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Abstract

General purpose automatic speech recognizers
(ASRs) require customization to the domain
and context, to achieve practically acceptable
accuracy levels when used as part of voice dig-
ital assistants. Further, such general purpose
ASRs typically output multiple alternative hy-
potheses for the same input utterance. In this
paper, we consider the hypothesis re-ordering
framework and evaluate the impact of three
different scoring functions for re-ordering the
hypotheses: phoneme-based, character-based
and word-based, and determine their strengths
and weaknesses. Based on our intuitions and
experimental validation, we determine that
phoneme-based scoring is the best for closed
domain contexts, while character-based and
word-based scoring do better in case of more
open-domain contexts. Our results show that
character-based scoring gives the best perfor-
mance improvement in terms of word error
rate over general purpose ASRs for voice assis-
tants used in a classroom context. Our analysis
also reveals that character-based scoring is pre-
ferred for shorter utterances while word-based
scoring is preferred for longer utterances.

1 Introduction

The recent success of voice as an interaction modal-
ity, ushered in by voice digital assistants (Ama-
zon; Google; Apple; Tulshan and Dhage, 2018)
promises to revolutionize both consumer and enter-
prise space. The use of voice (particularly while
being hands-free or walking in far-field scenarios)
as a substitute for typing text for diverse use cases,
ranging from fixed-command-control to informa-
tion retrieval of more open-ended concepts in a
variety of domains (Brill et al., 2019), can trans-
form the user experience and bring efficiency to
human-machine interactions. At the same time,
transcribing voice commands using general pur-
pose automatic speech recognition (ASR) (Haeb-
Umbach et al., 2020; Jefferson, 2019) as part of a
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Figure 1: Solution Design Space for ASR Accuracy

digital assistant to accurately represent the intent
of the user is critical to ensure that user experience
is friction-free; errors in recognized transcriptions
could lead to an unsuccessful task, resulting in a
disappointed user reverting to typing.

Achieving high accuracy of ASR by voice as-
sistants in different domains is challenging due to
several reasons (Howe and Yampolskiy). Few rea-
sons include ambiguity introduced by homophones
within a language, speech decoding biased by train-
ing data used in language modeling, different ac-
cents relative to acoustic training data, and close-
ness of certain concepts to other languages. Conse-
quently, contextual inference of users’ intents and
domain-specific entities in the utterances is critical,
and often better handled as a post-ASR step. While
certain use cases such as in-car and in-home device
control can be more easily handled by fixed vocab-
ulary language model training and force-fitting to
the well-known command set, use cases involving
domain specific entities and broad vocabulary need
more sophisticated post-processing, the latter of
which is the focus of this paper.

Problem Description: A typical ASR takes
speech data as input, uses one or more pre-trained
acoustic (AM) and language (LM) models, and out-
puts one or more alternatives (hypotheses) of text as
the possible utterances. The accuracy of the recog-
nition process depends on the fidelity of the input,
the sophistication of the AM as well as the LM
models, and/or the decision process involved in se-



lecting the final text among the hypotheses. When
tuning the speech recognition process for any do-
main, all these steps play an important role towards
achieving optimal performance. Fig. 1 illustrates
the importance of each step for different types of
speech utterances transcribed by a given ASR. This
figure shows that the ideal scenario has the top-
1 (i.e. the top hypothesis identified by the ASR)
word error rate (WER) (Ali and Renals, 2018) to
be low, which happens when the ASR is properly
tuned for the domain language and use case. If
top-1 WER is high, we consider looking at the top-
k WER (minimum WER among WERs between
ground-truth transcript and each of the top-k hy-
potheses). If this top-k WER is low, we can employ
a hypotheses re-ordering algorithm (Variani et al.,
2020) to rearrange the top-1 hypothesis in order to
get a low top-1 WER. On the other hand, if top-k
WER is also high, it implies that ASR needs tuning
as none of its hypothesis can capture the ground
truth. In such a case, we consider phoneme error
rate (PER) (Kessler, 2005) instead of WER. If top-
k PER is low, it implies that the AM of the speech
recognizer is decoding phonemes correctly but the
LM needs further tuning. And the final case to con-
sider is when the top-k PER is also high, implying
that the AM of the ASR system itself needs tuning
to improve ASR performance. With increasing so-
phistication of off-the-shelf ASR systems due to the
large amount of usage data collected and manually
annotated, we assume that both AM and LM train-
ing already do their best to provide the alternative
hypotheses. The major objective in this paper is to
propose different scoring functions for re-ordering
these alternative hypotheses considering the low
top-k WER and high top-1 WER regime.

