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Abstract
For many real-world applications, the user-001
generated inputs usually contain various noises002
due to speech recognition errors caused by lin-003
guistic variations1 or typographical errors (ty-004
pos). Thus, it is crucial to test model perfor-005
mance on data with realistic input noises to006
ensure robustness and fairness. However, little007
study has been done to construct such bench-008
marks for Chinese, where various language-009
specific input noises happen in the real world.010
In order to fill this important gap, we con-011
struct READIN: a Chinese multi-task bench-012
mark with REalistic And Diverse Input Noises.013
READIN contains four diverse tasks and re-014
quests annotators to re-enter the original test015
data with two commonly used Chinese in-016
put methods: Pinyin input and speech input.017
We designed our annotation pipeline to maxi-018
mize diversity, for example by instructing the019
annotators to use diverse input method edi-020
tors (IMEs) for keyboard noises and recruit-021
ing speakers from diverse dialectical groups for022
speech noises. We experiment with a series of023
strong pretrained language models as well as024
robust training methods, we find that these mod-025
els often suffer significant performance drops026
on READIN even with robustness methods like027
data augmentation. As the first large-scale028
attempt in creating a benchmark with noises029
geared towards user-generated inputs, we be-030
lieve that READIN serves as an important com-031
plement to existing Chinese NLP benchmarks.032

1 Introduction033

User-generated inputs in real-world applications of-034

ten contain noises where wrong characters or words035

are used instead of the intended ones (Xu et al.,036

2021). This is especially true when users type fast037

or are using speech input in noisy environments or038

with less common accents that cause errors in post-039

processing systems. However, most benchmarks040

1Note that linguistic variations themselves are not noises
or errors, but they can lead to noises in the data processing for
example due to failure of speech recognition.

Original
花呗怎么不能提额了(1a)

huā bei zěn me bù néng tí é le
Why can’t I raise my quota on HuaBei?

Keyboard 花呗怎么不能贴了(1b)
huā bei zěn me bù néng tiē le

Speech 画呗怎么不能提饿了(1c)
huà bei zěn me bù néng tí è le

Table 1: An example of our crowd-sourced keyboard
and speech noises. The original question comes from
AFQMC (Xu et al., 2020). We also present the Pinyin
transliteration of the text. Colors indicate the original
and corresponding mis-entered characters.

used in academic research do not explicitly try to 041

capture such real-world input noises (Naplava et al., 042

2021), leaving the doubt whether models perform- 043

ing well on standard clean test sets can transfer 044

well onto real-world user-generated data. 045

To evaluate the performance on noisy data for 046

languages like English, existing work typically gen- 047

erates typos via character-level perturbation such 048

as randomly sampled or adversarial character swap 049

or deletion (Belinkov and Bisk, 2018; Pruthi et al., 050

2019; Jones et al., 2020; Ma et al., 2020), automatic 051

back-translation and speech conversion (Peskov 052

et al., 2019; Ravichander et al., 2021). However, 053

there are many factors not considered in the auto- 054

matic approaches, for example, the keyboard de- 055

sign of users’ devices and speakers’ phonetic and 056

phonological variations. These overlooked factors 057

have a large impact on the types of noises possi- 058

ble in keyboard and speech inputs. One notable 059

exception to the above is NoiseQA (Ravichander 060

et al., 2021). Apart from automatic approaches, 061

they also collected test sets with noises produced 062

by annotators. Their dataset only considered the 063

question answering task and is only in English. 064

In this paper, we focus on Chinese instead and 065

present a multi-task benchmark with REalistic 066

And Diverse Input Noise, named READIN. Com- 067
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pared to the case of English, Chinese input noises068

