
Under review as a conference paper at ICLR 2024

ADAPTIVITY AND MODULARITY FOR EFFICIENT GEN-
ERALIZATION OVER TASK COMPLEXITY

Anonymous authors
Paper under double-blind review

ABSTRACT

Can transformers generalize efficiently on problems that require dealing with
examples with different levels of difficulty? We introduce a new task tailored to
assess generalization over different complexities and present results that indicate
that standard transformers face challenges in solving these tasks. These tasks are
variations of pointer value retrieval previously introduced by Zhang et al. (2021).
We investigate how the use of a mechanism for adaptive and modular computation
in transformers facilitates the learning of tasks that demand generalization over the
number of sequential computation steps (i.e., the depth of the computation graph).
Based on our observations, we propose a transformer-based architecture called
Hyper-UT, which combines dynamic function generation from hyper networks
with adaptive depth from Universal Transformers. This model demonstrates higher
accuracy and a fairer allocation of computational resources when generalizing to
higher numbers of computation steps. We conclude that mechanisms for adaptive
depth and modularity complement each other in improving efficient generalization
concerning example complexity. Additionally, to emphasize the broad applicability
of our findings, we illustrate that in a standard image recognition task, Hyper-
UT’s performance matches that of a ViT model but with considerably reduced
computational demands (achieving over 70% average savings by effectively using
fewer layers).

1 INTRODUCTION

Tackling many real-world problems such as scientific research, math problem solving (Saxton et al.,
2019; Wang & Lu, 2023), and parsing scenes (Kong & Fowlkes, 2018), requires reasoning over a
chain of steps (Baldock et al., 2021; Agarwal et al., 2022) where the sequence of steps and the length
of the chain are not known immediately. We conjecture that the basic ingredient to solve these learning
problems in a generalizable and efficient manner is the capability to break up the learning problem
into reusable components and compose them systematically (structured replacement of operations)
and productively (constructing more complex operations by composing simpler ones) (Szabó, 2008).

An emergent technique to deal with this setting in Large Language Models (LLMs) is to use chain of
thought (Wei et al., 2022a;b; Lee & Kim, 2023) where the chain of thought adjusts how much and
what type of compute the model applies to solve a given example. Can NNs learn a generalized chain
of thought reasoning process without the need to tie it explicitly to their input/output? Bubeck et al.
(2023) argues that one of the limitations of LLMs such as GPT-4 is their inability to perform multi-
step computations without an explicit scratch-pad (e.g., if not prompted to output the intermediate
steps). For example, GPT-4 can correctly answer the question of counting prime numbers in a range
only if it is asked to first list these numbers.

Mechanisms for having adaptive depth (Graves, 2016; Dehghani et al., 2019; Banino et al., 2021) and
modularity/sparsity Perez et al. (2018); Ha et al. (2017); Pfeiffer et al. (2023) offer natural solutions to
compose and execute computation graphs dynamically. Modularity helps with composing operations
systematically and adaptivity enables constructing operations with varying complexities. Hence
incorporating these mechanisms simultaneously into machine learning systems should increase their
efficiency and performance in multi-step reasoning scenarios.

We design a synthetic task to probe the capability of models to generalize across complexity of
examples in multi-step reasoning tasks. We aim to abstract away perceptual and other task-specific

1

Under review as a conference paper at ICLR 2024

Start

Start

3 < 4 4 ≮ 1

Start

3 < 4 4 < 6 6 ≮ 2

PVR

C- PVR

Figure 1: Example of PVR and C-PVR Tasks.
In the regular PVR task, only one part of the
input (in this case, the first element in the se-
quence) serves as the pointer. However, in the
C-PVR, each element can act as a pointer. The
task is to recursively retrieve the values until a
condition is met. For this illustration, the con-
dition is to continue as long as the sequence
progresses forward. In this diagram, gray cir-
cles refer to initial steps, blue to intermediate
steps, and green the final steps (the value of the
green circle is returned).

factors that may otherwise lead to spurious correlations and other complexities not related to the
central question of our work, and reduce task complexity to a number of sequential computation
steps (referred to as hops) required to solve the task. This task, conditional PVR (C-PVR), is an
extension of the pointer value retrieval task (PVR) (Zhang et al., 2021). We employ a symbolic
sequential version of the task and introduce conditional multi-hop, meaning the number of steps
required to solve an example is unpredictable until processed. In order to tackle this class of
problems involving sequential reasoning steps, we extend the depth-adaptive framework of Universal
Transformer (Dehghani et al., 2019) through the use of hyper-modules (Ha et al., 2017), resulting in
what we call a Hyper-UT model. Hyper module is a hyper network (Ha et al., 2017) that composes a
set of new weights via linear interpolation of weights from a bank of weight embeddings at each layer.
Instead of sharing parameters across layers the hyper-network and the pool of weight embeddings are
shared. This enables increasing the capacity of the model through increasing the number of modules
while still benefiting from inductive biases of parameter sharing (Abnar et al., 2020; Tay et al., 2022),
e.g., modular reuse.

Interestingly, we find that the inductive biases of adaptivity and modularity encoded in Hyper-
UT are not only helpful in iterative reasoning tasks like C-PVR, but also in standard System-1
problems (Bengio et al., 2021) like Imagenet1K classification. In particular, we show that introducing
the hyper-module component remedies the capacity problem of the Universal Transformer, and with
this architecture, we can achieve the same level of performance on Imagenet1K benchmark while
being more compute efficient.

As a summary, in this paper we make the following contributions:

• Introduce a new task to probe the capability of models to generalize across reasoning steps
when the total number of steps is undetermined;

• We explore the interplay between adaptive depth mechanism and modularity and how they
can synergize for efficient generalization in the context of example complexity;

• Examine the generality of the improvements in accuracy and efficiency of adaptive-depth,
modular transformers on a standard image classification task;

2 MULTI-STEP REASONING

Multi-step reasoning is a process where a system breaks down the task into a sequence of steps and
each step builds upon the previous ones. This type of problem solving is crucial in cases where
there is ambiguity in the solution space, i.e., where the sequence of steps cannot be determined
immediately. Scientific research is a prominent example of tasks that require such processes for
forming a hypothesis and iteratively adjusting it based on the observations until a conclusion can be
reached. A building block to enable a system to learn and execute this type of multi-step reasoning
processes, is the capability to learn tasks that require iterations of dynamic length. We introduce a
synthetic task, Conditional Pointer Value Retrieval (C-PVR) to probe this in neural networks (NNs).