Contributions: Our major contributions are: (a)
Given a speech utterance, one or more hypotheses
of alternative text, and the usage context (defined
in detail later), we define three ways of comput-
ing the relative distance between the hypotheses
and context; a heuristic is then derived for selec-
tion and re-ordering of hypotheses in real-time for
every new utterance. (b) Experiments on a real
dataset of utterances in the educational setting show
that character-based edit distance can lead to the
best performance by minimizing WER compared
to other scoring functions. (c¢) We also show that
WER is minimized if character-based edit distance
is used when the average word length of the hy-
potheses set for an utterance is <2, and word-based
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Figure 2: Generic hypotheses re-ordering framework

edit distance is used when average length > 2.
The rest of the paper is organized as follows.
Sec. 2 discusses related work. Sec. 3 discusses the
high level hypotheses re-ordering approach. Sec. 4
describes the scoring functions and presents our ex-
perimental results. Finally, we conclude in Sec. 5.

2 Related Work

The ability of humans to improve the accuracy
of speech recognizers by re-ordering the outcome
of these systems (Lippmann, 1997) has inspired
speech recognition communities for decades to
work on improving ASR’s performance by hypothe-
ses re-ordering. Early attempts employed linear
regression (Chotimongkol and Rudnicky, 2001),
discriminative language models (Roark et al., 2004,
2007), support vector machines (Stuhlsatz et al.,
2006) and memory-based learning (Jonson, 2006)
to address the re-ordering problem through post-
processing. Later, (Lojka and Juhdr, 2014; Soto
et al., 2016) combined multiple ASR systems by us-
ing confidence scores of words or employing word
embedding based machine learning approaches to
improve speech recognition accuracy. With the
rise of deep neural networks in the past decade,
recurrent neural network based language models
(Mikolov et al., 2010; Chetupalli and Ganapathy,
2020; Erdogan et al., 2016) have become more
popular for hypotheses re-ordering. Further, an
encoder-classifier model was developed in (Ogawa
et al., 2018) that compares the pairs in top-k lists to
do re-ordering while (Apte et al., 2021) proposed
a re-ordering solution by retrieving the most likely
candidate correction to abandoned utterances in
the voice search query domain. Besides improving
accuracy in terms of WER only, there has been
research on other aspects such as intent ranking
based on domain-specific contextual models (Anan-
tha et al., 2020; Corona et al., 2017). Nevertheless,
reducing WER remains of great interest in the field
of speech recognition. In this paper, we aim at
comparing different scoring functions that can cus-
tomize ASR outputs via hypotheses re-ordering



and find applicability in real-time scenarios which
is a major limitation of existing literature.

3 Hypotheses re-ordering

Typical ASRs take speech data as input and pro-
vide multiple alternative transcriptions (hypothe-
ses) along with their associated confidence values,
based on a generic language model of the ASR.
These may lack the specific context in which the
user has uttered the command. Dialogue systems
of assistants that have context would want to utilize
that information to choose the appropriate hypothe-
sis from the list of hypotheses provided as output
by the ASR. To this end, we describe a generic al-
gorithm that re-orders the hypotheses based on the
domain context. Consider, for instance, a digital as-
sistant that enables retrieval of information for ques-
tions of the form: “Who is <Abraham Lincoln>"
or “Where is the <Eiffel Tower>". In such a sys-
tem, the context is provided as a list of expected
utterances in a regular expression format, such as
“Who is _entity_" (“_entity_" is a placeholder and
can be any open-ended term). The generic algo-
rithm for hypothesis re-ordering in such a system
is presented as a block diagram in Fig. 2.

