
Reinforcement Learning with Adaptive Reward Modeling for
Expensive-to-Evaluate Systems

Hongyuan Su * 1 2 Yu Zheng * 1 3 Yuan Yuan 1 Yuming Lin 1 Depeng Jin 1 Yong Li 1 2

Abstract

Training reinforcement learning (RL) agents re-
quires extensive trials and errors, which becomes
prohibitively time-consuming in systems with
costly reward evaluations. To address this chal-
lenge, we propose adaptive reward modeling
(AdaReMo) which accelerates RL training by
decomposing the complicated reward function
into multiple localized fast reward models ap-
proximating direct reward evaluation with neu-
ral networks. These models dynamically adapt
to the agent’s evolving policy by fitting the cur-
rently explored subspace with the latest trajecto-
ries, ensuring accurate reward estimation through-
out the entire training process while significantly
reducing computational overhead. We empirically
show that AdaReMo not only achieves over 1,000
times speedup but also improves the performance
by 14.6% over state-of-the-art approaches across
three expensive-to-evaluate systems—molecular
generation, epidemic control, and spatial plan-
ning. Code and data for the project are provided
at https://github.com/tsinghua-fib-lab/AdaReMo.

1. Introduction
Reinforcement learning (RL) has achieved remarkable suc-
cess and emerged as the go-to approach for addressing a
wide range of tasks (Lowe et al., 2017; Chen et al., 2021;
Haarnoja et al., 2018; Farebrother et al., 2024; Yuan et al.,
2025). The key to effective RL is a well-defined reward
function guiding the agent to update its policy as it nav-
igates the vast solution space (Silver et al., 2021; Levine
et al., 2020; Lowrey et al., 2019; Kidambi et al., 2020;

*Equal contribution 1Department of Electronic Engineering,
BNRist, Tsinghua University, Beijing, China 2Zhongguancun
Academy, Beijing, China 3Massachusetts Institute of Technol-
ogy, Cambridge, MA USA. Correspondence to: Yu Zheng
<yu zheng@mit.edu>, Yong Li <liyong07@tsinghua.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

~ms

~min
Solution

Evaluation

Agent

Reward
Calculator

~ms

~min

So
lu

ti
o

n

Evalu
atio

n

Agent

Reward
Calculator

Reward
Model

Estimation~ms

(a) (b)

Figure 1. (a) The out-of-sync RL loop for expensive-to-evaluate
systems. (b) Our AdaReMo approach adaptively decouples the
loop into separate online and offline systems.

Wan et al., 2021). However, despite tasks with immedi-
ate and straightforward feedback such as gaming (Mnih
et al., 2013; 2015; Vinyals et al., 2019), many real-world
tasks involve rewards that are computationally expensive to
evaluate (Zhang et al., 2019; Yuan et al., 2023; Yang et al.,
2021; Ding et al., 2024; Liu et al., 2024b), creating a loop
of fast decision and slow evaluation (Figure 1(a)). For in-
stance, in drug design, reward calculation requires intensive
computation of molecular dynamics to determine the abso-
lute binding free energy between a generated molecule and
the target (Yang et al., 2021; Lutz et al., 2023), a process
that often takes seconds—orders of magnitude slower than
the millisecond-scale generation process. Such expensive-
to-evaluate reward functions create a significant efficiency
bottleneck, rendering RL training highly impractical or even
infeasible, given the millions of interactions required with
the environment.

To mitigate the computational burden of costly reward func-
tions, model-free reinforcement learning (MFRL) often em-
ploys proxy reward (Eckmann et al., 2022) or reduced-scale
evaluation (Meirom et al., 2021; Liu et al., 2024a). Never-
theless, these approaches typically oversimplify the evalua-
tion, introducing substantial errors into policy optimization
and ultimately resulting in suboptimal solutions (Liu et al.,
2021). In contrast, model-based reinforcement learning
(MBRL) utilizes a world model to approximate the dynam-
ics of the environment, including its reward function (Mo-
erland et al., 2023; Silver et al., 2016; Ha & Schmidhu-
ber, 2018; Lowrey et al., 2019; Wan et al., 2021). Though
sidestepping time-consuming reward computation, this ap-
proach requires a large amount of high-quality data to train
the world model, such as expert demonstrations, which are
often sparse in real-world scenarios (Hansen et al., 2023).
More importantly, the reward function is notoriously com-

1

https://github.com/tsinghua-fib-lab/AdaReMo

Reinforcement Learning with Adaptive Reward Modeling for Expensive-to-Evaluate Systems

plicated and exhibits drastic local variations depending on
the agent’s exploration trajectory. Fixed world models strug-
gle to capture these complexities and keep pace with the
agent’s progress, leading to increasing prediction errors and
degraded policy performance as training proceeds (Janner
et al., 2019). The computational and modeling challenges
significantly hinders the large-scale application of RL in the
real world.

In this paper, we propose a general RL approach to decouple
the out-of-sync loop of fast decision and slow evaluation
into separate online and offline systems. The agent makes
rapid decisions in the online system, while the expensive-to-
evaluate reward function is offloaded to the offline system
(Figure 1(b)). Specifically, we design a neural network-
based reward model (RM) to accurately and quickly approx-
imate reward computation, enabling fast interactions with
the agent. To address the complexity of the reward func-
tion, we introduce adaptive reward modeling (AdaReMo)
which approximates rewards only within the agent’s cur-
rently explored subspace, decomposing the complicated
reward function into multiple tractable localized functions.
AdaReMo continuously updates the RM using offline data
to align with the agent’s progress, ensuring low prediction
errors and preventing outdated evaluations throughout the
training process. With RM synchronizing fast decision and
slow evaluation, our approach seamlessly integrates these
two systems operating on different timescales, delivering
efficient and accurate RL for expensive-to-evaluate systems.

To validate the effectiveness of AdaReMo, we conduct ex-
tensive experiments across three challenging real-world
scenarios—molecular generation, epidemic control, and spa-
tial planning. All these tasks involve expensive-to-evaluate
reward functions, typically requiring 1 to 15 seconds per
sample, resulting in prohibitively long training times for
convergence with traditional methods. Results show that
AdaReMo not only achieves state-of-the-art performance
with over 14.6% improvements over existing approaches,
but more importantly, it enables highly efficient RL training,
delivering a remarkable speedup of over 1,000 times.

The contributions of this paper are summarized as follows,

• We investigate the critical challenge of synchronizing fast
decision with slow evaluation, addressing the efficiency
bottleneck in RL for expensive-to-evaluate systems.

• We propose adaptive reward modeling which decomposes
the complicated and costly reward function into easy-to-
capture reward models aligning with the agent’s progress,
ensuring zero-delay RL training and reliable convergence
of decision policies.

• We conduct extensive experiments across three real-world
expensive-to-evaluate systems, demonstrating the substan-

tial efficiency advantages and superior decision perfor-
mance of our approach.

