Under review as a conference paper at ICLR 2025

GAN-BASED NERF NOISE SIMULATION IN MESH DE-
NOISING TASK

Anonymous authors
Paper under double-blind review

ABSTRACT

In the present paper, we propose a new approach and a dataset for generating
NeRF-like noise on the mesh surface. Our approach is based on GAN and was
trained on a dataset that we collect using real NeRF noise. The core idea of
our method lies in the use of graph convolutions in the generator. Our pipeline
demonstrates generated NeRF-like noise more accurate than other methods by
mesh denoising benchmarking. We also present a new NeRF noise analysis ap-
proach HTPH based on a conditional probability model to measure the similarity
of mesh noise.

1 INTRODUCTION

The problem considered in this article belongs to mesh denoising and 3D scene reconstruction do-
mains. Existing scene reconstruction algorithms work with errors called noise|Nguyen et al.|(2012);
Belhaoua et al.[(2009). In our work, we focus on the node noise which causes the difference between
shapes of real and reconstructed objects.

Neural radiance fields (NeRF) models have recently become a popular tool for reconstructing 3D
scenes. The first one was introduced in [Mildenhall et al| (2021). Many NeRF extensions were
presented in the next several years after the first publication Miiller et al.| (2022); Barron et al.
(2021)); Jain et al.| (2021); |Deng et al.| (2022); |Yu et al. (2021); [Fridovich-Keil et al.| (2022); [Wang
et al.| (2022); Zhi et al.| (2021); Jeong et al.[(2021). In our paper we consider NeRF as a baseline
algorithm for 3D scene reconstruction by a set of views.

The experiments show that 3D object reconstruction using NeRF requires a lot of time. There are
NeRF models where learning a scene takes up to 40 hours. Therefore, a lot of time is required to
generate enough data to train the noise reduction algorithm specified for NeRF noise.

Our motivation is to reduce the time-consuming process of data generation. For this purpose we
introduce a pipeline that can generate a dataset in a short time. Using our approach we generate
a new dataset. We have shown that mesh denoising models trained on our dataset remove a noise
appearing in the scene after NeRF reconstruction better than without training on our dataset. Apart
from this, we present a new mesh noise description based on conditional probability model which
we have used in our analysis.

Our pipeline is based on Generative Adversarial Network (GAN) |Goodfellow et al.|(2014)). To train
our model we select meshes from objaverse-XL |Deitke et al.|(2023) and preprocessed them. We use
Instant-NGP Miiller et al.|(2022) to prepare NeRF noise examples.

Our main contribution can be summarized as follows:

* We introduce a new analysis of mesh noise which uncovers the significant difference be-
tween artificial noise and real noise.

* We propose a new pipeline for generation NeRF-like noise on the mesh surface. The core
of our pipeline is a GAN which was trained on real NeRF noise. The application consists
in the massive generation of a dataset suitable for effective training of denoising models.
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2 RELATED WORK

In recent years, learning-based mesh denoising methods have achieved impressive results, partic-
ularly: DNF-Net |Li et al.| (2020), NormalNet |Zhao et al.| (2021), IMD-Net |Botsch et al.| (2022),
GeoBi-GNN |[Zhang et al.| (2022), Cascaded Regression|Wang et al.[(2016)) and GCN-denoiser |Shen
et al.|(2022). All learning-based methods require a large number of clean-noisy mesh pairs, which
are complicated and time-consuming to acquire. Mesh noise generation methods do not require as
much time as in-camera processing pipelines.

Existing noise generation methods can be divided into the following groups:

2.1 NON-LEARNING-BASED NOISE MODELS

The literature review shows that a probability density function (PDF) is typically used for non-
learning-based modeling of sensor noise. The PDF parameters are determined through experimental
measurements.

A Konica Minolta Vivid 910 3D laser scanner is considered by |Sun et al.[{(2008)). The authors plot the
histogram of noise magnitudes and interpolate the PDF using Gaussian distribution. The Microsoft
Kinect noise is analysed by Nguyen et al.[(2012). The authors demonstrate how distribution depends
on the angle of rotation and the distance between the sensor and the plane. |Choo et al| (2014)
creates another noise model of a Microsoft Kinect depth sensor. The authors use the chessboard for
experiments and show how noise distribution depends on the depth of scene points. Haider & Hel-Or,
(2022) create a noise histogram from a series of measurements from different sensor positions and
show that the noise distribution depends on the light direction and distance. The authors compare
the noise distributions of three types of depth sensors: ZED, Microsoft Kinect V1 and Microsoft
Kinect V2.

