ(z|x)[log pθ(x | z)]− β ·KL(qϕ(z | x) ∥ p(z)). (2)

A higher value of β enforces a stronger constraint on the latent space, promoting disentangled and
interpretable representations at the cost of reduced reconstruction accuracy.
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Figure 3: Graphical illumination
of the single-cell multi-omics data
generative model.

Simply disentangling the latent space does not guarantee that
the shared latent components from different omics data are
fully aligned in distribution, nor does it ensure that the shared
latent components preserve the structural information present
in the original data. Such structural information is captured by
the VAE in the entire latent space and may not necessarily be
retained within the shared subspace. We will impose additional
regularization on the disentangled latent space in a generative
model designed for single-cell multi-omics to address the issue.

3.2 Disentangled generative model for multi-omics data

To achieve flexible and scalable integration, we propose a gen-
erative model tailored for single-cell multi-omics data (Fig.3).
We assume that observations x(m) in the omics m are generated
from latent embeddings lying in two independent subspaces,
i.e., common latent variables zu shared across modalities and
modality-specific latent variables z(m)

s , and we have

p(z|m) = p(zu)p(zs|m) (3)
and

p(x) = p(x|z, c)p(z|m)p(m)p(c) = p(x|z, c)p(zu)p(zs|m)p(m)p(c) (4)
where c represents other covariates, such as the experimental batch during sequencing. Batch effects
are systematic variations introduced by non-biological factors, including differences in experimental
runs, reagent lots, or operators. These effects can obscure true biological signals or introduce spurious
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patterns in the data [32]. To mitigate such confounding influences, batch information is commonly
included as a covariate in the modeling process.

Sequencing reads of scRNA, protein, and other omics data can all be mapped to the gene level (e.g.,
gene activity scores derived from peak aggregation in single-cell ATAC-seq). Since the read matrix
are typically sparse (with both biological and technical dropouts) count data with over-dispersion (i.e.,
the variance exceeds the mean), we parametrize the generative process p(x|z, c) using a zero-inflated
negative binomial (ZINB) distribution [24, 29] (which can be changed to ordinary Gaussian model if
normalized scores or more non-count data included), i.e.,

xng ∼ πgδ0 + (1− πng)NB(lnρng, rg)
d
= ZINB(lnρng, rg, πg) (5)

where δ0 is point mass at zero, ln represents the library size of cell n, ρng is the mean proportion of
the corresponding measurement (RNA expressions, activity score, protein level, etc.) of gene g in cell
n, rg is the dispersion factor of gene g, πng is the dropout rate of gene g in cell n. We parametrize the
parameters by some non-linear neural networks as follows h = fh(z, c), ρng = fρ(h), πng = fπ(h).

Prior distributions of latent factors z are assumed as isotropic multivariate Gaussian distributions,
i.e., p(zs|m)

d
= N (µm, σ2

mI) and p(zu|t)
d
= N (0, I). We employ variational posteriors q(zu|x) =

µu(x) + σu(x) ⊙ N (0, I) and q(zs|x,m) = µs(x,m) + σs(x,m) ⊙ N (0, I) to approximate the
prior, and the loss function (negative ELBO) of β-VAE is

Lβ-VAE = −ELBO = Lrecon + βLKL

= −Ez∼q(z|x,m) log p(x|z, c) + β [KL(q(zu|x)∥p(zu)) + KL(q(zs|x,m)∥p(zs|m))]
(6)

where β > 1 to encourage the disentanglement of zu and zs. For the ZINB model, the reconstruction
loss, i.e., the expected log likelihood under the variational posterior, is

Ez∼q(z|x,m) log p(x|z, c) =
1

N

∑N
n=1

∑G
g=1 log

[
PZINB(xn; lnρng, rg, πng)

]
(7)

where PZINB(X = x;µ, r, π) = πIx=0 + (1 − π)PNB(x;µ, r), and PNB(x;µ, r) stands for
the probability mass of negative binomial distribution NB(µ, r) at x, i.e., PNB(x;µ, r) =
Γ(x+r)
x! Γ(r)

(
r

r+µ

)r (
µ

r+µ

)x

. In particular, the probability mass at zero PNB(0;µ, r) = (
r

r + µ
)r.