2. Related Work
Decision-making under expensive objectives. Traditional
approaches often rely on heuristic methods or simplified
models to reduce computational overhead, yet they sacri-
fice accuracy and fail to make optimal decisions (Eckmann
et al., 2022; Jeon & Kim, 2020). Recent studies have ex-
plored the use of surrogate models (Wu et al., 2023; Wang
& Van Hoof, 2022) and approximation techniques (Elsayed
et al., 2024; Shetty et al., 2024) to replace reward computa-
tion while maintaining performance. For instance, bayesian
optimization (Balakrishnan et al., 2020; Astudillo & Frazier,
2021) and gaussian processes (Lin et al., 2023; Achituve
et al., 2021) have been utilized to efficiently navigate high-
dimensional search spaces. Additionally, advancements in
parallel computing and distributed systems have scaled up
these tasks across multiple processors or GPUs, significantly
reducing computation time (Lu et al., 2022).

Model-based Reinforcement Learning. Recently, MBRL
has shown promise in improving sample efficiency by learn-
ing a model of the environment’s dynamics (Yu et al., 2021a;
Janner et al., 2019; Yuan et al., 2022). Early approaches
focused on learning explicit models of state transitions and
rewards, facilitating planning and policy optimization with-
out direct interactions with the environment (Silver et al.,
2016; Ha & Schmidhuber, 2018; Hafner et al., 2019). Re-
cent advancements have extended MBRL to address real-
world complexities, such as high-dimensional state spaces
and complex dynamics, through techniques like ensemble
methods (Moerland et al., 2023; Wang et al., 2024), uncer-
tainty estimation (Yu et al., 2020; Xu & Liu, 2023), and
offline reinforcement learning (Levine et al., 2020; Luo
et al., 2023). However, despite these advancements, their
limited ability to consistently provide accurate estimates
restricts their application to real-world challenging tasks.

3. Preliminary
We consider decision-making problems formulated as
Markov Decision Processes (MDP) with state space S,
action space A, transition probabilities P and rewards
R : S × A after taking an action in a specific state. The
agent learns a policy πΘ parameterized by Θ, which outputs
an action a = πΘ(s) and receives a reward r(s, a) from the
environment. The objective is to maximize the expected
return over the entire decision process, formulated as:

max
Θ

EπΘ

[T∑
t=0

γtr(st, at)

]
(1)

2

Reinforcement Learning with Adaptive Reward Modeling for Expensive-to-Evaluate Systems

Solution

Reward

Exploration
 (𝑠, 𝑎)

Sample

Calculation 𝑟𝑡

Update

Fine-tune

Online
Decision
System

Agent
Reward
Model

Fine-tune
Pool

(𝑠𝑡 , 𝑎𝑡, 𝑟𝑡)

Reward
Calculator

Memory
Pool

Offline
Evaluation

System

Reward
Model

Figure 2. The overall framework of AdaReMo, where green and
red lines represent fast and slow processes respectively. (Top) In
online decision system, the agent updates its policy with real-time
feedback from the RM. (Bottom) In offline evaluation system, the
RM is continuously finetuned using direct evaluation on the latest
exploratory samples of the agent stored in a memory pool.

where T denotes the time horizon or termination condition
and γ is the the discount factor. Notably, we focus on
expensive-to-evaluate systems where calculating the reward
r(s, a) is time-consuming, rendering trivial RL impractical.

4. Method
Our method, adaptive reward modeling (AdaReMo) ad-
dresses the efficiency bottleneck by (1) disentangling fast
and slow processes into two separate systems, (2) synchro-
nizing these systems through a neural network-based reward
model (RM) dynamically adapting to the agent’s progress.

As illustrated in Figure 2, we begin by offloading heavy
reward computations into an offline system, and keep the
agent in an online system updating its policy in real-time
with the fast RM. We then bridge the speed gap via adaptive
updates to the RM using offline data collected by direct
reward evaluation, aligning the RM with the agent to ensure
accurate reward estimation throughout the entire training
process while introducing no computational overhead. Fi-
nally, we design synchronous correction, parallel evaluation,
and model warm-up to further enhance training efficiency.

4.1. Online RL Agent

We develop the RL agent based on graph neural networks
(GNN) (Kipf & Welling, 2017) since the graph data struc-
ture applies to many real-world tasks, particularly for the
three tested scenarios in this work. It is worthwhile to notice
that our approach is model-agnostic and can be integrated
with other deep learning architectures such as convolutional
neural networks (Krizhevsky et al., 2012) and transform-
ers (Vaswani, 2017), which we leave for future work.

We first employ a GNN encoder to transform state observa-
tions into dense node and edge embeddings (the graph is
defined according to the specific task, see experiments 5),
which are calculated as follows:

n0
i = W0

nAni
, (2)

nl+1
i = nl

i + tanh (
∑

j∈N (i)

Wl+1
n nl

j), (3)

elij = (nl
i + nl

j)/2 (4)

where Ani denotes input attributes for nodes, N (i) denotes
the set of neighboring nodes of ni, Wn is learnable pa-
rameters, l denotes GNN layers with a maximum of L, eij
represents the edge that connects ni and nj , and ni and eij
refer to the node and edge embeddings, respectively. The
agent then scores each action using these representations
with a multi-layer perceptron (MLP), and selects actions
based on the probability distribution determined by their
scores as follows,

si = MLPp(ai), pi = esi/
∑
j

esj , (5)

where si and pi are the score and probability of taking action
on node i or edge i, and ai denotes the embeddings of action
ai which indicates node or edge selection.

The agent interacts within the fast online system to collect
millions of trajectories for RL training. We optimize its
policy πΘ with PPO (Schulman et al., 2017) in an actor-
critic fashion, updating its parameters as follows:

∇ΘJ(Θ) = E
[
min

(
rt(πΘ)Ât, clip(rt(πΘ), 1− ϵ, 1 + ϵ)Ât

)]
Θ← Θ+ γl∇ΘJ(Θ),

(6)

where Âπ(s, a) is the advantage of the state-action pair
(s, a) and γl is the learning rate.

4.2. Reward Model

Feeding the direct evaluations back to the agent as rewards
for policy optimization is impractical or even infeasible
due to the significant computational demands of sophisti-
cated reward functions in expensive-to-evaluate systems. To
address this challenge, neural networks offer a promising
solution for accelerating evaluation with their robust fitting
capabilities and rapid inference speed. Inspired by RLHF
(reinforcement learning from human feedback) in finetuning
large language model (Touvron et al., 2023), we develop a
reward model (RM) for rapid reward estimations. RM re-
places intensive computations of the evaluation with a deep
neural network to estimate the reward for each state-action
pair. We employ another MLP with parameters Φ for the
RM which shares the same GNN encoder with the agent to

3

Reinforcement Learning with Adaptive Reward Modeling for Expensive-to-Evaluate Systems

Ƹ𝑟(𝑠,𝑎)

Optimize

Timestamp
𝑡0 𝑡1 … 𝑡𝑇

Exploration
(𝑠, 𝑎)

𝑡𝑇+1

…

Precise
Evaluation
𝑟(𝑠, 𝑎)

Π0 Π1 ΠT

Memory
Pool

RM 0 RM 0 RM 0

Parallel
Reward

Calculators

RM 1

Fine-tune
Pool

Figure 3. The scheme of AdaReMo with asynchronous training
framework. Multiple reward calculator constantly evaluate the
solution generated by progressively optimized decision policy and
for RM fine-tuning. After T policy optimization iterations, RM is
fine-tuned to adapt to new decision policy.

significantly reduce training parameters. The RM estimates
reward as follows,

hs =
1

|V |
∑
i∈V

nL
i , r̂(s, a) = MLPΦ(hs ∥a), (7)

where V denotes the set of nodes, hs is the average node
representation summarizing the current state, and r̂(s, a) is
the estimated reward. The RM is able to provide immediate
feedback to the agent, facilitating policy optimization within
the online system in real-time.