2.2 LEARNING-BASED NOISE MODELS

The noise can be learned directly with GAN if the noise is too complicated and cannot be modeled
as PDF. In particular, noise generation is often applied to images when white noise generation is
required.

Henz et al.|(2020) construct the GAN model, in which a generator consists of five sequential residual
blocks, two convolutional and one batch normalization layer. Each residual block contains two con-
volutional, two normalization layers and a ReLU layer. At the same time, the discriminator consists
of five convolutional layers, each followed by an instance normalization and a leaky ReLU layer.
Similarly, Tran et al.| (2020) uses the same model with five residual blocks for image noise gener-
ation. Kim et al.| (2019) introduces a generator with sequential residual blocks and convolutional
blocks where each convolutional block has batch normalization, spectral normalization and ReLU
layers. At the same time, each residual block has two 3 x 3 convolutional layers.

In contrast, some researchers use U-Net-based (Ronneberger et al.| (2015)) model as a generator.
Hossain & Lee| (2022) creates a U-Net-based model with 10 blocks, where each block contains a
channel attention layer, two recurrent convolutional blocks with batch normalization, and ReLU
layers. |Chang et al.| (2020) uses a camera-encoding network in addition to U-Net-shaped generator
for realistic camera noise generation. Song et al.| (2023) builds U-Net for camera noise generation
with six SNAF blocks. Each block has three convolutional, one normalization, and one simple gate
layers. The Decoder blocks have additional noise injection layers.

3 MESH NOISE ANALYSIS

In this section, we present an approach to compare mesh noise that takes into consideration the
dependence between neighboring vertex positions. Our approach uncovers the significant difference
between artificial mesh noise and realistic noise caused by the weaknesses of algorithms and sensors.

We refer to the vertex offset as the distance between original mesh and noised mesh for each vertex
in the noisy mesh. The method for calculating the distance between point and mesh is described
in the Appendix 1. This approach is based on Zong et al.| (2023). Most existing denoising works
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(a) Random noise (b) NeRF noise

Figure 1: Random normal noise heatmap (a) and NeRF noise heatmap (b). Each heatmap is a transi-
tion probability matrix, where the vertical axis defines a vertex offset class C'(v), and the horizontal
axis defines offset classes of neighboring vertices. Thus, each cell defines the probability of two
different offsets to be neighboring. For all classes, the distribution is normal with approximately the
same expected values and standard deviations. In contrast, the MTPH of NeRF noise shows that
neighboring vertices always have sufficiently close offsets.

have noise generation tools for dataset generation. Unfortunately, the algorithms in these tools
only the offset of individual vertices without taking into account the offset of neighboring vertices.
Thus, these algorithms are only able to imitate unrealistic noise modeled by single vertex offsets
distribution, and the dependence between offsets of neighboring vertices is not taken into account.
A simple offsets distribution does not show the difference between artificial mesh noise and realistic
noise. We have developed a new approach to measure the difference between types of noise.
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We denote by s(v) the offset of the vertex v. All vertex offsets can be arranged in ascending order,
and we can find $,,;, and S, along all vertices. The segment [S;in, Smaz) s divided into K equal
sub-segments. Each sub-segment represents a class of vertices to which offsets belong. Therefore,
we divide all vertices into K different classes determined by natural numbers. We define a class

index for each vertex as C(v) = {(s(v) - smm)/dJ, where d = (Smaz — Smin)/K, ie. C €

{0,..., K — 1}. In practice, S, is calculated as the 4th percentile and s,,,.. as the 96th percentile
so that each class does not contain too few vertices.

We denote all neighboring vertices for each vertex v as N (v). We define a dependence between the
offsets of neighboring vertices as a conditional probability model. We consider the vertex classes C'
as states of the model. Let’s define state transition probabilities: for each vertex v we calculate the
class C'(v) and the classes C(v') for v* € N(v). Considering all vertices, for each vertex class we
construct the distribution of classes of neighboring vertices. Therefore, we define a state transition
probability distribution for each state.

The state transition probability distributions can be represented as a transition probability matrix,
where each element p;; indicates the probability of transition from state ¢ to state j. We represent
this matrix as a heatmap and call it Mesh Transition Probability Heatmap (MTPH).