For every utterance, the ASR outputs multiple
hypotheses with their respective confidence values
as shown in Fig. 2. Each hypothesis is then com-
pared with every command in the command list
provided as context, and the closest match as de-
fined by the scoring function, is determined. This
scoring function also quantifies how close this clos-
est command is to the particular hypothesis. This
triplet information (hypothesis, closest command,
closeness score) is stored for each of the hypotheses
output by the ASR. The score is used to re-order the
hypotheses, which is the output of the algorithm.

4 Experiments and results

In this section, we first describe the dataset we use
for our experiments. Next, we define three dif-
ferent scoring functions (detailed discussions are
provided in Appendix A) and discuss our results
for hypotheses re-ordering using the scoring func-
tions. We also show the quantitative and qualitative
impact of the three scoring functions.

4.1 Dataset

For our study, we focus on a use-case of a voice
assistant being used in an educational setting. This
is a specific domain where generic ASRs do not

give the best performance and fail for some simple
domain-specific utterances. We collected data from
multiple users using 144 different voice-enabled
personal assistant devices (and speakers). These
users (who are teachers) have uttered commands
that are pertinent to educational activities such as
“go to the link on wikipedia", “next slide", “show
me videos of the ocean" etc. over a period of 4
months as part of their daily classroom activities.
Note that this data was collected while the device
was used in a production scenario as part of a pi-
lot program. We have annotated 13754 utterances
from this collected data whose ground truth was
determined by listening to the audio files. These
details are given in Table 1.

These utterances are generally not a part of the
default language model of a generic ASR, and
hence would not be the top hypothesis output by
the ASR. As mentioned earlier, this is the scenario
where hypothesis re-ordering is expected to give
a performance improvement. For hypothesis re-
ordering, the context is extremely important. For
this purpose, we used a context consisting of ex-
pected commands in the regular expression for-
mat (refer to Sec. 3), which cover a wide range
of phrases, and not specific to only our dataset.
The collected utterances were sent through a cloud
speech to text engine (Manaswi, 2018) along with
a request to receive up to 10 hypotheses as output
wherever available. We also used an appropriate
speech adaptation! to improve the default perfor-
mance. This resulted in a top-1 WER of 13.11%,
which is reasonable for a generic ASR (see Table 2).
However, for practical purposes, an improved per-
formance can be achieved using our proposed hy-
potheses re-ordering algorithm (refer to Fig. 2).
Some examples of when the ASR’s default top-1
transcription failed are provided below.

Ground truth
make teams
find dog images
pair my laptop

ASR top-1 transcript
make teens
blind dog images
clear my laptop

4.2 Scoring functions

In this section, we focus on defining three differ-
ent scoring functions and discuss their impact on
improving the hypothesis re-ordering algorithm.
These scoring functions help to capture the dif-
ferences between two phrases in terms of syntac-
tic/phonetic features, which can aid in more intelli-
gently using context for hypothesis re-ordering.

"https://cloud.google.com/
speech-to-text/docs/speech-adaptation


https://cloud.google.com/speech-to-text/docs/speech-adaptation
https://cloud.google.com/speech-to-text/docs/speech-adaptation

Devices Utterances

Average length of utterances

Unique commands

144 13754

3.327

3346

Table 1: Dataset statistics

Dataset size  Default

Word-based Char-based Phoneme-based

13754 13.11 10.57

9.86 11.05

Table 2: WERs for different scoring functions

4.2.1 Phoneme-based edit distance

Here we define the phoneme-based edit distance
that compares two phrases on how they sound i.e.
edit distance between their phonemic transcriptions.
As seen in Table 2, the WER drops to 11.05% when
such a scoring function is used to re-order the hy-
potheses. Some examples where such a scoring
function helped are shown below, along with ex-
amples where it did not help. As can be seen, the
failures are in cases where the ground truth and the
re-ordered top-1 hypothesis are homonyms.

Ground truth ASR top-1 Re-ordered transcript

pair my laptop send my laptop pair my laptop
open globe open gloves open globe
draw a line draw alignment draw a lion

set transcriber to two  set transcriber 2:2 set transcriber to

4.2.2 Word-based edit distance

Next we consider the word-based edit distance
which is defined as the number of edit operations
(add, delete, replace) on words needed to transform
one phrase into the other. As observed in Table 2,
the WER drops to 10.57% when such a scoring
function is used. Some examples where such a
scoring function helped is shown below along with
examples where it did not help. As seen, the ma-
jor errors are on the mistranscription of the en-
tities which are not addressed by the hypothesis
re-ordering algorithm.

