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Abstract

General purpose automatic speech recognizers001
(ASRs) require customization to the domain002
and context, to achieve practically acceptable003
accuracy levels when used as part of voice dig-004
ital assistants. Further, such general purpose005
ASRs typically output multiple alternative hy-006
potheses for the same input utterance. In this007
paper, we consider the hypothesis re-ordering008
framework and evaluate the impact of three009
different scoring functions for re-ordering the010
hypotheses: phoneme-based, character-based011
and word-based, and determine their strengths012
and weaknesses. Based on our intuitions and013
experimental validation, we determine that014
phoneme-based scoring is the best for closed015
domain contexts, while character-based and016
word-based scoring do better in case of more017
open-domain contexts. Our results show that018
character-based scoring gives the best perfor-019
mance improvement in terms of word error020
rate over general purpose ASRs for voice assis-021
tants used in a classroom context. Our analysis022
also reveals that character-based scoring is pre-023
ferred for shorter utterances while word-based024
scoring is preferred for longer utterances.025

1 Introduction026

The recent success of voice as an interaction modal-027

ity, ushered in by voice digital assistants (Ama-028

zon; Google; Apple; Tulshan and Dhage, 2018)029

promises to revolutionize both consumer and enter-030

prise space. The use of voice (particularly while031

being hands-free or walking in far-field scenarios)032

as a substitute for typing text for diverse use cases,033

ranging from fixed-command-control to informa-034

tion retrieval of more open-ended concepts in a035

variety of domains (Brill et al., 2019), can trans-036

form the user experience and bring efficiency to037

human-machine interactions. At the same time,038

transcribing voice commands using general pur-039

pose automatic speech recognition (ASR) (Haeb-040

Umbach et al., 2020; Jefferson, 2019) as part of a041

Figure 1: Solution Design Space for ASR Accuracy

digital assistant to accurately represent the intent 042

of the user is critical to ensure that user experience 043

is friction-free; errors in recognized transcriptions 044

could lead to an unsuccessful task, resulting in a 045

disappointed user reverting to typing. 046

Achieving high accuracy of ASR by voice as- 047

sistants in different domains is challenging due to 048

several reasons (Howe and Yampolskiy). Few rea- 049

sons include ambiguity introduced by homophones 050

within a language, speech decoding biased by train- 051

ing data used in language modeling, different ac- 052

cents relative to acoustic training data, and close- 053

ness of certain concepts to other languages. Conse- 054

quently, contextual inference of users’ intents and 055

domain-specific entities in the utterances is critical, 056

and often better handled as a post-ASR step. While 057

certain use cases such as in-car and in-home device 058

control can be more easily handled by fixed vocab- 059

ulary language model training and force-fitting to 060

the well-known command set, use cases involving 061

domain specific entities and broad vocabulary need 062

more sophisticated post-processing, the latter of 063

which is the focus of this paper. 064

Problem Description: A typical ASR takes 065

speech data as input, uses one or more pre-trained 066

acoustic (AM) and language (LM) models, and out- 067

puts one or more alternatives (hypotheses) of text as 068

the possible utterances. The accuracy of the recog- 069

nition process depends on the fidelity of the input, 070

the sophistication of the AM as well as the LM 071

models, and/or the decision process involved in se- 072
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lecting the final text among the hypotheses. When073