3.3 Adversarial regularity for omics integration

By disentangling the latent space, we obtain, in general, modality-invariant latent variable zu lying in
a shared subspace. To further encourage the alignment of distributions z(m)

u from different omics,
we impose an additional adversarial regularities [17, 16] by introducing a m-class discriminator
D(zu) : Rdu → {0, 1, . . . ,m} to distinguish zu of samples from different omics and try to optimize
its capacity, i.e.,

min
D

Ldiscriminator = min
D

[
−
∑
m

m log(D(z(m)
u )

]
, z(m)

u ∼ q(zu|x) (8)

while training the VAE encoders q(zu|x) to fool the discriminator as much as possible by optimizing
in the opposite direction

max
q(zu|x)

inf
D

Ldiscriminator (9)

which is equivalent to

min
q(zu|x)

Lalignment = min
q(zu|x)

sup
D

[∑
m

m log
(
D(z(m)

u )
)]

(10)

achieving a proper alignment of embeddings from different omics ultimately.

3.4 Isometric loss for structure preservation

To ensure that zu captures the biological differences between samples (e.g., cell types), we introduce
an additional unsupervised structure-preserving regularization, since cell type labels are typically
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unavailable. Though the original feature matrices are high-dimensional, the full latent representation
z = (zu, zs) learned by the generative model effectively preserves intra-modality structure. Hence,
we reformulate the problem as encouraging zu to retain the structural information of the full latent
space. Specifically, since the latent embeddings already reside in a low-dimensional space, we
apply an isometric loss [31] that minimizes the discrepancy between the pairwise Euclidean distance
matrices computed from z and from zu, for each modality, i.e.,

Lpreserve =
∑
m

∑
i,j∈X(m)

[
||µzu(xi)− µzu(xj)||2 − ||µz(xi)− µz(xj)||2

]2
(11)

where µzu(x) is the posterior mean of variational approximation q(zu|x) and µz(x) is the posterior
mean of total latent embeddings (q(zu|x), q(zs|x,m)).

And the total optimization goal for VAE becomes
Ltotal = Lrecon + βLKL + λLalignment + γLpreserve (12)

In the training process, we first update the discriminator by optimizing Ldiscriminator, then update VAE
with respect to the total loss Ltotal in turn in each mini-batch.

3.5 Masked reconstruction loss for missing features

In unpaired multi-omics datasets, different modalities are measured separately and often originate
from distinct sources. Although it is possible to align features across modalities at the gene level,
severe missing features still exist due to different sequencing coverages, especially for antibody-based
protein profiling techniques such as CITE-seq, which typically covers only a few hundred proteins
due to the limited availability of antibody markers [4], while tens of thousands of genes can be
measured in other omics. Restricting the analysis to the overlapping features across all modalities
would lead to substantial information loss, whereas naively imputing unmeasured features with zeros
would severely distort the data distribution. To address this, we introduce a binary mask b ∈ {0, 1}G
indicating feature availability that prevents gradients from back-propagating through unmeasured
features in the reconstruction loss for each modality, and then scale by the proportion of available
features to ensure that the reconstruction loss for each sample is on a comparable scale, i.e.,

Lrecon = − 1

N

N∑
n=1

{
G∑G

g=1 bng

G∑
g=1

bng log
[
PZINB(xn; lnρng, rg, πng)

]}
(13)

The masked loss strategy ensures that the model can fully utilize the available information while
preserving the integrity of the original data distribution.