have very different patterns due to the very differ-069

ent nature of the two languages. Chinese is a pic-070

tographic language without morphological inflec-071

tions that are common in Indo-European languages.072

Also, the tone system is a unique and integral part073

of Chinese phonology but not in English. Such074

differences cause different types of input noises in075

both keyboard typing and speech input. To compre-076

hensively study the effect of real-world noises, we077

cover four diverse tasks: paraphrase identification,078

machine reading comprehension, semantic parsing079

(text2SQL) and machine translation, all of which080

represent important real-life applications.081

We consider noises occurring in two widely used082

Chinese input methods, keyboard input and speech083

input, and provide an example in Table 1.084

For keyboard input, Chinese users need to use085

an input method editor (IME) to convert the raw086

transliteration2 sequences into Chinese characters.087

In such cases, noises can either occur in the translit-088

eration input, or occur when users are choosing the089

intended word from the candidate list suggested by090

the IME. It is different from the case of English091

where typos and spelling variations are expected092

to happen on the character level. The noise pat-093

terns are further coupled with the typing habits of094

individual users, for example, whether they type095

the full Pinyin transliteration or just the abbrevia-096

tions results in different noise patterns. In order to097

capture these nuances, we recruit annotators with098

different typing habits and instruct them to use dif-099

ferent IMEs for typing.100

For speech input, noises could arise when the101

speakers’ accents or background noises lead to fail-102

ures of the post-processing automatic speech recog-103

nition (ASR) systems. To capture these, we recruit104

10 speakers from different regions of China to cover105

diverse accents and use a commonly used Chinese106

commercial ASR system for post-processing. For107

instance, in Table 1, the speech noise occurs be-108

cause the speaker has different tones in their accent,109

leading the ASR system to produce different char-110

acters than the original ones. Ensuring that models111

are robust across these accent variations has impor-112

tant implications for fairness.113

We take many additional measures in the anno-114

tation process in order to capture the real-world115

2There are also IME that convert radical sequences into
characters. We focus on transliteration-based IME in this pa-
per (in particular the Pinyin input method) since it’s more com-
monly used among Chinese users (Fong and Minett, 2012).

input noise distribution, as detailed in Section 2. 116

In Section 3, we provide more statistics and anal- 117

ysis of the collected data. In Section 4, we train 118

strong baseline models on the clean training data 119

and test the models on our READIN test sets. The 120

results indicate that these models suffer significant 121

performance drops on the real-world input noises, 122

leaving ample room for future improvement. 123

2 Annotation Process 124

Our annotation asks crowdworkers to re-enter clean 125

test data from these existing NLP datasets. Our 126

goal is to induce realistic and diverse input noises 127

in the annotation. We collect data using two differ- 128

ent types of input methods: keyboard (Pinyin) input 129

and speech input, both are commonly used among 130

Chinese users (Fong and Minett, 2012). All exam- 131

ples are annotated with both input methods and we 132

keep two separate tracks for data collected with 133

these two different input methods. In the following 134

subsections, we first introduce the four tasks and 135

the original datasets that our annotations are based 136

on, and then introduce the annotation process for 137

keyboard input and speech input respectively. 138

2.1 Tasks and Original Datasets 139

Paraphrase Identification is a binary classifica- 140

tion task that aims to determine whether the given 141

sentence pair are paraphrases. We use the AFQMC 142

dataset (Xu et al., 2020) as the original source for 143

annotation, where the data come from customer ser- 144

vices in the financial domain. The original dataset 145

is unbalanced (with more negative pairs than pos- 146

itive), we down-sample the negative examples to 147

make the training and dev sets balanced, and we 148

report the accuracy separately for positive pairs 149

and negative pairs. During annotation, we annotate 150

both sentences in each sentence pair since in reality 151

both sentences could be user-generated. 152

Machine Reading Comprehension gives the 153

model passage-question pairs and asks the model 154

to output the correct answer. We choose a span- 155

extraction MRC dataset CMRC2018 (Cui et al., 156

2019) as the original data source. We use answer 157

string exact match as the evaluation metric. Dur- 158

ing annotation, we only annotate the questions and 159

keep the passages clean. This simulates the realistic 160

setting where users enter their queries potentially 161

with typos. 162

2



Figure 1: A screenshot of two different Pinyin IMEs.
Given the exact same Pinyin input (“shi shi”), different
IMEs suggest different words in different orders for
users to select from. We use three different IMEs in
keyboard annotation for wider coverage.

Semantic Parsing requires the model to convert163

natural language queries into logical forms. We use164

the CSpider dataset (Min et al., 2019) which is a165

dataset for the natural language to SQL query task166

and is the Chinese version of the Spider dataset (Yu167

et al., 2018). We use exact match as the metric. Dur-168

ing annotation, we annotate the natural language169

questions to induce typos and use the original SQL170

queries as the gold reference.171

Machine Translation requires the model to172

translate the input in the source language into the173

target language. We use the news translation shared174

task from WMT2021 (Akhbardeh et al., 2021)175

as our original data source. Following the stan-176

dard practice of the MT community, we use Sacre-177

BLEU (Post, 2018) to compute the BLEU score178

as the metric. During annotation, we only anno-179

tate the Chinese sentence and preserve the original180

English translation as the gold reference.181

2.2 Pinyin Input Annotation182

We present each annotator with a set of input data183

and ask them to re-type with the Pinyin input184

method. We implement the following restrictions185

in the annotation.3186

Different IMEs There are many commercial187

IME softwares available for the Pinyin input188

method. To maximize diversity, every input sen-189

tence is annotated by three different annotators,190

where each annotator uses a different IME soft-191

ware. We specified three commonly-used commer-192

cial Pinyin IMEs: Microsoft4, QQ5, and Sogou6.193

The main difference among these different IMEs194

3We also record the typing interface during the annotations
to facilitate future analysis.