The MTPH shows the difference between NeRF noise and random noise artificially generated for
each vertex, without dependence on neighboring vertices. We calculate the MTPH for meshes from
synthetic datasets and NeRF datasets collected by our program. The results for K = 40 are shown
in Figure[I] It can be seen that the transition probability distribution in artificially generated noise
does not depend on the vertex class.

The difference between noise can be measured by the distance between MTPHs. We use the follow-
ing metrics: cosine difference, Euclidean distance, Manhattan distance, and kernel norm of MTPH
difference. Along with MTPH metrics, we use KL divergence to measure the distance between
the vertex offset distributions. Five metrics in total. We use these metrics to measure the distance
between generated noise and real noise.

4 FULL PIPELINE

The task of noise simulation requires a generative model to capture intrinsic noise features during
the training process. We choose GAN because there are already published works such as|Song et al.
(2023) where authors used GAN to generate digital camera noise synthesis on images. It makes
sense to refer to the experience of the neighboring domain, which is why we recommend using
GAN specifically for noise synthesis.

In our approach we use GAN’s generator to predict offsets for point clouds. We transform the mesh
into a point cloud which is given to the GAN input. After GAN calculates offsets, we transform
noisy point clouds back to mesh. The scheme of our pipeline is depicted on Figure 2]

Original mesh Noisy mesh

preprocessing mesh reconstruction

Figure 2: The mesh noise generation pipeline scheme. In the start green point cloud is produced by
original mesh point sampling. The Generator takes the green point cloud, calculates the offset for
each point, and returns the blue point cloud. The number of points in green and blue clouds is equal.
Finally, the noised mesh is reconstructed from the blue point cloud.
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4.1 GAN ARCHITECTURE

In our method, the generator predicts the magnitude of the offset for each point along the point’s
normal, so to get a noisy point cloud we need to multiply these magnitudes with point normals and
add the resulting offsets to original point positions. The first step to generate a noisy point cloud is
to encode the original point cloud using two PointNet layers, each of those utilize the point cloud
and its knn-graph. Then, to the encoded point cloud we add random values sampled from random
distribution as suggested in study (2023)). The noisy point cloud features are then fed to
GATv2 Layer Brody et al.|(2022)) and head layers in the end.

The discriminator requires point offsets and the original point cloud knn-graph as input. First, it
propagates through the knn-graph using offsets as node features, and then follows a single linear
plane and global mean pooling operation to obtain a vector representation of each point cloud in
a stack. The point cloud vector representation is then fed to linear layers, followed by sigmoid
activation to predict the probability of generating a point cloud. The schematic of the generator and
discriminator is shown in the Figure 3]
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Figure 3: Architecture of GAN: E denotes the number of knn-graph edges, N denotes the number of
points, RNR means Random Noise Ratio, which defines the quantity of injecting noise.
5 GAN TRAINING

In this section we describe how we prepare clear/noisy pairs to train GAN. All steps are shown on
the Figure[d We also highlight in this section the training details.

Rendering 3D Figures NeRF output Fit meshes Sample point cloud

3D Figure —

Figure 4: All steps of clear/noisy pairs preparation to train GAN. A mesh is rendered from 100
points of view. The renders are given to NeRF. The reconstructed mesh is fitted to the original mesh.
Further, each mesh is used to sample point clouds.
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5.1 CLEAR/NOISY PAIRS PREPARING

We select meshes from objaverse-XL that satisfy the following conditions: they must be water-
tight and textured, have Euler-Poincar “e characteristic not greater than 10, and must have not less
than 500 and not greater than 250 000 vertices. Each mesh is rendered 100 times from different
viewpoints using our renderer based on the bpy library in|Blender| (2018)).

The rendered images are used as input for the NeRF. As NeRF produce a radiance field which is
a raw data for 3D-reconstruction algorithms we extract meshes with Differentiable Poisson Sur-
face Reconstruction (DPSR) Peng et al.|(2021)) (which calculates Signed Distance Function (SDF)
Slavcheva et al.|(2016)) and Marching Cubes (MC) Lorensen & Cline| (1998)).