4 Results

4.1 Setup and evaluation metrics

To verify the effectiveness of our proposed method, we comprehensively evaluate scMRDR through
a series of experiments, beginning with standard benchmarks and then scaling up to more complex
single-cell and multi-omics scenarios. We employ publicly available datasets from previous researches
with curated cell-type annotations [28, 37, 25]. Detailed setups are shown in Appendix A.1 and Table
2. We compare to state-of-the-art baselines, including GLUE, scVI, Seurat v5, Harmony, JAMIE,
and so on, and evaluate in terms of cell-type clustering, modality integration, and batch removal.
Cell-type labels in different omics has been aligned in evaluation. It should be emphasized that
we did not use cell-type labels during training. UMAP visualizations are presented for qualitative
comparison. For quantitative evaluation, the following commonly used metrics (Appendix A.2) are
included: F1 isolated label scores, k-means NMI, k-means ARI, cell-type Silhouette, and cell-type
separation LISI (cLISI) to evaluate the performance in cell type conservation, modality Silhouette,
modality integration LISI (iLISI), kBET, Principal Component Regression (PCR) R2, and graph
connectivity to evaluate the performance in modality integration, as well as batch Silhouette, batch
integration LISI (iLISI), kBET, and PCR R2 to evaluate the performance in batch effect correction
[26, 36].

We evaluate and visualize all the above metrics based on the package scib-metrics [26]. The overall
score is calculated as a weighted average of all metrics on bio-conservation (40% weights), modality
integration (30% weights), and batch correction (30% weights).
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Ours 0.69 0.76 0.58 0.66 1.00 0.90 0.52 0.38 0.26 0.86 0.37 0.32 0.96 0.99

GLUE 0.65 0.77 0.57 0.67 1.00 0.90 0.42 0.28 0.09 0.85 0.60 0.34 0.94 0.99

scVI 0.59 0.68 0.43 0.56 1.00 0.95 0.47 0.29 0.37 0.81 0.00 0.00 0.71 0.85

MaxFuse 0.65 0.73 0.49 0.59 1.00 0.89 0.16 0.19 0.00 0.87 0.15 0.19 0.91 1.00

Seurat 0.68 0.78 0.61 0.68 1.00 0.90 0.06 0.19 0.00 0.70 0.00 0.34 0.46 0.99

Pamona 0.50 0.22 0.18 0.50 0.96 0.93 0.51 0.26 0.61 0.74 0.00 0.09 0.43 1.00

JAMIE 0.43 0.30 0.17 0.43 1.00 0.86 0.26 0.27 0.81 0.56 0.00 0.08 0.45 0.99

SIMBA 0.49 0.01 0.01 0.49 0.76 0.98 0.70 0.27 0.95 0.90 0.00 0.00 0.03 0.83

Harmony 0.54 0.60 0.41 0.54 1.00 0.89 0.19 0.27 0.00 0.56 0.00 0.06 0.59 0.64

UnionCom 0.42 0.43 0.08 0.44 0.98 0.81 0.43 0.39 0.00 0.38 0.00 0.01 0.41 1.00

Method Isolated
labels

KMeans
NMI

KMeans
ARI

Silhouette
label cLISI Silhouette

batch iLISI KBET PCR
comparison

Silhouette
modality iLISI KBET Graph

connectivity
PCR

comparison
Batch

correction
Bio

conservation
Modality

integration Total

Bio conservation Aggregate scoreBatch correction Modality integration

0.52 0.74 0.70 0.66

0.42 0.73 0.74 0.64

0.52 0.65 0.47 0.56

0.31 0.69 0.62 0.56

0.29 0.75 0.50 0.54

0.58 0.47 0.45 0.50

0.55 0.47 0.42 0.48

0.73 0.35 0.35 0.46

0.34 0.62 0.37 0.46

0.41 0.47 0.36 0.42

Figure 4: Performance comparisons on two-omics integration, where unscaled metrics calculated via
scIB are reported.