tuning the speech recognition process for any do-074

main, all these steps play an important role towards075

achieving optimal performance. Fig. 1 illustrates076

the importance of each step for different types of077

speech utterances transcribed by a given ASR. This078

figure shows that the ideal scenario has the top-079

1 (i.e. the top hypothesis identified by the ASR)080

word error rate (WER) (Ali and Renals, 2018) to081

be low, which happens when the ASR is properly082

tuned for the domain language and use case. If083

top-1 WER is high, we consider looking at the top-084

k WER (minimum WER among WERs between085

ground-truth transcript and each of the top-k hy-086

potheses). If this top-k WER is low, we can employ087

a hypotheses re-ordering algorithm (Variani et al.,088

2020) to rearrange the top-1 hypothesis in order to089

get a low top-1 WER. On the other hand, if top-k090

WER is also high, it implies that ASR needs tuning091

as none of its hypothesis can capture the ground092

truth. In such a case, we consider phoneme error093

rate (PER) (Kessler, 2005) instead of WER. If top-094

k PER is low, it implies that the AM of the speech095

recognizer is decoding phonemes correctly but the096

LM needs further tuning. And the final case to con-097

sider is when the top-k PER is also high, implying098

that the AM of the ASR system itself needs tuning099

to improve ASR performance. With increasing so-100

phistication of off-the-shelf ASR systems due to the101

large amount of usage data collected and manually102

annotated, we assume that both AM and LM train-103

ing already do their best to provide the alternative104

hypotheses. The major objective in this paper is to105

propose different scoring functions for re-ordering106

these alternative hypotheses considering the low107

top-k WER and high top-1 WER regime.108

Contributions: Our major contributions are: (a)109

Given a speech utterance, one or more hypotheses110

of alternative text, and the usage context (defined111

in detail later), we define three ways of comput-112

ing the relative distance between the hypotheses113

and context; a heuristic is then derived for selec-114

tion and re-ordering of hypotheses in real-time for115

every new utterance. (b) Experiments on a real116

dataset of utterances in the educational setting show117

that character-based edit distance can lead to the118

best performance by minimizing WER compared119

to other scoring functions. (c) We also show that120

WER is minimized if character-based edit distance121

is used when the average word length of the hy-122

potheses set for an utterance is<2, and word-based123

Figure 2: Generic hypotheses re-ordering framework

edit distance is used when average length ≥ 2. 124

The rest of the paper is organized as follows. 125

Sec. 2 discusses related work. Sec. 3 discusses the 126

high level hypotheses re-ordering approach. Sec. 4 127

describes the scoring functions and presents our ex- 128

perimental results. Finally, we conclude in Sec. 5. 129

2 Related Work 130

The ability of humans to improve the accuracy 131

of speech recognizers by re-ordering the outcome 132

of these systems (Lippmann, 1997) has inspired 133

speech recognition communities for decades to 134

work on improving ASR’s performance by hypothe- 135

ses re-ordering. Early attempts employed linear 136

regression (Chotimongkol and Rudnicky, 2001), 137

discriminative language models (Roark et al., 2004, 138

2007), support vector machines (Stuhlsatz et al., 139

2006) and memory-based learning (Jonson, 2006) 140

to address the re-ordering problem through post- 141

processing. Later, (Lojka and Juhár, 2014; Soto 142

et al., 2016) combined multiple ASR systems by us- 143

ing confidence scores of words or employing word 144

embedding based machine learning approaches to 145

improve speech recognition accuracy. With the 146

rise of deep neural networks in the past decade, 147

recurrent neural network based language models 148

(Mikolov et al., 2010; Chetupalli and Ganapathy, 149

2020; Erdogan et al., 2016) have become more 150

popular for hypotheses re-ordering. Further, an 151

encoder-classifier model was developed in (Ogawa 152

et al., 2018) that compares the pairs in top-k lists to 153

do re-ordering while (Apte et al., 2021) proposed 154

a re-ordering solution by retrieving the most likely 155

candidate correction to abandoned utterances in 156

the voice search query domain. Besides improving 157

accuracy in terms of WER only, there has been 158

research on other aspects such as intent ranking 159

based on domain-specific contextual models (Anan- 160

tha et al., 2020; Corona et al., 2017). Nevertheless, 161

reducing WER remains of great interest in the field 162

of speech recognition. In this paper, we aim at 163

comparing different scoring functions that can cus- 164

tomize ASR outputs via hypotheses re-ordering 165
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and find applicability in real-time scenarios which166