Further we fit mesh pairs using a rigid point-set registration approach (Myronenko & Song| (2010)).
Let us define a transformation function T'(p, v) = S Av — b for each pair that transforms the original
mesh vertices, which depends on parameters p defined as follows: b = (b1, b, b3) is a displacement
vector, A = A(v, 0, ¢) is a rotation matrix defined by three independent parameters (Euler angles)
and S = diag(s1, $2, $3) is a diagonal matrix defined by three scale factors. The parameters p are
found as the argman of the functional:

1 /
F(p) = — min ||T(p,v) —v ||,
(p) IVI;:/U/E\/H (p,v) —v ||

where V and V' are sets of vertices of original mesh and noised mesh respectively. The result of
optimal transformation application is depicted in Figure [5al

To create a pair of noisy and clear point clouds, we uniformly sample 10 000 points on clear mesh.
Then we project these points onto the noisy mesh along each point normal, which is calculated as
the interpolation of facets vertices normals, for a facet that contains the corresponding point. You
can see the visualization of this process in Figure[5b] Thus, we obtain two point clouds of the same
size and we can build a bijection from points sampled on original mesh and ones sampled on noisy
mesh.

(a) Pair of meshes before alignment and after (b) Points sampling process. Original mesh is
alignment. dark gray and the noisy mesh is light gray.

Figure 5: The rigid point-set registration performance and points sampling illustration.

5.2 TRAINING DETAILS

We have trained the GAN minimizing the binary cross entropy (BCE) loss and the maximum of the
offsets magnitudes. The second term in the loss is needed to deal with outliers. We use the batch
size of 16 and the learning rate of 2 x 10~%. The experiments conducted on NVIDIA A100 80 GB
GPUs, the training process with such settings requires approximately 8 gigabytes of GPU memory,
training takes about 30 minutes on a dataset with 856 objects.

We use the Adam optimization algorithm with 3; = 0.5 and B2 = 0.999. We use LambdalL.R with
A = 0.986°P°¢" to schedule a learning rate. We conduct the hyperparameter search via Optuna|Akiba
et al.[(2019), we investigate random noise ratio, dropout probability and latent dimensionality.

The training scheme is depicted on Figure[6]
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Figure 6: Scheme of the training and inference pipeline. The gray area represents the result of the
data preparation pipeline.

6 EXPERIMENTS

We conduct a series of experiments to verify that our pipeline can produce a realistic NeRF-like
noise.

We select 6 shapes from our primary set for the training and testing domains: bird, bottle, key,
sphere, doll and spiral. More details about these shapes can be found in Appendix 2. Each shape was
rendered and processed with instant-ngp 1000 times. Each shape was reconstructed after instant-ngp
application. We split the shapes to training and testing domains: the bird, bottle, key and sphere are
in the train domain and doll and spiral are in the test domain.

We collect offsets in the interval [—0.004,0.004] to compare the noise distribution histograms.
We have defined experimentally that most of the offsets belong to this interval. The code and all
clear/noisy pairs are available in our repositor

6.1 MAIN RESULT

Five types of GAN have been trained: four on one shape — bird, bottle, key, sphere and one on all
four train shapes together. Each generator was tested on five train shapes and two test shapes. There
are three types of tests we perform:

* In domain (ID) — testing only on the shape that was used for train;
* Out of domain (OOD) — testing on all train shapes except the one that was used for train;

* Test domain (TD) — testing on testing shapes;

The target distribution and target MTPH that we measure distance to are always calculated for the
shapes that we test on. The GAN training results are shown in Appendix 3.

6.2 ABLATION STUDY

Our main goal is to build a learning-based pipeline that outperforms the baseline method based on
DPSR + MC. Furthermore, we compare our GAN results with simple noise generators. The first one
is a KNN-regressor, where we choose the number of neighbors of 10. The second one is a simple
multilayer perceptron network with four layers (3 to 32, 32 to 16, 16 to 8, 8 to 1), Leaky ReLU
activations and batch normalization.

Another baseline for comparison is U-Net, which was also trained in a supervised manner. We reim-
plement the original architecture presented in Ronneberger et al.| (2015) to process 1-dimensional
point cloud data instead of 2-dimensional pictures. The baseline is as follows. First, we process raw
point cloud with its normals and the knn-graph through PointNet-like encoder, then we feed points’
embeddings into reimplemented U-Net, finally the processed embeddings are transformed through
two fully connected layers.

You can see the performance of these pipelines in Appendix 3.

'https://anonymous.4open.science
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6.3 DISCUSSION

We use our new analysis approach based on MTPH to compare the performance of pipelines. The
Table [T] shows the top results by each metric for each test shape. This table includes all rows with
at least one top result for any metric for the specified test shape. Moreover, we highlight the best
results over all test shapes for each metric.