4.3. Adaptive Reward Modeling

While we introduce RM to accelerate RL training, ensuring
its accuracy is crucial and requires careful examination. On
the one hand, a neural network-based RM may struggle to
completely capture the intricacies of the underlying laws
of the sophisticated reward function, leading to reward es-
timates that not always align with direct evaluations. On
the other hand, it is impractical to train RM on every pos-
sible state s ∈ S. Consequently, as training proceeds and
the agent explores previously unseen or uncommon states,
RM may provide erroneous estimates significantly diver-
gent from direct evaluations, which can mislead the agent,
hindering its ability to learn the optimal decision policy.

Though RM may not fully capture the complicated reward
function, it still has the ability to accurately predict the re-
ward within a reduced and localized state subspace. To
ensure accurate reward approximation throughout the en-
tire training process, we propose adaptive reward model-
ing (AdaReMo) with an asynchronous training framework
which updates RM concurrently according to the agent’s
progress on its policy. The main idea of AdaReMo is to
align the definitional domain of RM with the currently ex-
plored state subspace by the agent as closely as possible
through periodic finetuning. In other words, we decompose

Algorithm 1 Training Process of Online and Offline System
Online Decision System:
Input: episodelen, policy πΘ, reward model Rϕ, transi-
tion function T , memory pool M
for episode = 1 to episodelen do

for t = 1 to T do
at = πΘ(st), r̂t = Rϕ(st, at), st+1 = T (st, at)
M .push((st, at, r̂t))

end for
Gt =

∑T
k=t γ

k−tr̂k, Ât = Gt − VΘ(st)

Θ← Θ+ αÂt∇Θ log πΘ(st, at)
end for

Offline Evaluation System:
Input: memory pool M , fine-tune pool F , reward calcu-
lator C
repeat

M .pop((st, at, r̂t)), rt = C(st, at)
F .push((st, at, r̂t, rt))

until M is None

Adaptive Reward Modeling:
Input: fine-tune pool F , reward model R, fine-tune inter-
val, fine-tune epoch
while iter % fine-tune interval == 0 do

for epoch = 1 to fine-tune epoch do
F .randpop((st, at, r̂t, rt))
L =

∑
(r̂t − rt)

2

ϕ← ϕ+∇ϕL
end for

end while

the full state space S into multiple subspaces {S1,S2, . . . , }
and fintune the RM using samples within each subspace,
thus obtaining {RM1, RM2, . . .} accordingly.

As illustrated in Figure 3, a fixed-size memory pool is lever-
aged to store the recent exploratory samples following the
first-in-first-out principle, where state-action pairs are sam-
pled to perform direct evaluation for accurate reward r(s, a),
which will be added to a fine-tune pool F . As policy op-
timization iterates, F is filled with sufficient samples and
RM is fine-tuned by the MSE loss as follows,

L =
∑

(s,a)∈F

(r̂(s, a)− r(s, a))2. (8)

Algorithm 1 shows the training process of our online and
offline system with AdaReMo. It is worth noting that the
PPO algorithm (Schulman et al., 2017) constrains the magni-
tude of policy updates to enhance the stability of the agent’s
learning process. Therefore, each subspace Si is compact
enough for a neural network RMi to accurately approximate,
thus guaranteeing consistently low error in reward estima-

4

Reinforcement Learning with Adaptive Reward Modeling for Expensive-to-Evaluate Systems

(a) (b) (c)

...

...

Figure 4. Three experimental decision-making tasks, (a) molecular
generation, (b) pandemic control and (c) urban spatial planning.

tion and aliging RM with the agent throughout the whole
process which we empirically show in experiments.

4.4. Training Acceleration

With AdaReMo integrating the decision and evaluation sys-
tems operation on different timescales, we introduce syn-
chronous correction and model warm-up to enhance the
robustness of reward estimation, as well as parallel compu-
tation to further improve the training efficiency.

Synchronous Correction. As RM is updated periodically
during policy optimization, there can be samples that reside
outside the subspace Si which become outliers to the defini-
tion domain of RMi, leading to errors in reward estimation.
To mitigate the impact of such outliers, we introduce a syn-
chronous correction mechanism as follow:

r̃(s, a) = αr̂(s, a) + (1− α)rc(s, a), (9)

where rc(s, a) represents the correction term and α is a
trade-off parameter. The correction term is obtained from
simplified or reduce-scale direct evaluations, allowing for
reward rectification without slowing down the training.

Model Warm-up. RM’s parameters are randomly initial-
ized thus cannot offer reliable reward estimates at the be-
ginning, which can introduce significant noise into or even
disrupt policy optimization. Therefore, it is crucial to pre-
train the RM before updating the agent’s policy. In our
implementation, we delay policy optimization until the RM
has undergone several fine-tuning intervals, ensuring that
the agent consistently receives feedback from a warmed-
up RM. While the RM warm-up consumes additional time
from the start, it substantially enhances subsequent training
efficiency and accelerates model convergence.

Parallel Computation. Increasing the number of samples
in the fine-tuning pool F can improve the approximation
performance of the RM, as deep learning often benefits
from more training data. Therefore, we employ parallel
computation to significantly augment the dataset during fine-
tuning intervals. Specifically, we implement simultaneous
calculation of K reward calculators using multi-threaded

Table 1. Time spent on evaluating molecular generation (MG),
pandemic control (PC) and urban spatial planning (USP).

Evaluation MG PC USP

RM 0.02 0.02 0.01
Simplified 0.03s 0.12s 0.01s

Precise 8.6s 15.2s 10.5s

programming, and the hyper-parameter K is determined
by computational resources. Each calculator pulls the lat-
est solution from the memory pool, completes its reward
evaluation, and then initiates another round of calculation.

5. Experiments
We investigate three challenging tasks with expensive-to-
evaluate reward functions: molecular generation, pandemic
control, and urban spatial planning, as shown in Figure 4.
Additionally, we summarize the time spent on the corre-
sponding evaluations in Table 1, where using the RM results
in a speedup of approximately 1,000 times compared to
employing the precise reward functions.