2

Under review as a conference paper at ICLR 2024

2.1 CONDITIONAL POINTER VALUE RETRIEVAL

We introduce C-PVR to investigate the capability and limits of NNs in performing tasks that require
generalization over the number of sequential steps. The number of sequential steps can be viewed
as a notion of complexity of examples. Generalization to length is a special case of this and it has
been studied in both synthetic settings (Zhang et al., 2022; Abbe et al., 2023; Jelassi et al., 2023) and
large scale setting (Anil et al., 2022). However, the number of sequential computation steps needed
to solve the examples can be independent of their length (e.g., we can have shorter sequences that
require more steps or longer sequences that require less). Additionally, we are interested in cases
where there are no external or immediate clues for the model to know the sequence of steps or its
length before solving the example.

Zhang et al. (2021) introduced PVR as a benchmark to study if transformers are capable of human-
style reasoning. In PVR tasks, a specific portion of the input serves as a pointer, offering instructions
that pertain to a particular input location. This location is then processed to generate the output. In a
basic symbolic version of PVR tasks, inputs are sequences of numbers, where the first element in the
sequence is the pointer to another element in the sequence, and the output value is computed based
on the pointed element. In the simplest case, the output is the value where the pointer is pointing. In
this task, the second step is conditioned on the output of the first step. A multi-hop version of this
task can be constructed by allowing all the elements in the sequence to be interpreted as both pointers
and values (directly or by applying some transformations) and specifying the number of hops at the
example level or at the data-set level. We focus on the symbolic sequential version of this task and
extend the notion of multi-hop PVR such that the number of steps is not given but depends on the
input sequence. In simple terms, the task is defined as “Continue the retrieval steps recursively until a
certain condition is met”.

In designing the C-PVR task we follow two goals: (1) The minimum number of sequential steps
should vary for different examples; and (2) The number of steps should not be identifiable before
processing the sequence. The task comprises of the following components: (a) the input, which is a
sequence of length L of integers in the range of (1,K), (b) the output which is an integer in the range
of (1,K), (c) the operation for getting the pointer from a given element, (d) the operation for getting
the value from a given element, and (e) the halting condition.

In our experiments we set the halting condition to be get_pointer(a[i]) > i (keep retrieving until we
are not moving forward in the sequence). We compare two variants of our task: (1) C-PVR (plain)
where both pointer and value functions are identity and K = L, and (2) C-PVR (modulus) where the
value function is get_value(x) = x%L. Figure 1 shows examples of simple PVR and C-PVR (plain).

3 ADAPTIVE AND MODULAR TRANSFORMERS

Adaptive Compute Given the aforementioned varying difficulty of examples many learning problems
must tackle, a possible approach to address it is augmenting the model with an ability to dynamically
allocate computational budget to different examples (or part of an example) accordingly. In this
approach, a module, e.g., an LSTM in Graves (2016) or a transformer layer in Dehghani et al. (2019),
is provided with an additional module (often a fully connected network) predicting a halting score
that determines how many times this module will be repeated on the current input before a scoring
threshold is met. To encourage the model to limit the amount of computation it will use, Graves
(2016) proposes to not only truncate the maximum amount of updates, i.e., the number of repeated
computations, but regularize the model using an additional Ponder Cost (for more details, see Graves,
2016).
Modularity Modularity is typically enforced in neural networks by breaking them into smaller
sub-networks which can then be composed differently to solve different examples. Modular neural
networks are interesting both for their potential generalization ability through a systematic composi-
tion of modules, their efficiency by reducing the cost of each compute step while allowing the total
capacity of the model to grow, and sometimes their interpretability. There are different ways to make
neural networks modular, e.g., mixture of expert transformer models (Fedus et al., 2022; Lepikhin
et al., 2021), using hyper networks (Ha et al., 2017), modulating the activations (Perez et al., 2018),
etc. We explore the following modularity techniques:

3

Under review as a conference paper at ICLR 2024

Multi-Head
Self-Attention

inputs

Norm

Positional
Embedding

Input Embedding

K V Q

x

Linear

GeLU

Linear

Norm

Feed Forward

…

× N
Attention-based

Router

… …

Attention-based
Router

Inputs
To

Layer #L

weights

weights

…

Inputs
To

Layer #L

Weight Embedding Pool

Weight Embedding Pool

Figure 2: Overview of
the Hyper-UT Architec-
ture. In each Hyper-UT
layer, the linear projection
weights are dynamically
generated by the "Module
Selector", based on the in-
put for each layer. Al-
though the illustration pri-
marily highlights the linear
layers in the FeedForward
block for simplicity, the
same principle applies to
the query, key, value, and
output projections within
the attention block.

• FiLM layers (Perez et al., 2018): The activations are modulated by shifting and scalar values
that are predicted with an MLP block given varying input representations at each layer.

• Perceiver (Jaegle et al., 2021) style layers: At each step, there is an additional cross attention
to a set of latent vectors where each vector can be interpreted as a module.

• Hyper-Module: The values of parameters of each layer are predicted by a hyper-module
(that is shared across layers) given a representation of the input at each layer (Figure 2).

3.1 HYPER-UT

Universal transformers have been shown to generalize better than transformers in certain settings (De-
hghani et al., 2019; Csordás et al., 2021); however, when applied to tasks which need higher capacity
they often cannot match the performance of their non-adaptive counterparts (Xue et al., 2023). There
are two main components for universal transformers: the adaptive depth module and the parameter
sharing in depth. If the goal for applying adaptive depth is merely compute efficiency, one does
not need to share parameters across depth and sacrifice capacity. But if the goal is to improve
generalization, we want to jointly benefit from inductive biases of both adaptivity and parameter
sharing (modular reuse). More importantly, if the goal is generalization, we expect models to be able
to deal with examples of higher complexity at inference time.

The challenge of sharing parameters across the layers of the transformer model is that the only knob
to increase the capacity of the model in terms of the number of parameters is to increase the width of
the shared layer. This results in more flops per step or layer.

By incorporating the hyper-module into the UT architecture, we remedy this problem. While there
is still an overhead for the modularization, we hypothesize that the capacity of the model can grow
faster than the extra cost of compute per layer. Additionally, modularity can also be viewed as a
source of inductive bias that can enhance both efficiency and generalization. Our experiments in
Section 4.3 verify this to some extent.