Ground truth
close this tab
zoom in
show videos of oceans

ASR top-1
what was this tab
zumen
show videos of portions

Re-ordered Transcript
close this tab
zoom in
show videos of portions

4.2.3 Character-based edit distance

Finally, we define the character-based edit distance
as a measure of the similarity between two strings
(phrases) at the character level. As seen in Table 2,
the WER is 9.86% when such a scoring function
is used for hypothesis re-ordering, providing the
best performance improvement among the three
scoring functions. This is because the character-
based score helps to capture the partial overlap
between similar words in the two phrases which
the word-based score fails to capture. The follow-
ing are some examples where such a scoring func-
tion helped along with some examples where it did

not. As seen in the examples, this scoring function
works really well for short utterances of length <2.

Ground truth ASR top-1 ~ Re-ordered Transcript
next make next
reduce radius reduce
go home Bill home go home
pick aclass  he got class he took a class

4.3 Discussion

Experiments on our dataset helped in revealing the
strengths and weaknesses of each of the three scor-
ing functions. For our use-case, Table 2 showed
that the word-based and character-based scoring
functions are more appropriate with lower WER
than the phoneme-based scoring function. This is
because phoneme-based scoring works best when
the context and commands are exact commands
with no expected variations (eg. presence of addi-
tional words in the utterance such as articles), like
the ones used in command-control use-cases. Fur-
ther, phoneme-based scoring also fails when there
are homonyms (eg. “set transcriber to two" vs.
“set transcriber to to"). We also observed that the
character-based scoring function performs better
when the utterance is shorter (<2 words) while the
word-based one works better for longer utterances.

5 Conclusion

We studied the general framework of using distance
based scoring for ASR hypotheses re-ordering.
Such a framework is extremely helpful in cases
where a generic ASR is to be used in a constrained
context/use-case. Our study analysed the role of
three different distance functions in improving hy-
pothesis re-ordering. We determined the strengths
and weaknesses of all distance functions and deter-
mined when each of them is most suitable for use.
We observed that character-based scoring function
performed the best achieving a minimum WER of
9.86%. Our analysis also showed that character-
based scoring function is most appropriate for short
utterances and word-based scoring function is best
suited for longer utterances. We discussed the ethi-
cal impact of our work in Sec. A.3 of Appendix A.
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A Appendix

A.1 Scoring functions

The goal of the scoring functions is to capture the
differences between hypotheses in terms of syntac-
tic features or phonetic features, which can aid in
more intelligently reordering the hypotheses using
the context. In what follows, we discuss three such
functions and the intuition behind using them.

A.1.1 Word-based edit distance

The first scoring function is based on the word-
based edit distance defined as the number of edit
operations (add, delete, replace) on words needed
to transform one phrase into the other. This dis-
tance function (also known as Levenshtein dis-
tance (Navarro, 2001)), is motivated by the fact
that it is heavily used in ASR systems to evaluate
the word error rate (WER) and also in natural lan-
guage systems to quantify the difference between
two sentences/phrases.

In our implementation, this score between two
phrases p and q is given as:

100
e+ WED(p, q)

scorey (p,q) =

where WED(p, q) is the word-edit distance be-
tween the two phrases and € is a small value to
ensure the score function is bounded when the
phrases p and ¢ are same. As an example, the score
between the phrases p =“make four teams" and
q =“make four groups" is scorey,(p, q¢) = 90.91
when e = 0.1.

In our use-case, since some phrases can have
_entity_" within the sentence, we accommodate it
in the word edit distance calculation by treating it
as a dummy word whose edit operation contributes
nothing towards the edit distance. In other words,
the adding/deleting of “_entity_" or replacing it to
any other word is not considered as an edit opera-
tion.
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A.1.2 Character-based edit distance

The character-based edit distance based score is a
measure at the character level. It is a measure of

P Phonemic
transcriber

Phonemic
Edit distance

distance

Phonemic
transcriber

Figure 3: Block diagram of the phonemic distance cal-
culation

the strings’ similarity. For two strings p and ¢, in
our implementation, this score is defined as:

2M(p, q) )
T(p,q)

where T(p, q) is the total number of characters in
both strings together, M(p, ¢) is the number of
matches in the two strings, and round(-) rounds
to the nearest integer.