We see that our GAN-based approach outperforms other pipelines 2-6 times according to MTPH
difference metrics: Cosine distance, Linear distance, Manhattan distance and Nuclear norm. At the
same time, other methods surpass GAN in KL-divergence very insignificantly (the difference is seen
only in the second or third decimal place), so this metric is almost equal.

Three of the six best GANs have been trained on a sphere shape. It has a consistent surface and
consistent curvature, so this could provide better results. Moreover, the GAN tested on the sphere
shows the best result on three out of five metrics, despite the large number of polygons on the
sphere’s surface.

We see that all pipelines tested on the key shape show better KL-divergence values than on other
shapes. The key is the only mesh with a significant portion of flat elements. It could be easier to
reproduce the offset distribution on flat surfaces.

You can see the examples of noise generated by our GAN in Appendix 4. It is compared with real
NeRF noise.

Table 1: Top training results. The best results for a specific test shape are highlighted in green. The
best metrics for all shapes are highlighted with dark green. The GAN results for the KL div. are
slightly lower, however they are comparable to the rest of the approaches. The GAN results for other
metrics are significantly better than others.

Pipeline Train on Test on . . Metrics
KL div. | Cosine| Linear | Manh. | Nuclear |
Sphere Bird 0.45269 = 0.00251 0.10487  2.84228 0.32697
All Bottle 0.49770 | 0.00951 0.21888  5.25660 0.68357
GAN Key Key 0.06589 | 0.01937 0.32343  5.68141 1.17867
Bird Sphere 0.35944 [70.00183 " 0.09029  2.37248  0.32119
Sphere Doll 0.53638 | 0.00625 0.16130  4.68518 0.46974
Sphere Spiral 0.49742  0.00368 0.12526  3.60572
KNN Reg. Bird Bird 0.44349 0.01495  0.24551 6.37309 0.59441
U-Net All Bottle 0.48909 0.05028  0.56939 10.86997 1.68377
- Key _ 0.06551  0.63861 13.24510 2.26182
DPSR + MC | — Sphere 0.35360 0.13064  0.69201 20.95043 1.80963
- Doll 0.52423 0.09685  0.62921 19.19287 1.61193
KNN Reg. Spiral Spiral 0.48815 0.00552  0.14572  3.93982 0.44374

7 OUR DATASET EVALUATION

In the previous section we show that our pipeline can add a realistic NeRF-like noise on the mesh sur-
face. Here we show that our pipeline can be used to produce a dataset which can upgrade learning-
based denoising models. We demonstrate that learning-based denoising models can more effectively
remove NeRF noise when trained on our dataset.

7.1 EVALUATION DATASET PREPARATION

The denoising models we have tested can only be trained on noisy-GT pairs with the same number
of facets, so we prepare an evaluation dataset using the pipeline described below. The GT mesh is
prepared by transformation of original mesh via DPSR + MC, as described in Section [6]

The GAN model produces a point cloud, which we label as P. This point cloud should be converted
to a mesh with the same number of vertices as in the GT mesh. The conversion process is depicted
in the Figure We calculate a normal vector n(v) for each vertex v in GT mesh. For each v we find
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apoint p € P the closest to the line L, defined by vertex v and its normal n(v). We find the point v

that is closest to v from line L,. The v’ is supposed to be a point from a noisy mesh corresponding
to v point from the original mesh.

(a) The closest points to normals (red vectors) of (b) The closest points are connected with the same
original mesh vertices are found. These points are edges as original mesh vertices.
drawn with blue.

Figure 7: Evaluation dataset preparation. The original mesh transformed via DPSR + MC is black.
The point cloud produced by GAN is purple.

7.2 EVALUATION RESULTS

The GeoBi-GNN and Cascaded Regression are tested on our dataset. We train both models on six
types of datasets: Synthetic only, Synthetic + GAN, Synthetic + Noisemaker3D, GAN + Noise-
maker3D, GAN only and KNN-Regression only. Noisemaker3Dis the library with a set of methods
for generating node and topology noise. In addition, we prepare a dataset to be denoised by these
models and measured the denoising metrics. The metrics we use for comparison are: Chamfer Dis-
tance (CD), Mean Cosine Distance of Normals (NCD), Absolute Area Difference (ADA), and Mean
Squared Error (MSE). The results are shown in the Table 2]

Table 2: Denoising metrics of GeoBi-GNN and Cascaded Regression trained with a dataset gen-
erated by our GAN and KNN-regression models. All denoising experiments are performed on
NeRF-like noised meshes. The best metrics for all shapes are highlighted with dark green. The
first, second and third best results shown by each model are labeled by dark green, green and light
green respectively.