In Hyper-UT, we replace the dense layers in the self-attention module and the MLP after the self-
attention in the transformer block with hyper-modules (the hyper-modules for different components
of the layers are not shared but they are shared across layers). At every layer, the hyper-module
composes a set of new weights via linear interpolation of weights from a bank of weight embeddings,
conditioned on some representation of the input at that layer. To avoid having to store weight
embeddings of the size of the parameters, there is a projection layer that maps the module embedding
to a vector which is the size of the weights needed to be predicted.

The Hyper-Module consists of the following components.

• Weight embedding pool: Each embedding in the weight embedding pool can be loosely
interpreted as a module or expert. We split each embedding into key and value where the

4

Under review as a conference paper at ICLR 2024

Figure 3: Performance of transformer variants on C-PVR (modulus) on test sets with different number
of hops. The shaded area is for in-distribution and the un-shaded area is out-of-distribution. In
the first row we examine the impact of adaptive depth and parameter sharing separately and when
combined together. In the second row, we compare how different modularisation techniques improve
the performance and efficiency of a model with adaptive depth. Note that in the first row, in the left
most plot, T32 and T32 ACT overlap and in the right most plot, T32 and T32 PS overlap making T32
invisible in these two plots.

key is used for module selection and the values are linearly interpolated based on a score
generated by the router to compute the target module embedding.

• Attention-based router: The attention-based router predicts the scores for each module to
compute the embedding of the target module based on the attention between the representa-
tion of the input at the current layer and the keys in the weight embedding pool.

• Weight generator: A linear layer that projects the weight embedding to the weights of the
target module.

Since the weight generator needs to predict a vector with the size of the full matrix of the dense
layers, it can become a bottleneck as we scale up the model size and increase the dimensions of these
dense layers. To address this challenge, a potential solution is to predict factorized versions of the
weight matrices. We defer the investigation of scalable implementations for the hyper-module to
future research.

4 EXPERIMENTS

We present empirical results to show how incorporating adaptive compute and modular compute
simultaneously yields better generalization and efficiency.

First, we show on the C-PVR task that generalizing to more complex examples (examples that require
a higher number of sequential steps), is not trivial for standard transformers. Under a setting where
the diversity of the complexity of examples seen during training is limited, we investigate the effects
of adaptivity and modularity on the performance of transformers on this task.

Second, we investigate how pre-training on a language modelling task can help with learning and
generalizing on the C-PVR task, and how augmenting the model with an explicit scratch-pad impacts
the results.

Third, we look into a standard image classification task where models with adaptive depth do not
match the performance of their non-adaptive counterparts despite being more efficient (Xue et al.,
2023). In this setting, we show that introducing modularity, as we do in Hyper-UT remedies this
problem, with Hyper-UT matching the performance of standard ViT (Dosovitskiy et al., 2021) with
less compute in terms of the number of layers.

5

Under review as a conference paper at ICLR 2024

4.1 C-PVR: EFFICIENT GENERALIZATION OVER EXAMPLE COMPLEXITY

In our experiments on the C-PVR task, we look into performance and efficiency of different adaptive
and non-adaptive transformers with different modularization mechanisms. Our focus is on the
generalization performance of these models with respect to the number of hops or the sequential
computation steps needed to solve examples, as well as their efficiency in terms of correlation of the
amount of compute and the complexity of examples.

We study the setting where the models are trained on examples of lower complexity (1-4) and
evaluated on examples of higher complexity (5-9). Figure 3 shows the performance of the models on
test sets with different numbers of hops in this setting. In this experiments, the sequence, L, is 100,
and the values of elements are in the range of [1, 1000]. In the train set we have around 450k of each
number of hops (∼ 2M training examples) and the size of the test sets are 50K.

We compare transformers with the following mechanisms:

• Adaptive Computation Time (ACT) (Graves, 2016) as the mechanism for having adaptive
depth. We apply ACT per token.

• Different ways of parameter sharing and modularisation across layers with or without ACT:
– No parameter sharing: The main problem with this approach is that if the model

has adaptive depth and needs to be deeper during inference time, it needs to rely on
parameters that are not well trained: T12 (Transformer with 12 layers), T32, T64, T32
ACT (Adaptive depth Transformer with max 32 layers)

– Plain parameter sharing: All parameters are shared across all layers. We have one
block that is called in a loop N times, where N is the number of layers: UT (Universal
Transformer (Dehghani et al., 2019)), T32 PS (32 layer transformer with parameter
sharing)

– Parameter sharing with additional Film layers (UT+FiLM).
– Sharing latents across layers of a perceiver style Transformer (UPT).
– Hyper-Modules: Parameters of the dense layers are predicted by hyper-networks, which

can be shared across layers: Hyper-UT

Details of the hyper-parameters of these models are presented in Appendix C.
When do models break Figure 3 shows how the accuracy of the models trained on examples with a
smaller number of hops (1-4) drops as we increase the number of hops in the test set (from 1 to 9). We
observe that the performance of the transformer models with no adaptive and modular compute drops
more rapidly. Increasing the number of layers of a fixed-depth transformer model does not lead to any
significant improvement in accuracy despite the increase in capacity (Figure 7 in Appendix A). On the
contrary, parameter sharing in depth improves the generalization performance significantly, despite
reducing the capacity in terms of number of parameters. In this particular setting adding an ACT
mechanism without parameter sharing does not impact performance at all but it improves efficiency
in terms of number of layers. UT, incorporating both parameter sharing and ACT at the same time,
generalizes better than a standard transformer and a transformer with only parameter sharing. Adding
modularity to UT in different forms, further improves both performance and efficiency. Among
all, Hyper-UT achieves the best overall results. Moreover, increasing the width of the UT model,
also leads to better generalization in terms of accuracy, verifying that a major problem for UT to
generalize on this task is the capacity.
Compute Efficiency and Fair Allocation of Compute To investigate the compute efficiency of the
different transformers we try on the C-PVR task, first, we look into the average depth of the models.
Figure 3 shows how the average number of layers applied on examples varies for the test sets that
require different numbers of hops. We expect a model to be efficient during inference not only if in
general, it achieves better accuracy with less compute, but also if it can allocate compute to different
examples not uniformly but based on their complexity.

For non-adaptive transformers average depth is always equal to the maximum number of layers.
To make the comparison meaningful we train multiple instances of non-adaptive transformers with
different numbers of layers (Figure 7) in Appendix A. We observe, in Figure 3, that UT+FiLM and
Hyper-UT are more fair and efficient in terms of allocating compute compared to the UT model
(HyperUT being the most efficient). By more fair in allocating compute, we mean the number of

6

Under review as a conference paper at ICLR 2024

(a) Transfomer (32L) (b) UT (c) Hyper-UT

Figure 4: Implicit curriculum of transformers on C-PVR task. The y-axis is the accuracy and the
x-axis is the training steps. This plot shows that transformers (a Hyper-UT instance) is learning
examples in order of their complexity.

