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ABSTRACT

Heuristic design with large language models (LLMs) has emerged as a promising
approach for tackling combinatorial optimization problems (COPs). However,
existing approaches often rely on manually predefined evolutionary computation
(EC) heuristic-optimizers and single-task training schemes, which may constrain
the exploration of diverse heuristic algorithms and hinder the generalization of
the resulting heuristics. To address these issues, we propose Meta-Optimization
of Heuristics (MoH), a novel framework that operates at the optimizer level, dis-
covering effective heuristic-optimizers through the principle of meta-learning.
Specifically, MoH leverages LLMs to iteratively refine a meta-optimizer that
autonomously constructs diverse heuristic-optimizers through (self-)invocation,
thereby eliminating the reliance on a predefined EC heuristic-optimizer. These
constructed heuristic-optimizers subsequently evolve heuristics for downstream
tasks, enabling broader heuristic exploration. Moreover, MoH employs a multi-
task training scheme to promote its generalization capability. Experiments on
classic COPs demonstrate that MoH constructs an effective and interpretable meta-
optimizer, achieving state-of-the-art performance across various downstream tasks,
particularly in cross-size settings.

1 INTRODUCTION

Heuristics have long been integral to solving combinatorial optimization problems (COPs), offering
practical and efficient approaches when exact methods become computationally intractable due to
their exponential time complexity. Over the past few decades, substantial progress has been achieved
in human-designed heuristics. Notable examples include the Lin-Kernighan Heuristic (LKH) (Lin
& Kernighan, 1973) for the Traveling Salesman Problem (TSP) and the Best Fit heuristic (Johnson
et al., 1974) for the Bin Packing Problem (BPP). However, developing effective heuristics for COPs
typically requires an in-depth understanding of each problem’s unique structure and the specialized
expertise to craft suitable heuristic strategies. As a result, traditional approach to heuristic design is
both time-intensive and significantly dependent on expert knowledge. This underscores the growing
demand for more powerful approaches to accelerate the development of effective heuristics for COPs.

With the explosive advancements of large language models (LLMs) in recent years, the landscape
of heuristic design has undergone a transformative shift (Jiang et al., 2024b; Liu et al., 2024b). A
prominent trend involves leveraging LLMs to generate effective heuristics aimed at solving NP-hard
COPs. Specifically, these methods typically utilize in-context learning to prompt LLMs to produce
heuristics, which subsequently become integral components of (meta-)heuristic or learning-based
solvers. Romera-Paredes et al. (2024) first demonstrated the feasibility of applying LLMs to heuristic
design in this domain. Building on this foundation work, recent approaches have increasingly
integrated LLMs with evolutionary computation (EC), giving rise to LLM-EC frameworks (Liu et al.,
2024a; Ye et al., 2024; Dat et al., 2024; Zheng et al., 2025). These methods enhance heuristic design
by using LLMs to carry out evolutionary operations like crossover and mutation to evolve heuristics.

Despite achieving promising results, existing LLM-EC approaches face two limitations. First, their
search space is constrained by manually designed, predefined EC heuristic-optimizers (e.g., a fixed
workflow of crossover followed by mutation), which may restrict the exploration of diverse heuristics
and ultimately hinder the discovery of more powerful heuristics (Dat et al., 2024). Second, their
optimization process is only designed for a single task (i.e., a fixed-size COP), which may limit
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the generalization of the evolved heuristics. Fig. 1 illustrates the generalization performance of
EoH (Liu et al., 2024a), a representative LLM-EC approach, in optimizing improvement heuristics
for TSP under various training settings. The results indicate a significant generalization challenge, as
performance gaps widen with increasing problem size. Although incorporating cross-size datasets
during training can partially mitigate this issue, the overall performance remains suboptimal on large
problem sizes (i.e., different tasks).
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Figure 1: Generalization performance of the
evolved improvement heuristics for TSP.

To overcome these inherent limitations, we intro-
duce Meta-Optimization of Heuristics (MoH), a novel
framework leveraging the in-context reasoning and
refinement capabilities of LLMs (Huang et al., 2022;
Zelikman et al., 2024) to automate optimizer design.
In this paper, we categorize optimizers into heuristic-
optimizers and meta-optimizers based on their respec-
tive roles. Heuristic-optimizers are algorithms, such
as traditional EC frameworks, that are used to gen-
erate or refine heuristics for COPs to improve solu-
tion quality, whereas meta-optimizers are higher-level
procedures that adapt and enhance these heuristic-
optimizers. Technically, MoH implements an iterative
meta-optimization module within a multi-task frame-
work to encourage both exploration and generalization.
At each iteration, the meta-optimizer generates a diverse population of candidate heuristic-optimizers
through (self-)invocation. The most promising heuristic-optimizer, evaluated by its effectiveness on
downstream tasks in optimizing task-specific heuristics, is selected to become the meta-optimizer in
the subsequent iteration. By doing so, the heuristic-optimizers are improved to generate more effec-
tive heuristics (see Fig. 2). With its innovative meta-optimization, MoH extends beyond traditional
fixed EC optimization frameworks, facilitating broader exploration of the heuristic search space and
operating at a higher abstraction level than existing approaches.

Our contributions are summarized as follows: 1) We propose MoH, a novel framework that highlights
meta-optimization for producing effective COP heuristics. MoH enables broader heuristic exploration
by autonomously discovering effective optimization strategies through an iterative meta-optimization
module, thereby addressing inherent limitations of existing LLM-EC approaches. 2) We position
MoH within a multi-task training framework to enhance its generalization capability to unseen tasks.
3) Extensive experiments across multiple heuristic algorithms and classical COPs demonstrate that
MoH is able to generate effective and interpretable meta-optimizers that consistently outperform
baselines. Notably, the resulting heuristics exhibit strong performance on large COP instances.

2 PRELIMINARIES

In this section, we first introduce two canonical COPs, TSP and online BPP, followed by an introduc-
tion of existing LLM-EC approaches and a high-level comparison with our proposed MoH.

Traveling Salesman Problem. TSP is a well-known NP-hard COP (Applegate, 2006). A TSP
instance is defined over a complete graph G = {V, E}, where V = {v1, . . . , vn} is the set of cities
and E = {e(vi, vj)|vi, vj ∈ V, i ̸= j} is the set of edges, representing possible travel routes between
cities. Each edge e(vi, vj) is associated with a distance dij , where d : V × V → R+ defines the
travel cost between any pair of cities. The objective of TSP is to find a Hamiltonian cycle (i.e., a
permutation of V that starts and ends at the same city) with the minimum total travel cost, subject to
the constraint that each city is visited exactly once before returning to the starting city.

Online Bin Packing Problem. BPP aims to pack a set of items {i1, i2, . . . , in}, each with an
associated weight wi, into bins of capacity C. In its online version (Seiden, 2002), items arrive
sequentially in an unknown order, and an immediate, irrevocable placement decision must be made
for each item. The objective is to minimize the number of bins used, subject to the constraint that the
total weight of items in each bin does not exceed its capacity C.

Existing LLM-EC Approaches. Early approaches (Liu et al., 2024a) leverage a fixed EC heuristic-
optimizer to discover effective heuristics through LLMs for solving COPs. Specifically, they maintain
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Figure 2: Overview of MoH. In iteration t, the current meta-optimizer I∗t−1 generates M candidate
heuristic-optimizers in the outer loop. Each candidate heuristic-optimizer is then evaluated through
the inner loop, where it generates K heuristics that are applied to N downstream tasks. For each task,
the best heuristic is selected, and its utility contributes to the overall utility of the heuristic-optimizer.
After aggregating utility scores across all tasks, the heuristic-optimizer with the highest utility is
selected as the new meta-optimizer I∗t .

a fixed-size population of heuristics tailored to a specific COP task. The EC heuristic-optimizer refines
this population by iteratively selecting promising candidates and applying crossover and mutation
operations to generate improved heuristic variants. Although this method can quickly converge to
reasonably good heuristics, its performance may be constrained by the insufficient exploration of the
vast search space. Although subsequent works propose various EC variants, such as incorporating
a reflection mechanism (Ye et al., 2024) or integrating with Monte Carlo Tree Search (MCTS)
(Zheng et al., 2025), these methods still suffer from limited exploration or high computational cost. In
summary, existing approaches primarily focus on heuristic design using a fixed EC heuristic-optimizer,
whereas MoH targets optimizer design, going a step further by enabling automatic design of such
high-level optimization frameworks themselves. This allows for more flexible and potentially more
effective heuristic generation for downstream tasks, as illustrated in Fig. 2. We believe our approach
offers fresh insights into the field by introducing a conceptually and methodologically meaningful
advancement in the use of LLMs for combinatorial optimization—addressing both optimization
framework discovery and heuristic evolution in a unified and scalable manner.

3 METHODOLOGY

An overview of MoH is shown in Fig. 2, which features a two-level optimization process: an outer
loop for optimizer design and an inner loop for heuristic design. Inspired by recent advances
in LLMs (Zhou et al., 2022; Zelikman et al., 2024), MoH aims to construct a meta-optimizer
capable of generating effective optimization strategies and improve heuristics on downstream tasks
concurrently. Concretely, in the outer loop, the meta-optimizer produces a diverse population of
candidate heuristic-optimizers. Then, each generated heuristic-optimizer is leveraged in the inner
loop to evolve task-specific heuristics for downstream tasks. After evaluating the heuristics on
the validation dataset, the candidate heuristic-optimizer with the highest utility score is selected as
the new meta-optimizer for the next iteration, enabling MoH to iteratively discover increasingly
effective optimization strategies. Moreover, MoH is inherently suited for a multi-task training setting
by maintaining diversity among tasks, thereby enhancing its ability to explore a broader range of
heuristics, leading to improved performance across diverse tasks. Examples of seed (or initial) and
generated meta-optimizers are provided in Appendix E. In the following sections, we present the
technical details of our proposed MoH framework.

3.1 PROBLEM FORMULATION

Suppose there are N downstream tasks, each corresponding to a heuristic design task for a COP. For
each task i, let hI

i denote the heuristic found by the heuristic-optimizer I, Di the validation dataset,
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Algorithm 1: MoH Training Workflow
Input: Number of downstream tasks N , Number of iterations T , Seed meta-optimizer I0;
Output: Meta-optimizer I∗T , Heuristic populationsH across all tasks;
Function U(I):

u← 0
for i = 1, . . . , N do

h̃I
i ← I(Hi, Ui(·),LLM,Prompt, "Task i"):
Steps for heuristic design with heuristic-optimizer I:
a. Generate a group of heuristics using I → {hI

i,1, . . . , h
I
i,K}

b. Evaluate the utility score of each heuristic through Ui(h
I
i,k,Di), ∀k ∈ [1,K]

c. UpdateHi = TopK(Hi ∪ {hI
i,1, . . . , h

I
i,K}) by utility and return the best heuristic h̃I

i

u← u+ ωi · Ui(h̃
I
i ,Di)

return u
▶▶ Initialize heuristic and optimizer populationsH = {H1, . . . ,HN},P = {I0}
for t = 1, . . . , T do
Ĩt ← I∗t−1(P,U(·),LLM, Prompt, "Optimizer"):

Steps for optimizer design with meta-optimizer I∗t−1:
a. Generate a group of heuristic-optimizers via (self-)invocation of I∗t−1 → {I1t , . . . , IMt }
b. Evaluate the utility score of each heuristic-optimizer through U(Ijt ), ∀j ∈ [1,M ]

c. Update P = TopK(P ∪ {I1t , . . . , IMt }) by utility and return the best heuristic-optimizer Ĩt
I∗t ← Ĩt

return I∗T ,H

and Ui(h
I
i ,Di) the heuristic utility function evaluating the performance of hI

i on Di. The objective
of heuristic design is to discover the best heuristic h̃I

i using heuristic-optimizer I:

h̃I
i = arg max

hI
i ∈Hi

Ui(h
I
i ,Di), (1)

where Hi denotes the heuristic search space, comprising all possible heuristics for the task i. The
heuristic utility function Ui(h

I
i ,Di) is defined as the negative of the solution optimality gap. Most

studies so far integrate EC as the heuristic-optimizer I within LLMs to perform heuristic design.
While these LLM-EC approaches offer a certain degree of flexibility, they struggle to effectively
explore huge heuristic search space due to the rigid structure of the fixed heuristic-optimizer I.
Additionally, their heuristic design process necessitates separate training for each task i, making it
computationally expensive. An alternative is to incorporate diverse instances from N tasks into the
training dataset. However, this simple mixture of data results in suboptimal performance, as a single
COP heuristic usually struggles to adapt effectively across different tasks, consistent with the No
Free Lunch Theorem (Wolpert & Macready, 1997).