5.1. Molecular Generation

Molecular generation aims to identify novel molecules that
bind most effectively to protein targets, where RL has be-
come a promising method due to its ability in searching a
vast solution space (Yang et al., 2021; Lutz et al., 2023).
A molecule can be represented as a graph G = (V,E),
where atoms are nodes and bonds are edges. The gener-
ation process is equivalent to graph expansion, where the
agent’s action corresponds to adding a new fragment (a
set of nodes) connected by a bond (edge) to the existing
molecular structure at a specified attachment site.

Evaluating the quality of the molecule presents significant
challenges. The molecular docking program is widely used
to provide precise measurements of the therapeutic potential
of molecules. Through computationally expensive molecu-
lar dynamics-based simulations, the program calculates ac-
curate binding free energy to identify hit compounds. Here,
we employ AutoDock Vina (Trott & Olson, 2010; Eberhardt
et al., 2021), a docking engine with outstanding accuracy,
to evaluate the effectiveness of the generated molecules in
targeting proteins, as the reward in the MDP. To compare the
performance of each approach, we investigate the average
score of the top 5%-scored generated molecules, and hit
ratio which is the proportion of docking scores exceeding
reference thresholds. Notably, the molecular docking pro-
gram requires several seconds to obtain precise results for
a single sample, which is unaffordable for traditional RL
methods.

5

Reinforcement Learning with Adaptive Reward Modeling for Expensive-to-Evaluate Systems

Table 2. Performance comparison on molecular generation with respect to Top 5% Score (T5) and Hit Ratio (HR).

Method FA7 PARP1 5HT1B
T5↑ HR↑ T5↑ HR↑ T5↑ HR↑

HierVAE 9.4± 0.1 0.06± 0.01 12.2± 0.1 0.25± 0.01 11.9± 0.1 0.12± 0.01
LIMO 9.8± 0.7 0.11± 0.02 11.9± 1.0 0.18± 0.04 10.3± 0.8 0.20± 0.04

MolDQN 8.2± 0.3 0.02± 0.01 10.5± 0.2 0.04± 0.02 9.8± 0.1 0.11± 0.01
FREED 10.1± 0.2 0.23± 0.04 12.8± 0.3 0.35± 0.09 12.2± 0.2 0.41± 0.10
MBPO 9.7± 1.1 0.18± 0.07 11.6± 0.9 0.26± 0.08 12.3± 0.5 0.33± 0.08
GRPO 9.6± 0.2 0.21± 0.03 11.3± 0.5 0.22± 0.06 11.8± 0.5 0.38± 0.08
RLOO 10.0± 0.4 0.22± 0.02 12.0± 0.6 0.29± 0.06 12.5± 0.4 0.40± 0.08
Ours 10.4± 0.2 0.29± 0.03 13.1± 0.4 0.42± 0.05 12.7± 0.4 0.48± 0.09

impr% +1.9% +19.4% +1.6% +20.0% +3.2% +17.1%

We experiment on three protein targets, FA7, PARP1,
and 5HT1B, which are commonly studied in medical re-
search (Yang et al., 2021; Nautiyal et al., 2015). We com-
pare our method with state-of-the-art molecular generation
baselines, which are (1) non-RL algorithms including Hi-
erVAE (Jin et al., 2020) and LIMO (Eckmann et al., 2022),
(2) MFRL-based methods including MolDQN (Zhou et al.,
2019) and FREED (Yang et al., 2021), (3) MBRL-based
algorithm MBPO (Janner et al., 2019), GRPO (Shao et al.,
2024) and RLOO (Ahmadian et al., 2024). For each metric,
we repeat experiments with 10 different random seeds and
record the mean and the standard deviation.

Table 2 illustrates the performance of different approaches,
which confirm the necessity of precise evaluation. Specifi-
cally, using the simplified evaluation, MolDQN consistently
generates molecules with poor binding quality, showing an
sharp performance decline of 21.9% and 93.5% in Top 5%
Score and Hit Ratio, respectively. In contrast, benefit from
the dynamic-based precise evaluation, our approach and
FREED always achieve the optimal and suboptimal perfor-
mance, with an average improvement of 13.2% and 10.9%
over other RL methods.

Our method has remarkable advantages over other base-
lines. For all the three different target proteins, our method
demonstrates the best generation quality. Specifically, the
Hit Ratio of our methods improves other MFRL methods by
over 8.3%. Meanwhile, by employing AdaReMo, the agent
is able to capture the localized reward function accurately,
reaching an improvement of 6.3% over MBRL approach.

5.2. Epidemic Control

Mitigating the impact of a pandemic requires strategic al-
location of limited resources such as quarantine facilities
and vaccine supplies within social networks. The challenge
in epidemic control stems not only from the vast and in-
tricate social networks but also from the difficulty in accu-
rately modeling disease dynamics. Pandemic control can
be conceptualized as sequentially selecting nodes on a so-
cial network G = (V,E) to be temporarily isolated, where

Table 3. Pandemic control performance measured by Healthy (H)
and Contained (C).

Method CA-GrQc SNAP
H↑ C↑ H↑ C↑

HSB 31.7±1.8 8.8±0.2 22.3±1.1 3.0±0.3

KED 30.2±2.2 8.7±0.7 22.1±2.4 2.3±0.4

GBP 32.9±0.5 9.1±0.3 23.8±0.4 3.1±0.1

RLGN 35.8±2.3 9.8±1.4 25.6±3.1 3.4±1.1
MBPO 27.2±6.6 7.3±3.5 15.4±6.0 1.3±0.6

Ours 39.8±3.4 10.4±1.2 28.2±4.8 3.8±0.9

impr% +7.4% +7.2% +10.2% +11.5%

V represents individuals and E denotes their interpersonal
contacts (Meirom et al., 2021).

For accurate evaluation of epidemic control, it is common to
employ susceptible-infectious-recovered (SIR) model (Ker-
mack & McKendrick, 1927) to capture the propagation dy-
namics of pandemic. By predicting the health status of
individuals at each stage of propagation multiple times, SIR
simulation provides a more comprehensive decision assess-
ment. Performance of epidemic control is measured by
Healthy representing the final proportion of healthy individ-
uals, and Contained indicating the proportion of simulations
where Healthy exceeds 60% (Meirom et al., 2021).

We utilize large-scale real-world contact networks CA-
GrQc (Rossi & Ahmed, 2015) and SNAP (Leskovec &
Krevl, 2014), which are extensively studied in epidemiolog-
ical research. Consistent with prior studies (Meirom et al.,
2021), the agent isolates 2% of the total population, and we
simulates 25 propagation steps with SIR model using 20
different seeds (3 for synchronous correction). Additionally,
the parameters of the SIR model are set with an infectious
rate β = 0.08 and a recovery rate γ = 0.2, informed by
real-world pandemic propagation (Yu et al., 2021b). We
compare our method against (1) classic approaches includ-
ing KED (Tong et al., 2012), GBP (Kimura et al., 2008) and
heuristic search approaches based on betweenness (HSB),
(2) MFRL approach RLGN (Meirom et al., 2021), and (3)
MBRL approach MBPO (Janner et al., 2019).