1 2 3 4 5 6 7 8 9
Number of hops

0

20

40

60

80

100

Ac
cu

ra
cy

C-PVR (Plain) without scratchpad

(a)

1 2 3 4 5 6 7 8 9
Number of hops

0

20

40

60

80

100

Ac
cu

ra
cy

C-PVR (Plain) with scratchpad

Label accuracy
Last token accuracy

(b)

1 2 3 4 5 6 7 8 9
Number of hops

0

20

40

60

80

100

Ac
cu

ra
cy

C-PVR (Modulus) without scratchpad

(c)

1 2 3 4 5 6 7 8 9
Number of hops

0

20

40

60

80

100

Ac
cu

ra
cy

C-PVR (Modulus) with scratchpad
Label accuracy
Last token accuracy

(d)

Figure 5: Performance of pre-trained T5 models on C-PVR (plain), (a) and (b) and C-PVR (modulus),
(c) and (d). To generate each data point on the plots, we did three rounds of training. The reported
values are the mean while the spread is just standard deviation of the sample mean.

effective sequential compute steps (e.g., number of layers), is correlated with the complexity of the
examples. It is intriguing that complementing adaptive depth with modularity leads the adaptive
models to use fewer number of layers (comparing UT with UT+FiLM and HyperUT).
Implicit Curriculum As depicted in Figure 4, the order of examples learned is correlated with their
complexity (with respect to the number of hops). This means the notion of complexity we employ
here is aligned with the family of solutions these models are learning.

4.2 PRE-TRAINED LANGUAGE MODELS

One natural question to ask is whether pre-trained language models are capable of generalizing to
higher number of hops than those seen during training on the C-PVR (plain) and C-PVR (modulus)
tasks using scratch-pad. To examine this question, we fine-tuned small pretrained T5 models on
C-PVR (plain) and C-PVR (modulus) with or without scratch-pad. Note that scratch-pad could in
principle allow models to allocate different amounts of compute to each input instance and potentially
help them generalize to higher number of hops at inference time.

Figure 5 shows accuracy on C-PVR (plain)/C-PVR (modulus) tasks versus number of hops in two
settings with and without scratch-pad. The T5 models are fine-tuned on an equal-sized mixture of
examples with number of hops ranging from 1 to 4 (shown as the grey area in the plots). The models
are tested on all number of hops from 1 through 9 (1 through 4 hops would be the in-domain test cases,
while 5 through 9 hops would constitute out of distribution in our setting). The training set sizes are
100K/160K for C-PVR (plain)/C-PVR (modulus) respectively, while test size was fixed at 5K. All
models are trained to convergence (C-PVR (plain)/C-PVR (modulus) for 9/15 epochs). The input
size is fixed at L = 30. For C-PVR (modulus), the maximum of array elements value is 300. The
problem is formulated as text-to-text. For runs with scratch-pad, the target has the general format of
LABEL # SCRATCH-PAD, where scratch-pad is the string representing the array values at intermediate
hops including the the label at the end. The character # is just a separator for convenience.

As we can see in Figure 5, fine-tuned T5 shows non-trivial generalization (e.g, well beyond chance-
level) on number of hops higher than 4, which diminishes as the number of hops increases. Including
a scratch-pad enhances the results if the accuracy is computed based on the last token of the scratch-

7

Under review as a conference paper at ICLR 2024

IN IN-V2

0.6

0.65

0.7

0.75

0.8

To
p1

A
cc

ur
ac

y

ViT B/16 ViT PS B/16 U-ViT B/16

U-ViT L/16 HyperU-ViT B/16

IN IN-V2

0

5

10

N
um

.o
fL

ay
er

s

Average GFLOPs based on average
number of layers on Imagenet1k vali-
dation set.

Model GFLOPs Num. Layers

ViT B/16 17.76 12

U-ViT B/16 10.51 7

U-ViT L/16 15.89 6

Hyper U-ViT B/16 3.45 2

Figure 6: Performance of vision transformer models trained on ImageNet1k on ImageNet v1 and
ImageNet v2 validations sets. For details of hyper-parameters see Appendix D.

pad, but it hurts the performance if the accuracy is computed for the label that is followed by the
scratch-pad. To get more insight into the type of errors made by the model with scratch-pad we look
into the percentage of error where scratch pad and label are consistently wrong or are inconsistent.
Figure-8 in Appendix B illustrates this. We observe that, for all number of hops across tasks, the
dominate type of error is when model generates the exact scratch-pad (which contains the label at the
end also) but fails to output the label itself (the first portion of the target string before #). As the
number of test hops increases, the buckets where label is generated correctly but the scratch-pad is
not an exact match to the ground truth emerges but remains small. Also, the bucket where neither
label nor scratch-pad matches the ground truth becomes the second dominating type of error.

4.3 IMAGE CLASSIFICATION: CLOSING THE GAP BETWEEN U-VIT AND VIT

To show the generality of the benefits of combining adaptivity and modularity and the Hyper-UT
architecture, we provide empirical results on a standard image classification task. In our experiments,
U-ViT (a vision transformer model with parameter sharing and ACT mechanism) when trained on
ImageNet1k, achieves a lower accuracy on this task compared to ViT (Xue et al., 2023). This is
expected since U-ViT has a smaller number of parameters than ViT and hence smaller capacity. As
mentioned earlier, Hyper-UT remedies the capacity problem of UT and we see in our experiments
that Hyper-UT achieves the same level of performance as ViT and at the same time it converges to
apply fewer layers on average. Interestingly, Hyper-UT converges to use fewer number of layers
also compared to the U-ViT model. Additionally, we observe that increasing the capacity of a U-ViT
model through some form of modularization (in this case hyper-module) has a more significant and
robust effect compared to simply increasing the width of the model. Our findings are inline with the
dissuasion in the concurrent work on sparse universal transformers (Tan et al., 2023).

Though the sheer number of layers is not an adequate measure of efficiency—given that the flops per
layer vary across models—we note that, on average, Hyper-UT requires a lower total compute budget
per example. This is despite the overhead of the hyper-module, which involves routing and weight
prediction, because there is a substantial drop in the average number of layers used.