To address the limitations, MoH directly searches for optimizers rather than relying on a fixed one,
i.e., the optimizer design process. The objective of optimizer design is formally defined as:

I∗ ← Ĩ = argmax
I

N∑
i=1

wi · Ui(h̃
I
i ,Di), with h̃I

i = arg max
hI
i ∈Hi

Ui(h
I
i ,Di), (2)

where I∗ is the meta-optimizer, and wi is the task weight defined as wi =
si∑m

j=1 sj
, with si represent-

ing the problem size of the i-th downstream task. In essence, MoH extends Eq. (1) by introducing an
outer loop for meta-optimization. In this outer loop, the meta-optimizer I∗ produces a population of
candidate heuristic-optimizers through (self-)invocation. The best heuristic-optimizer Ĩ , as evaluated
by the optimizer utility function U(Ĩ) =

∑N
i=1 wi · Ui(h̃

Ĩ
i ,Di), is then selected to serve as the new

meta-optimizer I∗ in the next iteration.

3.2 OVERALL WORKFLOW

We summarize the MoH training workflow in Alg. 1 and detail each step as follows. We initial-
ize each downstream heuristic design task i with a heuristic population Hi. This is achieved by
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Optimizer Signature

def optimize_algorithm(
population: dict,
utility: callable[[dict], float],
language_model: class ’LanguageModel’
subtask_prompt: str,
subtask: str

) -> Tuple[str, str, float]:

Figure 3: This signature applies to meta-optimizers and heuristic-optimizers. Its detailed implementa-
tion is generated by LLMs, enabling recursive or iterative refinement of optimization strategies.

prompting LLMs to generate diverse heuristic ideas in natural language, accompanied by their cor-
responding code implementations. We also initialize a optimizer population P using a given seed
meta-optimizer (see Fig. 8), which serves as the starting point and reference baseline for subsequent
iterations. Concretely, at iteration t, the current meta-optimizer I∗t−1 is used to generate a set of
candidate heuristic-optimizers {I1t , . . . , IMt }. This generation is accomplished via (self-)invocation
of I∗t−1 using LLMs, with prompts constructed from the information in the optimizer population
P . Then, each candidate heuristic-optimizer Ijt employs its own LLM-generated optimization
strategy to evolve heuristics across all downstream tasks, resulting in N populations of improved

heuristics {{hIj
t

i,1, . . . , h
Ij
t

i,K}}Ni=1. After evaluation, the best heuristic for each task is collected, yield-

ing {h̃Ij
t

1 , . . . , h̃
Ij
t

N }. The utility score of each candidate heuristic-optimizer is thus calculated as

U(Ijt ) =
∑N

i=1 wi · Ui(h̃
Ij
t

i , Di). The candidate heuristic-optimizer with the highest utility score is
selected as the meta-optimizer I∗t for the next iteration. More details on population management can
be found in Section 3.3. During inference, the meta-optimizer I∗T can be deployed on new tasks that
differ from those encountered during training, such as tasks with larger problem sizes. By performing
several rounds of heuristic design using I∗T , MoH can yield an effective heuristic tailored to this task.

3.3 DETAILED IMPLEMENTATION

As key subroutines of MoH, we further elaborate on the optimizer and heuristic generation (i.e., step
(a) in the heuristic and optimizer design processes in Alg. 1). The main entities are as follows.

Individual and Population Structure. In MoH framework, an individual is defined as a structured
entity comprising three components: 1) a code implementation (String), 2) a high-level natural
language description of the core strategy (String), and 3) a utility score reflecting its performance
(Float). This unified individual format is adopted for both heuristics and optimizers. To ensure
diversity and stability, we preserve a population with 10 individuals for both heuristic populationsH
and optimizer population P .

Population Management. Individuals in the population are ranked by their utility scores. When a
new candidate arrives, it is compared to the current worst-performing individual. If the candidate’s
utility score is higher, it replaces that individual. After each insertion, the population is re-sorted to
maintain the utility-based ranking. This structure is efficiently managed using a heap.

Optimizer Signature. As shown in Fig. 3, the optimizer is formatted as a callable function that
takes the following inputs: 1) population: the population structure defined above, 2) utility: a
utility function that evaluates the performance of an individual and returns its utility score, 3)
language_model: an LLM for generating heuristics or heuristic-optimizers, 4) subtask_prompt: a
task-specific prompt to guide the optimization, and 5) subtask: a string specifying the name of the
task. The optimizer function returns the best individual discovered during the optimization process.
Notably, it is designed to support recursive invocation, allowing it to take its own implementation as
input through the population parameter in the first outer loop iteration.

Optimizer Generation Procedure. The heuristic-optimizer generation procedure in outer loop
iteration t follows the standardized steps below: 1) Individual Selection: The current meta-optimizer
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I∗t−1 uses its LLM-generated strategy to select promising candidate heuristic-optimizers from the
optimizer population P . This step aims to balance the exploitation of high-utility individuals with
the exploration of diverse candidates. 2) Idea Generation: The iterative improvement of algorithms
generated by LLMs critically depends on algorithmic reasoning articulated in natural language, as
evidenced by (Wang et al., 2024). Consequently, the meta-optimizer is encouraged to prompt LLMs
to propose exploratory or refinement ideas based on the heuristic-optimizers selected in the first step.
3) Implementation Generation: Guided by the generated ideas and task-specific prompts, the LLM
refines or generates new code implementations of selected optimizers through (self-)invocation of
I∗t−1, producing a set of candidate heuristic-optimizers {I1t , . . . , IMt }. Each candidate is evaluated
using the optimizer utility function U(·), and the best-performing heuristic-optimizer is selected
as the new meta-optimizer I∗t for the next iteration. Note that our optimizer structure enables
flexible exploration of various optimization strategies. While the specific behavior of a generated
heuristic-optimizer may vary depending on prior heuristic-optimizers, prompts, and LLM versions,
their procedures generally adhere to the above three steps. Appendix E presents examples of LLM-
generated meta-optimizers, some of which resemble traditional metaheuristics, while others exhibit
hybrid or unconventional strategies.

Heuristic Generation Procedure. Given a heuristic-optimizer Ijt generated by the meta-optimizer
I∗t−1 in outer loop iteration t, the inner loop heuristic generation procedure for downstream task i

follows the standardized steps below: 1) Individual Selection: The heuristic-optimizer Ijt employs
its LLM-generated strategy to select promising candidate heuristics fromHi for evolution. 2) Idea
Generation: The heuristic-optimizer Ijt prompts LLMs to propose exploratory or refinement ideas
based on the heuristics selected in the first step. 3) Implementation Generation: Guided by the
generated ideas and task-specific prompts, the LLM generates or refines heuristic implementations,

resulting in a set of candidate heuristics {hIj
t

i,1, . . . , h
Ij
t

i,K}. Each candidate heuristic is evaluated using
its corresponding heuristic utility function Ui(·), and the heuristic populationHi is updated thereafter.

Despite their procedural similarities, the key differences between optimizer generation in the outer
loop and heuristic generation in the inner loop are as follows: 1) Optimization Target: The outer
loop focuses on generating heuristic-optimizers using the meta-optimizer, whereas the inner loop
applies each generated heuristic-optimizer to improve heuristics across all downstream tasks. 2)
Invocation Frequency: In the outer loop, the meta-optimizer is invoked once per iteration to generate
M candidate heuristic-optimizers. In contrast, during the inner loop, each heuristic-optimizer is
individually applied to generate K candidate heuristics for each downstream task. Consequently, the
invocation frequency in the inner loop is higher than in the outer loop. Detailed prompts for optimizer
and heuristic generation can be found in Appendix D.

4 EXPERIMENTS

We conduct extensive experiments to optimize various heuristic algorithms on classical COP bench-
marks, including TSP and online BPP. Additional results on other problem benchmarks (e.g., CVRP,
Offline BPP) and other optimization problems are provided in Table 9 and 17 (see Appendix C). All
experiments are conducted on servers with NVIDIA GeForce RTX 4090 GPUs and AMD Ryzen
Threadripper PRO 7975WX CPU @ 4GHz. We will release the source code upon publication.

Heuristic Settings. 1) Constructive Heuristic for TSP: In constructive heuristics, a solution is built
incrementally, starting from a random node and iteratively selecting the next promising node based
on a predefined rule. The selected node is then appended to the current route to form a valid tour
step by step. Since constructive heuristics focus on local optimization at each step rather than the
global optimum, their performance is often suboptimal compared to other heuristic algorithms. 2)
Improvement Heuristic for TSP: Guided Local Search (GLS) (Voudouris et al., 2010) is a metaheuristic
that penalizes frequently used edges in local optima, steering the search away from less promising
regions. In specific, it modifies the cost landscape by adjusting the distance matrix, adding penalties
to certain edges to prevent their repeated selection in subsequent iterations. In our experiment, we
compare two GLS implementations from (Liu et al., 2024a) and (Ye et al., 2024). The implementation
in (Liu et al., 2024a) follows a standard GLS approach, combining a basic local search method with
dynamic edge penalties to guide the search. In contrast, the approach in (Ye et al., 2024) aligns more
closely with Knowledge-Guided Local Search (KGLS) (Arnold & Sörensen, 2019), incorporating
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Table 1: Results for constructive and improvement heuristics on TSP.

Methods

Train Generalization

Average Gap20 50 100 200 500 1000
Obj.↓ Gap Obj.↓ Gap Obj.↓ Gap Obj.↓ Gap Obj.↓ Gap Obj.↓ Gap

Concorde 3.840 - 5.715 - 7.766 - 10.679 - 16.519 - 23.104 - -
OR-Tools 3.840 0.000% 5.715 0.001% 7.772 0.089% 10.944 2.478% 17.259 4.479% 24.262 5.011% 2.010%

Nearest Neighbor 4.602 19.806% 7.055 23.406% 9.636 24.072% 13.374 25.228% 20.691 25.252% 28.990 25.474% 23.873%

Constructive Heuristic

Funsearch 4.261 11.000% 6.523 14.162% 9.018 16.109% 12.615 18.143% 19.531 18.242% 27.571 19.332% 16.165%
EoH 4.204 9.408% 6.402 12.007% 8.774 12.974% 12.233 14.548% 19.029 15.196% 26.890 16.390% 13.420%

ReEvo 4.197 9.250% 6.399 11.966% 8.786 13.133% 12.217 14.403% 19.035 15.232% 26.818 16.076% 13.343%
HSEvo 4.108 6.897% 6.280 9.881% 8.705 12.102% 12.208 14.320% 19.550 18.349% 27.431 18.727% 13.379%

MCTS-AHD 4.107 6.882% 6.332 10.807% 8.735 12.499% 12.165 13.921% 19.036 15.240% 26.814 16.060% 12.568%
MoH (Ours) 4.104 6.837% 6.280 9.893% 8.654 11.444% 12.100 13.307% 18.869 14.224% 26.581 15.049% 11.792%

Improvement Heuristic

EoH-GLS 3.840 0.000% 5.715 0.000% 7.768 0.024% 10.716 0.342% 16.714 1.176% 23.747 2.781% 0.721%
HSEvo-GLS 3.840 0.000% 5.715 0.000% 7.768 0.028% 10.715 0.328% 16.729 1.266% 23.719 2.660% 0.714%
ReEvo-GLS 3.840 0.000% 5.715 0.000% 7.768 0.021% 10.715 0.331% 16.741 1.344% 23.731 2.715% 0.735%

MoH-GLS (Ours) 3.840 0.000% 5.715 0.000% 7.767 0.012% 10.711 0.291% 16.674 0.936% 23.445 1.476% 0.453%
ReEvo-KGLS 3.840 0.000% 5.715 0.000% 7.766 0.003% 10.704 0.221% 16.681 0.976% 23.473 1.595% 0.466%
HSEvo-KGLS 3.840 0.000% 5.715 0.000% 7.767 0.004% 10.704 0.221% 16.678 0.958% 23.478 1.615% 0.466%

MCTS-AHD-KGLS 3.840 0.000% 5.715 0.000% 7.767 0.006% 10.702 0.204% 16.662 0.867% 23.425 1.389% 0.411%
MoH-KGLS (Ours) 3.840 0.000% 5.715 0.000% 7.766 0.002% 10.699 0.177% 16.652 0.805% 23.419 1.363% 0.391%

domain-specific knowledge from the distance matrix to enhance the standard GLS framework. In our
experiments, we use GLS and KGLS to represent two different settings. 3) Online BPP: We follow
the settings of (Romera-Paredes et al., 2024) to develop a heuristic that assigns incoming items to
bins in real time. The heuristic utilizes a scoring function to determine the most suitable bin for each
item dynamically (Angelopoulos et al., 2023). We evaluate the generated heuristics on 100 Weibull
instances for each problem size, ranging from 1,000 to 10,000, with bin capacities varying from 100
to 500. The lower bound lb for each instance is calculated as the ceiling of the total item weight
divided by the capacity of a single bin: lb =

⌈∑n
i=1 wi

c

⌉
, where wi is the weight of the item i and c is

the bin capacity (Martello & Toth, 1990).