Ours 0.58 0.58 0.37 0.56 1.00 0.90 0.24 0.14 0.97 0.82 0.26 0.10 0.95 1.00

Seurat 0.61 0.69 0.51 0.61 1.00 0.86 0.18 0.09 0.98 0.77 0.01 0.07 0.80 1.00

GLUE_lsi 0.53 0.55 0.33 0.53 0.99 0.90 0.23 0.09 0.98 0.52 0.10 0.11 0.75 1.00

scVI 0.53 0.57 0.26 0.52 1.00 0.94 0.12 0.10 0.93 0.72 0.00 0.00 0.82 0.95

Harmony 0.52 0.47 0.21 0.51 1.00 0.93 0.10 0.10 0.67 0.57 0.00 0.00 0.58 0.68

GLUE_pca 0.44 0.38 0.21 0.42 0.99 0.70 0.14 0.09 0.95 0.41 0.00 0.00 0.48 0.96

MaxFuse 0.42 0.26 0.01 0.40 0.97 0.66 0.13 0.05 0.99 0.66 0.00 0.01 0.45 1.00

SIMBA 0.49 0.01 0.00 0.49 0.73 0.98 0.12 0.10 0.85 0.89 0.00 0.09 0.07 0.85

Method Isolated
labels

KMeans
NMI

KMeans
ARI

Silhouette
label cLISI Silhouette

batch iLISI KBET PCR
comparison

Silhouette
modality iLISI KBET Graph

connectivity
PCR

comparison
Batch

correction
Bio

conservation
Modality

integration Total

Bio conservation Aggregate scoreBatch correction Modality integration

0.56 0.62 0.62 0.60

0.53 0.68 0.53 0.59

0.55 0.59 0.49 0.55

0.52 0.57 0.50 0.54

0.45 0.54 0.37 0.46

0.47 0.49 0.37 0.45

0.46 0.41 0.42 0.43

0.51 0.35 0.38 0.41

Figure 5: Performance comparisons on two-omics integration with large-scale dataset, where unscaled
metrics calculated via scIB are reported. The default preprocessing method ‘scglue.data.lsi’ for
GLUE fails to handle the large-scale data, and substituting it with PCA leads to severe performance
degradation, although using ‘TruncatedSVD’ as an approximation of LSI can alleviate this issue.

4.2 Benchmarking performance on two-omics integration

We first compare scMRDR with 9 existing methods, including Seurat v5 [18], Harmony [23], scVI
[24], scGLUE [8], JAMIE [11], UnionCom [5], Pamona [7], MaxFuse [10] and SIMBA [9] on
a unpaired scRNA and scATAC dataset of human kidney tissue [28]. Among these, scVI can be
regarded as a baseline counterpart of our model, with no disentanglement or regularization applied to
the latent space. The dataset contains scRNA-seq with 27,146 genes on 19,985 cells and scATAC-seq
with 99,019 peaks on 24,205 cells. Peak signals in scATAC are aggregated to gene-level activity
score in scMRDR by the package episcanpy [12]. Gene activity scores are also used in integration by
Seurat, Harmony, and scVI, while others use raw peak signals directly. We choose the highly variable
genes for each omics and take the union as input. Shown in Fig.4, scMRDR outperforms the existing
methods, exhibiting an excellent performance in modality integration, bio-conservation, and batch
correction. As shown in Fig.6a, without the incorporation of explicit cell type annotations in training,
our method yields well-separated embedding clusters corresponding to distinct cell types in an
unsupervised way, thereby preserving the underlying biological heterogeneity. Meanwhile, samples
from different omics and batches fuse and align well in the latent space, demonstrating successful
correction of modality-specific variations and technical noises like batch effects. In contrast, some
other methods such as Harmony, scVI and JAMIE (Fig.9 in Appendix A.5) can preserve biological
differences between distinct cell types, but fail to integrate the distributions of the two different omics
modalities.

4.3 Scalability on integration with large-scale dataset

To validate the scalability of scMRDR on larger datasets, we evaluate the performance on an large-
level dataset on mouse primary motor cortex with more cells available [37]. This large-scale data
includes 69,727 cells with measurements on 27,123 genes by scRNA-seq and 54,844 cells with
measurements on 148,814 chromatin peaks by scATAC-seq. Methods based on optimal transport
or other unsupervised manifold alignment, such as JAMIE, UnionCom, and Pamona, fail to run on
datasets with such scale due to errors in memory or optimization. We compare the performance of
the rest methods. Shown in Fig.5, some methods that perform well on small-scale datasets suffer
significant performance drops on larger ones (Fig.10 in Appendix A.5). For example, GLUE exhibits
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(a) UMAP visualization of small-sized two-omics dataset

(b) UMAP visualization of large-scale two-omics dataset

Figure 6: UMAP visualization of the latent representations obtained by scMRDR in the two-omics
integration task. Latent embeddings of other methods are shown in Appendix A.5. An effective
method should yield well-separated clusters corresponding to distinct cell types, and fuse samples
from different modalities and experimental batches in sequencing. Noted that the annotated cell type
labels are not incorporated in the unsupervised learning but only used in evaluation.