5 RELATED WORK

Adaptive Compute Adaptive compute has been a topic of interest in ML mainly because of its
potential to lower inference costs (Laskaridis et al., 2021; Yang et al., 2020; Mehra et al., 2022; Hou
et al., 2020). Other than its efficiency advantages, in some studies, it is shown that particular ways of
incorporating adaptive compute introduce a form of recurrence in depth which can be a source of
inductive bias that facilitates generalization in certain settings (Dehghani et al., 2019; Banino et al.,
2021; Abnar et al., 2021; Csordás et al., 2021). RNNs, CNNs, and transformers are adaptive models
that allocate compute to input based on the size of the input. While in principle all these models can
deal with inputs of variable size their ability to generalize to inputs of varying shape is limited in
their vanilla version (specific variants of RNNs, i.e., LSTMs are better at generalizing to unseen input
sizes and in transformers using specific types of positional encodings could improve their ability to
generalize to inputs of different size). However, the length/size of the input is not always a good
proxy for its complexity. As a naive example, a given data point can be arbitrarily padded and resized
but this does not increase its complexity. Graves (2016) introduced the concept of pondering and
adaptive time compute and applied it to LSTMs. The main idea here is to allow the network to ponder
as much as needed by having a module that predicts when to halt based on the current state, and

8

Under review as a conference paper at ICLR 2024

add a regularization term to the objective to minimize the number of steps. Later, Dehghani et al.
(2019) applied the same ACT mechanism introduced by Graves (2016) to transformers, where you
could make the halting decision per example or token. Banino et al. (2021) introduces a more stable
mechanism for incorporating adaptivity by using a ponder loss function that is differentiable. In
parallel, early-exit mechanisms (Kaya et al., 2019; Mehra et al., 2022), augment each layer with
additional side branch classifiers such that if an example can already be classified in the lower layers
it stops earlier. Alternatively, Xue et al. (2023) suggests Adatape that employs elastic input sequences
to enable dynamic computation for example in transformers.
Chain of Thought Reasoning LLMs with a mechanism for chain-of-thought (Wei et al., 2022a;
Nye et al., 2021; Wei et al., 2022b; Kojima et al., 2022) reasoning can potentially use the chain of
thought as a strategy to control the amount of compute spent on each input example. It is shown
that training language models with chain-of-thought increases their ability to generalize to longer
sequences. There is however no study yet that investigates if merely allowing the model to adapt the
amount of compute per example is the reason behind this success regardless of the content of the
chain of thought, disentangled from other effects of prompt design (Brown et al., 2020).
Modular and Sparse Compute Modular compute, i.e., explicit or implicit sub-networks that are
specialized and reused. Efficiency in terms of increasing the capacity of a model while not increasing
the amount of compute per step and example is one of the main motivations for using modular NNs
which is explored in a mixture of expert transformer models (Fedus et al., 2022; Lepikhin et al.,
2021). Du et al. (2022) show that using a sparse mixture of expert transformers as the backbone
for a language model, while increasing the number of parameters of the model, can lower the cost
of inference while at the same time achieving better performance. Jaszczur et al. (2021) show that
sparsity does not necessarily hurt the performance of the model if the total number of parameters is
not increased. They show that sparse models achieve the same perplexity as the standard transformer
with the same number of parameters. Additionally, modularity can potentially improve generalization
by allowing the model to compose operations to deal with unseen data points (Goyal et al., 2021).
Hyper-Networks Ha et al. (2017) introduced hyper-networks, neural networks that predict the weights
of the target model. They apply the idea on LSTMS, Hyper-LSTMS where every step, potentially a
different set of weights can be applied on the next input token. Hyper-networks have been adopted
to be used as modularisation techniques for efficient fine-tuning in transfer learning settings. It is
also shown, theoretically, that hypernetworks can learn effective modular solutions (Galanti & Wolf,
2020). Mai et al. (2022) propose forming the token mixing MLP dynamically using hyper-networks
in MLP-Mixers, achieving better performance than vanilla MLP-Mixers and better compute efficiency
compared to transformers.

6 CONCLUSION

As a first step to assess and improve the capability of NNs for iterative problem solving, we propose a
task to probe how well they can generalize on tasks that require dynamic number of steps per example.
The task we propose, C-PVR, is an extension of the PVR task. In this task, we can split examples
based on the (relative) number of sequential steps required to solve them. The task is designed such
that the level of complexity or difficulty of the examples is not dependent on the length of the input.
This has two advantages: (1) We can sidestep the challenges of length generalization related to input
representation and positional embeddings. (2) This allows us to study the capability and efficiency of
NNs to generalize over the complexity of examples without the side effects of the size (length) of the
input on the computation budget of the models.

Our experiments provide evidence that in constrained settings, where the diversity of examples in the
training set is limited, vanilla transformers struggle to generalize on the C-PVR task. We observe
that pre-training transformers on language modelling improves their generalization in these settings.
Additionally, mechanisms for adaptivity and modularity provide the models with inductive biases
toward solutions that are more robust to the variations in depth of the computation graph needed to
solve the examples. While adaptivity and modularity have been explored and employed separately
in different settings to improve generalization and efficiency of NNs, here we show that they can
have complementary roles and incorporating them into the model architecture at the same time
can boost their effects. Moreover, we demonstrate that the advantage of integrating adaptivity and
modularity extends beyond multi-step reasoning tasks, such as C-PVR. By simultaneously employing

9

Under review as a conference paper at ICLR 2024

these mechanisms, we can attain enhanced efficiency in handling a standard System-1 problem like
ImageNet1k classification, all while maintaining accuracy.

REFERENCES

Emmanuel Abbe, Samy Bengio, Aryo Lotfi, and Kevin Rizk. Generalization on the unseen, logic
reasoning and degree curriculum. In ICML, 2023. URL https://arxiv.org/abs/2301.
13105.

Samira Abnar, Mostafa Dehghani, and Willem Zuidema. Transferring inductive biases through
knowledge distillation. arXiv preprint arXiv:2006.00555, 2020.

Samira Abnar, Mostafa Dehghani, and Willem H. Zuidema. Transferring inductive biases through
knowledge distillation, 2021. URL https://openreview.net/forum?id=5UY7aZ_
h37.

Chirag Agarwal, Daniel D’souza, and Sara Hooker. Estimating example difficulty using variance
of gradients. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 10368–10378, 2022.