Baselines. 1) Traditional methods: We employ Concorde (Applegate et al., 2003) and OR-
Tools (Furnon & Perron, 2023) to solve TSP, and compare with classic heuristics, including Nearest
Neighbor for TSP, and Best Fit and First Fit for online BPP. For OR-Tools, we use guided local
search as the local search strategy. The time limit for solving each TSP instance is set to 20s for
problem size≤ 100 and 40s for problem size≥ 200. 2) LLM-based methods: We compare MoH with
five representative approaches: FunSearch (Romera-Paredes et al., 2024), EoH (Liu et al., 2024a),
ReEvo (Ye et al., 2024), HSEvo (Dat et al., 2024), and MCTS-AHD (Zheng et al., 2025). We rerun
their publicly available implementations in our training settings, as detailed below. 3) Neural methods:
We also benchmark against neural solvers, such as POMO (Kwon et al., 2020), LEHD (Luo et al.,
2023) and SIL (Luo et al., 2024), with results reported in Appendix C.

Training and Inference. To ensure a fair comparison, all LLM-based methods are trained under
identical experimental conditions for each problem setting and evolved without relying on any
predefined seed heuristic. In the TSP scenario, all methods are trained on cross-size datasets
comprising four tasks: TSP20, 50, 100 and 200, and generalized to larger instances of sizes 500 and
1000. In the online BPP scenario, all methods are trained on two tasks: 1,000 items with bin capacity
1,000, and 5,000 items with bin capacity 1,000. During training, we fix the number of outer loop
iterations to T = 10 and maintain a population size of 10 for both heuristic-optimizer and heuristic
populations. We control the computational budget of each method by limiting the number of heuristic
evaluations to 1,000. A detailed analysis of computational costs is provided in Table 10, 11 and 12
(see Appendix C). At inference stage, the trained meta-optimizer is executed for 10 iterations. For
the final results of heuristic performance, we use 128 instances for TSP heuristic evaluation and 100
instances for online BPP heuristic evaluation. All results reported in Tables 1 and 2 reflect the average
performance over the test dataset of the best-performing heuristic identified across three independent
runs. All experiments use GPT 4o-mini (2024-07-18) as base LLM.

4.1 EMPIRICAL RESULT

Table 1 presents a comprehensive comparison of our proposed MoH against baselines on TSP. The
table includes best results for both constructive and improvement heuristics across TSP20-1000
instances in three independent runs. The optimality gap is calculated as the difference in cost between

7
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Table 2: Results on Online BPP.

Bin Capacity Item Size Best Fit First Fit FunSearch EoH ReEvo HSEvo MCTS-AHD MoH (Ours)

100
1k 4.621% 5.038% 3.165% 3.294% 3.475% 3.748% 2.543% 2.553%
5k 4.149% 4.488% 2.165% 0.827% 2.022% 1.088% 1.769% 0.600%

10k 4.030% 4.308% 2.008% 0.436% 1.821% 0.734% 1.647% 0.414%

200
1k 1.825% 2.025% 0.938% 1.645% 1.825% 1.825% 1.238% 0.848%
5k 1.555% 1.665% 0.543% 0.366% 1.549% 1.555% 1.062% 0.262%

10k 1.489% 1.578% 0.459% 0.188% 1.489% 1.489% 1.036% 0.141%

300
1k 1.131% 1.265% 0.654% 1.086% 1.131% 1.131% 0.922% 0.581%
5k 0.919% 0.984% 0.352% 0.254% 0.919% 0.919% 0.785% 0.161%

10k 0.882% 0.924% 0.316% 0.115% 0.882% 0.882% 0.765% 0.079%

400
1k 0.815% 0.835% 0.519% 0.815% 0.815% 0.815% 0.755% 0.498%
5k 0.624% 0.672% 0.275% 0.191% 0.621% 0.624% 0.608% 0.104%

10k 0.603% 0.639% 0.243% 0.098% 0.595% 0.603% 0.579% 0.054%

500
1k 0.546% 0.522% 0.324% 0.695% 0.546% 0.546% 0.496% 0.373%
5k 0.472% 0.507% 0.214% 0.119% 0.472% 0.472% 0.447% 0.090%

10k 0.448% 0.487% 0.196% 0.075% 0.445% 0.448% 0.430% 0.032%
Average 1.607% 1.729% 0.825% 0.680% 1.240% 1.125% 1.006% 0.453%

each heuristic’s solution and the optimal solution, obtained using the Concorde solver (Applegate
et al., 2003). In the constructive heuristic setting, MoH achieves the lowest average optimality gap of
11.792%, significantly outperforming existing LLM-based approaches. In the improvement heuristic
setting, we evaluate MoH using both GLS and KGLS variants. Our approach consistently achieves
the lowest optimality gap of 0.391%, demonstrating superior solution quality across various TSP
instances. Moreover, MoH demonstrates strong generalization performance on large-scale instances
across both settings. These results confirm the effectiveness and adaptability of our approach in both
heuristic categories and across different data regimes. Additional heuristic performance results with
different baselines on TSPLib (Reinelt, 1991) are presented in Table 7 and 8 (see Appendix C).
Detailed results for stastistical performance is listed in Table 16.

Table 2 summarizes the best performance of MoH on the Online BPP across three independent runs,
evaluated over a variety of settings with different bin capacities (100 to 500) and item set sizes (1k, 5k,
10k). The reported metric is the proportion of excess bins used relative to the theoretical lower bound.
Our method outperforms all competing baselines and traditional heuristics Best Fit, First Fit across
nearly all instance settings, achieving lower average bin usage. These results indicate that MoH
also performs well on online packing tasks, demonstrating strong adaptability and generalization in
dynamic environments. Appendix E provides examples of the best-performing heuristics discovered
by MoH in large-scale settings across these problems.

4.2 ABLATION STUDY AND FURTHER ANALYSIS

In this section, we provide a more in-depth analysis of MoH. The experiments shown in Fig. 4 and
Tables 3 and 4 are conducted under the improvement heuristic (i.e., GLS) setting on TSP. Results are
averaged over three runs, using TSP100 and TSP200 as the downstream tasks during training.

Idea Generation. A key strength of LLMs lies in their powerful natural language processing
capabilities. Integrating code generation and optimization tasks with natural language algorithm
descriptions is therefore a natural approach. We incorporate these descriptions into the code generation
process as ideas, enabling LLMs to fully utilize their language understanding abilities. This strategy
goes beyond simple repeated sampling within the code space, allowing LLMs to explore a broader
and more diverse solution space. As shown in Fig. 4 and Table 4, we compare the performance of
methods with and without natural language ideas. The utility score reflects the average performance
across two downstream tasks during training. The results clearly demonstrate that incorporating such
natural language descriptions improves training performance.

Different LLMs. In Table 3 and Table 14, we evaluate several LLMs beyond GPT 4o-mini (2024-07-
18) to assess the adaptability of MoH, including o1-mini (2024-09-12), deepseek-v3 (2024/12/26) and
Qwen-plus-0919. The results demonstrate that our framework performs well across different LLMs.
Furthermore, we observe that LLMs with more learnable parameters and larger context windows tend
to produce longer and more complex optimization strategies. However, increased heuristic-optimizer
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Table 3: Ablation results of MoH-GLS on
different LLMs for TSP.

LLM 100 200 500 1000

4o mini 0.035% 0.332% 1.045% 1.710%
o1-mini 0.024% 0.353% 1.280% 2.119%

Deepseek-V3 0.108% 0.413% 1.314% 2.527%
Qwen-Plus 0.057% 0.375% 1.753% 3.277%

Table 4: Ablation results of MoH-GLS on idea gen-
eration and population size for TSP.

Setting Population Size w. idea 100 200 500 1000

1 ✓ 0.120% 0.563% 2.355% 3.300%

5 ✓ 0.058% 0.337% 1.475% 2.338%

10 ✗ 0.043% 0.390% 1.644% 2.420%

Default 10 ✓ 0.035% 0.332% 1.045% 1.710%

complexity does not necessarily lead to better performance of downstream heuristics. For instance,
the more advanced o1-mini does not outperform 4o-mini on large-scale TSP instances.
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Figure 4: Training convergence curves
under different settings.

Population size. For each downstream task, MoH main-
tains a heuristic population that allows the heuristic-
optimizer to iteratively select, reference and refine promis-
ing candidates. Given the well-established effectiveness of
few-shot prompting, it is crucial to retain elite heuristics
from previous iterations to guide subsequent optimization
steps, supporting both exploration and exploitation. As
shown in Fig. 4 and Table 4, we evaluate the impact of
different population sizes during MoH training. The re-
sults indicate that a small population size limits the LLM’s
ability to effectively leverage top-performing candidates
when generating improved ones. To balance computational
cost, training time, and exploration breadth in downstream
heuristic tasks, we set the population size to 10. This
choice ensures sufficient solution diversity while keeping overhead manageable.

Analysis of Meta-Optimizer. We take a deeper look into the meta-optimizers generated by MoH. In
Appendix E, we present representative examples and analyze their underlying strategies. While some
follow the EC framework (Fig. 9), similar to existing approaches, others adopt classical optimization
paradigms, such as Ant Colony Optimization (ACO) in Fig. 10, Particle Swarm Optimization (PSO)
in Fig. 11, Simulated Annealing in Fig. 12, Tabu Search in Fig. 13, and hybrid strategies in Fig. 15,
which achieved the best performance in our evaluations. By leveraging diverse optimization principles
and generating tailored prompts, MoH facilitates broader exploration of the extensive search space,
enabling the discovery of more effective heuristics.

Complexity Analysis. Although MoH introduces an additional layer of complexity compared with
previous baselines, empirical results show that it does not incur significant computational overhead
(see Table 11 and 12 in Appendix). In terms of the effiency of the generated heuristics, we also
make additional comparison with classical solvers (i.e., Concorde (app, 2003) and OR-Tools (Furnon
& Perron, 2023)) as well as lightweight learning-based solvers (i.e., LEHD (Luo et al., 2023),
SIL (Luo et al., 2024), and NeuOpt (Ma et al., 2023)) under (approximately) the same computational
budget in Table 13 in Appendix. In general, our approach offers a more favorable trade-off between
computational cost and performance across nearly all problem sizes.

5 CONCLUSION

We propose a novel MoH framework, which leverages LLMs to generate effective meta-optimziers
for improving COP heuristics. MoH extends the heuristic design paradigm by incorporating an outer
loop for heuristic-optimizer design and employs a multi-task scheme to improve generalization and
enable broader heuristic exploration. Experimental results demonstrate that heuristics discovered by
MoH outperform both classical heuristics and existing LLM-based approaches. We believe MoH
offers a new perspective on generating promising heuristics, with the potential to surpass human-
designed ones in solving NP-hard COPs. We acknowledge certain limitations of MoH, such as the
search efficiency. The outer-loop and multi-task optimization may introduce additional computational
overhead, highlighting the need for more efficient search strategies. Additionally, while our current
scope focuses on classical COPs, MoH has the potential to address a broader range of COPs and even
other classes of optimization problems, which we leave for future work.
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A FREQUENTLY ASKED QUESTIONS

Comparison of MoH with other Optimization Frameworks. The meta-optimization of our
framework also ensembles other optimization methods such as Multi-Task Optimization (Gupta
et al., 2015; Osaba et al., 2022), Multi-Objective Optimization (Gunantara, 2018) and Bi-level
Optimization (Xu et al., 2024). However, we want to emphasize our method’s differences below:

• Traditional multi-task algorithms are explicitly designed to train a unified model capable of
solving multiple tasks simultaneously, typically via parameter sharing, knowledge transfer
and genetic operators (Gupta et al., 2015). In such methods, cross-task generalization is
learned during training. In contrast, we build MoH on a pre-trained LLM that already
exhibits broad task solving coverage, requiring no additional training of the model itself.
Moreover, MoH focuses on generating improved heuristics by employing diverse opti-
mization strategies to explore the LLM search space. In LLM-based heuristic generation,
integrating evolutionary multitasking (Osaba et al., 2022) (EMT) is constrained by the
semantic variability of LLM-generated code and prompts: in practice, EMT can operate
only at the heuristic layer—i.e., searching over task-specific heuristics across downstream
tasks—thereby reverting to a fixed LLM–EC pipeline. In contrast, our approach treat each
task individually and does not assume EC as the underlying heuristic-optimizer. The meta-
optimizer adaptively discovers, modifies, and even composes optimization strategies (EC or
otherwise) during training, yielding a more flexible alternative that steps beyond previous
LLM-EC design.

• As for multi-objective optimization (Gunantara, 2018), it is typically employed to address
conflicting objectives by identifying Pareto-optimal solutions that reflect trade-offs among
them. However, this paradigm is also not well-suited to our motivation, which is to evolve
optimizers rather than heuristics, using LLMs for CO.