Metrics
Model Train on CD] NCD| ADA| MSE|]
x107% x107% x1072 x107°
Synthetic
Synthetic + GAN 8.73 1.263 3.899
GeoBi-GNN Synthetic + NM3D 6.73 1.217 | 0.991 3.019
GAN + NM3D 7.86 1.537 1.238 3.543
GAN 10.96 1.164 1.637 4.978
KNN-Regression 6.59 1.753 1.228 3.142
Synthetic 6.97 2.237 1.296 3.18
Synthetic + GAN 6.77 2.126 1.198 3.051
Cascaded Regression | Synthetic + NM3D 6.96 2.129 1.295 3.167
GAN + NM3D 6.82 2.172 1.226 3.073
GAN 0.911
KNN-Regression 6.42 1.996 2.844

The Cascaded Regression shows better results being trained on our dataset which is designed for
NeRF noise. The denoising results are illustrated in Appendix 5.
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7.3 LIMITATIONS

Besides a generative model the dataset generation pipeline includes the DPSR + MC part. Preparing
the dataset for the noise generation model involves solving optimization problems, which requires a
lot of time for complicated shapes with large amounts of tiny elements.

Due to the benchmark denoising models, it is necessary to use a dataset with the same number of
vertices. For this reason, the preparation of the evaluation dataset requires a special transformation
procedure that converts the point cloud into a mesh with the same number of vertices as the original
clear mesh. This procedure is described in This process can result in artifacts on the surface
with tiny parts like birds.

The NeRF noise is determined not only by the shape topology but also by the shape texture. It is
necessary to select shapes with textures that will not cause abnormal convex or concave bumps on
the mesh surface after NeRF application.

8 CONCLUSION

In this article, we present a NeRF-like noise generation pipeline based on GAN and includes graph
convolutional blocks to address challenges faced by providing reliable NeRF datasets for denois-
ing tasks. Experimental results prove the better performance of using generated dataset for mesh
denoising tasks over existing synthetic datasets. We have shown that datasets generated with our
pipeline improve learning-based denoising models when used for training. The most significant
improvement show the mean cosine distance and the absolute area difference of the metric normals.

Another important result is a new analysis of mesh noise that is suitable for complicated noise. Our
analysis approach assumes a special heatmap calculation for vertex offsets, which has a meaning of
transition probability matrix.

In future work, we want to investigate other types of mesh noise, including topology noise.
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A APPENDIX

A.1 CALCULATE DISTANCE BETWEEN POINT AND MESH

In this section we present an algorithm for quick calculation of distance between point and triangle
mesh. The three-dimensional space around a mesh is described as a Voronoi diagram constructed
for different classes of geometric primitives that mesh consists of: facets, edges, and vertices.

Consider the point ) and calculate the distance from () to the mesh. The algorithm consists of the
following steps:

12
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* Find a vertex of the mesh A closest to the point (). This can be done, for example, using
a kd-tree calculated previously for all vertices of the mesh. We denote by V3,...,V,, the
vertices that are adjacent to vertex A. We also denote by C1, . .., C,, the centroids of facets
adjacent to the vertex A.

* Denote vector @by a. Next vectors AVy,..., AV, we denote by vy, ..., ,. Finally we
denote vectors ACy,..., AC,, by é1,...,Cp.

* First we should check if point () is in the reference cone of A.

The article clearly describes that the three-dimensional space above/below a mesh can be described
as a Voronoi diagram constructed for different classes of geometric primitives. The classical Voronoi
diagram is a partition of space into regions, where each region of it forms a set of points closer to
one of the elements of a certain set than to any other element of the set. A mesh consists of three
types of geometric primitives: facet, edge, and vertex.

The space in which the mesh is represented is transformed into a Voronoi diagram for the facets,
edges, and vertices of the mesh. Drawing from the article:

In the figure, red indicates the areas where the points are closest to one of the facets than to any other
facet or any of the edges or vertices. Similarly, blue indicates the areas where the points are closest
to some edge, and yellow indicates some vertex.