4https://en.wikipedia.org/wiki/
Microsoft_Pinyin_IME

5http://qq.pinyin.cn/
6https://pinyin.sogou.com/mac/

is that when users type the same Pinyin transliter- 195

ation input, different IME softwares suggest dif- 196

ferent candidate words and in different orders, as 197

illustrated in Figure 1. The use of different IMEs 198

captures a wider range of possible typing noises. 199

Speed Limit Through our pilot run, we find that 200

some annotators like to double-check their typed 201

sequence. This is against our intention to collect 202

more diverse noises for stress testing models, and 203

we prefer to simulate cases where users may type in 204

a much faster pace. Therefore, we set a speed limit 205

of 40 characters per minute, which is the average 206

rate of several runs of pilot annotation. We include 207

a timer in the annotation pipeline and annotations 208

with significantly slower typing speed are requested 209

for re-annotation with a faster pace. 210

Disallow Post-Editing In pilot runs, we also find 211

that some annotators like to correct their typos 212

when they double-check their inputs, which again 213

goes against our purpose. To complement the speed 214

limit restriction, we also implement an additional 215

constraint where post correction is not allowed in 216

the annotation pipeline. 217

2.3 Speech Input Annotation 218

For speech input, we present each annotator with a 219

set of input data and ask them to read and record 220

them. The recordings are then converted to text 221

data with ASR. We implement the following mea- 222

sures to ensure the diversity of speech input noises. 223

Setup To represent realistic settings, all record- 224

ings are done with mobile devices (the annotators’ 225

phones), with 16kHz sampling rate, which is high 226

enough for ASR. We also instruct the annotators 227

to record in environments with natural background 228

noises, for example in their offices with some light 229

background talking or street noises. 230

Diversity There are large phonetic and phono- 231

logical variations among different users especially 232

since there are many accents across Chinese speak- 233

ers. To capture such variation, we recruited a total 234

of 10 different annotators for this speech input task 235

(4 males and 6 females). They are selected from 236

a larger pool of annotators through our trial run to 237

maximally diversify accents. They come from dif- 238

ferent parts of China with different dialectic groups 239

(more annotator details are in the appendix). Their 240

ages range from 32 to 64. We instruct the anno- 241

tators to speak Mandarin while preserving their 242
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Dataset Train Dev Test

AFQMC 18,000 2,000 4,317
CMRC2018 8,871 1,271 3,219
CSpider 7,500 1,159 1,034
WMT2021 – – 1,948

Table 2: Sizes of our four datasets. For CMRC2018,
we report the number of questions (multiple questions
can correspond to the same passage). For WMT2021,
we directly use the mBART50 model trained for multi-
lingual translation without any additional finetuning on
English-Chinese data, so there are no additional train or
dev data involved.

accents. Each input sentence is annotated by 3 dif-243

ferent annotators from different dialectic groups to244

maximize diversity.245

ASR The collected speech data are converted to246

text with a commercial automatic speech recog-247

nition (ASR) software iFlytek7. We choose this248

commercial software because it is optimized for249

Mandarin and outperforms other open-source toolk-250

its that we explored in the pilot run in terms of251

character-level error rates. We also release the raw252

audio recordings so that future work can explore253

using other alternative ASR choices as well.254

Throughout the paper, we report results sepa-255

rately for the keyboard and speech noisy test sets256

for more fine-grained comparisons. We introduce257

more details of the annotated test sets in the next258

section.259

3 Dataset Overview260

In this section, we analyse the annotated noisy test261

sets, including data statistics, our proposed metrics262

for robustness evaluation, a manual quality assess-263

ment of the annotated data as well as a qualitative264

analysis of the diverse types of input noises.265

3.1 Corpus Statistics266

The keyboard and speech noise data have the same267

sizes.8 We only perform noise annotation on the268

test data and the training and dev sets remain clean.269

This serves our purpose to stress test models’ ro-270

bustness. Since the original datasets did not pub-271

licly release their test sets, we use their original dev272

splits as our test sets and we re-split the existing273

7https://global.xfyun.cn/products/
real-time-asr

8We performed some minimal filtering on the speech noise
data to remove nonsensical outputs from ASR, which only
involves about 50 examples in total and is omitted in the table.