• For multi-level frameworks, our problem does indeed align with bi-level optimization
structures (Xu et al., 2024), as both involve a two-stage optimization process. However,
what distinguishes our work is the application of a bi-level optimization perspective to the
domain of LLM-based code generation for heuristic design. This is not a straightforward
extension, as it introduces several unique challenges: First, unlike typical bi-level problems
where objectives and variables are clearly defined, both of our optimizer and heuristic are
LLM-generated programs, whose implicit, program-level behavior (e.g., heuristic logic as
code) must be evaluated by execution rather than closed-form analysis, thereby introducing
additional abstraction and complexity to the problem. Second, bi-level optimization typically
focuses on the co-optimization of both the upper and lower levels, where the two problems
are often tightly coupled. In contrast, our approach primarily aims to improve the heuristics
generated in the inner loop by exploring diverse optimization strategies in the outer loop.
Moreover, the downstream tasks in our framework are flexible and can be adapted based on
specific needs, making the approach more versatile across different types of problems.

In summary, while some of the mentioned optimization frameworks may hold potential, adapting
them to the domain of LLM-based code generation for CO is non-trivial, particularly in a way
that aligns with our goal of evolving optimizers without introducing significant complexities or
computational overhead.

Relationship of Meta-Optimizer and Heuristic-Optimizer. In our framework, meta-optimizer and
heuristic-optimizer shares the same functional structure (see Fig. 3) and meta-optimizer is derived
from heuristic-optimizers, their fundamental difference lies in their hierarchical roles and optimization
targets within our bilevel optimization framework: 1) Meta-optimizer (Outer Loop): Operates
at a higher abstraction level. Its goal is to design heuristic-optimizers. It takes a population of
heuristic-optimizers as input and evolves them to find better optimization strategies. 2) Heuristic-
optimizer (Inner Loop): Operates at the task level. Its goal is to solve specific downstream CO
tasks. It takes a population of heuristics as input and evolves them to minimize the optimality
gap for downstream problems (e.g., TSP, BPP). Despite these distinct roles, we implement both
using a unified functional template (see 3) to enable recursive self-improvement. This allows
the same LLM-generated function structure to adapt its behavior based on the specific inputs it
receives. To be specific, 1) when acting as a Heuristic-Optimizer: population: Stores candidate
heuristics for each task. utility: Evaluates task performance (e.g., optimality gap, cost). subtask:
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Specifies the task type and size (e.g., "TSP20"); 2) when acting as a Meta-Optimizer: population:
Stores candidate heuristic-optimizers. utility: Aggregated performance across all downstream tasks.
subtask: Is set to "Optimizer", directing the function to perform meta-level optimization (as shown
in Algorithm 1). Comparison with Meta-Prompt Optimization. We would like to clarify that
characterizing MoH as merely a “sophisticated meta-prompt optimization” may not fully capture
the fundamental algorithmic shift introduced by our framework. The key distinction lies in moving
beyond optimizing with a static strategy toward designing dynamic, executable search strategies.
Our focus is on generating algorithmic code via LLM, not on “prompting prompts". We first
clarify that our meta-optimizer is more than a meta-prompt. Concretely, meta-prompt optimization
focuses on tuning textual inputs to elicit a better response. In contrast, the MoH meta-optimizer
functions as an active algorithmic controller. It does not simply "ask" the LLM; it maintains a
stateful process that includes population management, iterative code refinement, and feedback loops.
These are structured algorithmic components that exist outside the prompt itself. This unique active
algorithmic controller is formalized in our bilevel framework. Unlike prior works that rely on
a single-level prompt template, MoH introduces an outer loop that dynamically searches for the
optimization strategy itself. This allows MoH to explore the space of algorithms rather than just
the space of prompts, a direction largely underexplored in LLM-based combinatorial optimization.

Table 5: Results for Cross-Problem Training

Training Task Gap
TSP-GLS-Size200 0.384%±0.038%

TSP-KGLS-Size200 0.219%±0.023%
BPP-online-5k item, cap. 100 0.978%±0.218%

Generalizability Claim. The main focus
of this paper is cross-size generalization,
as highlighted in the abstract, introduc-
tion, and experimental sections. While our
framework can, in principle, be extended
to support other forms of generalization,
doing so would require addressing addi-
tional challenges, which we leave for fu-
ture work. We will make this scope and positioning clearer in the revised version. 1) Cross-problem
generalization. We agree that MoH does not directly generalize a heuristic learned for one CO
problem to a completely different CO problem. This limitation is also shared by all baselines we
compare against. Although our framework introduces a multi-task training mechanism that can,
in principle, incorporate multiple problem settings, using a single trained meta-optimizer across
distinct CO problems may not yield strong performance, particularly due to the substantial struc-
tural differences (e.g., objective, constraint) among CO problems. Nevertheless, we conducted a
preliminary experiment in which MoH was jointly trained on TSP-GLS, TSP-KGLS, and BPP-
online tasks. The results (mean±standard error across 5 runs) are shown Table 5. We leave fur-
ther improvements to future work. 2) Cross-distribution generalization. In fact, switching to
a cross-distribution setting does not modify the heuristic’s internal structure, it merely changes
the distribution of the instances used for evaluation. Because the heuristic design remains intact,
our method can readily generalize across distributions, and it consistently delivers strong perfor-
mance under such cross-distribution settings. We evaluate cross-distribution generalization in Ta-
bles 7 and 8 using TSPLIB, whose instances do not follow the uniform distribution used during
training. We also evaluate the generalization ability of the meta-optimizer trained on TSP200-
Uniform by leveraging it to optimize heuristics for the TSP200-Cluster task. Table 6 shows the
in-distribution (TSP200-Uniform) and cross-distribution (TSP200-Cluster) performance, respectively.

Table 6: Generalization results from Uniform to Cluster
TSP

TSP-GLS TSP200-Uniform TSP200-Cluster

ReEvo 0.331% 0.290%
HSEvo 0.328% 0.315%
MoH 0.291% 0.268%

Utility Function. Our rationale for us-
ing size-weighted utility is that CO heuris-
tics typically degrade more significantly as
problem size increases. Thus, we place
greater emphasis on larger instances to
encourage the meta-optimizer to discover
heuristics that remain effective at scale, an
effect that is empirically supported by the
table below. This weighting scheme high-
lights performance on more challenging
problems.

Novelty of Optimizer. We do not emphasize the novelty of the meta-optimizer itself, since some
of the generated meta-optimizer indeed resemble classical optimization strategies. In contrast to
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approaches that typically rely on a fixed evolutionary computation (EC) heuristic-optimizer while
leveraging LLMs to design heuristics for combinatorial optimization problems (COPs), our approach
enables the automatic design of heuristic-optimizers that evolve CO heuristics from scratch, offering
fresh insights into this field. By applying different optimization strategies within those generated
heuristic-optimizers, we can explore a more diverse heuristic search space, thereby improving the
performance of the discovered heuristics.

B RELATED WORK

Traditional heuristic design for NP-hard COPs relies heavily on expert knowledge and is time-
consuming to develop (Dréo, 2006). This has motivated the emergence of automatic heuristic design
(Burke et al., 2013) as a more efficient alternative (Pillay & Qu, 2021), leveraging metaheuristic
or ML techniques to automate heuristic generation and optimization (Burke et al., 2007; Hutter
et al., 2009; Blot et al., 2016; Mirshekarian & Sormaz, 2018). However, these approaches are often
constrained by inflexible search and strong domain-specific dependencies (Ochoa et al., 2012; Branke
et al., 2015). Recently, neural solvers have gained attention as a promising alternative (Vinyals et al.,
2015; Kool et al., 2018), employing deep learning to learn heuristics in a data-driven manner. Despite
showing promise, they still face several challenges, including limited scalability and generalization,
as well as high training overhead. More recently, the advent of LLMs has transformed the landscape
of heuristic design. Their advanced language understanding and reasoning capabilities (Brown et al.,
2020; Wei et al., 2022; 2021) have been increasingly exploited to enhance heuristic generation for
solving COPs (Liu et al., 2024b; Romera-Paredes et al., 2024; Sun et al., 2024). Among recent
efforts, most approaches combine the efficiency of evolutionary search with the adaptability of LLM
reasoning via few-shot prompting, leading to a surge of interest in LLM-EC frameworks for heuristic
design in COPs (Liu et al., 2024a; Ye et al., 2024; Yao et al., 2024). However, the use of a fixed
optimization strategy (e.g., EC) in these frameworks often restricts exploration of the broader search
space. In addition to serving as heuristic generators, LLMs have also been employed to directly
generate solutions or formulate mathematical models for solving COPs. In the following, we provide
a comprehensive review of neural and LLM-based approaches.

B.1 NEURAL HEURISTICS FOR COPS

Different from traditional hand-crafted heuristics, neural heuristics for solving COPs have rapidly
advanced in recent years (Bengio et al., 2021; Berto et al., 2025a). These methods generally fall into
two paradigms. 1) For constructive heuristics, Pointer Network (Ptr-Net) (Vinyals et al., 2015), a
sequence-to-sequence model with differentiable attention mechanisms, was first introduced to directly
learn permutation-invariant solutions for TSP through supervised learning. This was extended by
using reinforcement learning to improve performance (Bello et al., 2016), and further applied to
CVRP (Nazari et al., 2018). With the rise of Transformer architectures (Vaswani, 2017), the attention-
based model (Kool et al., 2018) was proposed to solve various COPs, inspiring a series of subsequent
works (Kim et al., 2021; Kwon et al., 2020; Drakulic et al., 2023; Luo et al., 2023; Bi et al., 2024).
More recently, there has been a surge of interest in foundation models that aim to solve multiple
COPs using a single, general-purpose model (Zhou et al., 2024; Berto et al., 2025b; Drakulic et al.,
2025). 2) Improvement heuristics (Chen & Tian, 2019; Hottung & Tierney, 2020; Wu et al., 2021; Li
et al., 2023; Ma et al., 2023; Sun & Yang, 2023) leverage neural networks to guide local search for
solution refinement (Hudson et al., 2021; Sui et al., 2024). While these approaches can often produce
(near-)optimal solutions with extended inference times, they typically face challenges in scaling to
large problem instances and generalizing across diverse problem settings.

B.2 LLMS FOR COPS

LLMs have recently gained widespread recognition and found broad applications across various
domains (Ji et al., 2023; Kaddour et al., 2023), significantly influencing research directions in
combinatorial optimization. In particular, recent studies have explored the application of LLMs in
multiple facets of CO, including enhancing algorithm design (Dat et al., 2024; Liu et al., 2024a;
Romera-Paredes et al., 2024; Ye et al., 2024), automating the formulation of CO problems (Ah-
madiTeshnizi et al., 2024; Jiang et al., 2024a; 2025; Li et al., 2024; Xiao et al., 2023), developing
CO-specific benchmark datasets (Fan et al., 2023; Sun et al., 2025; Yang et al., 2024), directly solving
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COPs (Abgaryan et al., 2024; Iklassov et al., 2024; Wang et al., 2023), and integrating LLMs into
domain-specific foundation models to construct unified frameworks capable of addressing a wide
spectrum of CO tasks (Andreychuk et al., 2025; Jiang et al., 2024c). As LLMs continue to evolve
rapidly, they exhibit great potential to support the development of more automated, generalizable,
and efficient problem-solving frameworks in the field of CO.

C ADDITIONAL RESULTS

C.1 RESULTS ON TSPLIB

We further evaluate our method on the widely used TSPLib dataset across various instance sizes.
As shown in Table 7 and 8, we compare the TSP-GLS and TSP-KGLS settings against EoH (Liu
et al., 2024a), ReEvo (Ye et al., 2023), HSEvo (Dat et al., 2024), MCTS-AHD (Zheng et al., 2025),
Neural Combinatorial Solvers (Kool et al., 2018; Kwon et al., 2020; Luo et al., 2023; 2024) and
GLS algorithms (Hudson et al., 2021; Sui et al., 2024; Voudouris et al., 2010; Shi et al., 2018;
Arnold & Sörensen, 2019) across instances of different scales. The results are split into two tables:
one for instances smaller than 200, and another for sizes ranging from 200 to 1000. To handle the
distributional diversity in TSPLIB, we adopt an instance-level heuristic selection strategy. Instead of
using a single “best” heuristic from Table 1, MoH evaluates all size-specific best heuristics trained on
the uniform distribution and selects the best-performing one for each TSPLIB instance. This allows
MoH to adapt to the heterogeneous characteristics of TSPLIB instances. For fairness, all baselines
follow the same instance-wise selection procedure, where each method chooses its best-performing
heuristic among its size-specific candidates. Consistent with the results in Table 1, our generated
heuristics outperform both GLS and KGLS baselines on most TSPLib instances. Heuristic 2 and 3
show examples of the best heuristics generated for the TSP-GLS and TSP-KGLS settings of size
1000, respectively.

Table 7: Results on TSPLib instances with sizes smaller than 200.