is a major limitation of existing literature.167

3 Hypotheses re-ordering168

Typical ASRs take speech data as input and pro-169

vide multiple alternative transcriptions (hypothe-170

ses) along with their associated confidence values,171

based on a generic language model of the ASR.172

These may lack the specific context in which the173

user has uttered the command. Dialogue systems174

of assistants that have context would want to utilize175

that information to choose the appropriate hypothe-176

sis from the list of hypotheses provided as output177

by the ASR. To this end, we describe a generic al-178

gorithm that re-orders the hypotheses based on the179

domain context. Consider, for instance, a digital as-180

sistant that enables retrieval of information for ques-181

tions of the form: “Who is <Abraham Lincoln>"182

or “Where is the <Eiffel Tower>". In such a sys-183

tem, the context is provided as a list of expected184

utterances in a regular expression format, such as185

“Who is _entity_" (“_entity_" is a placeholder and186

can be any open-ended term). The generic algo-187

rithm for hypothesis re-ordering in such a system188

is presented as a block diagram in Fig. 2.189

For every utterance, the ASR outputs multiple190

hypotheses with their respective confidence values191

as shown in Fig. 2. Each hypothesis is then com-192

pared with every command in the command list193

provided as context, and the closest match as de-194

fined by the scoring function, is determined. This195

scoring function also quantifies how close this clos-196

est command is to the particular hypothesis. This197

triplet information (hypothesis, closest command,198

closeness score) is stored for each of the hypotheses199

output by the ASR. The score is used to re-order the200

hypotheses, which is the output of the algorithm.201

4 Experiments and results202

In this section, we first describe the dataset we use203

for our experiments. Next, we define three dif-204

ferent scoring functions (detailed discussions are205

provided in Appendix A) and discuss our results206

for hypotheses re-ordering using the scoring func-207

tions. We also show the quantitative and qualitative208

impact of the three scoring functions.209

4.1 Dataset210

For our study, we focus on a use-case of a voice211

assistant being used in an educational setting. This212

is a specific domain where generic ASRs do not213

give the best performance and fail for some simple 214

domain-specific utterances. We collected data from 215

multiple users using 144 different voice-enabled 216

personal assistant devices (and speakers). These 217

users (who are teachers) have uttered commands 218

that are pertinent to educational activities such as 219

“go to the link on wikipedia", “next slide", “show 220

me videos of the ocean" etc. over a period of 4 221

months as part of their daily classroom activities. 222

Note that this data was collected while the device 223

was used in a production scenario as part of a pi- 224

lot program. We have annotated 13754 utterances 225

from this collected data whose ground truth was 226

determined by listening to the audio files. These 227

details are given in Table 1. 228

These utterances are generally not a part of the 229

default language model of a generic ASR, and 230

hence would not be the top hypothesis output by 231

the ASR. As mentioned earlier, this is the scenario 232

where hypothesis re-ordering is expected to give 233

a performance improvement. For hypothesis re- 234

ordering, the context is extremely important. For 235

this purpose, we used a context consisting of ex- 236

pected commands in the regular expression for- 237

mat (refer to Sec. 3), which cover a wide range 238

of phrases, and not specific to only our dataset. 239

The collected utterances were sent through a cloud 240

speech to text engine (Manaswi, 2018) along with 241

a request to receive up to 10 hypotheses as output 242

wherever available. We also used an appropriate 243

speech adaptation1 to improve the default perfor- 244

mance. This resulted in a top-1 WER of 13.11%, 245

which is reasonable for a generic ASR (see Table 2). 246

However, for practical purposes, an improved per- 247

formance can be achieved using our proposed hy- 248

potheses re-ordering algorithm (refer to Fig. 2). 249

Some examples of when the ASR’s default top-1 250

transcription failed are provided below. 251

Ground truth ASR top-1 transcript
make teams make teens

find dog images blind dog images
pair my laptop clear my laptop

252

4.2 Scoring functions 253

In this section, we focus on defining three differ- 254

ent scoring functions and discuss their impact on 255

improving the hypothesis re-ordering algorithm. 256

These scoring functions help to capture the dif- 257

ferences between two phrases in terms of syntac- 258

tic/phonetic features, which can aid in more intelli- 259

gently using context for hypothesis re-ordering. 260

1https://cloud.google.com/
speech-to-text/docs/speech-adaptation
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Devices Utterances Average length of utterances Unique commands
144 13754 3.327 3346

Table 1: Dataset statistics

Dataset size Default Word-based Char-based Phoneme-based
13754 13.11 10.57 9.86 11.05

Table 2: WERs for different scoring functions

4.2.1 Phoneme-based edit distance261

Here we define the phoneme-based edit distance262

that compares two phrases on how they sound i.e.263

edit distance between their phonemic transcriptions.264

As seen in Table 2, the WER drops to 11.05% when265

such a scoring function is used to re-order the hy-266

potheses. Some examples where such a scoring267

function helped are shown below, along with ex-268

amples where it did not help. As can be seen, the269

failures are in cases where the ground truth and the270

re-ordered top-1 hypothesis are homonyms.271

Ground truth ASR top-1 Re-ordered transcript
pair my laptop send my laptop pair my laptop

open globe open gloves open globe
draw a line draw alignment draw a lion

set transcriber to two set transcriber 2:2 set transcriber to

272

4.2.2 Word-based edit distance273

Next we consider the word-based edit distance274

which is defined as the number of edit operations275

(add, delete, replace) on words needed to transform276

one phrase into the other. As observed in Table 2,277

the WER drops to 10.57% when such a scoring278

function is used. Some examples where such a279

scoring function helped is shown below along with280

examples where it did not help. As seen, the ma-281

jor errors are on the mistranscription of the en-282

tities which are not addressed by the hypothesis283

re-ordering algorithm.284

Ground truth ASR top-1 Re-ordered Transcript
close this tab what was this tab close this tab

zoom in zumen zoom in
show videos of oceans show videos of portions show videos of portions