If you want to find the shortest distance from an arbitrarily taken point to the mesh surface, then you
need to take into account this feature of dividing the space around the mesh, since the distance from
a point to a flat triangle in 3D is not calculated in the same way as the distance from a point to a
segment or from a point to a point. It is important to understand which of the geometric primitives
is closest to the point before calculating the distance.

The algorithm for finding the shortest distance can be implemented without constructing a Voronoi
diagram, but with the assumption that the surface to which the distance needs to be calculated is
sufficiently convex.

Suppose you want to calculate the distance from the point () to the mesh. The algorithm consists of
the following steps:

1. Search for the vertex of the mesh A closest to the point ). This can be done, for example, using a
kd-tree calculated previously for all vertices of the mesh. Denote by V1, ..., V,, the vertices that are
adjacent to vertex A. We also denote by C', ..., C,, the centroids of facets adjacent to the vertex A;
2. Check whether the point () lies in the reference cone of this vertex (in the figure these cones are
indicated in yellow). To do this, take the vector connecting vertex A and point (), that is, vector AQ.
Next, you need to calculate the scalar products of the vector AQ) with the vectors ACY, ..., AS,. If
all these scalar products are strictly less than zero, then the point () belongs to the support cone. In
this case, the desired distance is the length of the vector AQ. If at least one of the scalar products is
greater than or equal to zero, then the distance is calculated according to the algorithm in paragraph
3; 3. For each facet k adjacent to vertex A, calculate the vectors L;Cy, LoCy, L3Cy, where Ly,
Lo, L3 are the midpoints of the facet edges. We also calculate the vectors L@, L2Q, L3Q, then
calculate the scalar products (L;Cy, L;Q),i = 1,2,3. If all three scalar products are greater than
or equal to zero, then the minimum distance from the point ) to the mesh is equal to the distance
to the facet k. If otherwise, the distance is calculated according to the algorithm in paragraph 4; 4.
Calculate the scalar product of the vector (AQ, AVy),k = 1,...,n. Important: each of the vectors
Vi, must be normalized before calculating the scalar products. Let’s define k for which the scalar
product (AQ, AV};) is maximal. An edge with index k is the nearest edge to the point (). In this
case, the minimum distance from the point () to the mesh is equal to the distance to the edge k.
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A.2 OBJAVERSE-XL SHAPES HASHES

Table 3: Each objaverse-XL shape has a unique hash that identifies it in this dataset.

Name | Train or test | Objaverse ID

bottle | Train 00b2c8c60d2f45a893ee73fd1f107e27

bird Train 02c81d18c4{f04b9b9275fde41d0e715b
sphere | Train f8c97£11180440ccaeSbc156ef087014

key Train 4bdab6ble3194045ab6362e4c6cda222
doll Test 0e30fca3637¢4083863¢1240d6d1{1bf
spiral | Test 1d6ad3e20daa4873a3bla0ab6cOea8dl

A.3 FULL RESULTS

Table 4: Basic models results: DPSR + MC, KNN, MLP, U-Net. Experiments show the best results
in KL div. for a specific test shape and all shapes highlighted in green and dark green, respectively.
Our GAN-based approach performs significantly better for the rest of the metrics which are shown
in Table 5.