Cem Anil, Yuhuai Wu, Anders Johan Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Venkatesh
Ramasesh, Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length
generalization in large language models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave,
and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL
https://openreview.net/forum?id=zSkYVeX7bC4.

Robert Baldock, Hartmut Maennel, and Behnam Neyshabur. Deep learning through the lens of
example difficulty. Advances in Neural Information Processing Systems, 34:10876–10889, 2021.

Andrea Banino, Jan Balaguer, and Charles Blundell. Pondernet: Learning to ponder. In 8th ICML
Workshop on Automated Machine Learning (AutoML), 2021. URL https://openreview.
net/forum?id=1EuxRTe0WN.

Yoshua Bengio, Yann Lecun, and Geoffrey Hinton. Deep learning for ai. Commun. ACM, 64(7):
58–65, jun 2021. ISSN 0001-0782. doi: 10.1145/3448250. URL https://doi.org/10.
1145/3448250.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Róbert Csordás, Kazuki Irie, and Juergen Schmidhuber. The devil is in the detail: Simple tricks
improve systematic generalization of transformers. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing, pp. 619–634, Online and Punta Cana,
Dominican Republic, November 2021. Association for Computational Linguistics. doi: 10.18653/
v1/2021.emnlp-main.49. URL https://aclanthology.org/2021.emnlp-main.49.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals, Jakob Uszkoreit, and Lukasz Kaiser. Universal
transformers. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=HyzdRiR9Y7.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale.
In International Conference on Learning Representations, 2021. URL https://openreview.
net/forum?id=YicbFdNTTy.

10

https://arxiv.org/abs/2301.13105
https://arxiv.org/abs/2301.13105
https://openreview.net/forum?id=5UY7aZ_h37
https://openreview.net/forum?id=5UY7aZ_h37
https://openreview.net/forum?id=zSkYVeX7bC4
https://openreview.net/forum?id=1EuxRTe0WN
https://openreview.net/forum?id=1EuxRTe0WN
https://doi.org/10.1145/3448250
https://doi.org/10.1145/3448250
https://aclanthology.org/2021.emnlp-main.49
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=HyzdRiR9Y7
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

Under review as a conference paper at ICLR 2024

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, Barret Zoph, Liam Fedus, Maarten P Bosma,
Zongwei Zhou, Tao Wang, Emma Wang, Kellie Webster, Marie Pellat, Kevin Robinson, Kathleen
Meier-Hellstern, Toju Duke, Lucas Dixon, Kun Zhang, Quoc Le, Yonghui Wu, Zhifeng Chen,
and Claire Cui. GLaM: Efficient scaling of language models with mixture-of-experts. In Ka-
malika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato
(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 5547–5569. PMLR, 17–23 Jul 2022. URL
https://proceedings.mlr.press/v162/du22c.html.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity, 2022.

Tomer Galanti and Lior Wolf. On the modularity of hypernetworks. In Proceedings of the 34th
International Conference on Neural Information Processing Systems, NeurIPS’20, Red Hook, NY,
USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Anirudh Goyal, Alex Lamb, Jordan Hoffmann, Shagun Sodhani, Sergey Levine, Yoshua Bengio, and
Bernhard Schölkopf. Recurrent independent mechanisms. In International Conference on Learning
Representations, 2021. URL https://openreview.net/forum?id=mLcmdlEUxy-.

Alex Graves. Adaptive computation time for recurrent neural networks. CoRR, abs/1603.08983,
2016. URL http://dblp.uni-trier.de/db/journals/corr/corr1603.html#
Graves16.

David Ha, Andrew M. Dai, and Quoc V. Le. Hypernetworks. In International Conference on Learning
Representations, 2017. URL https://openreview.net/forum?id=rkpACe1lx.

Lu Hou, Zhiqi Huang, Lifeng Shang, Xin Jiang, Xiao Chen, and Qun Liu. Dynabert: Dynamic
bert with adaptive width and depth. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan,
and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp. 9782–
9793. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_
files/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf.

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
Perceiver: General perception with iterative attention. In International conference on machine
learning, pp. 4651–4664. PMLR, 2021.

Sebastian Jaszczur, Aakanksha Chowdhery, Afroz Mohiuddin, LUKASZ KAISER, Wojciech Gajew-
ski, Henryk Michalewski, and Jonni Kanerva. Sparse is enough in scaling transformers. In
M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Ad-
vances in Neural Information Processing Systems, volume 34, pp. 9895–9907. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/file/51f15efdd170e6043fa02a74882f0470-Paper.pdf.

Samy Jelassi, Stéphane d’Ascoli, Carles Domingo-Enrich, Yuhuai Wu, Yuanzhi Li, and François
Charton. Length generalization in arithmetic transformers, 2023.

Yiğitcan Kaya, Sanghyun Hong, and Tudor Dumitras. Shallow-Deep Networks: Understanding and
mitigating network overthinking. In Proceedings of the 2019 International Conference on Machine
Learning (ICML), Long Beach, CA, Jun 2019.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems, 35:
22199–22213, 2022.

Shu Kong and Charless C. Fowlkes. Recurrent scene parsing with perspective understanding in
the loop. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

Stefanos Laskaridis, Alexandros Kouris, and Nicholas D. Lane. Adaptive inference through early-exit
networks: Design, challenges and directions. In Proceedings of the 5th International Workshop
on Embedded and Mobile Deep Learning, EMDL’21, pp. 1–6, New York, NY, USA, 2021.

11

https://proceedings.mlr.press/v162/du22c.html
https://openreview.net/forum?id=mLcmdlEUxy-
http://dblp.uni-trier.de/db/journals/corr/corr1603.html#Graves16
http://dblp.uni-trier.de/db/journals/corr/corr1603.html#Graves16
https://openreview.net/forum?id=rkpACe1lx
https://proceedings.neurips.cc/paper_files/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/6f5216f8d89b086c18298e043bfe48ed-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/51f15efdd170e6043fa02a74882f0470-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/51f15efdd170e6043fa02a74882f0470-Paper.pdf

Under review as a conference paper at ICLR 2024

Association for Computing Machinery. ISBN 9781450385978. doi: 10.1145/3469116.3470012.
URL https://doi.org/10.1145/3469116.3470012.

Soochan Lee and Gunhee Kim. Recursion of thought: Divide and conquer reasoning with language
models, 2023. URL https://openreview.net/forum?id=PTUcygUoxuc.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. {GS}hard: Scaling giant models with condi-
tional computation and automatic sharding. In International Conference on Learning Representa-
tions, 2021. URL https://openreview.net/forum?id=qrwe7XHTmYb.