Instance
Neural Solver GLS Algorithms TSP-GLS TSP-KGLS

AM POMO LEHD SIL GNNGLS NeuralGLS GLS EBGLS KGLS EoH HSEvo MoH ReEvo HSEvo MCTS-AHD MoH

eil51 1.63 0.83 1.64 0.67 0.00 0.00 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67 0.67
berlin52 4.17 0.04 0.03 0.03 0.14 0.00 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03

st70 1.74 0.31 0.33 0.31 0.76 0.00 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31 0.31
eil76 1.99 1.18 2.54 1.18 0.16 0.00 1.37 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18 1.18
pr76 0.82 0.00 0.22 0.00 0.04 0.82 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
rat99 2.65 2.39 1.10 0.73 0.55 0.72 1.55 0.74 0.68 0.68 0.68 0.68 0.68 0.68 0.68 0.68

kroA100 4.02 0.41 0.12 0.02 0.73 0.03 0.02 0.02 0.06 0.02 0.02 0.02 0.02 0.02 0.02 0.02
kroB100 5.14 0.32 0.26 0.00 0.15 0.88 0.23 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00
kroC100 0.97 0.18 0.32 0.01 1.57 1.77 0.50 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
kroD100 2.72 0.84 0.38 0.00 0.57 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
kroE100 1.47 0.45 0.43 0.17 1.22 1.05 0.49 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00

rd100 3.41 0.01 0.01 0.01 0.46 0.00 0.01 0.01 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01
eil101 2.99 1.84 2.31 2.07 0.20 0.36 3.28 1.91 2.07 1.78 1.82 1.78 1.78 1.78 1.78 1.78
lin105 1.74 0.52 0.34 0.03 0.61 0.65 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
pr107 3.93 0.52 11.24 0.00 0.44 0.81 0.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pr124 3.68 0.60 1.11 0.00 0.76 0.08 0.60 0.60 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00

bier127 5.91 13.72 4.76 0.01 1.95 2.73 0.59 0.29 0.42 0.01 0.01 0.01 0.01 0.04 0.10 0.01
ch130 3.18 0.16 0.55 0.25 3.52 1.19 1.09 0.46 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
pr136 5.06 0.93 0.45 0.02 3.39 2.32 2.01 0.28 0.24 0.00 0.00 0.00 0.00 0.01 0.00 0.00
pr144 7.64 0.53 0.19 0.09 3.58 0.74 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
ch150 4.58 0.53 0.52 0.04 2.11 2.49 0.68 0.37 0.04 0.04 0.33 0.04 0.04 0.04 0.04 0.04

kroA150 3.78 0.70 1.40 0.00 2.98 0.77 1.75 0.26 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00
kroB150 2.44 1.17 0.76 0.00 3.26 3.11 1.01 0.00 0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.00

pr152 7.49 1.05 12.14 0.19 3.12 0.00 0.19 0.19 0.19 0.00 0.00 0.00 0.19 0.19 0.19 0.00
u159 7.55 0.95 1.13 0.00 1.02 0.90 0.74 0.78 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00

rat195 6.89 8.15 1.42 0.47 1.67 0.48 0.61 0.61 0.97 0.90 0.80 0.56 0.65 0.47 0.61 0.47
d198 373.02 17.29 9.23 0.46 4.77 1.28 2.08 1.87 0.31 0.32 0.26 0.21 0.20 0.28 0.43 0.20

kroA200 7.11 1.58 0.64 0.00 2.03 0.86 0.75 0.18 0.71 0.13 0.04 0.00 0.23 0.09 0.04 0.00
kroB200 8.54 1.44 0.16 0.01 2.59 3.74 1.43 1.27 0.89 0.08 0.05 0.04 0.01 0.01 0.01 0.01

Average 16.77 2.02 1.92 0.23 1.53 0.96 0.78 0.42 0.36 0.21 0.22 0.19 0.21 0.20 0.21 0.19

C.2 RESULTS ON CVRP

We further evaluate our MoH on another VRP variant, i.e., the Capacitated Vehicle Routing Problem
(CVRP) (Toth & Vigo, 2002), which is a widely studied optimization problem in the fields of logistics
and operations research. It builds upon the classic TSP by incorporating the crucial real-world
constraint of limited vehicle capacity. Specifically, a CVRP instance can be defined over a complete
graph G = {V ∪v0, E}, where V = {v1, . . . , vn} denotes the set of customer nodes, v0 represents the
depot, and E = {e(vi, vj)|vi, vj ∈ V ∪ v0, i ̸= j} is the edge set that includes all the possible travel
routes between any two nodes, either customers or depot. Each edge e(vi, vj) is associated with a
non-negative travel cost or distance dij , where d : (V ∪ v0)× (V ∪ v0) −→ R+ defines the travel cost
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Table 8: Results on TSPLib instances with sizes ranging from 200 to 1000.

Instance
Neural Solver TSP-GLS TSP-KGLS

POMO LEHD SIL EoH HSEvo MoH ReEvo HSEvo MCTS-AHD MoH

ts225 3.60 0.28 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
tsp225 3.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
pr226 1.42 1.11 0.04 0.00 0.04 0.00 0.00 0.00 0.00 0.00
pr264 2.80 5.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
a280 5.23 3.02 0.30 0.55 0.80 0.30 0.30 0.30 0.30 0.30
pr299 4.94 2.81 0.01 0.07 0.53 0.11 0.13 0.07 0.08 0.01
lin318 4.72 1.41 0.69 0.55 1.13 0.38 0.32 0.27 0.43 0.29
rd400 6.37 1.00 0.00 0.78 0.82 0.29 0.17 0.38 0.45 0.20
fl417 8.51 7.76 2.42 0.64 0.68 0.62 0.60 0.49 0.70 0.49
pr439 7.87 3.37 0.01 1.09 2.46 0.28 1.01 1.21 1.23 0.56

pcb442 5.36 3.11 0.04 0.59 1.12 0.79 0.28 0.35 0.15 0.08
d493 9.67 9.49 0.24 1.12 1.11 0.51 0.61 0.67 1.42 0.45
u574 11.86 2.73 0.28 1.12 0.87 0.80 0.86 1.49 1.39 0.83

rat575 12.46 3.02 0.85 2.55 1.25 1.35 1.67 1.60 1.47 1.04
p654 11.30 3.30 2.77 0.21 0.31 0.12 0.15 1.57 0.11 0.10
d657 12.72 8.05 1.00 1.42 1.26 0.87 1.02 1.08 0.96 0.54
u724 16.57 3.27 0.19 1.06 2.07 0.99 0.91 0.92 0.88 0.72

rat783 18.11 3.91 0.65 2.46 1.98 2.18 1.68 1.65 1.86 1.11
pr1002 20.00 4.44 0.51 1.83 1.11 1.14 1.21 1.27 1.17 0.90

Average 8.77 3.56 0.53 0.84 0.92 0.57 0.57 0.70 0.66 0.40

between any pair of two nodes. Each customer vi ∈ V has a demand qi > 0, while the depot has
q0 = 0. The fleet consists of m vehicles, each with capacity Q. The objective is to determine a set of
m′ routes (usually m′ < m) with minimized total travel cost across all routes, while satisfying the
following constraints: 1) each route starts and ends at the depot, 2) each customer is visited exactly
once by a single vehicle, and 3) the total demand on any route does not exceed Q.

We follow the experimental setup from (Ye et al., 2024), which designs heuristics for CVRP under
the Ant Colony Optimization (ACO) framework, a setting also adopted by (Dat et al., 2024) and
(Zheng et al., 2025). Fig. 9 compares the best objective of these methods with ours.

C.3 RESULTS ON OFFLINE BPP

The Offline Bin Packing Problem (Offline BPP) differs from the Online version in Section 2 by
assuming complete prior knowledge of item sizes and quantities, thereby allowing for global opti-
mization. Following the approach in (Ye et al., 2024), we adopt an ACO framework to iteratively
construct bin packing solutions, where the ants assign items to bins based on pheromone trails and
heuristic cues, with pheromone updates progressively enhancing solution quality. Figure 9 compares
the best objective values achieved by these methods and ours.

Table 9: Results for CVRP and Offline BPP.

Problems CVRP Offline BPP

Methods
Train Generalization Train Generalization

20 50 100 200 N=100, C=150 N=500, C=150 N=500, C=300 N=1000, C=300

ReEvo 4.826 9.339 15.901 28.224 41.984 207.406 102.438 204.438
HSEvo 4.858 9.250 15.940 28.598 41.766 205.500 102.438 204.656

MCTS-AHD 4.843 9.165 15.630 28.041 41.656 204.609 102.625 204.734
MoH 4.704 9.059 15.563 27.512 41.625 205.453 102.125 203.750

C.4 COST AND EVALUATION COMPARISON

We present a comprehensive cost comparison across methods by reporting their average computational
metrics, i.e., the LLM request counts, token usage, evaluation numbers, and performance, for the two
studied problem settings: TSP-GLS (Table 10 and 11) and CVRP (Table 12). For TSP-GLS, we
use instances of size 100 and 200 for both training and inference to ensure fair comparison between
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MoH and baseline methods. For CVRP, training involves instance sizes of 20 and 50. All results are
averaged over three runs, with token usage evaluated using the GPT-4o-mini API.

From the comparison between Table 10 and 11, we want to highlight that for the same problem
type, the time cost is determined solely by the problem size. This is because the overall runtime is
dominated by the evaluation phase—i.e., executing the generated heuristics to compute their scores.
Running a heuristic on a larger instance (e.g., 200 nodes) naturally requires more CPU time than on
a smaller instance (e.g., 100 nodes), affecting all methods equally. In contrast, token consumption
and LLM request counts are primarily dictated by the algorithmic design and prompting strategy of
different problem settings, rather than by the problem size. The LLM’s role is to generate heuristic
code (i.e., algorithmic logic), which is inherently agnostic to the scale of the specific problem instance.
This claim is also empirically supported by the comparison between Table 11 and Table 12.

Table 10: Cost of different methods on TSP-GLS setting with size 100.

Methods Time/mins Input Tokens Output Tokens Total Tokens LLM requests Evaluation count Results-Gap

MoH Train 196.9 927537.0 589250.3 1516787.3 1347.7 989.3 0.034%
MoH Inference 46.7 526404.3 169028.3 695432.6 311.3 282.7 0.036%

EoH 223.2 1282802.0 390085.5 1672887.5 1119.0 1001.7 0.055%
HSEvo 214.7 1291765.3 297487.0 1589252.3 691.3 1015.0 0.071%

Table 11: Cost of different methods on TSP-GLS setting with size 200.

Methods Time/mins Input Tokens Output Tokens Total Tokens LLM requests Evaluation budget Results-Gap

MoH-Train 238.4 743837.0 458358.7 1202195.7 1248.3 971.7 0.373%
MoH-Inference 62.7 398064.3 138350.0 536414.3 276.7 240.3 0.398%

EoH 326.4 1437973.0 446583.7 1884556.7 1256.0 992.0 0.535%
HSEvo 291.7 1188412.3 390665.0 1579077.3 679.7 1005.0 0.448%

Table 12: Cost of different methods on CVRP+ACO setting.

Methods Time/mins Input Tokens Output Tokens Total Tokens LLM requests Evaluation budget Results-Obj. 20 Results-Obj. 50

MoH-train 321.1 986216.0 740292.3 1726508.3 1456.7 938.3 4.831 9.262
MoH-inference 107.5 479618.0 153284.3 632902.3 330.3 307.3 4.837 9.254

ReEvo 231.2 2122802.0 677652.0 2800454.0 1431.0 1000.0 4.877 9.521
HSEvo 350.7 2140030.7 670590.0 2810620.7 1076.7 1001.7 4.977 9.536
MCTS 1330.3 2601902.0 825037.3 3426939.3 1490.0 1002.7 4.881 9.233

C.5 COST AND EVALUATION COMPARISON

We also make additional comparison with classical solvers (i.e., Concorde and OR-Tools) as well
as lightweight learning-based solvers (i.e., LEHD (Luo et al., 2023), SIL (Luo et al., 2024), and
NeuOpt (Ma et al., 2023)) under (approximately) the same computational budget in table 13.
Specifically, we control the solving time across all methods to be comparable to the inference time
of MoH, except for Concorde, whose runtime cannot be constrained. Classical solvers often suffer
from scalability issues due to the NP-hard nature of CO problems, while learning-based solvers face
generalization challenges (e.g., NeuOpt struggles to generalize to larger instances and SIL struggles
in generalization to smaller sizes). In contrast, our approach offers a more favorable trade-off between
computational cost and performance across nearly all problem sizes. This highlights the practical
value of MoH in real-world scenarios where routine, varied-scale CO solving is required, as the
task-level deployment setting more accurately reflects practical applications of heuristic design and
justifies the initial computational investment.

C.6 COMPREHENSIVE COMPARISON OF BASELINES ON DIFFERENT LLMS

To provide a broader evaluation, we compare multiple LLMs across different baselines and problem
sizes. This allows us to verify the consistency of performance trends beyond a single setting. Table 14
reports results for GPT 4o-mini, o1-mini, DeepSeek-v3, and Qwen-plus combined with EoH, HSEvo,
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Table 13: Optimality gap(%) and averaging solving time(s) of instances of different problem sizes
across different baselines.