6

Reinforcement Learning with Adaptive Reward Modeling for Expensive-to-Evaluate Systems

Table 4. The basic attributes of the real-world communities.
Community Location Area Round Grids

HLG Beijing 3.67km2 7.7km 38
DHM Beijing 3.35km2 8.0km 48

HZ Guangzhou 2.96km2 6.9km 54

Performance Comparison on Urban Spatial Planning

Figure 5. Urban spatial planning performance measured by Dis-
tance (D, the lower the better) and Greenness (G, the higher the
better).

Table 3 illustrates the results of our approach and baselines.
First, classic algorithms cannot address complex epidemic
control tasks well. HSB heavily relies on manually designed
rules and often fails to capture the essential characteristics
of epidemics, resulting in poor performance across networks
and metrics. Additionally, KED and GBP also show notice-
able declines compared to RL approaches. Specifically, the
risk of infection increases by at least 11.7%, while the prob-
ability of containing outbreaks decreases by at least 17.2%.
Second, our approach achieves the best performance on
both Healthy and Contained across different social network,
demonstrating its outstanding ability in pandemic control.
Specifically, our generated control strategy prevents 3.3% of
the population from infection and is the only strategy with a
containment ratio higher than 10% among all the methods.
Moreover, our approach improves by 45% over the MBRL
approach due to the adaptability of AdaReMo.

5.3. Urban Spatial Planning

Rationalizing the functional division of limited urban land
presents a challenge, requiring consideration not only of the
city’s actual development needs but also of the functional
interconnections between different types of land uses. The
task of urban spatial planning can be formulated as sequen-
tially selecting edges on a city graph G = (V,E), where
V represents community lands and road segments, and E
indicates their spatial adjacency (Zheng et al., 2023).

To incorporate realistic human mobility into community lay-
out evaluation, we utilizes the state-of-the-art urban mobility
simulation method SAND (Yuan et al., 2023) for evaluation.
With thousands of reconstructed daily trajectories of resi-
dents, each layout for community is measured by Distance
and Greenness. Distance indicates the accessibility of the
community layout, quantified by the average daily trajec-
tory length per resident. Greenness signifies the residents’
exposure to green spaces, calculated by the average daily

(a) (b)

Figure 6. (a) Training efficiency comparison of four RL-based
methods in molecular generation. (b) The adaptability of RMs,
where solutions are evaluated at each policy optimization iteration.
Best viewed in color.

passes through green areas per resident.

We experiment on three real-world communities in
China (Zheng et al., 2023), initially bordered by main roads
and designated residential areas, with further details pro-
vided in Table 4. The task involves partitioning the original
community layouts to allocate areas for green spaces, busi-
nesses, offices, schools, hospitals, recreation, and residential
purposes and ends when all the requirements are satisfied.
In the implementation, a complete simulation contains the
weekly trajectories of 1,000 virtual residents, while in syn-
chronous correction, we decrease to 100 residents. For the
performance comparison, we include (1) traditional plan-
ning concepts such as centralized (CEN) and decentralized
(DCEN), (2) genetic algorithm (GA) (Zheng et al., 2023),
(3) MFRL-based method DRL (Zheng et al., 2023) and (4)
MBRL approach MBPO (Janner et al., 2019).

Figure 5 illustrates the results of our approach and baselines.
While MFRL effectively explores the solution space, the
imprecise rewards received by the agent limit the efficacy
of layout planning. By employing a realistic mobility-based
evaluation, our method significantly improves community
layouts, reducing average travel distance from 3.06 to 2.78
(-9.2%) and increasing average green space visits from 1.62
to 1.78 (+9.9%). Additionally, within three RL-based ap-
proaches, MBRL approach consistently produces layouts
with poor accessibility and green space exposure, showing
an average performance decline of 18.8% and 14.2% in Dis-
tance and Greenness, respectively. Notably, although our
method achieves the best planning outcomes overall, MBPO
performs the worst among all baselines, underscoring the
critical role of the AdaReMo.

5.4. Effectiveness and Efficiency of AdaReMo

RM plays a pivotal role as the key bridge between online
optimization and offline evaluation in our approach. To
illustrate the difference on training efficiency between DRL-
based methods, we present the evaluation metrics of the
generated solutions after the same optimization time in
Figure 6(a). While RL using direct evaluation (FREED)
initially shows a slight advantage, the performance of our

7

Reinforcement Learning with Adaptive Reward Modeling for Expensive-to-Evaluate Systems

(a) (b)

Figure 7. The visualization of RMs’ estimation errors in (a) molec-
ular generation and (b) pandemic control. The element at (i, j)
represents the error in applying the RM at j iteration to estimate
the solution at i iteration.

approach quickly catches up and surpasses that of FREED,
with an increase of more than 17.6%. This observation can
be attributed to the insufficient fine-tuning of RM to cap-
ture the complex dynamics of the environment during the
early training stages, which introduces reward estimation
errors. Benefiting from accurate evaluations and fast RM
estimations, our approach efficiently optimizes the policy
and achieves the fastest convergence to generate quality
molecules. In contrast, even after several days of training,
the performance of RL without RM improved by only a
slight 7.1%, highlighting the necessity of the RM which
sidesteps the heavy computational burden of reward calcula-
tion with fast estimations using neural networks.

In addition to improving overall training efficiency, the
adaptability of the model to a continuously optimized de-
cision policy is also examined. We randomly select solu-
tions with accurate evaluations from the fine-tuning pool F
during the training process. Fine-tuned RMs are saved at
iterations 100, 300, and 500 (denoted as RM100, RM300,
and RM500, respectively) to estimate molecular properties.
Figure 6(b) presents the evaluations of the molecules along-
side the corresponding RM estimations. Specifically, all
RMs accurately estimate molecules generated around their
respective iterations, with an average relative loss of less
than 0.8% and a relative standard deviation of less than 2.1%.
In contrast, RMs exhibit estimations with a relative loss ex-
ceeding 37.5% and extremely high variance for molecules
outside their trained state subspace.

To further visualize the consistency of between the RM
and the agent, we calculate the errors between RM estima-
tions and precise evaluation during the training process. As
shown in Figure 7, the elements on the diagonal are ap-
proximately 0, indicating that the RM can always adapt to
the current solutions with accurate estimations. When the
iteration differs, the error of estimation rises significantly.
Notably, two areas of high variance can be observed: the
lower right corner and the middle left. The former is due to
the RM’s initial inability to effectively learn the dynamics
of the environment, while the latter indicates a sharp shift

(a) (b)

Figure 8. The effectiveness of AdaReMo with different hyper-
parameters. (a) Impact of varying fine-tune intervals on training
efficiency and convergence. (b) Influence of varying fine-tune
epochs on metric performance. Best viewed in color.

in the distribution of the reward function. These findings
underscore the necessity of AdaReMo and the asynchronous
training framework, ensuring that RM remains aligned with
the decision policy.