285

4.2.3 Character-based edit distance286

Finally, we define the character-based edit distance287

as a measure of the similarity between two strings288

(phrases) at the character level. As seen in Table 2,289

the WER is 9.86% when such a scoring function290

is used for hypothesis re-ordering, providing the291

best performance improvement among the three292

scoring functions. This is because the character-293

based score helps to capture the partial overlap294

between similar words in the two phrases which295

the word-based score fails to capture. The follow-296

ing are some examples where such a scoring func-297

tion helped along with some examples where it did298

not. As seen in the examples, this scoring function 299

works really well for short utterances of length <2. 300

Ground truth ASR top-1 Re-ordered Transcript
next make next

reduce radius reduce
go home Bill home go home

pick a class he got class he took a class

301

4.3 Discussion 302

Experiments on our dataset helped in revealing the 303

strengths and weaknesses of each of the three scor- 304

ing functions. For our use-case, Table 2 showed 305

that the word-based and character-based scoring 306

functions are more appropriate with lower WER 307

than the phoneme-based scoring function. This is 308

because phoneme-based scoring works best when 309

the context and commands are exact commands 310

with no expected variations (eg. presence of addi- 311

tional words in the utterance such as articles), like 312

the ones used in command-control use-cases. Fur- 313

ther, phoneme-based scoring also fails when there 314

are homonyms (eg. “set transcriber to two" vs. 315

“set transcriber to to"). We also observed that the 316

character-based scoring function performs better 317

when the utterance is shorter (<2 words) while the 318

word-based one works better for longer utterances. 319

5 Conclusion 320

We studied the general framework of using distance 321

based scoring for ASR hypotheses re-ordering. 322

Such a framework is extremely helpful in cases 323

where a generic ASR is to be used in a constrained 324

context/use-case. Our study analysed the role of 325

three different distance functions in improving hy- 326

pothesis re-ordering. We determined the strengths 327

and weaknesses of all distance functions and deter- 328

mined when each of them is most suitable for use. 329

We observed that character-based scoring function 330

performed the best achieving a minimum WER of 331

9.86%. Our analysis also showed that character- 332

based scoring function is most appropriate for short 333

utterances and word-based scoring function is best 334

suited for longer utterances. We discussed the ethi- 335

cal impact of our work in Sec. A.3 of Appendix A. 336
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A Appendix450

A.1 Scoring functions451

The goal of the scoring functions is to capture the452

differences between hypotheses in terms of syntac-453

tic features or phonetic features, which can aid in454

more intelligently reordering the hypotheses using455

the context. In what follows, we discuss three such456

functions and the intuition behind using them.457

A.1.1 Word-based edit distance458

The first scoring function is based on the word-459

based edit distance defined as the number of edit460

operations (add, delete, replace) on words needed461

to transform one phrase into the other. This dis-462

tance function (also known as Levenshtein dis-463

tance (Navarro, 2001)), is motivated by the fact464

that it is heavily used in ASR systems to evaluate465

the word error rate (WER) and also in natural lan-466

guage systems to quantify the difference between467

two sentences/phrases.468

In our implementation, this score between two
phrases p and q is given as:

scorew(p, q) =
100

ε+WED(p, q)

where WED(p, q) is the word-edit distance be-469

tween the two phrases and ε is a small value to470

ensure the score function is bounded when the471

phrases p and q are same. As an example, the score472

between the phrases p =“make four teams" and473

q =“make four groups" is scorew(p, q) = 90.91474

when ε = 0.1.475

In our use-case, since some phrases can have476

“_entity_" within the sentence, we accommodate it477

in the word edit distance calculation by treating it478

as a dummy word whose edit operation contributes479

nothing towards the edit distance. In other words,480

the adding/deleting of “_entity_" or replacing it to481

any other word is not considered as an edit opera-482

tion.483

A.1.2 Character-based edit distance484

The character-based edit distance based score is a
measure at the character level. It is a measure of

Figure 3: Block diagram of the phonemic distance cal-
culation
the strings’ similarity. For two strings p and q, in
our implementation, this score is defined as:

scorec(p, q) = round

(
100× 2M(p, q)

T(p, q)