Problem Size 100 200 500 1000

Methods Gap Average Time Gap Average Time Gap Average Time Gap Average Time

Concorde 0.000% 0.260s 0.000% 1.094s 0.000% 11.878s 0.000% 229.528s
OR-Tools 2.529% 2.024s 3.843% 3.001s 4.751% 10.007s 5.001% 45.099s

LEHD 0.375% 1.086s 0.446% 2.709s 0.792% 9.066s 1.680% 44.469s
SIL 4.073% 1.122s 2.545% 2.159s 1.459% 8.789s 1.051% 43.025s

NeuOpt 0.471% 1.432s 0.414% 4.411s 125.864% 45.314s - -

MoH-GLS 0.012% 1.075s 0.291% 2.335s 0.936% 7.818s 1.476% 21.681s
MoH-KGLS 0.002% 0.394s 0.177% 1.497s 0.805% 10.866s 1.365% 45.518s

and MoH over problem sizes 100–1000. Each entry shows mean error with standard deviation.
Overall, MoH demonstrates clear superiority across settings. Compared to EoH and HSEvo, MoH
achieves consistently lower errors, particularly on larger problem sizes (500 and 1000).

Table 14: Optimality gaps (mean% ± std%) of baselines on different LLMs across 5 runs.

Baselines Problem Size GPT 4o-mini o1-mini DeepSeek-v3 Qwen-plus

EoH

100 0.051%±0.013% 0.052%±0.010% 0.072%±0.030% 0.195%±0.142%
200 0.426%±0.043% 0.439%±0.032% 0.471%±0.087% 0.780%±0.289%
500 1.927%±0.491% 1.486%±0.145% 1.692%±0.482% 2.007%±0.535%

1000 3.323%±0.516% 2.857%±0.271% 3.362%±0.355% 3.485%±0.295%

HSEvo

100 0.076%±0.066% 0.042%±0.011 0.042%±0.026% 0.044%±0.022%
200 0.729%±0.310% 0.441%±0.020 0.590%±0.236% 0.497%±0.168%
500 1.726%±1.206% 1.811%±0.091 1.842%±0.605% 1.755%±0.537%

1000 3.261%±0.775% 3.493%±0.222 3.006%±0.525% 2.797%±0.430%

MoH

100 0.031%±0.020% 0.024±0.006% 0.080±0.065% 0.040±0.011%
200 0.345%±0.039% 0.364±0.011% 0.392%±0.027% 0.387%±0.018%
500 1.187%±0.280% 1.353%±0.244% 1.478%±0.340% 1.625%±0.354%

1000 1.889%±0.308% 2.332%±0.298% 2.669%±0.310% 3.283%±0.218%

C.7 STATISTICAL SIGNIFICANCE ANALYSIS

To further validate the robustness of our results, we conduct statistical significance tests comparing
MoH against a wide range of baselines under both TSP constructive and TSP-KGLS settings. As
shown in Table 15, we conduct one-sided Wilcoxon signed-rank tests on the objective values the
heuristics generated by MoH and the corresponding baselines. The results are averaged from three
best runs of each method. The results demonstrate that our method consistently achieves statistically
significant improvements over all baselines. In particular, all p-values are far below the 0.05 threshold,
providing strong evidence that the observed gains are not due to random chance. This indicates that
the observed improvements of heuristic performance by MoH are not due to random chance but are
statistically significant.

Table 15: One-sided Wilcoxon signed-rank test p-values comparing MoH with baselines.

Problem TSP constructive TSP-KGLS

Baselines FunSearch EoH ReEvo HsEvo MCTS-AHD ReEvo HsEvo MCTS-AHD

MoH-200 2.73E-55 1.48E-15 1.61E-03 3.55E-22 8.45E-12 5.30E-03 1.14E-02 1.59E-04
MoH-500 2.12E-60 1.49E-19 4.86E-09 8.75E-46 3.56E-27 3.90E-11 7.12E-15 4.05E-07
MoH-1000 2.40E-64 1.61E-34 2.25E-31 1.70E-64 5.26E-34 1.01E-46 2.78E-36 1.10E-08

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

C.8 STATISTICAL PERFORMANCE

To further validate the robustness of our results, we conduct repeated evaluations under each problem
size and report the mean ± standard deviation across multiple runs (see Table 16). This statistical
summary demonstrates that MoH not only achieves the best average performance but also maintains
low variability, confirming the reliability and stability of our proposed method.

Table 16: Statistical performance of different baselines for TSP.

Problem Size 20 50 100 200 500 1000

Constructive TSP

Funsearch 12.062%±0.907% 16.049%±1.340% 18.000%±1.487% 20.507%±1.757% 21.646%±2.554% 22.873%±2.976%
EoH 10.115%±0.597% 13.180%±0.851% 14.485%±1.076% 15.890%±1.000% 16.145%±0.672% 17.224%±0.672%

ReEvo 9.519%±0.192% 12.317%±0.269% 13.379%±0.319% 14.654%±0.230% 15.412%±0.233% 16.258%±0.194%
HsEvo 10.938%±2.878% 12.477%±1.982% 14.105%±1.639% 16.315%±1.423% 18.108%±1.964% 18.963%±2.250%

MCTS-AHD 8.407%±1.140% 12.545%±1.284% 14.128%±1.511% 15.727%±1.753% 16.813%±1.454% 17.306%±1.089%
MoH 8.599%±1.032% 12.307%±2.019% 13.046%±1.540% 14.103%±0.476% 14.778%±0.469% 15.867%±0.511%

Improvement TSP

EoH-GLS 0.000%±0.000% 0.000%±0.000% 0.051%±0.013% 0.426%±0.043% 1.927%±0.491% 3.323%±0.516%
HsEvo-GLS 0.000%±0.000% 0.000%±0.000% 0.076%±0.066% 0.729%±0.310% 1.726%±1.206% 3.261%±0.775%
ReEvo-GLS 0.000%±0.000% 0.000%±0.000% 0.063%±0.027% 0.627%±0.340% 2.060%±0.444% 3.491%±0.665%

MoH 0.000%±0.000% 0.000%±0.000% 0.031%±0.020% 0.345%±0.039% 1.187%±0.280% 1.889%±0.308%
ReEvo-KGLS 0.000%±0.000% 0.000%±0.000% 0.005%±0.002% 0.223%±0.002% 0.981%±0.004% 1.616%±0.020%
HsEvo-KGLS 0.000%±0.000% 0.000%±0.000% 0.006%±0.002% 0.228%±0.006% 1.003%±0.046% 1.667%±0.071%

MCTS-AHD-KGLS 0.000%±0.000% 0.000%±0.000% 0.011%±0.004% 0.239%±0.025% 0.942%±0.062% 1.478%±0.091%
MoH-KGLS 0.000%±0.000% 0.000%±0.000% 0.004%±0.001% 0.200%±0.021% 0.891%±0.053% 1.474%±0.088%

C.9 ADDITIONAL RESULTS ON OTHER OPTIMIZATION PROBLEMS

In principle, our method can be applied to other heuristic optimization tasks that can be represented
as a function and has a corresponding evaluation metric (utility). To this end, we conducted additional
experiments on the Quadratic Assignment Problem (QAP) and the Acrobot system control task (Liu
et al., 2024c). For Acrobot, the reported metric is the minimum number of steps required to complete
the task across 100 randomly initialized conditions. For QAP, the cost is averaged over 128 instances.
The results is listed in Table 17.

Table 17: Performance comparison on Acrobot and QAP tasks.

Task Domain Metric ReEvo MoH (Ours)

Acrobot Robotics Control Min. Steps ↓ 99.65 ± 37.60 88.76 ± 14.19
QAP Facility Layout Cost ↓ 5,913,687.95 5,833,648.08
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D PROMPT DESIGN

D.1 PROMPTS FOR HEURISTIC-OPTIMIZER GENERATION

We present the prompt used to format and generate the heuristic-optimizer, along with those embedded
within the seed meta-optimzier to guide idea generation and code synthesis for both the heuristic-
optimizer and downstream tasks, as illustrated in Fig. 5. Beyond the predefined prompt constraints,
we also integrate additional judgment mechanisms into our framework to ensure the explainability and
efficiency of generated hyper-heuristics, mitigating the potential impact of LLM output uncertainty
on MoH performance.

Prompt for Heuristic-Optimizer Generation

Task: You should design an efficient metaheuristic using the following constraints. Your so-
lution code should balance exploration and exploitation creatively.

Firstly, describe your meta-heuristic, including optimization strategy and main optimization
steps in one sentence. The description must be inside a brace and marked as a comment.

Next, implement it in Python as a function named ’optimize_algorithm’. This function should accept
five inputs: ’population’, ’utility’, ’language_model’, ’subtask_prompt’ and ’subtask’. The function
should return three output: ’best_idea’, ’best_solution’, ’best_utility’. ’utility’ is a function that
evaluates solutions based on a score function, ’subtask_prompt’ is the format for model responses, ’task’
is the name of the problem to be optimized. The function returns ’best_idea’,’best_solution’,’best_utility’
which are the idea behind best solution, best code together with its utility.

Note:‘language_model’ is an instance of the language model class used for code generation,
with function "def prompt_batch(expertise,message_batch,temperature), return responses_list" for
multiple request to LLM and "def prompt(self, expertise, message, temperature) return result" for single
request to LLM, ’population’ is a dictionary of several historical best solutions of the task, you only use
the following functions to operate: "def get_solution_by_index(self, task_name, index): return item", to
get a solution by its utility rank; "def get_random_solution(self, task_name): return item", to get a
random solution from the population; the item returned above is a dictionary with keys ’best_sol’ and
’utility’. Other functions you can use are: "def get_subtask_size(self, task_name):" to return the size of
the population.

Prompts inside Seed Meta-Optimizer

1. Idea Generation:
Given the following heuristic for task: [’best_sol’] with its idea: [’idea’] and utility score: [’utility’], "
"Summarize the key idea from this heuristic, then provide several totally different or refined ideas from
the given one to design improved algorithms with lower utility score. " "Provide a single string as the
answer, less than 50 words. Your response should be formatted as a json structure.

2. Heuristic Code Solution Generation:
Improve the following solution: {selected_solution}. You must return an improved solution. Formatted
as follows:{subtask_prompt}. To better solve the problem, you are encouraged to develop new solutions
based on the direction proposed: {direction} You will be evaluated based on a score function. The lower
the score, the better the solution is. Be as creative as you can under the constraints.

Figure 5: Prompts for generating the heuristic-optimizer and those within the seed version.
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D.2 PROMPTS FOR FORMULATING HEURISTIC GENERATION

In this section, we present a prompt example used to guide the generation of downstream COP
heuristics, as shown in Fig. 6. For different tasks, only the function signature and corresponding
problem size are modified accordingly.

D.3 PROMPTS FOR HEURISTIC INITIALIZATION

To maintain population diversity, we initialize a population before training and retain elite solutions
for idea modification during inference. Accordingly, we present the prompts used to generate diverse
ideas that guide code generation at the start of each stage.

You are an expert in TSP solver. Given a set of nodes with their coordinates, you need to find the shortest
route that visits each node once and returns to the starting node. The task can be solved step-by-step by
starting from the current node and iteratively choosing the next node. Help me design a novel algorithm
that is different from the algorithms in literature to select the next node in each step.
First, describe your new algorithm and main steps in one sentence. The description
must be inside a brace and marked as a comment. Next, implement it in Python
as a function named "select_next_node". This function should accept 4 input(s): "cur-
rent_node","destination_node","univisited_nodes","distance_matrix". The function should return 1
output(s): "next_node". ’current_node’, ’destination_node’, ’next_node’, and ’unvisited_nodes’ are
node IDs. ’distance_matrix’ is the distance matrix of nodes. All are Numpy arrays. Do not give
additional explanations. Your solution should be designed and fit for the task {prob} with problem size
{size}.

Figure 6: Prompts for generating constructive heuristics for TSP.

1. Generate seed direction in training stage.
You are an expert in the domain of optimization heuristics and combinatorial optimization problems.
Your task is to design heuristics that can effectively solve optimization problems.The problem is
{problem} with corresponding size {size}. According to the task description: {task_description}
Provide several high-level directions for generating the seed prompt, each aimed at minimizing the
utility as a result. Format your response as a JSON codeblock below: {{ "direction": [ "content": "Your
first direction suggestion here.", "content": "Your second direction suggestion here.", "content": "Your
third direction suggestion here.", ... "content": "..." ] }}

2. Generate/Modify seed direction in inference stage.
You are an expert in optimization heuristics, tasked with summarizing key insights to design improved al-
gorithms. Given the following heuristics for the problem: {problem}: {solution}, please summarize the
key insights in the heuristics to design improved algorithms for larger sized problem problem with corre-
sponding size {size}. Formatted as a json structure: “‘json{{"insights":["content","content","content", ...
,"content"]}}“. Remember each insight inside the list should be one sentence less than 50 words.