Ours 0.57 0.68 0.58 0.61 1.00 0.83 0.27 0.16 0.31 0.83 0.28 0.06 0.87 1.00

GLUE 0.55 0.67 0.55 0.59 1.00 0.86 0.20 0.13 0.25 0.85 0.15 0.09 0.82 0.99

scVI 0.53 0.50 0.31 0.54 1.00 0.90 0.20 0.32 0.53 0.76 0.00 0.00 0.46 0.70

Harmony 0.45 0.35 0.16 0.44 1.00 0.76 0.17 0.11 0.12 0.51 0.00 0.00 0.40 0.00

Method Isolated
labels

KMeans
NMI

KMeans
ARI

Silhouette
label cLISI Silhouette

batch iLISI KBET PCR
comparison

Silhouette
modality iLISI KBET Graph

connectivity
PCR

comparison
Batch

correction
Bio

conservation
Modality

integration Total

Bio conservation Aggregate scoreBatch correction Modality integration

0.39 0.69 0.61 0.58

0.36 0.67 0.58 0.55

0.49 0.58 0.38 0.49

0.29 0.48 0.18 0.33

Figure 7: Performance comparisons on triple-omics integration, where unscaled metrics calculated
via scIB are reported.

strong susceptibility to the choice of preprocessing strategy which itself markedly dependent on data
scale, whereas our method maintains stable performance on large-scale datasets (Fig.6b). This makes
it highly scalable for large-level single-cell data integration, enabling the informative linking among
different omics and providing more valuable biological insights.

4.4 Scalability on triple-omics integration

Most existing methods do not support integrating datasets with more than two omics, while scMRDR
can naturally extend to the integration of triple-omics or even more. To illuminate it, we conduct a
case study on integrating scRNA, scATAC, and CITE-seq measured sc-protein levels, using a dataset
on human bone marrow [25]. We conducted integration on 30,486 cells with scRNA-seq on 13,431
genes, 10,330 cells with scATAC-seq on 116,490 peaks, and 18,052 cells with 134 surface proteins
measured by CITE-seq. Some methods that perform relatively well on two-omics datasets, such
as Seurat v5, are not suitable for integrating more modalities, as they require dictionary learning
and bridge integration between two omics. As a result, we compare the performance of the existing
methods that support triple-omics integration, including GLUE, scVI, and Harmony. Shown in Fig.7,
scMRDR shows a consistently excellent performance in the integration task with more modalities On
the contrary, methods like GLUE fail to align latent distributions over three omics, especially when
one of the omics modalities (proteomics here) has significantly fewer measured features than the
others (Fig.8).
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Figure 8: UMAP visualization of the unified embeddings in triple-omics data.

4.5 Ablation study and sensitivity analysis on the regularized beta-VAE

To demonstrate the effects of isometric and adversarial regularization within the β-VAE framework,
we conducted ablation experiments and sensitivity analysis with a range of different hyperparameter
combinations on the two-omics human kidney datasets. Shown in Table 1, with different hyperparam-
eters, scMRDR performs consistently better than the ablation results when removing any individual
component, and the worst model is the baseline without any regularization. The absence of isometric
constraints or modality-adversarial regularization leads to a substantial drop in performance, where
isometry is more essential to bio-conservation while adversary more vital to modality alignment. The
influence of β is relatively minor as the structured prior imposed on z inherently promotes disentan-
glement. Nevertheless, employing a moderately large β can increase the conditional independence
between zu and zs, thereby enhancing the effectiveness of latent disentanglement. While different
hyperparameter combinations have a certain impact due to trade-offs among various losses and the
influence of randomness, the performance are generally robust to the choices.