Florian Mai, Arnaud Pannatier, Fabio Fehr, Haolin Chen, François Marelli, François Fleuret, and
James Henderson. Hypermixer: An mlp-based low cost alternative to transformers. In An-
nual Meeting of the Association for Computational Linguistics, 2022. URL https://api.
semanticscholar.org/CorpusID:258887921.

Akshay Mehra, Skyler Seto, Navdeep Jaitly, and Barry-John Theobald. Understanding the robustness
of multi-exit models under common corruptions. arXiv preprint arXiv:2212.01562, 2022.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, et al. Show your work:
Scratchpads for intermediate computation with language models. arXiv preprint arXiv:2112.00114,
2021.

Ethan Perez, Florian Strub, Harm de Vries, Vincent Dumoulin, and Aaron C. Courville. Film: Visual
reasoning with a general conditioning layer. In AAAI, 2018.

Jonas Pfeiffer, Sebastian Ruder, Ivan Vuli’c, and Edoardo M. Ponti. Modular Deep Learning. CoRR,
abs/2302.11529, 2023. URL https://arxiv.org/abs/2302.11529.

David Saxton, Edward Grefenstette, Felix Hill, and Pushmeet Kohli. Analysing mathematical
reasoning abilities of neural models. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=H1gR5iR5FX.

Zoltán Gendler Szabó. Compositionality. In Stanford Encyclopedia of Philosophy. 2008.

Shawn Tan, Yikang Shen, Zhenfang Chen, Aaron Courville, and Chuang Gan. Sparse universal
transformer. arXiv preprint arXiv:2310.07096, 2023.

Yi Tay, Mostafa Dehghani, Samira Abnar, Hyung Won Chung, William Fedus, Jinfeng Rao, Sharan
Narang, Vinh Q Tran, Dani Yogatama, and Donald Metzler. Scaling laws vs model architectures:
How does inductive bias influence scaling? arXiv preprint arXiv:2207.10551, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Ad-
vances in Neural Information Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

Tianduo Wang and Wei Lu. Learning multi-step reasoning by solving arithmetic tasks. In Pro-
ceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
2: Short Papers), pp. 1229–1238, Toronto, Canada, July 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.acl-short.106. URL https://aclanthology.org/
2023.acl-short.106.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani
Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto,
Oriol Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large lan-
guage models. Transactions on Machine Learning Research, 2022a. ISSN 2835-8856. URL
https://openreview.net/forum?id=yzkSU5zdwD. Survey Certification.

12

https://doi.org/10.1145/3469116.3470012
https://openreview.net/forum?id=PTUcygUoxuc
https://openreview.net/forum?id=qrwe7XHTmYb
https://api.semanticscholar.org/CorpusID:258887921
https://api.semanticscholar.org/CorpusID:258887921
https://arxiv.org/abs/2302.11529
https://openreview.net/forum?id=H1gR5iR5FX
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://aclanthology.org/2023.acl-short.106
https://aclanthology.org/2023.acl-short.106
https://openreview.net/forum?id=yzkSU5zdwD

Under review as a conference paper at ICLR 2024

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V
Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural
Information Processing Systems, 2022b. URL https://openreview.net/forum?id=
_VjQlMeSB_J.

Fuzhao Xue, Valerii Likhosherstov, Anurag Arnab, Neil Houlsby, Yi Tay, Mostafa Dehghani,
and Yang You. Adaptive computation with elastic input sequence, 2023. URL https:
//openreview.net/forum?id=FkRMv-mlSTy.

Le Yang, Yizeng Han, Xi Chen, Shiji Song, Jifeng Dai, and Gao Huang. Resolution adaptive networks
for efficient inference. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2020.

Chiyuan Zhang, Maithra Raghu, Jon M. Kleinberg, and Samy Bengio. Pointer value retrieval: A new
benchmark for understanding the limits of neural network generalization. CoRR, abs/2107.12580,
2021. URL https://arxiv.org/abs/2107.12580.

Yi Zhang, Arturs Backurs, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, and Tal Wagner.
Unveiling transformers with lego: a synthetic reasoning task. June 2022.

13

https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=FkRMv-mlSTy
https://openreview.net/forum?id=FkRMv-mlSTy
https://arxiv.org/abs/2107.12580

Under review as a conference paper at ICLR 2024

A COMPARING TRANSFORMERS WITH DIFFERENT DEPTH

Figure 7: Performance of transformer variants on C-PVR (modulus) on test sets with different number
of hops. We compare the performance of vanilla transformers with different number number of
layers.

B ERROR ANALYSIS OF FINE-TUNED T5 MODELS WITH SCRATCH-PAD

1 2 3 4 5 6 7 8 9
Num Test Hops

0

20

40

60

80

100

Pe
rc

en
ta

ge

label scratchpad
label scratchpad
label scratchpad

(a) Errors in C-PVR (plain) task with scratch-pad

1 2 3 4 5 6 7 8 9
Num Test Hops

0

20

40

60

80

100

Pe
rc

en
ta

ge

label scratchpad
label scratchpad
label scratchpad

(b) Errors in C-PVR (modulus) task with scratch-pad

Figure 8: Percentage of errors in scratch pad and label prediction for a T5 model fine-tuned on
C-PVR (plain) and C-PVR (modulus). We observe that, for all number of hops across tasks, the
dominate type of error is when model generates the exact scratch-pad (which contains the label at the
end also) but fails to output the label itself (the first portion of the target string before #). As the
number of test hops increases, the buckets where label is generated correctly but the scratch-pad is
not an exact match to the ground truth emerges but remains small. Also The bucket where neither
label nor scratch-pad matches the ground truth becomes the second dominating type of error.

C HYPER-PARAMETERS OF THE MODELS FOR THE EXPERIMENTS ON THE
C-PVR TASK

All models are trained for 250 epochs with adam optimizer, a learning rate with cosine decay schedule
and base learning rate of 0.001, and the weight decay of 0.0001. Details of hyper-parameter are listen
in Table 1 and Table 2.

14

Under review as a conference paper at ICLR 2024

Table 1: Architectural details of transformer variants trained on C-PVR (modulus) from scratch.