5.5. Empirical Analysis of AdaReMo

Choosing the optimal timing for fine-tuning RM is crucial
for enhancing the efficiency of AdaReMo. Here, two critical
hyper-parameters for the asynchronous training framework
are investigated: fine-tune interval and fine-tune epoch.

We first explored different fine-tuning intervals, ranging
from 1 to 9 iterations, and trained the RM accordingly. As
shown in Figure 8(a), a short fine-tuning interval (e.g., 1
iteration) impedes effective RM updates, leading to policy
optimization failure. Specifically, optimization efficiency
drops to less than 75% of default settings, and the conver-
gence fails even after 300 iterations. Conversely, excessive
sampling also hinders agent learning efficiency, resulting in
a 5.7% decrease in performance. With a short fine-tuning
period, the data in the fine-tuning pool F closely track the
exploration subspace but may lack sufficient samples due to
time-consuming evaluation. On the other hand, a longer fine-
tuning interval makes F denser and more efficient for RM
fine-tuning, yet risks lagging RM updates significantly be-
hind policy optimization, leading to misalignment between
the RM and the agent.

Similarly, we varied the number of finetuning epochs to
examine its influence, as depicted in Figure 8(b). Both
excessive and insufficient epochs resulted in significant per-
formance decrease of 7.5% and 15.1%, respectively. Fewer
epochs enable quicker RM feedback to the agent but may
compromise fine-tuning effectiveness. Conversely, more
epochs facilitate thorough RM adaptation but require addi-
tional time and risk overfitting. The optimal solution was
found with 40 fine-tuning epochs, matching the duration of
a single policy iteration and demonstrating efficient time
utilization. Adequate sampling in F during this period en-
sures effective RM fine-tuning, allowing agents to receive
accurate feedback in subsequent iterations with updated RM.
Insufficient time may diminish fine-tuning quality, while
excessive time may force agents to iterate multiple times

8

Reinforcement Learning with Adaptive Reward Modeling for Expensive-to-Evaluate Systems

5 6 7 8 9 10 11
Fine-tune Intervals

96.0

96.5

97.0

97.5

98.0

98.5

99.0

99.5

100.0

Re
la

tiv
e

Pe
rfo

rm
an

ce
 (%

)

Best Performance vs. Intervals (500 Iterations)

GA(FA7) Performance
PC(CA-GrQc) Performance
GA(FA7) Best Iteration
PC(CA-GrQc) Best Iteration

30 35 40 45 50 55 60
Fine-tune Epochs

Best Performance vs. Epochs (500 Iterations)

GA(FA7) Performance
PC(CA-GrQc) Performance
GA(FA7) Best Iteration
PC(CA-GrQc) Best Iteration

250

300

350

400

450

Be
st

 It
er

at
io

n

250

300

350

400

450

Be
st

 It
er

at
io

n

Figure 9. Best Performance and corresponding iterations of our
framework with different hyper-parameters.

with outdated RM, wasting exploration efforts.

It is important to clarify that above discussions do not imply
that our framework is highly sensitive to hyper-parameters.
We extended the number of optimization iterations from
300 to 500 and recorded the model’s best performance
along with the corresponding iteration number across vari-
ous hyper-parameter settings. The results are presented in
Figure 9. Under suboptimal hyperparameter configurations,
training efficiency is substantially reduced, as the number
of iterations required to reach peak performance increases
from 216 to 463, resulting in more than twice the optimiza-
tion time. Nevertheless, the final performance of the model
remains remarkably stable, with less than a 4% difference
compared to the optimal one. These results demonstrate
that while appropriate hyper-parameter selection can signifi-
cantly improve training efficiency, the framework itself is
robust and maintains competitive performance even in the
presence of suboptimal hyper-parameters.

Additionally, we would like to provide practical guide-
lines that enable users to efficiently estimate an approxi-
mate range for the optimal hyper-parameters, ensuring the
method’s reliability and reproducibility without exhaustive
tuning. First, the optimal number of fine-tuning interval can
be approximated with the complexity of the reward function,
positively correlated with its evaluation time. For example,
Table 1 indicates that reward computation in pandemic con-
trol is more time-consuming than molecular design, and
grid search identified an optimal fine-tuning interval of 9
and 7 (see Figure 8(a)) for the two scenarios, respectively,
suggesting that a more complex reward function requires ad-
ditional samples for effective RM fine-tuning. Second, the
optimal number of fine-tuning epoch should balance the fine-
tuning duration with the policy optimization. Specifically,
we can measure the time t1 required for one sampling and
policy optimization iteration. Then, based on the previously
determined fine-tuning interval and the reward function’s
computation time, we can estimate the number of samples
needed for fine-tuning and compute the time t2 per fine-
tuning epoch. The theoretically optimal number of epochs
is N ≈ t1

t2
, providing a robust starting point. Search within a

Full w/o Sync Corr w/o Model Warm-up w/o Parallel Comp
0

2

4

6

8

10

T5

T5
HR

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

HR

Performance of Variants on Molecular Generation

Figure 10. Results of the ablation studies on the molecular gener-
ation task, where synchronous correction, model warm-up, and
parallel computation components are removed individually.

small neighborhood of this estimated value typically yields
the optimal setting, as validated in our experiments.

5.6. Ablation Study

We conduct a series of ablation studies to evaluate the indi-
vidual contributions of key components within our proposed
framework. The performance of each variant which remove
the corresponding component are presented in Figure 10.

The exclusion of any single component leads to a measur-
able degradation in performance. In particular, the removal
of synchronous correction introduces heightened stochastic-
ity and systematic bias, resulting in an average performance
decline of approximately 17%, with the most severe degra-
dation reaching 45.2%. Meanwhile, excluding the model
warm-up phase yielded a consistent performance drop of
around 7% across evaluation metrics. This degradation can
be attributed to the policy network being initially exposed
to randomly generated rewards, which injects noise into the
training process and impairs early-stage optimization. Like-
wise, the removal of parallel computation capabilities dimin-
ished training efficiency by restricting the reward model’s
capacity to process a sufficient volume of samples for ac-
curate fine-tuning. This constraint led to an estimated 10%
reduction in overall performance.

6. Conclusion
This work proposes AdaReMo, a general and efficient rein-
forcement learning approach for systems involving costly
reward functions. We introduce a reward model to approx-
imate reward calculation, which disentangles the fast de-
cision and slow evaluation into distinct online and offline
systems, enabling efficient policy training without any de-
lays. Meanwhile, the reward model continuously adapts
to the agent’s progress, ensuring accurate reward approxi-
mation throughout the entire training process. AdaReMo
displays competitive performance in molecular generation,
epidemic control, and spatial planning. Looking ahead,
we plan to further explore the universality of our approach
across different deep learning architectures besides GNN,
as well as broader expensive-to-evaluate tasks.

9

Reinforcement Learning with Adaptive Reward Modeling for Expensive-to-Evaluate Systems

Acknowledgements
This work is supported in part by National Natural Science
Foundation of China under grant U23B2030 and Zhong-
guancun Academy Project No.20240303. This work is also
supported in part by Tsinghua University-Toyota Research
Center and Beijing National Research Center for Informa-
tion Science and Technology (BNRist).