We also conduct ablation studies on a triple-omics dataset to evaluate the effectiveness of the masked
loss. The results (Table 4 in Appendix A.4) show that, keeping all other hyperparameters unchanged,
simply setting the missing features in the proteomics to zero without applying a loss mask leads
to a significant performance drop. This highlights the importance of our masked loss strategy in
effectively handling integration tasks where some omics layers (e.g., scProtein) contain substantially
fewer features compared to other modalities.
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Table 1: Performance in ablation studies and sensitivity analysis, where unscaled scIB aggregate
scores are reported

β γ λ Total Score Batch-correct Bio-conserve Modal-integrate Notes

2 5 5 0.66 0.52 0.74 0.70
2 7 5 0.65 0.54 0.69 0.72
2 5 3 0.65 0.55 0.69 0.71
2 2 2 0.65 0.50 0.72 0.70
2 5 7 0.65 0.49 0.70 0.73
2 3 5 0.65 0.47 0.71 0.74
2 1 5 0.64 0.49 0.68 0.75
3 5 5 0.64 0.48 0.71 0.71
4 5 5 0.64 0.47 0.71 0.72
2 10 5 0.64 0.52 0.68 0.71
1 5 5 0.62 0.50 0.67 0.68 β = 1
2 5 0 0.61 0.53 0.69 0.60 λ = 0
2 0 5 0.61 0.51 0.60 0.72 γ = 0
1 0 0 0.59 0.48 0.63 0.66 Baseline

4.6 Biological significance of integrating single-cell and spatial omics

To better evaluate the biological significance of scMRDR, we integrated scRNA [37], scATAC [37],
and spatial transcriptomics (merFISH) [38] of mouse primary motor cortex using our method, and
then used the aligned latent representation to interpolate the missing spatial locations in single-cell
data by optimal transport. Visualization shows that this interpolation performs well, where inferred
locations of cells align well with the provided cortex layers annotations (Fig. 12 in Appendix).

Due to the low coverage of merFISH (only 254 genes measured), only 103 genes are detected as
spatial variable genes (SVGs) by SPARKX (Padj < 10−20). We leveraged the spatially interpolated
scRNA data (26069 genes) and 4095 SVGs (Padj < 10−20) are detected. We replicated 83 out of 101
SVGs detectable by merFISH (like Lamb5, Calb1, Cux2), and also revealed new SVGs (like Hs3st4,
Cpa6, Zfhx4). Similarly, using scATAC with imputed spatial locations, we identified 142 SVGs in
gene activity scores (Padj < 10−20), including several key transcription factors like Zfhx4, Cux1,
Cux2, Gpc5. This will further support the investigation of spatially specific regulatory mechanisms.

5 Discussion

Conclusion. In this paper, we propose a principled and feasible generative model named scMRDR
to integrate unpaired multi-omics single-cell data into a unified latent space. We employ β-VAE to
disentangle latent embedding into modal-shared and modal-specific subspace, incorporating isometric
regularities to ensure the conservation of biological information within each omics, and adversarial
loss to encourage the fusion of different modalities. Masked loss are adopted to address the feature-
missing issue in different modalities. Via empirical experiments and comprehensive comparison
with existing methods, scMRDR exhibits an excellent performance in modality integration, bio-
conservation, and batch correction, and demonstrates strong adaptability for scaling to larger, large-
level datasets with more omics modalities to integrate.

Limitations. There are still some limitations to our approach. The regularized β-VAE introduces
the trade-off between different optimization goals, reflecting in the choices of hyperparameters β, λ,
and γ. In particular, the introduction of the adversarial loss, i.e., the min-max optimization objective,
increases the training difficulty. Besides, we map features of all modalities to the gene level, such as
aggregating scATAC-seq peak signals into gene activity scores. Although selective masking in the
loss allows for partially unmatched features, it may still introduce potential information loss.