)
where T(p, q) is the total number of characters in 485

both strings together, M(p, q) is the number of 486

matches in the two strings, and round(·) rounds 487

to the nearest integer. 488

The character-based edit distance function more 489

precisely quantifies the difference between phrases, 490

especially when the phrases are small. For example, 491

if p =“pause" and q =“cause", the word-based edit 492

distance would determine only 1 word is different 493

but cannot capture the fact that most of the word 494

is similar. In this case, it is valuable to identify the 495

partial overlap that is present in the two phrases. 496

The character-based score allows us to capture this 497

information. For the example of p =“pause" and 498

q =“cause", T(p, q) = 10 and M(p, q) = 4, and 499

hence the scorec(p, q) = 80. To accommodate 500

“_entity_" in our phrases, we remove it from our 501

phrase before calculating the character-based score. 502

A.1.3 Phoneme-based edit distance 503

The third scoring function that we use is phoneme- 504

based. Since we are working with audio data, it is 505

natural to use phoneme-based comparisons to de- 506

termine the strength of overlap between the phrases. 507

While the previous two scoring functions compare 508

the strings on how they are written, the phoneme- 509

based edit distance compares the strings on how 510

they sound. The phoneme-based edit distance be- 511

tween two phrases is defined as the edit distance be- 512

tween the phonemic transcriptions (Kessler, 2005) 513

of the two phrases. Fig. 3 shows a block-diagram of 514

the flow. We can use several phonemic transcribers 515

(Kessler, 2005) in Fig. 3. In our implementation, 516

we used the Metaphone algorithm for phonemic 517

transcriptions (Philips, 1990). 518

The phonemic score is then given as follows:

scorep(p, q) =
100

ε+PED(p, q)

where PED(p, q) is the phonemic edit distance 519

as defined above, and ε is a small number to 520
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bound the phonemic score. For an example of521

p =“pause" and q =“clause", the phonemic score522

is scorep(p, q) = 47.62 when ε = 0.1, as523

PED(p, q) = 2. To accommodate “_entity_" in524

our phrases, we remove it from our phrase before525

passing it through the phonemic transcriber.526

A.2 Ablation test527

We have observed in Sec. 4.3 that the phoneme-528

based scoring function works best when the con-529

text and commands are exact commands with no530

expected variations while it fails when homonyms531

are present in the utterances. In addition, we ob-532

served that the character-based scoring function533

performs better when the utterance is shorter (<2534

words) while the word-based one works better for535

longer utterances (≥2 words).536

Smart-switching and truncation: Based on537

above observations, we implemented a dynamic538

choosing of scoring function, where the average539

length of the hypotheses set is used to determine540

the appropriate scoring function. For shorter av-541

erage length (< 2), the character-based scoring542

function is used, while word-based is used if av-543

erage length is ≥ 2. We also observed few cases544

where an extremely low confidence hypothesis was545

having a slightly better match with the context, and546

getting pushed up in the re-ordering. To avoid such547

cases, we employed truncation, where the hypothe-548

ses list was truncated to only include hypotheses549

whose confidence was above a (relative) thresh-550

old, unless there is an exact match (distance is 0).551

Our results show that such an intelligent switching552

along with truncation resulted in a WER of 10.17%553

which is better compared to when we use only the554

word-based scoring function or the phoneme-based555

scoring function.556

A.3 Implementation details and Ethical557

impact558

As mentioned in the paper, we have collected data559

from English language speaking teachers using our560

voice assistant device in a classroom. The assistant561

currently only supports English language. These562

teachers participating in the pilot are from differ-563

ent schools of the United States and have signed564

a special privacy policy that ensures no PII infor-565

mation is stored. We also have the policy to not566

share the audio files externally beyond internal an-567

alytic purposes. This data is also anonymized and568

no user information is available for a given audio569

file. The collected audio files were annotated by an570

internal employee who was hired for the annotation 571

requirements. 572

The algorithm described in the paper and the cor- 573

responding scoring functions were implemented 574

in python for offline analysis2. We have imple- 575

mented this algorithm on our voice assistant during 576

the pilot program itself and thereby ensured (and 577

observed) that users (school teachers) had an im- 578

proved experience because of using it. The major 579

packages used for this are fuzzywuzzy for distance 580

measures and metaphone for phonemic transcrip- 581

tions. This code was run on a simple laptop using 582

CPU power as the algorithms do not require much 583

computational power. 584

2We have made all our codes publicly available at: https:
//rb.gy/nc5xju
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