The character-based edit distance function more
precisely quantifies the difference between phrases,
especially when the phrases are small. For example,
if p =“pause" and ¢ =‘“cause", the word-based edit
distance would determine only 1 word is different
but cannot capture the fact that most of the word
is similar. In this case, it is valuable to identify the
partial overlap that is present in the two phrases.
The character-based score allows us to capture this
information. For the example of p =*“pause” and
q ="“cause", T(p,q) = 10 and M(p, q) = 4, and
hence the scorec(p,q) = 80. To accommodate
“_entity_" in our phrases, we remove it from our
phrase before calculating the character-based score.

scorec(p, ¢) = round <100 X

A.1.3 Phoneme-based edit distance

The third scoring function that we use is phoneme-
based. Since we are working with audio data, it is
natural to use phoneme-based comparisons to de-
termine the strength of overlap between the phrases.
While the previous two scoring functions compare
the strings on how they are written, the phoneme-
based edit distance compares the strings on how
they sound. The phoneme-based edit distance be-
tween two phrases is defined as the edit distance be-
tween the phonemic transcriptions (Kessler, 2005)
of the two phrases. Fig. 3 shows a block-diagram of
the flow. We can use several phonemic transcribers
(Kessler, 2005) in Fig. 3. In our implementation,
we used the Metaphone algorithm for phonemic
transcriptions (Philips, 1990).
The phonemic score is then given as follows:

100

scorep(P:9) = T BED ()

where PED(p, q) is the phonemic edit distance
as defined above, and ¢ is a small number to



bound the phonemic score. For an example of
p ="“pause” and ¢ =‘“clause", the phonemic score
is scorep(p,q) = 47.62 when ¢ = 0.1, as
PED(p, q) = 2. To accommodate “_entity_" in
our phrases, we remove it from our phrase before
passing it through the phonemic transcriber.

A.2 Ablation test

We have observed in Sec. 4.3 that the phoneme-
based scoring function works best when the con-
text and commands are exact commands with no
expected variations while it fails when homonyms
are present in the utterances. In addition, we ob-
served that the character-based scoring function
performs better when the utterance is shorter (<2
words) while the word-based one works better for
longer utterances (>2 words).

Smart-switching and truncation: Based on
above observations, we implemented a dynamic
choosing of scoring function, where the average
length of the hypotheses set is used to determine
the appropriate scoring function. For shorter av-
erage length (< 2), the character-based scoring
function is used, while word-based is used if av-
erage length is > 2. We also observed few cases
where an extremely low confidence hypothesis was
having a slightly better match with the context, and
getting pushed up in the re-ordering. To avoid such
cases, we employed truncation, where the hypothe-
ses list was truncated to only include hypotheses
whose confidence was above a (relative) thresh-
old, unless there is an exact match (distance is 0).
Our results show that such an intelligent switching
along with truncation resulted in a WER of 10.17%
which is better compared to when we use only the
word-based scoring function or the phoneme-based
scoring function.

A.3 Implementation details and Ethical
impact

As mentioned in the paper, we have collected data
from English language speaking teachers using our
voice assistant device in a classroom. The assistant
currently only supports English language. These
teachers participating in the pilot are from differ-
ent schools of the United States and have signed
a special privacy policy that ensures no PII infor-
mation is stored. We also have the policy to not
share the audio files externally beyond internal an-
alytic purposes. This data is also anonymized and
no user information is available for a given audio
file. The collected audio files were annotated by an

internal employee who was hired for the annotation
requirements.

The algorithm described in the paper and the cor-
responding scoring functions were implemented
in python for offline analysis>. We have imple-
mented this algorithm on our voice assistant during
the pilot program itself and thereby ensured (and
observed) that users (school teachers) had an im-
proved experience because of using it. The major
packages used for this are fuzzywuzzy for distance
measures and metaphone for phonemic transcrip-
tions. This code was run on a simple laptop using
CPU power as the algorithms do not require much
computational power.

>We have made all our codes publicly available at: https :
//rb.gy/nc5xju
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