Outlooks. In addition to measuring various omics features within cells, emerging spatial multi-omics
technologies allow us to capture the spatial coordinates of cells, further enriching cellular information.
Meanwhile, perturbation sequencing enables the observation of cellular responses across omics layers
to various chemical treatments and genetic perturbations (e.g., CRISPR). Integrating spatial and
dynamic information across modalities under different conditions will be an important direction for
future exploration and extension of scMRDR.
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A Technical Appendices and Supplementary Material

A.1 Details on experiments

The species, tissues, sample sizes, modalities, and references (the original sources) of the single-cell
datasets used in the experiments are shown in Table 2. In our experiments, we set the batch size
to 128, the epoch number to 200, and the dimensions of both the shared latent component (du)
and modality-specific component (ds) to 20. Parameters are optimized via Adam optimizer and
the learning rate is started from 0.001 with a cosine annealing scheduler. Other hyperparameter
settings are summarized in Table 2. 10% of the data was used as a validation set for early stopping
during training based on the total loss on validation set. For scATAC-seq data, peak count signals are
converted to gene-level gene activity scores using EpiScanpy. For datasets integrating two modalities,
we select highly variable genes that are measured in both scRNA-seq and scATAC-seq (based on
gene activity scores) as input features, and do not apply masked loss. For tri-modal integration,
we use highly variable genes from scRNA-seq and scATAC-seq, as well as all genes with nonzero
measurements in scProtein as input features, and apply masked loss according to the available gene
list associated with each modality.

Competing methods are used with their respective default settings. Specifically, Seurat, Harmony,
and scVI use gene activity scores for scATAC-seq, while all other methods operate on the original
peak counts.

We run all empirical experiments on a single NVIDIA RTX 4080 GPU. The runtime of our method
for 200 epochs is also reported in Table 2.

A.2 Evaluation metrics

F1 isolated label scores. The optimal F1 score by optimizing the cluster assignment of the isolated
label using the F1 score across Louvain clustering (resolutions 0.1–2, step 0.1). The metric is averaged
across all isolated cell-type labels.

Silhouette scores. The global silhouette width measures (ASW) between isolated and non-isolated
labels on the PCA embedding, scaled to [0, 1]. ASW measures how similar a data point is to its own
cluster compared to other clusters, with higher ASW indicating more compact and well-separated
clusters. For the bio-conservation, ASW was computed and averaged across cell identity labels; while
for modality or batch integration, ASW was computed and averaged across batch or modality labels,
and then subtracted from 1 to ensure higher scores indicate better integration.

Kmeans NMI. Normalized Mutual Information (NMI) measures the similarity between clustering
results and known labels, accounting for label permutations. We compute NMI between KMeans
clusters and ground truth labels, with scores ranging from 0 (no overlap) to 1 (perfect match).

Kmeans ARI. Adjusted Rand Index (ARI) evaluates clustering accuracy by considering both agree-
ments and disagreements between predicted and true labels, adjusted for chance. We compare
KMeans clusters with ground truth labels, where 0 indicates random labeling and 1 indicates perfect
agreement.

Graph LISI. Graph LISI is an extension of the original LISI metric that is computed from neigh-
borhood lists per node from integrated kNN graphs. Instead of relying on a fixed number of nearest
neighbors, Graph LISI computes shortest-path distances on the integrated graph to consistently define
neighborhoods for each cell, providing a stable diversity score even when the underlying graph has
variable connectivity. The resulting scores are rescaled to a 0–1 range, where higher values indicate
better batch or modality integration (iLISI) or better cell-type separation (cLISI).

Principal component regression. Principal Component Regression (PCR) is used to quantify batch
effects by assessing how much variance in the data can be attributed to batch variables or modality
differences, which is computed by multiplying the variance explained by each principal component
(PC) with the R2 value from regressing the batch on that PC and then summing over all PCs.

kBET. k-nearest neighbor Batch Effect Test (kBET) assesses data mixing by checking whether the
local batch label distribution in each cell’s neighborhood matches the global distribution. It reports a
rejection rate across tested neighborhoods, where a lower rate indicates better batch mixing.
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Graph connectivity. Graph connectivity, ranging from 0 to 1, measures how well cells of the same
identity are connected within the integrated kNN graph. For each cell type, it computes the fraction
of cells in the largest connected component of that type’s subgraph.

A.3 Metric values in experiments

Unscaled metric values in all experiments are shown in Table 3. We directly used unscaled values to
calculate aggregate scores.