Keyboard Speech
Average Worst Average Worst

AFQMC 18.8 27.5 30.9 44.1
CMRC2018 17.4 26.9 25.1 38.1

CSpider 17.4 25.7 13.3 21.8
WMT2021 17.7 25.1 21.6 30.8

Table 3: Micro-average and worse-average error rates
on our annotated test sets. Micro-average (‘Average’)
is the mean of the average error rate among all three
annotations for all examples. Worst-average (‘Worst’)
takes the mean of the maximum error rate among all
three annotations for all examples.

training data into our new train and dev splits, and 274

we only annotate the test splits. We present the 275

statistics of our data splits in Table 2. 276

To gauge the amount of noises in our annotated 277

test sets, we report the character-level error rates 278

for each noisy test set. Since the noise data could 279

involve various changes like character deletion, in- 280

sertion, or substitution, we use Levenshtein dis- 281

tance to measure the level of noise. Specifically, 282

given a clean sentence s and its annotated noisy 283

version t, we define its error rate as: 284

error =
levenshtein(s, t)

len(s)

We measure the micro-average (average over- 285

all all annotations) as well as the worst-average 286

(only consider the highest error rate annotation for 287

each example) error rate across all three annota- 288

tions over all examples. These two measures are 289

further explained in the next section. The error 290

rates are presented in Table 3. We find that speech 291

noises generally incur larger error rates except on 292

CSpider, and in all cases, the error rates are well 293

below 50%. 294

3.2 Evaluation Metrics 295

Apart from the individual metrics as introduced 296

in section 2.1, we introduce two other benchmark- 297

level metrics to account for the variations across 298

the three different annotations per test example. 299

Suppose for the i-th example, the performance 300

of the model (by its task-specific metric) on the 301

three typo annotations are pi1, p
i
2, p

i
3 respectively. 302

We define the following two measures: 303

Micro-Average takes the average of all perfor-
mance across the three annotations, and then aver-
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ages across all examples,

MA =
1

N

N∑
i=1

(
1

3

3∑
j=1

pij)

=
1

3
(
1

N

N∑
i=1

pi1 +
1

N

N∑
i=1

pi2 +
1

N

N∑
i=1

pi3).

In other words, this is equivalent to taking the aver-304

age of the per-annotator performance.305

Worst-Average takes the minimum of the per-
formance among all three annotations per average,
and then averages across all examples,

WA =
1

N

N∑
i=1

min(pi1, p
i
2, p

i
3).