Test shape . . Metrlcs
KL div. | Cosine| Linear | Manh.] Nuclear |
o Bird 0.44385  0.02214  0.29057  8.13646 0.79620
S | Bottle 0.49276  0.05177 0.57202  9.93406 1.60127
+ | Key 006330 0.06551  0.63861 13.24510 2.26182
% Sphere 0.35360 0.13064  0.69201 20.95043 1.80963
& | Doll 0.52423 0.09685  0.62921 19.19287 1.61193
A Spiral 0.49276  0.07408  0.52683 15.96581 1.38656
5 | Bird 0.44349 0.01495 0.24551  6.37309 0.59441
% Bottle 0.48912  0.03381  0.44590  9.42089 1.32781
& | Key 0.06630  0.04790  0.48711 11.63991 1.53463
& Sphere 0.35994  0.08495 0.56878 16.45870 1.43616
% Doll 0.52934  0.03354  0.38112 10.68838 1.02367
M | Spiral 0.48815 0.00552 0.14572  3.93982 0.44374
Bird 0.45572  0.05788  0.59004 14.28690 2.03749
Bottle 0.50096  0.16061 1.43471 30.53953 5.69239
& | Key 0.06677  0.04867 0.61003 12.47303 2.51558
S | Sphere 0.36640  0.11959  1.04522 25.71050 3.72137
Doll 0.54231  0.16903  0.80894 23.71446 3.58923
Spiral 0.50105 0.06661  0.61870 14.49724 2.14522
Bird 0.45791  0.12729 0.94130 18.56488 3.52717
Bottle 0.48909 0.05028 0.56939 10.86997 1.68377
g Key 0.07039  0.27131  2.28507 40.40780  11.84921
| Sphere 0.36845 0.08761  0.73039 14.87120 2.56812
Doll 0.54249  0.13434  1.06966 22.07343 4.16051
Spiral 0.50067  0.13567 1.06968 24.73850 4.13640
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Table 5: GAN training results. Five train datasets: bird, bottle, key, sphere, all. Two test datasets:
doll, spiral. The best results for a specific test shape are highlighted in green. The best metrics
for all shapes are highlighted with dark green. The GAN results for the KL div. are slightly lower,
however they are comparable to the rest of the approaches. The GAN results for other metrics are
significantly better than others.

. Metrics
Train shape  Test shape KL div. | Cosine| Linear | Manh.| Nuclear |
.5 | Bird Bird 0.45106  0.00597 0.18472  5.28831 0.60968
g Bottle Bottle 0.49516  0.01402  0.26539  5.96482 0.79997
S | Key Key 0.06589 | 0.01937 0.32343  5.68141 1.17867
S | Sphere Sphere 0.35953  0.00557 0.15620  3.67948 0.47831
Bottle Bird 0.45183  0.00671  0.17695  4.63796 0.55543
Key Bird 0.45828  0.02109 0.32092 7.61674 1.07289
Sphere Bird 0.45269 | 0.00251 0.10487  2.84228 0.32697
All Bird 0.45327 0.00601 0.16738  4.50107 0.53778
Bird Bottle 0.49573 0.01846  0.32097  6.18145 1.00624
= | Key Bottle 0.50158  0.03387 0.43412  8.31266 1.36748
g Sphere Bottle 0.49697  0.01151  0.24423  5.57860 0.79836
S| Al Bottle 049770  0.00951 0.21888  5.25660 0.68357
% | Bird Key 0.06479  0.02679 0.37076  6.79448 1.27395
5 | Bottle Key 0.06527  0.06527  0.34457  6.19686 1.22980
O | Sphere Key 0.06415  0.03881  0.44968  8.66565 1.49396
All Key 0.06473  0.03096  0.40012  7.69379 1.39265
Bird Sphere 0.35944 [0.00183  0.09029  2.37248  0.32119
Bottle Sphere 0.36089  0.00613  0.17313  4.32524 0.51328
Key Sphere 0.36573  0.01888  0.32437  8.69921 0.97167
All Sphere 0.36108  0.00282  0.10764  2.65000 0.36230
Bird Doll 0.53548 0.01027  0.22929  5.39447 0.67479
Bottle Doll 0.53560  0.01730 0.28424  7.04564 0.79888
- Key Doll 0.54289  0.02074  0.32903  7.94347 1.14373
‘5 | Sphere Doll 0.53638 = 0.00625 0.16130  4.68518 0.46974
g All Doll 0.53805  0.00936  0.19859  5.59246 0.55628
= | Bird Spiral 0.49832 0.00642 0.18521 5.28779 0.51220
é Bottle Spiral 0.49747 0.01647 0.29413  7.96902 0.83973
Key Spiral 0.50192  0.03417 0.44514 11.57165 1.42135
Sphere Spiral 049742 0.00368 0.12526  3.60572
All Spiral 0.49609  0.00976  0.21889  6.00135 0.60933
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A.4 NERF-LIKE NOISE EXAMPLES
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Figure 8: The real NeRF noise is compared to artificial noise generated by our pipeline.
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A.5 DENOISING ILLUSTRATION
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oo Figure 9: GT and noisy meshes are prepared for denoising tests as explained in Section 7.1. The
denoising was performed by the Cascaded Regression model which was trained on the dataset pro-

o1s duced by our GAN-based pipeline. We have trained Cascaded Regression on the dataset produced

914 by KNN-based pipeline for comparison to our method. It can be seen that Cascaded Regression

915 trained on GAN-based dataset performs better.
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