A.4 Ablation study and sensitivity analysis

We conducted ablation experiments and sensitivity analysis on the two-omics human kidney datasets
to demonstrate the effects of applying isometric loss and adversarial learning regularization within
the β-VAE framework. The results have been shown and discussed in the main text (Table 1).

To evaluate the effectiveness of the Masked loss, we also conduct ablation studies on a triple-omics
dataset. The results (Table4) indicate that simply setting the missing features in the proteomics to zero
without applying a loss mask leads to a significant performance drop. This highlights the importance
of our masked loss strategy in effectively handling integration tasks where some omics layers (e.g.,
scProtein) contain substantially fewer features compared to other modalities.

A.5 UMAP visualization of experimental results

We employ UMAP to visualize the results of multi-omics integration, where each point denotes the
low-dimensional representation of an individual sample. An effective integration method should
yield well-separated clusters corresponding to distinct cell types, thereby preserving the underlying
biological heterogeneity. Concurrently, samples originating from different omics modalities and
batches should be well-aligned in the embedding space, reflecting successful correction of modality-
specific and batch-specific technical variations.

A.6 Spatial location imputation via integration of single-cell and spatial omics

We integrated scRNA, scATAC, and spatial transcriptomics (merFISH) data in mouse primary motor
cortex using scMRDR, and then interpolated the missing spatial locations in single-cell data by
conducting optimal transport between the aligned latent representation zu of samples with spatial
locations (merFISH) and samples without spatial information (scRNA and scATAC). We visualized
the imputed spatial locations labeled by the cortex layer annotations provided by the original datasets
(Fig. 12).
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Figure 9: UMAP visualization of the unified embeddings in small-scale two-omics data integration.
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Figure 10: UMAP visualization of the unified embeddings in large-scale two-omics data integration.
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Table 4: Ablation study in triple-omics data, where unscaled scIB aggregate scores are reported.
Overall score Batch correct Bio conserve Modal integrate

Ours 0.58 0.39 0.69 0.61
beta=1 0.51 0.39 0.58 0.52
lambda=0 0.48 0.32 0.60 0.49
gamma=0 0.53 0.40 0.58 0.58
w/o masked loss 0.44 0.33 0.58 0.37

Figure 11: UMAP visualization of the unified embeddings in triple-omics data.

20



(a) Spatial plot of the merFISH data with originally measured spatial locations.

(b) Spatial plot of the scRNA data with imputed spatial
locations.

(c) Spatial plot of the scATAC data with imputed spa-
tial locations.

Figure 12: Spatial plots of merFISH and spatially imputed scRNA and scATAC data.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We summarize our contribution, establishing a scalable new method for multi-
omics data integration, and highlight the main procedures in the abstract and introduction
section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discussed the limitations in terms of unstable training, hyperparameters
tuning, and feature alignment in the discussion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: This work is not a theoretical work but aims at proposing a new method in
computational biology.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide a detailed explanation of the underlying principles and implemen-
tation details of our method to ensure its reproducibility. Furthermore, we have packaged our
approach as a module built upon Scanpy—a widely used Python library for single-cell data
analysis—which will be released upon the completion of the anonymous review process.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Biological data used in our analysis are all publicly available, and we provided
the original sources in the appendix table 1. Source codes are provided in the supplementary
files. We will further integrate the codes into a Python package and will publish it after
anonymous review.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental details are provided in Appendix A1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: This is an unsupervised learning task and no train-test split. 10% of the data
was used as a validation set for early stopping during training based on the total loss on
validation set. No statistical tests are used.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Compute workers and running times are reported in appendix A1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We make sure to preserve anonymity and follow other NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the potential impacts and limitations of our methods in biomedical
research in the introduction and discussion section.

25

https://neurips.cc/public/EthicsGuidelines


Guidelines:
• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the codes for comparing methods are open sourced, public available and
have been cited in the manuscript.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new asset is introduced
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: All the analysis are based on public available, second-handed, anonymous
data, and no human participants involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: All the analysis are based on public available, second-handed, anonymous
data, and no human participants involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is only used for writing, and does not impact core methodology, scientific
rigorousness, or originality of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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