This is a more challenging setting where we exam-306

ine the worst-case performance across the annota-307

tion variations for each example.308

3.3 Data Quality Analysis309

In order to analyze the quality of our annotated310

data, we design a human evaluation experiment.311

We compare our noisy test sets with the automati-312

cally constructed input noise test sets as in Si et al.313

(2021b). Specifically, they replace characters in the314

original sentences with randomly sampled homo-315

phones based on an existing Chinese homophone316

dictionary (Zeng et al., 2021). We replicate their317

approach as a baseline and add an additional con-318

straint that we only allow simplified Chinese char-319

acters in the character substitution process since320

our data focus on simplified Chinese.321

We aim to compare whether our crowdsourced322

noise data are more likely to occur in the real world.323

Towards this goal, we conduct a human preference324

selection experiment, where we present pairs of325

sentences to two annotators (different from the ones326

who did the noisy input annotation). Each pair327

consists of a sentence with automatic typos and328

another with our crowdsourced input noise, and329

the ordering is randomly shuffled for all pairs. We330

instruct the annotators to select the sentence that331

is more likely to occur in real user input settings332

(i.e., more plausible). We perform such annotation333

on 160 randomly sampled sentence pairs, for both334

keyboard input noises and speech input noises.335

We show some qualitative examples to com-336

pare our real-world noises and automatically con-337

structed ones in Table 4, where we see that auto-338

matic noises involve substitutions that are unlikely339

to happen in real-world (for example only chang- 340

ing a single character “毒" to “独" in the word 341

“病毒" rather than mis-typing the entire word like 342

human annotators tend to do). Quantitatively, we 343

find that our crowdsourced keyboard input noises 344

are preferred 87.5% of the time as compared to 345

automatic typos, and our speech input noises are 346

preferred 86.3% of the time compared to automatic 347

typos (the results are averaged over two annotators). 348

These results suggest that our crowdsourced noisy 349

data are much more plausible than automatic typos. 350

3.4 Diversity Analysis 351

To understand the diversity of the noise patterns in 352

our annotated data, we first present some qualita- 353

tive case studies. We present sampled examples in 354

Table 4 showing a wide range of noise patterns. We 355

traced back to the annotation recordings to better 356

understand how these noises arise during typing. 357

In example (3b), “里程” and “历程” have the same 358

Pinyin transliteration and the annotator chose the 359

wrong word on the IME ; in example (4b), the an- 360

notator typed the abbreviation “y j l” for “yao jin 361

li” (“要尽力”), which turned into “yao ji liang” 362

(“药剂量”) due to wrong word selection (these 363

two words have the same abbreviation); in example 364

(2b), the annotator mis-typed the Pinyin input by 365

swapping “er” (“二”) to “re” (“热”). 366

For speech input data, we listened to some sam- 367

pled raw recordings and found that different annota- 368

tors have vastly different accents leading to various 369

noise patterns. The speech noise (1c) in Table 1 370

shows an example where the first tone (‘花’ [huā]) 371

is pronounced as the fourth tone (‘画’ [huà]); in 372

example (2c), “jin xin” (“浸信”) is pronounced 373

as “qing xing” (“情形”). The noises arise when 374

these accent variations lead to corresponding char- 375

acters through ASR post-processing. Additionally, 376

we found that the text data produced by the ASR 377

system sometimes have a language modeling effect 378

where the original words are replaced with more 379

likely substitutes for better coherence (similar to 380

the finding in Peskov et al. (2019) on English ASR). 381

For example, in example (3c), “8缸或” (“bā gāng 382

huò”) is converted to “八港货” (“bā gǎng huò”). 383

Quantitatively, we performed an additional an- 384

notation on 240 sampled keyboard input examples 385

from six different annotators. We find that READIN 386

examples cover different typing habits and noise 387

patterns. For example, 69% of the time annotators 388

type the full Pinyin sequences while in 31% cases 389
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CMRC2018 Original 底特律第二浸信会教堂在哪里(2a)
Where is Detroit’s Second Baptist Church?

Keyboard 底特律地热进行会教堂在哪里(2b)
Speech 底特律第二情形会教堂在哪里(2c)
Auto 底特绿第二浸信会教堂在哪里(2d)

CSpider Original 8缸或1980年前生产的汽车的最大里程是多少(3a)
What is the maximum mileage for an 8 cylinder or pre-1980 car?

Keyboard 8缸或1980年前生产的汽车的最大历程是多少(3b)
Speech 八港货1980年前生产的汽车的最大里程是多少(3c)
Auto 8缸或1980年前升产的汽车的最大里程是多少(3d)

WMT2021 Original 要尽力防止病毒在社区进一步扩散 (4a)
Try our best to fight against further spread of the coronavirus in the community.

Keyboard 药剂量发展病毒在社区进一步开始 (4b)
Speech 要经历防止病毒在社区进一步扩散(4c)
Auto 要尽力防指病独在社区进一步扩散(4d)

Table 4: More examples of different types of noises in READIN, in comparison with automatically constructed
typos. The three examples are from three different datasets.

annotators only type the abbreviated sequences;390

56% of these noises are due to selection errors391

(where the Pinyin input is right but the annotators392

selected the wrong word from IMEs) while the393

other 44% are due to wrong Pinyin input. 9394

Overall, our analysis highlights that READIN395

covers realistic and diverse input noises, posing396

greater challenges for existing models.397

4 Experiments398

We benchmark several pretrained language mod-399

els and examine whether their performance stays400

strong on READIN.401

4.1 Baseline Setups402

We use RoBERTa-wwm (Cui et al., 2021) and403

MacBERT (Cui et al., 2020) as baselines for classi-404

fication tasks. RoBERTa-wwm is a Chinese version405

of RoBERTa (Liu et al., 2019), where whole-word-406

masking is used during pretraining. MacBERT is a407

modification to BERT (Devlin et al., 2019) where408

replaced word correction is used as a pretraining409

objective. Both of these models, like the original410

Chinese BERT, directly use the WordPiece (Wu411

et al., 2016) tokenizer on Chinese characters. We412

use the base scale checkpoint for both models.413

For machine translation, we adopt414

mBART50 (Tang et al., 2020) as the base-415

line, which is a multilingual Transformer model416

that consists of 12 encoder layers and 12 decoder417

layers and is trained based on mBART (Liu et al.,418

2020) for multilingual translation. For semantic419

parsing, we use DG-SQL (Wang et al., 2021),420

9More details are in the Appendix.

a competitive baseline on CSpider based on 421

multilingual BERT (Devlin et al., 2019). 422

For experiments on AFQMC, CMRC2018, and 423

CSpider, we finetune the pretrained checkpoints 424

on the corresponding clean training sets. For 425

WMT2021, we directly take mBART50 for in- 426

ference without additional finetuning on Chinese- 427

English parallel data since mBART50 itself is al- 428

ready trained on parallel translation data including 429

Chinese-to-English. 430

4.2 Robustness Methods 431

Apart from standard finetuning, we also experiment 432

several robust training and data processing methods 433

in order to assess how much can existing robust- 434

ness methods solve our benchmark. We briefly 435

introduce these methods below. 436

Adversarial Data Augmentation ADA (Si et al., 437

2020) is commonly used to enhance robustness 438

against adversarial examples. We perform ADA by 439

creating synthetic noisy training examples through 440

random homophone substitution as in (Si et al., 441

2021b) and add these examples to the original train- 442

ing examples. We double the number of total train- 443

ing examples through ADA. 444

Typo Correction Inspired by previous work that 445

used a word recognition model to restore mis- 446

spelled words in English (Pruthi et al., 2019), 447

we use a highly optimized commercial Chinese 448

typo correction software10 to pre-process data in 449

READIN and then perform evaluation on the cor- 450

10https://console.xfyun.cn/services/
text_check
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AFQMC (pos) AFQMC (neg) CMRC2018
Clean Average Worst Clean Average Worst Clean Average Worst