Model Hidden Size MLP dim Num. Layers (max) Num. Heads Positional Embedding
T12 384 1536 12 6 Learned
T32 384 1536 32 6 Learned
T64 384 1536 64 6 Learned
UT 384 1536 64 6 Learned
UT Wide 768 3072 64 12 Learned
UT+FiLM 384 1536 64 6 Learned
UPT 384 1536 64 6 Learned
HyperUT 384 1536 64 6 Learned

Table 2: Hyper parameters of adaptive transformer variants trained on C-PVR (modulus) from scratch.

Model Param. Sharing Modular MLP Modular Att-out Modular Att-kqv Router Temp ACT Type Num. Modules
UT True None None None - Token -
UT Wide True None None None - Token -
UT+FiLM True FiLM FiLM FiLM - Token -
UPT True None None None - Token 128
HyperUT True Hyper Module Hyper Module Hyper Module 1.0 Token 32 × 128

D HYPER-PARAMETERS OF THE MODELS FOR THE EXPERIMENTS ON
IMAGENET1K CLASSIFICATION

All models are trained for 450 epochs with adam optimizer, a learning rate with cosine decay schedule
and base learning rate of 0.001, and the weight decay of 0.0001. Details of hyper-parameter are listed
in Table 3.

Table 3: Hyper parameters for experiments with ViT variants on the Imagenet1K classification task.
The architectural hyper-parameters of the models (B/16) and (L/16) are the same as the ones reported
in (Dosovitskiy et al., 2021).

Model Param. Sharing Modular MLP Modular Att-out Modular Att-kqv Router Temp ACT Type Num. Modules
ViT B/16 False None None None - - -
ViT PS B/16 True None None None - - -
U-ViT B/16 True None None None - Token -
U-ViT L/16 True None None None - Token -
HyperUT B/16 True Hyper Module None Hyper Module 1.0 Token 128 × 256

E ATTENTION BASED ROUTER

For the attention based router, we use a standard attention layer (multi-head cross attention) (Vaswani
et al., 2017). In the experiments presented in this paper, we set the number of heads to be 1. In the
attention based router, the query is the example embedding at the current layer, and the key/values
are the embeddings in the module embedding pool.

F ADAPTIVE COMPUTATION TIME

We apply the ACT mechanism per token, and for the details of the method we refer to the original
paper (Graves, 2016), and for how it is incorporated into the transformer architecture we refer to the
universal transformer paper (Dehghani et al., 2019).

In this approach, there is a module (a MLP with a sigmoid activation), that given some representation
of the input tokens at every layer predicts a halting score. Then at every layer, an accumulated halting
score is calculated, and the model halts if this score is higher than 1− ϵ.

hn
t = σ(Whs

n
t + bh) (1)

Then the objective of the model is augmented with the ACT loss, Equation 2, which is a penalty term
that encourages the model to halt earlier, and an additional regularization term to make the halting
score at the time of halting closer to one.

15

Under review as a conference paper at ICLR 2024

N(t) + (1−
N(t)−1∑
n=1

hn
t) (2)

where N(t) is the number of updates (steps):

N(t) = min{n′ :

n′∑
n=1

ht >= 1− ϵ} (3)

We could apply ACT per token or per example. The current experiments in the paper report the results
for when ACT is applied per token. In our experiments the weight of the ACT loss is set to 0.1.

G EXAMPLES OF THE C-PVR TASK

Here are a few exampels, of the C-PVR task we experiment with.

Sequence Label Number of Hops
65 29 36 16 23 69 99 75 2 72 61 12 13 74 10 54 65 1
94 40 22 79 56 50 2 68 81 88 77 43 6 81 20 75 81 2
39 70 96 62 23 42 41 21 45 81 54 44 43 66 44 79 43 4
20 90 20 24 63 62 19 27 5 63 28 31 90 54 29 59 29 6
38 31 12 33 76 39 40 48 56 42 73 80 49 26 20 44 44 5
49 87 35 7 36 64 74 3 3 79 76 59 57 27 77 25 49 1
21 72 25 67 24 2 80 20 63 53 87 22 66 24 32 74 20 3
19 25 20 25 80 36 24 65 26 20 62 27 100 98 28 35 20 5
3 25 7 72 65 75 9 8 12 72 86 8 31 46 50 61 8 5
82 87 26 18 60 99 92 52 86 64 34 96 45 13 20 88 88 5

Table 4: Examples from the instance of the C-PVR task used in our experiments (sequence length is
16).

Here we include the script for computing the label given the string for the the C-PVR task.

Listing 1: Retrieval function for C-PVR task
def r e t r i e v a l _ r u l e (sequence , g e t _ p o i n t e r _ f n , g e t _ v a l u e _ f n , c o n d i t i o n _ f n) :

p o i n t e r = 0
num_hops = 1
n e x t _ p o i n t e r = g e t _ p o i n t e r _ f n (p o i n t e r , s e q u e n c e)
whi le c o n d i t i o n _ f n (p o i n t e r , n e x t _ p o i n t e r , l e n (s e q u e n c e)) :

p o i n t e r = n e x t _ p o i n t e r
n e x t _ p o i n t e r = g e t _ p o i n t e r _ f n (p o i n t e r , s e q u e n c e)
num_hops += 1

re turn g e t _ v a l u e _ f n (p o i n t e r , s e q u e n c e) , num_hops

One can build different version of the C-PVR task by defining different get_pointer_fn,
get_value_fn and condition_fn.

Listing 2: Auxiliary Functions for the instance of the C-PVR task we use in this paper
def g e t _ v a l u e (p o i n t e r , s e q u e n c e) :

re turn s e q u e n c e [p o i n t e r]

def g e t _ p o i n t e r (p o i n t e r , sequence , s e q u e n c e _ l e n g t h) :
re turn (s e q u e n c e [p o i n t e r] − 1) % s e q u e n c e _ l e n g t h)

def c o n d i t i o n _ f n (p o i n t e r , n e x t _ p o i n t e r) :
re turn p o i n t e r < n e x t _ p o i n t e r

16

	Introduction
	Multi-Step Reasoning
	Conditional Pointer Value Retrieval

	Adaptive and Modular Transformers
	Hyper-UT

	Experiments
	C-PVR: Efficient generalization over Example Complexity
	Pre-trained language models
	Image Classification: Closing the GAP between U-ViT and ViT

	Related Work
	Conclusion
	Comparing Transformers with Different Depth
	Error Analysis of Fine-Tuned T5 models with Scratch-pad
	Hyper-Parameters of the models for the experiments on the C-PVR task
	Hyper-Parameters of the models for the experiments on ImageNet1k classification
	Attention Based Router
	Adaptive Computation Time
	Examples of the C-PVR task