3. Generate Code by Idea.
You are an expert in the domain of optimization heuristics and combinatorial optimization problems.
Your task is to design heuristics that can effectively solve optimization problems. Write a function
that will implement a Python algorithm to solve a problem as well as possible. The optimization
problem is {problem} and the size you should focus on is {size}. The output function is formatted as
follows:“‘python{formula_str}“‘ You are encouraged to develop the algorithm that follows the direction:
{direction}.

Figure 7: Prompts for code and idea generation during the initialization of training and inference.
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E EXAMPLES OF LLM-GENERATED HEURISTICS AND META-OPTIMIZER

In this section, we present the best-performing heuristics for the largest instance size of each problem
in Heuristic 1-6, along with several examples of generated meta-optimizers shown in Fig 8-15.
These examples demonstrate that MoH can produce diverse, explainable, and effective optimizers
that extend beyond traditional LLM-EC, incorporating a wide range of optimization strategies and
generate high-quality heuristics for downstream tasks. For clarity and space efficiency, non-essential
code elements are omitted while preserving the core optimization logic.
import numpy as np
def select_next_node(current_node, destination_node, unvisited_nodes, distance_matrix):

num_unvisited = len(unvisited_nodes)
if num_unvisited == 0:

return None
distances = distance_matrix[current_node, unvisited_nodes]
avg_distance = np.mean(distances)
threshold = 0.5 * avg_distance
close_nodes = unvisited_nodes[distances <= threshold]
scores = {}
if len(close_nodes) > 0:

for node in close_nodes:
immediate_distance = distance_matrix[current_node, node]
future_savings = np.sum(distance_matrix[node, close_nodes]) / (len(close_nodes) - 1) if

len(close_nodes) > 1 else 0
diversity_score = np.mean(distance_matrix[node, unvisited_nodes]) / (immediate_distance + 1)
scores[node] = immediate_distance + (0.6 * (1 - future_savings)) - (0.4 * diversity_score)

if not scores:
far_nodes = unvisited_nodes[distances > threshold]
for node in far_nodes:

scores[node] = distance_matrix[current_node, node]
next_node = min(scores, key=scores.get) if scores else None
return next_node

Heuristic 1: Best constructive heuristic discovered for TSP with size 1000.

import numpy as np
def update_edge_distance(edge_distance, local_opt_tour, edge_n_used):

updated_edge_distance = np.copy(edge_distance)
num_nodes = len(local_opt_tour)
window_size = 5
for i in range(num_nodes):

current_city = local_opt_tour[i]
for j in range(1, window_size + 1):

next_index = (i + j) % num_nodes
next_city = local_opt_tour[next_index]
used_edge_count = edge_n_used[current_city, next_city]
if used_edge_count >= 2:

scaling_factor = np.log(used_edge_count + 1) * 0.5
updated_edge_distance[current_city, next_city] *= scaling_factor
updated_edge_distance[next_city, current_city] *= scaling_factor

else:
decay_factor = np.exp(-0.1 * used_edge_count)
updated_edge_distance[current_city, next_city] *= decay_factor
updated_edge_distance[next_city, current_city] *= decay_factor

edge_quality = edge_distance[current_city, next_city] / (used_edge_count + 1)
updated_edge_distance[current_city, next_city] += edge_quality
updated_edge_distance[next_city, current_city] += edge_quality

return updated_edge_distance

Heuristic 2: Best improvement heuristic discovered for TSP-GLS with size 1000.

import numpy as np
def adaptive_indicators(distance_matrix):

num_nodes = distance_matrix.shape[0]
indicators = np.zeros((num_nodes, num_nodes))
min_edge = np.full(num_nodes, np.inf)
min_edge[0] = 0
visited = np.zeros(num_nodes, dtype=bool)
total_mst_cost = 0
for _ in range(num_nodes):

u = np.argmin(np.where(visited, np.inf, min_edge))
visited[u] = True
total_mst_cost += min_edge[u]
for v in range(num_nodes):

if not visited[v] and distance_matrix[u, v] < min_edge[v]:
min_edge[v] = distance_matrix[u, v]

inverted_distance_matrix = 1 / (distance_matrix + np.eye(num_nodes))
total_density = np.sum(inverted_distance_matrix, axis=1)
for i in range(num_nodes):

for j in range(num_nodes):
if i != j:

base_indicator = (total_density[i] * total_density[j]) / (1 + total_density[i] +
total_density[j])

edge_cost = distance_matrix[i, j] - (total_mst_cost / (num_nodes - 1))
cycle_penalty = np.sum((inverted_distance_matrix[i, :] + inverted_distance_matrix[j, :] <

inverted_distance_matrix[i, j]) * distance_matrix[i, j] * 0.2)
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indicators[i, j] = max(0, (base_indicator - cycle_penalty) * edge_cost)
max_indicator = np.max(indicators)
if max_indicator > 0:

indicators /= max_indicator
return indicators

Heuristic 3: Best improvement heuristic for TSP-KGLS with size 1000.

import numpy as np
def score(item, bins):

scores = np.zeros_like(bins, dtype=float)
feasible_bins = bins[bins > item]
if feasible_bins.size == 0:

return scores
max_capacity = np.max(feasible_bins)
scores[bins == max_capacity] = -np.inf
remaining_capacity = (feasible_bins - item) / feasible_bins
item_ratio = item / feasible_bins
proximity_penalty = np.where(feasible_bins >= item * 0.90, -5, 0) + np.where(feasible_bins < item * 0.80,
-7, 0)

underutilization_penalty = -3 * np.maximum(0, item - 0.5 * feasible_bins)
scores[bins > item] = (remaining_capacity + proximity_penalty + underutilization_penalty - (1 -
item_ratio) ** 3)

return scores

Heuristic 4: Best heuristic for online BPP with 10000 items and a bin capacity of 500.

def compute_edge_scores(distance_matrix, coordinates, demands, capacity):
import numpy as np
num_nodes = distance_matrix.shape[0]
edge_promisingness = np.zeros((num_nodes, num_nodes))
total_demand = np.sum(demands)
decay_factor = 0.95
adaptive_alpha = 1.5
adaptive_beta = 2.5
for i in range(num_nodes):

for j in range(num_nodes):
if i != j and demands[j] <= capacity:

distance_score = (1 / (distance_matrix[i, j] + 1e-6)) ** adaptive_beta
demand_score = demands[j] / total_demand if total_demand > 0 else 0
pheromone_level = 1.0 / (distance_matrix[i, j] + 1e-6) * decay_factor
exploration_factor = (1 + demands[j] / capacity)
edge_promisingness[i, j] = (distance_score ** adaptive_beta) * (demand_score **

adaptive_alpha) * pheromone_level * exploration_factor
return edge_promisingness

Heuristic 5: Best heuristic for CVRP_ACO with size 200.

import numpy as np
def compute_pair(demand, capacity):

n = demand.shape[0]
heuristic_matrix = np.zeros((n, n))
valid_indices = np.where(demand <= capacity)[0]
for i in valid_indices:

for j in valid_indices:
if i != j:

total_demand = demand[i] + demand[j]
if total_demand <= capacity:

heuristic_matrix[i][j] = capacity - total_demand + min(demand[i], demand[j])
for i in range(n):

for j in range(n):
if i != j:

single_demand = demand[i]
if single_demand <= capacity:

heuristic_matrix[i][j] = max(heuristic_matrix[i][j], capacity - single_demand + demand[j])
frequency_count = np.sum(heuristic_matrix > 0, axis=1)
for i in range(n):

for j in range(n):
if i != j and heuristic_matrix[i][j] > 0:

heuristic_matrix[i][j] -= frequency_count[i] * 0.1
demand_group = np.digitize(demand, bins=np.linspace(0, capacity, num=5))
for group in range(1, 5):

group_indices = np.where(demand_group == group)[0]
if len(group_indices) > 1:

for i in group_indices:
for j in group_indices:

if i != j and heuristic_matrix[i][j] > 0:
heuristic_matrix[i][j] += 0.05

for i in range(n):
for j in range(n):

if i != j and frequency_count[i] > 1 and frequency_count[j] > 1:
heuristic_matrix[i][j] -= 0.2 * (frequency_count[i] + frequency_count[j]) / 2

return heuristic_matrix

Heuristic 6: Best heuristic for Offline BPP with 1000 items and a bin capacity of 300.
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Seed Meta-Optimizer Example

def optimize_algorithm(population, utility, language_model,
subtask_prompt, subtask):
expertise = "You are an expert in the domain of designing meta

optimization strategy and combinatorial optimization problems.
Your task is to design heuristics that can effectively solve
optimization problems."

# Step 1: Select a random solution from the population
selected_solution = population.get_random_solution(subtask)
# Step 2: Generate directions for improvement
direction_prompt = (

f"Given the following heuristic for subtask: {selected_solution[’
best_sol’]} with its idea: {selected_solution[’idea’]} and
utility score: {selected_solution[’utility’]}, "

"Summarize the key idea from this heuristic, then provide
several totally different ideas from the given one to design
improved algorithms with lower utility score. "

"Provide a single string as the answer, less than 50 words. Your
response should be formatted as a json structure: "

"‘‘‘json\n{{\"insights\":[\"content\",\"content\",\"content\",
... ,\"content\"]}}\n‘‘‘."

)
response = language_model.prompt(expertise, direction_prompt,

temperature=1)
directions = json.loads(extract_code(response))["insights"]
# Step 3: Create messages based on generated directions
message_batch = []
for direction in directions:

message = (
f"Improve the following solution:\n"
f"‘‘‘python\n{selected_solution}\n‘‘‘\n"
f"You must return an improved solution. Formatted as follows:\

n{subtask_prompt}\n"
f"To better solve the problem, you are encouraged to develop

new solutions based on the direction proposed: {direction
}. "

"You will be evaluated based on a score function. The lower
the score, the better the solution.\n"

"Your response must firstly provide a summary of the key idea
inside a brace and marked as a comment, followed by the

code implementation. "
"Be as creative as you can under the constraints."

)
message_batch.append(message)

# Step 4: Generate new solutions using the language model
responses = language_model.prompt_batch(expertise, message_batch,

temperature=1)
new_solutions = extract_code(responses)
new_ideas = extract_idea(responses)
# Step 5: Evaluate new solutions
solutions_with_utilities = [(idea, solution, utility(solution,idea,

subtask)) for idea, solution in zip(new_ideas, new_solutions)]
best_idea, best_solution, best_utility = min(

solutions_with_utilities, key=lambda x: x[2])
return best_idea, best_solution, best_utility

Figure 8: The seed meta-optimizer used for training, which randomly selects previous solutions and
generates new directions for improvement.
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Genetic Algorithm (GA)

def optimize_algorithm(population, utility, language_model, subtask_prompt, subtask):#
Adaptive Genetic Algorithm incorporating selection, crossover, and mutation to enhance
solution diversity and convergence

expertise = "You are an expert in the domain of designing meta optimization strategy and
combinatorial optimization problems. Your task is to design heuristics that can
effectively solve optimization problems."

# Step 1: Select top-performing solutions for breeding
elite_count = max(1, population.get_subtask_size(subtask) // 10) # Top 10% as elites
elites = [population.get_solution_by_index(subtask, i) for i in range(elite_count)]
# Step 2: Generate directions for diversity through crossover and mutation
direction_prompt = ( "Given the top-performing solutions, suggest innovative crossover

and mutation strategies to create diverse and high-quality offspring. Provide your
response as a JSON with keys ’crossover_methods’ and ’mutation_methods’, each
containing a list of strategies." )

response = language_model.prompt(expertise, direction_prompt, temperature=0.7)
directions = json.loads(extract_code(response))
crossover_methods = directions.get("crossover_methods", [])
mutation_methods = directions.get("mutation_methods", [])
# Step 3: Create offspring solutions using the generated strategies
offspring = []
for method in crossover_methods:

for i in range(elite_count):
parent1 = elites[i]
parent2 = elites[(i + 1) % elite_count]
crossover_prompt = ( f"Apply the following crossover strategy to combine these two

solutions:\nSolution 1: ‘‘‘python\n{parent1[’best_sol’]}\n‘‘‘\nSolution 2:
‘‘‘python\n{parent2[’best_sol’]}\n‘‘‘\nStrategy: {method}\nProvide the new
offspring solution as a JSON with keys ’idea’ and ’best_sol’." )

offspring_response = language_model.prompt(expertise, crossover_prompt,
temperature=0.7)

offspring_data = json.loads(extract_code(offspring_response))
offspring.append(offspring_data)

for method in mutation_methods:
for elite in elites:

mutation_prompt = ( f"Apply the following mutation strategy to this solution:\
nSolution: ‘‘‘python\n{elite[’best_sol’]}\n‘‘‘\nStrategy: {method}\nProvide
the mutated solution as a JSON with keys ’idea’ and ’best_sol’." )

mutation_response = language_model.prompt(expertise, mutation_prompt, temperature
=0.7)

mutation_data = json.loads(extract_code(mutation_response))
offspring.append(mutation_data)

# Step 4: Evaluate offspring and select the best
solutions_with_utilities = [ (child[’idea’], child[’best_sol’], utility(child[’best_sol’

], child[’idea’], subtask)) for child in offspring ]
# Include elites to maintain the best solutions
elite_solutions = [ (elite[’idea’], elite[’best_sol’], elite[’utility’]) for elite in

elites ]
all_candidates = solutions_with_utilities + elite_solutions
best_idea, best_solution, best_utility = min(all_candidates, key=lambda x: x[2])
return best_idea, best_solution, best_utility

Figure 9: An example of the meta-optimizer generated by LLM, which employs Genetic Algorithm
(GA) to balance exploration and expoitation, similar to previous LLM-EC heuristic-optimizer.
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Ant Colony Optimization (ACO)

# {This algorithm employs Ant Colony Optimization (ACO) principles to simulate the foraging
process of ants for efficient bin packing solutions, enabling adaptive pheromone
adjustment and heuristic guidance to balance exploration and exploitation for optimal
results.}

def optimize_algorithm(population, utility, language_model, subtask_prompt, subtask):
expertise = "You are an expert in the domain of designing meta optimization strategies

and combinatorial optimization problems. Your task is to design heuristics that can
effectively solve optimization problems."