Keyboard

RoBERTa-wwm 78.92 42.75 15.17 65.75 81.87 65.85 69.78 60.84 46.69
w/ ADA 76.76 48.31 19.88 63.50 76.56 58.23 59.30 53.04 42.00

w/ Word Correction 78.92 39.96 12.78 65.75 82.91 67.29 69.78 60.84 46.69

MacBERT 80.04 48.33 18.83 62.09 76.77 58.29 67.69 56.71 41.29
w/ ADA 77.88 53.21 24.66 64.30 74.41 55.34 59.24 54.05 43.99

w/ Word Correction 80.04 44.52 16.22 62.09 78.51 60.41 67.69 56.72 41.29

Speech

RoBERTa-wwm 78.92 27.75 5.68 65.75 87.80 73.81 69.78 55.97 40.73
w/ ADA 76.76 39.76 13.30 63.50 78.26 58.93 59.30 48.32 36.35

w/ Word Correction 78.92 27.75 5.68 65.75 87.80 73.81 69.78 55.97 40.73

MacBERT 80.04 26.68 5.16 62.09 87.88 73.77 67.69 51.81 35.94
w/ ADA 77.88 45.44 16.59 64.30 75.68 54.53 59.24 48.96 36.63

w/ Word Correction 80.04 26.68 5.16 62.09 87.77 73.77 67.69 51.81 35.94

Table 5: Baseline performance on AFQMC and CMRC2018 test sets. We compare model performance on the
original clean test set (‘Clean’) and our new typo test sets. For results on typo test sets, we report both micro-average
(‘Average’) and worst-average (‘Worst’) performance. For AFQMC, we report accuracy on positive and negative
pairs separately. For CMRC2018, we report answer exact match.

CSpider WMT2021

Keyboard Speech Keyboard Speech
Clean Average Worst Average Worst Clean Average Worst Average Worst

DG-SQL / mBART50 44.87 28.85 11.99 33.40 24.18 23.19 16.35 9.37 16.74 10.82
w/ Word Correction 44.87 30.24 13.73 33.40 24.47 23.19 17.59 10.24 16.89 10.97

Table 6: DG-SQL performance on CSpider and mBART50 performance WMT2021 test sets. We compare model
performance on the original clean test set (‘Clean’) and our new noisy test sets. For results on noisy test sets, we
report both micro-average (‘Average’) and worst-average (‘Worst’) performance. For CSpider, we report exact
match with the gold reference; for WMT2021, we report BLEU.

rected data. We only perform this step on the noisy451

test sets, not the clean sets.452

SubChar Tokenization Models (Si et al., 2021b)453

released a series of BERT-style models trained with454

SubChar tokenization, which use sub-character455

units such as radicals and syllables to compose456

Chinese characters. In particular, their SubChar-457

Pinyin model has the advantage of being robust to458

homophone typos. We adopt their model and also459

consider performing ADA on top of the SubChar-460

Pinyin model.461

4.3 Results462

We present results of the baseline models in Table 5463

(for NLU tasks) and Table 6 (for NLG tasks). We464

highlight several main findings below.465

Input Noises Cause Large Drops We first com-466

pare performance of the same models on the clean467

test sets and the noisy test sets. We see a clear trend468

Keyboard Speech
Clean Average Worst Average Worst

Subword 75.81 49.63 22.03 42.21 19.31
w/ ADA 69.76 49.39 25.67 46.35 22.97

SubChar-Pinyin 73.99 50.88 23.42 45.24 21.21
w/ ADA 73.73 54.16 29.43 52.93 28.06

Table 7: Finetuning results of BERT models trained with
subword and SubChar tokenizers on the AFQMC (pos)
subset. SubChar models are more robust than subword
models, especially after performing data augmentation.