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Achituve, I., Shamsian, A., Navon, A., Chechik, G., and

Fetaya, E. Personalized federated learning with gaussian
processes. Advances in Neural Information Processing
Systems, 34:8392–8406, 2021.

Ahmadian, A., Cremer, C., Gallé, M., Fadaee, M., Kreutzer,
J., Pietquin, O., Üstün, A., and Hooker, S. Back
to basics: Revisiting reinforce style optimization for
learning from human feedback in llms. arXiv preprint
arXiv:2402.14740, 2024.

Astudillo, R. and Frazier, P. Bayesian optimization of func-
tion networks. Advances in neural information processing
systems, 34:14463–14475, 2021.

Balakrishnan, S., Nguyen, Q. P., Low, B. K. H., and Soh,
H. Efficient exploration of reward functions in inverse
reinforcement learning via bayesian optimization. Ad-
vances in Neural Information Processing Systems, 33:
4187–4198, 2020.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A.,
Laskin, M., Abbeel, P., Srinivas, A., and Mordatch, I. De-
cision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing
systems, 34:15084–15097, 2021.

Ding, J., Liu, C., Zheng, Y., Zhang, Y., Yu, Z., Li, R.,
Chen, H., Piao, J., Wang, H., Liu, J., et al. Artificial
intelligence for complex network: Potential, methodology
and application. arXiv preprint arXiv:2402.16887, 2024.

Eberhardt, J., Santos-Martins, D., Tillack, A. F., and Forli, S.
Autodock vina 1.2. 0: New docking methods, expanded
force field, and python bindings. Journal of chemical
information and modeling, 61(8):3891–3898, 2021.

Eckmann, P., Sun, K., Zhao, B., Feng, M., Gilson, M. K.,
and Yu, R. Limo: Latent inceptionism for targeted

molecule generation. Proceedings of machine learning
research, 162:5777, 2022.

Elsayed, M., Farrahi, H., Dangel, F., and Mahmood, A. R.
Revisiting scalable hessian diagonal approximations for
applications in reinforcement learning. arXiv preprint
arXiv:2406.03276, 2024.

Farebrother, J., Orbay, J., Vuong, Q., Taiga, A. A., Chebotar,
Y., Xiao, T., Irpan, A., Levine, S., Castro, P. S., Faust, A.,
et al. Stop regressing: Training value functions via classi-
fication for scalable deep rl. In Forty-first International
Conference on Machine Learning, 2024.

Ha, D. and Schmidhuber, J. Recurrent world models facil-
itate policy evolution. Advances in neural information
processing systems, 31, 2018.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In International
conference on machine learning, pp. 1861–1870. PMLR,
2018.

Hafner, D., Lillicrap, T., Fischer, I., Villegas, R., Ha, D.,
Lee, H., and Davidson, J. Learning latent dynamics for
planning from pixels. In International Conference on
Machine Learning, pp. 2555–2565, 2019.

Hansen, N., Lin, Y., Su, H., Wang, X., Kumar, V., and
Rajeswaran, A. Modem: Accelerating visual model-
based reinforcement learning with demonstrations. In
The Eleventh International Conference on Learning Rep-
resentations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023.
OpenReview.net, 2023. URL https://openreview.
net/forum?id=JdTnc9gjVfJ.

Janner, M., Fu, J., Zhang, M., and Levine, S. When to trust
your model: Model-based policy optimization. Advances
in neural information processing systems, 32, 2019.

Jeon, W. and Kim, D. Autonomous molecule generation
using reinforcement learning and docking to develop po-
tential novel inhibitors. Scientific reports, 10(1):22104,
2020.

Jin, W., Barzilay, R., and Jaakkola, T. Hierarchical gen-
eration of molecular graphs using structural motifs. In
International conference on machine learning, pp. 4839–
4848. PMLR, 2020.

Kermack, W. O. and McKendrick, A. G. A contribution to
the mathematical theory of epidemics. Proceedings of the
royal society of london. Series A, Containing papers of a
mathematical and physical character, 115(772):700–721,
1927.

10

https://openreview.net/forum?id=JdTnc9gjVfJ
https://openreview.net/forum?id=JdTnc9gjVfJ

Reinforcement Learning with Adaptive Reward Modeling for Expensive-to-Evaluate Systems

Kidambi, R., Rajeswaran, A., Netrapalli, P., and Joachims,
T. Morel: Model-based offline reinforcement learning.
Advances in neural information processing systems, 33:
21810–21823, 2020.

Kimura, M., Saito, K., and Motoda, H. Minimizing the
spread of contamination by blocking links in a network.
In Aaai, volume 8, pp. 1175–1180, 2008.

Kipf, T. N. and Welling, M. Semi-supervised classification
with graph convolutional networks. In 5th International
Conference on Learning Representations, ICLR 2017,
Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net, 2017. URL https://
openreview.net/forum?id=SJU4ayYgl.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
Advances in neural information processing systems, 25,
2012.

Leskovec, J. and Krevl, A. SNAP Datasets: Stan-
ford large network dataset collection. http://snap.
stanford.edu/data, June 2014.

Levine, S., Kumar, A., Tucker, G., and Fu, J. Offline rein-
forcement learning: Tutorial, review, and perspectives on
open problems. arXiv preprint arXiv:2005.01643, 2020.

Lin, J. A., Antorán, J., Padhy, S., Janz, D., Hernández-
Lobato, J. M., and Terenin, A. Sampling from gaussian
process posteriors using stochastic gradient descent. Ad-
vances in Neural Information Processing Systems, 36:
36886–36912, 2023.

Liu, C., Ding, J., Song, Y., and Li, Y. Tdnetgen: Empower-
ing complex network resilience prediction with generative
augmentation of topology and dynamics. In Proceedings
of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pp. 1875–1886, 2024a.

Liu, C., Xu, F., Gao, C., Wang, Z., Li, Y., and Gao, J.
Deep learning resilience inference for complex networked
systems. Nature Communications, 15(1):9203, 2024b.

Liu, Q., Yu, T., Bai, Y., and Jin, C. A sharp analysis of
model-based reinforcement learning with self-play. In
International Conference on Machine Learning, pp. 7001–
7010. PMLR, 2021.

Lowe, R., Wu, Y. I., Tamar, A., Harb, J., Pieter Abbeel,
O., and Mordatch, I. Multi-agent actor-critic for mixed
cooperative-competitive environments. Advances in neu-
ral information processing systems, 30, 2017.

Lowrey, K., Rajeswaran, A., Kakade, S., Todorov, E., and
Mordatch, I. Plan online, learn offline: Efficient learning
and exploration via model-based control. In International
Conference on Learning Representations, 2019.

Lu, C., Kuba, J., Letcher, A., Metz, L., Schroeder de Witt,
C., and Foerster, J. Discovered policy optimisation. Ad-
vances in Neural Information Processing Systems, 35:
16455–16468, 2022.