that model performance drops significantly when 469

evaluated on the noisy test sets as compared to the 470

clean test sets. As expected, the worst-average per- 471

formance is much worse than the micro-average, 472

showing that robustness across annotator variations 473

is challenging. Moreover, we find that speech 474

noises cause larger performance drops than key- 475

board noises (except on CSpider), which corre- 476

7



sponds to the character error rates of these different477

test sets (Table 3).478

One notable result is on AFQMC, where we479

observe drastic performance drop on the positive480

paraphrase pairs but marginal drop or even perfor-481

mance increase for negative pairs. The reason is482

that models are exploiting spurious correlation in483

the training data such as lexical overlap as cues for484

positive pairs (McCoy et al., 2019; Zhang et al.,485

2019). When we introduce input noises to the data,486

the lexical overlap decreases, thus models exploit-487

ing spurious features become more likely to predict488

negative labels. Better performance on the positive489

examples in AFQMC (without significant sacrifice490

on the clean tests) can be taken as a sign for better491

robustness. We also present results on AFQMC as492

measured by the F1 metric in the appendix, and the493

results also indicate a drop in F1 on the noisy tests.494

Robustness Methods Have Inconsistent Gains495

For the adversarial data augmentation (ADA) and496

word correction pre-processing methods, we find497

that they have inconsistent gains on different498

datasets. For example, ADA improves performance499

on the noisy test sets on the AFQMC (pos) set, but500

not on the CMRC2018 dataset. On the other hand,501

word correction improves performance on the key-502

board noise test sets of CSpider and WMT2021,503

but not on the other datasets.504

SubChar Tokenization Helps Lastly, in Table 7,505

we show results for finetuning models with Sub-506

Char tokenization. We find that the SubChar-Pinyin507

model outperforms the Subword model (which uses508

conventional subword tokenization). Moreover, the509

gain is much larger after training SubChar-Pinyin510

with ADA.511

5 Related Work512

Spelling Errors Previous works have recognized513

the impact of spelling and grammatical errors in514

multiple languages. Several typo and grammatical515

corpora have been collected (Hagiwara and Mita,516

2020), notably by tracking Wikipedia edits (Grund-517

kiewicz and Junczys-Dowmunt, 2014; Tanaka et al.,518

2020). The major difference with our work, apart519

from the language used, is that we focus on real-520

world downstream applications with diverse input521

settings. There is also effort on spelling error cor-522

rection (SEC) (Wu et al., 2013; Cheng et al., 2020).523

While SEC aims to restore the spelling errors, our524

goal is to make sure models perform well on down-525

stream applications even in the existence of input 526

noises. Applying an SEC model as pre-processing 527

could be one way to improve performance on our 528

READIN benchmark. Other alternatives for training 529

robust models against spelling errors include noise- 530

aware training (Namysl et al., 2020) and learning 531

typo-resistant representation (Edizel et al., 2019; 532

Schick and Schütze, 2020; Ma et al., 2020). We 533

believe such modeling explorations to future work. 534

Linguistic Variations Our READIN not only re- 535

lates to spelling errors or typos, but also related to 536

linguistics variations especially in terms of phono- 537

logical variations. Previous works have exam- 538

ined linguistic variations such as non-standard En- 539

glish (Tan et al., 2020a,b; Groenwold et al., 2020) 540

and dialect disparity (Ziems et al., 2022). Such 541

works have important implications for building 542

equatable NLP applications especially for minority 543

language groups in the society. Yet, such effort is 544

absent in Chinese NLP and our benchmark is a first 545

attempt towards incorporating linguistic variations 546

in model evaluation. 547

Adversarial Robustness Works in the adversar- 548

ial robustness often involved adversarially opti- 549

mized character or word perturbations in an at- 550

tempt to minimize model performance (Ebrahimi 551

et al., 2018a,b; Jones et al., 2020). Corresponding 552

defenses have also been proposed such as adver- 553

sarial training or data augmentation (Belinkov and 554

Bisk, 2018; Si et al., 2020, 2021a). Our work dif- 555

fers from this adversarial robustness line of work 556

because we are not measuring worst-case attacks, 557

but rather more realistic input noises that would 558

actually occur in real-world user-generated inputs. 559

6 Conclusion 560

In this work, we present READIN - the first Chinese 561

multi-task benchmark with realistic and diverse in- 562

put noises. Our annotation is carefully designed to 563

elicit realistic and diverse input noises for both key- 564

board Pinyin input and speech input. Through both 565

quantitative and qualitative human evaluation, we 566

show that our crowdsourced input noises are much 567

more plausible and diverse than existing automati- 568

cally created ones. Our experiments on strong pre- 569

trained language model baselines show that models 570

suffer significant drops on our noisy test sets, in- 571

dicating the need for more robust methods against 572

input noises that would happen in the real world. 573
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Ethics and Broader Impact574

We use this additional section to discuss potential575

ethical considerations as well as broader impact of576

our work.577

Ethical Consideration This work involves hu-578

man annotation. We made sure that all annotators579

are properly paid. We discussed extensively with580

all annotators involved to set a compensation that581

all agree on before starting the annotation, and582

the total cost of annotation for the project is about583

30K RMB. We also explicitly informed all annota-584

tors about how the collected data will be used and585

made adjustments in the data collection and release586

protocol to avoid any privacy concerns. Overall,587

we believe that there is no harm involved in this588

project’s annotation jobs.589

Positive Societal Impact This project tackles the590

real-world problem of input noises. We believe591

that our work will have a positive societal impact592

because we collected test data from annotators with593

diverse backgrounds. Our benchmark will facili-594

tate the development of models that can perform595

well across all these variations, which has impor-596

tant implications to ensure the accessibility of our597

language technologies to users from diverse back-598

grounds. This fairness and inclusion aspect is often599

under-valued in the Chinese NLP community and600

we hope that our work can push the community to601

put more work on this front.602

Limitations While we tried our best to maximize603

the diversity and coverage of our benchmark, it is604

practically impossible to cover all possible input605

noises. We acknowledge aspects that we did not get606

to cover, for example, the impact of different input607

devices (phones, tablets, as compared to keyboards608

used in our annotation). Also, while we tried to609

re-construct the real-world input settings as much610

as possible, there may still be subtle differences611

between real-world input and our annotation pro-612

cess, for example, we posed speed limits during the613

keyboard input annotation and this may not capture614

exactly how users type in real applications. We615

encourage future work to consider how to increase616

the coverage of such benchmarks and also possi-617

ble innovations in the data collection procedure to618

collect fully realistic user data.619
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A Appendix819

A.1 Annotator Details820

We provide more details about the speakers for821

our speech input annotation in Table 8. The home-822

towns also represent their dialectal groups. Our823

selected annotators represent a wide range of di-824

alectal groups in China.825

Age Gender Hometown (Accent)

Male 35 Harbin, Heilongjiang
Male 64 Loudi, Hunan

Female 43 Hefei, Anhui
Male 45 Zhangjiakou, Hebei
Male 32 Datong, Shanxi

Female 43 Loudi, Hunan
Female 57 Changde, Hunan
Female 32 Shijiazhuang, Hebei
Female 33 Guangyuan, Sichuan
Female 36 Zigong, Sichuan

Table 8: Details about the ten speakers that performed
the speech input annotation.

A.2 AFQMC F1 Results826

We present evaluation results on AFQMC with the827

F1 metric in Table 9. We can see significant per-828

formance drops on the noisy test sets. We prefer829

to report accuracy numbers for the positive and830

negative examples separately in the main paper be-831

cause they better capture the different performance832

patterns for the positive and negative examples.833

Clean Average

Keyboard

RoBERTa-wwm 68.04 59.96
MacBERT 69.20 60.63

Speech

RoBERTa-wwm 69.19 46.89
MacBERT 68.04 43.90

Table 9: Macro-F1 performance of baseline models on
the entire AFQMC test set.

A.3 Noise Type Annotation834

To better understand the different noise patterns835

and diversity of the keyboard noise data, we per-836

form an additional human annotation on two key-837

board input subsets in READIN: AFQMC and838

WMT2021. From each dataset we examine the839

annotation recording of 40 sentences from differ-840

ent annotators. Since there are three annotators841

for each dataset (each using a different IME), this842

Full Abbr

Wrong Input 29.8% 14.3%
Wrong Selection 39.3% 16.7%

Table 10: Noise breakdown of sampled Pinyin input
examples. We categorise the noises into four types based
on whether they are types as full Pinyin sequences (Full)
or abbreviations (Abbr) and whether the noises are due
to wrong input or word selection.

results in a sample size of 240 sentences for this 843

human annotation. The authors of this paper per- 844

formed this annotation task by categorising the 845

noises in these sampled inputs into four categories 846

detailed below. 847

We note that the annotators have two different 848

typing habits: they either input the full Pinyin se- 849

quence or the abbreviations (e.g., just typing the 850

first syllables of each character). Orthogonal to 851

these different typing habits, the noises have two 852

different sources: they either occur because the 853

input Pinyin sequence is wrong or the input se- 854

quence is right but the original annotators selected 855

the wrong word in the IME. The combination of 856

these two typing habits and error sources results 857

in the four noise types listed in Table 10. We fol- 858

low such a scheme for error breakdown because 859

these categories represent very different noisy in- 860

put patterns and may pose different challenges for 861

the models. 862

From Table 10, we can see that wrong word 863

selection is more common than wrong input se- 864

quences, and typing in full is more common than 865

typing abbreviations. Moreover, there are a sig- 866

nificant number of examples from each category, 867

confirming the diversity of the noise patterns in the 868

Pinyin input annotations. 869
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