Luo, F.-M., Xu, T., Cao, X., and Yu, Y. Reward-consistent
dynamics models are strongly generalizable for offline
reinforcement learning. arXiv preprint arXiv:2310.05422,
2023.

Lutz, I. D., Wang, S., Norn, C., Courbet, A., Borst, A. J.,
Zhao, Y. T., Dosey, A., Cao, L., Xu, J., Leaf, E. M.,
et al. Top-down design of protein architectures with
reinforcement learning. Science, 380(6642):266–273,
2023.

Meirom, E., Maron, H., Mannor, S., and Chechik, G. Con-
trolling graph dynamics with reinforcement learning and
graph neural networks. In International Conference on
Machine Learning, pp. 7565–7577. PMLR, 2021.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. A.
Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013. URL http://arxiv.org/
abs/1312.5602.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. nature, 518(7540):
529–533, 2015.

Moerland, T. M., Broekens, J., Plaat, A., Jonker, C. M.,
et al. Model-based reinforcement learning: A survey.
Foundations and Trends® in Machine Learning, 16(1):
1–118, 2023.

Nautiyal, K. M., Tanaka, K. F., Barr, M. M., Tritschler, L.,
Le Dantec, Y., David, D. J., Gardier, A. M., Blanco, C.,
Hen, R., and Ahmari, S. E. Distinct circuits underlie the
effects of 5-ht1b receptors on aggression and impulsivity.
Neuron, 86(3):813–826, 2015.

Rossi, R. A. and Ahmed, N. K. The network data repos-
itory with interactive graph analytics and visualization.
In Bonet, B. and Koenig, S. (eds.), Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence,
January 25-30, 2015, Austin, Texas, USA, pp. 4292–
4293. AAAI Press, 2015. doi: 10.1609/AAAI.V29I1.
9277. URL https://doi.org/10.1609/aaai.
v29i1.9277.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

11

https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl
http://snap.stanford.edu/data
http://snap.stanford.edu/data
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
https://doi.org/10.1609/aaai.v29i1.9277
https://doi.org/10.1609/aaai.v29i1.9277

Reinforcement Learning with Adaptive Reward Modeling for Expensive-to-Evaluate Systems

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X., Zhang,
H., Zhang, M., Li, Y., Wu, Y., et al. Deepseekmath: Push-
ing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Shetty, S., Xue, T., and Calinon, S. Generalized policy
iteration using tensor approximation for hybrid control.
In The Twelfth International Conference on Learning
Representations, 2024.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou, I.,
Panneershelvam, V., Lanctot, M., et al. Mastering the
game of go with deep neural networks and tree search.
nature, 529(7587):484–489, 2016.

Silver, D., Singh, S., Precup, D., and Sutton, R. S. Reward
is enough. Artificial Intelligence, 299:103535, 2021.

Tong, H., Prakash, B. A., Eliassi-Rad, T., Faloutsos, M.,
and Faloutsos, C. Gelling, and melting, large graphs
by edge manipulation. In Proceedings of the 21st ACM
international conference on Information and knowledge
management, pp. 245–254, 2012.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., et al. Llama 2: Open foundation and fine-
tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

Trott, O. and Olson, A. J. Autodock vina: improving the
speed and accuracy of docking with a new scoring func-
tion, efficient optimization, and multithreading. Journal
of computational chemistry, 31(2):455–461, 2010.

Vaswani, A. Attention is all you need. Advances in Neural
Information Processing Systems, 2017.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M.,
Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds,
T., Georgiev, P., et al. Grandmaster level in starcraft ii
using multi-agent reinforcement learning. nature, 575
(7782):350–354, 2019.

Wan, R., Zhang, X., and Song, R. Multi-objective model-
based reinforcement learning for infectious disease con-
trol. In Proceedings of the 27th ACM SIGKDD conference
on knowledge discovery & data mining, pp. 1634–1644,
2021.

Wang, Q. and Van Hoof, H. Model-based meta reinforce-
ment learning using graph structured surrogate models
and amortized policy search. In International Conference
on Machine Learning, pp. 23055–23077. PMLR, 2022.

Wang, Z., Hu, C., Liu, J., and Yao, X. Negatively correlated
ensemble reinforcement learning for online diverse game

level generation. In The Twelfth International Conference
on Learning Representations, 2024.

Wu, T., Maruyama, T., Zhao, Q., Wetzstein, G., and
Leskovec, J. Learning controllable adaptive simu-
lation for multi-resolution physics. arXiv preprint
arXiv:2305.01122, 2023.

Xu, S. and Liu, G. Uncertainty-aware constraint inference
in inverse constrained reinforcement learning. In The
Twelfth International Conference on Learning Represen-
tations, 2023.

Yang, S., Hwang, D., Lee, S., Ryu, S., and Hwang, S. J. Hit
and lead discovery with explorative rl and fragment-based
molecule generation. Advances in Neural Information
Processing Systems, 34:7924–7936, 2021.

Yu, T., Thomas, G., Yu, L., Ermon, S., Zou, J. Y., Levine, S.,
Finn, C., and Ma, T. Mopo: Model-based offline policy
optimization. Advances in Neural Information Processing
Systems, 33:14129–14142, 2020.

Yu, T., Kumar, A., Rafailov, R., Rajeswaran, A., Levine, S.,
and Finn, C. Combo: Conservative offline model-based
policy optimization. Advances in neural information
processing systems, 34:28954–28967, 2021a.

Yu, Z., Lu, S., Wang, D., and Li, Z. Modeling and analysis
of rumor propagation in social networks. Information
Sciences, 580:857–873, 2021b.

Yuan, Y., Ding, J., Wang, H., Jin, D., and Li, Y. Activity tra-
jectory generation via modeling spatiotemporal dynamics.
In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 4752–4762,
2022.

Yuan, Y., Wang, H., Ding, J., Jin, D., and Li, Y. Learning
to simulate daily activities via modeling dynamic human
needs. In Proceedings of the ACM Web Conference 2023,
pp. 906–916, 2023.

Yuan, Y., Ding, J., Jin, D., and Li, Y. Learning the com-
plexity of urban mobility with deep generative network.
PNAS nexus, 4(5):pgaf081, 2025.

Zhang, H., Feng, S., Liu, C., Ding, Y., Zhu, Y., Zhou, Z.,
Zhang, W., Yu, Y., Jin, H., and Li, Z. Cityflow: A multi-
agent reinforcement learning environment for large scale
city traffic scenario. In The world wide web conference,
pp. 3620–3624, 2019.

Zheng, Y., Lin, Y., Zhao, L., Wu, T., Jin, D., and Li, Y.
Spatial planning of urban communities via deep rein-
forcement learning. Nature Computational Science, 3(9):
748–762, 2023.

12

Reinforcement Learning with Adaptive Reward Modeling for Expensive-to-Evaluate Systems

Zhou, Z., Kearnes, S., Li, L., Zare, R. N., and Riley, P. Op-
timization of molecules via deep reinforcement learning.
Scientific reports, 9(1):10752, 2019.

13