# Parameters for ACO and solution selection
ant_count = 10
elite_count = 3
population_size = population.get_subtask_size(subtask)
# Step 1: Select elite solutions based on utility for initial pheromone distribution
elite_solutions = [population.get_solution_by_index(subtask, i)

for i in range(min(elite_count, population_size))]
# Initialize pheromone levels for directions based on elite solutions
pheromone_levels = {sol[’best_sol’]: 1.0 for sol in elite_solutions}
# Step 2: Generate solution directions using Ant Colony Optimization principles
direction_prompts = []
for _ in range(ant_count):

direction_prompt = f"Using the ACO principles for the task ’{subtask}’, generate a
new solution direction that addresses the bin packing problem. Consider the
current elite solutions: {[sol[’best_sol’] for sol in elite_solutions]} And
ensure that the output follows this format: {subtask_prompt}. Provide a summary
comment of the key idea in braces."

direction_prompts.append(direction_prompt)
# Step 3: Get new directions from the language model
responses = language_model.prompt_batch(expertise, direction_prompts, temperature=0.7)
new_directions = extract_code(responses)
# Step 4: Evaluate new solutions
solutions_with_utilities = []
for direction in new_directions:

try:
# Evaluate the new solution’s utility
score = utility(direction, "Derived from ACO strategy", subtask)
solutions_with_utilities.append((direction, score))
# Update pheromone based on the quality of the direction
pheromone_levels[direction] = pheromone_levels.get(direction, 1.0) + 2.0 / (score

+ 1e-6)
except Exception as e:

continue # Skip if utility evaluation fails
# Step 5: Select the best new solution based on its utility score
if not solutions_with_utilities:

# Fallback to the best existing solution if no new solutions are valid
best_existing = population.get_solution_by_index(subtask, 0)
return best_existing.get(’idea’), best_existing.get(’best_sol’), best_existing.get(’

utility’)
best_direction, best_utility = min(solutions_with_utilities, key=lambda x: x[1])
return "Ant Colony optimized direction", best_direction, best_utility

Figure 10: An example of the LLM-generated meta-optimizer that utilizes Ant Colony Optimization
(ACO) as its underlying mechanism.
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Particle Swarm Optimization (PSO)

def optimize_algorithm(population, utility, language_model, subtask_prompt, subtask):
expertise = "You are an expert in ..."
# Parameters for PSO
particle_count = 15
iterations = 10
inertia_weight = 0.5 # Controls exploration versus exploitation
cognitive_param = 0.8 # Personal attraction/learning factor
social_param = 1.2 # Societal attraction/learning factor
# Step 1: Initialize particles with random solutions in the population
particles=[population.get_random_solution(subtask) for _ in range(particle_count)]
best_personal_solutions = particles.copy()
global_best_solution = min(particles, key=lambda x: utility(x[’best_sol’], "Initial PSO"

, subtask)) # Initialize global best solution
# Step 2: Iterate through the PSO process
for _ in range(iterations):

for particle in particles:
current_score = utility(particle[’best_sol’], "PSO iteration", subtask)
# Update personal best if current score is better
if current_score < utility(best_personal_solutions[particles.index(particle)][’

best_sol’], "PSO personal best", subtask):
best_personal_solutions[particles.index(particle)] = particle

# Update global best if current score is better
if current_score < utility(global_best_solution[’best_sol’], "PSO global best",

subtask):
global_best_solution = particle

# Step 3: Generate new directions using PSO influences
new_directions = []
for particle in particles: # Compute new velocities and positions for PSO

r1, r2 = np.random.rand(), np.random.rand()
cognitive_velocity = cognitive_param * r1 * (best_personal_solutions[particles.

index(particle)][’best_sol’] - particle[’best_sol’])
social_velocity = social_param * r2 * (global_best_solution[’best_sol’] - particle

[’best_sol’])
new_position = particle[’best_sol’] + inertia_weight * (cognitive_velocity +

social_velocity)
prompt = f"Using PSO principles, generate a new solution for the task ’{subtask}’

based on the solution ’{new_position}’. Ensure to follow this format: {
subtask_prompt}. Provide a summary in braces."

new_directions.append(prompt)
# Step 4: Get new solutions from the language model
responses = language_model.prompt_batch(expertise, new_directions, temperature=0.7)
generated_solutions = extract_code(responses)
# Step 5: Evaluate new solutions
for new_solution in generated_solutions:

try:
score = utility(new_solution, "Derived from PSO", subtask)
if score < utility(global_best_solution[’best_sol’], "Final global best",

subtask):
global_best_solution = {’best_sol’: new_solution, ’utility’: score}

except Exception:
continue # Skip errors in utility evaluation

return "Particle Swarm optimized direction", global_best_solution[’best_sol’],
global_best_solution[’utility’]

Figure 11: An example of the meta-optimizer generated by LLM, which employs Particle Swarm
Optimization (PSO) to balance exploration and expoitation.
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Combination of Adaptive Simulated Annealing with Differential Evolution

def optimize_algorithm(population, utility, language_model, subtask_prompt, subtask):
swarm_size = 5
parent_solutions = [population.get_random_solution(subtask) for _ in range(swarm_size)]
current_utilities = [parent[’utility’] for parent in parent_solutions]
initial_temperature = 1.0
cooling_rate = 0.95
iterations = 5
best_solution = None
best_utility = np.inf
temperature = initial_temperature
for iteration in range(iterations):

# Dynamic temperature adjustment based on utility improvements
temperature = max(initial_temperature * (cooling_rate ** iteration), 0.01) # Ensure

temperature doesn’t go below a threshold
initial_prompts = f"Using the following solutions: {[sol[’best_sol’] for sol in

parent_solutions]} with utilities: {current_utilities}, devise advanced
enhancement strategies by blending Adaptive Simulated Annealing and Differential
Evolution for the task: {subtask}. Return strategies in JSON format: ‘‘‘json\n
{{\"strategies\": [\"strategy1\", \"strategy2\", ..., \"strategyN\"]}}‘‘‘."

response = language_model.prompt("You are an expert optimization strategist.",
initial_prompts, temperature=0.7)

potential_strategies = json.loads(extract_code(response))["strategies"]
for strategy in potential_strategies:# Apply each strategy to parent solutions

modified_solutions = []
for parent in parent_solutions:

message = f"Implement the strategy: {strategy} on the parent solution: ‘‘‘
python\n{parent[’best_sol’]}\n‘‘‘. Generate a modified solution adhering
to {subtask_prompt}. Focus on creating diverse and high-quality outputs."

response = language_model.prompt("You are an expert optimization strategist.",
message, temperature=0.7)

new_solution = extract_code(response)
new_utility = utility(new_solution, "Optimized by Adaptive Simulated Annealing

and DE", subtask)
if new_utility < best_utility:

best_utility = new_utility
best_solution = new_solution

# Explore new areas based on probability
elif np.random.rand() < np.exp((utility(parent[’best_sol’], ’Original’, subtask

) - new_utility) / temperature):
modified_solutions.append(new_solution)

# Optional: Implement differential evolution by combining best solutions
if modified_solutions:

best_of_modifications = min(modified_solutions, key=lambda s: utility(s, "Modified
", subtask))

new_utility = utility(best_of_modifications, "From Differential Evolution",
subtask)

if new_utility < best_utility:
best_utility = new_utility
best_solution = best_of_modifications

best_idea = ’Implemented a hybrid approach of Adaptive Simulated Annealing and
Differential Evolution for enhanced search efficiency.’

return best_idea, best_solution, best_utility

Figure 12: An example of the meta-optimizer generated by LLM, which combines Adaptive Simulated
Annealing with Differential Evolution to explore solution space while refining candidates.
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Tabu Search

def optimize_algorithm(population, utility, language_model,
subtask_prompt, subtask):
# This algorithm utilizes Tabu Search to dynamically explore and

adapt solutions, avoiding cycling while maximizing job
performance and minimizing makespan.

selected_solution = population.get_random_solution(subtask)
best_solution, best_utility = selected_solution[’best_sol’],

selected_solution[’utility’]
tabu_list = set()
iterations = 0
max_iterations = 5
while iterations < max_iterations:

# Generate candidate solutions
candidates = []
for _ in range(3): # Generate 3 candidate solutions

direction_prompt = (
f"Given the heuristic: {selected_solution[’best_sol’]}

with its idea: "
f"{selected_solution[’idea’]} and utility score: {

selected_solution[’utility’]}, "
"Generate a modified or new solution. Format as: "
f"‘{subtask_prompt}‘. Ensure it is innovative and consider

new job scheduling metrics."
)
response = language_model.prompt("You are an expert in

optimization.", direction_prompt, temperature=0.7)
candidate_code = extract_code(response)
candidates.append(candidate_code)

# Evaluate candidates
candidate_utilities = []
for candidate in candidates:

candidate_idea = extract_idea(candidate)
candidate_utility = utility(candidate_code, candidate_idea,

subtask)
candidate_utilities.append((candidate_idea, candidate,

candidate_utility))
# Apply Tabu Search logic
feasible_candidates = [c for c in candidate_utilities if c[1]

not in tabu_list]
if feasible_candidates:

best_candidate = min(feasible_candidates, key=lambda x: x[2])
best_candidate_idea, best_candidate_solution,

best_candidate_utility = best_candidate
# Update best solution if found a better one
if best_candidate_utility < best_utility:

best_solution, best_utility = best_candidate_solution,
best_candidate_utility

selected_solution[’idea’], selected_solution[’best_sol’],
selected_solution[’utility’] = best_candidate_idea,
best_candidate_solution, best_candidate_utility

# Update Tabu list
tabu_list.add(best_candidate_solution)
if len(tabu_list) > 10: # Maintain fixed size

tabu_list.pop() # Remove the oldest entry
iterations += 1

return selected_solution[’idea’], best_solution, best_utility

Figure 13: An example of the meta-optimizer generated by LLM, which employs Tabu Search to
dynamically explore and adapt solutions.
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A Neighborhood Search-like Strategy

def optimize_algorithm(population, utility, language_model,
subtask_prompt, subtask):
# This approach utilizes Variable Neighborhood Search to explore

different solution neighborhoods dynamically to enhance
optimization performance.

def generate_neighborhood(solution):
# Generate modified solutions (neighborhoods) by tweaking routes

based on the original solution
neighborhoods = []
# Simple route perturbation: swap two routes or modify delivery

sequences
for i in range(len(solution[’best_sol’])):

if isinstance(solution[’best_sol’][i], list) and len(solution
[’best_sol’][i]) > 1:
# Swap two locations in the route
new_solution = solution[’best_sol’][:]
new_solution[i] = new_solution[i][:2] + new_solution[i

][0:2] # Swap first two for simplicity
neighborhoods.append({"best_sol": new_solution, "utility":

utility(new_solution, subtask)})
return neighborhoods

selected_solution = population.get_random_solution(subtask)
neighborhoods = generate_neighborhood(selected_solution)

# Collect insights to improve solutions based on the generated
neighborhoods

message_batch = []
for neighbor in neighborhoods:

message = (
f"Improve the following solution:\n"
f"‘‘‘python\n{neighbor}\n‘‘‘\n"
f"You must return an improved solution. Formatted as follows:\

n{subtask_prompt}\n"
"To better solve the problem, consider how the neighborhood

structure changes the optimization landscape. "
)
message_batch.append(message)

responses = language_model.prompt_batch("You are an expert in
optimizations.", message_batch, temperature=0.7)

new_solutions = extract_code(responses)
new_ideas = extract_idea(responses)

# Evaluate the new solutions and select the best one
solutions_with_utilities = [(idea, solution, utility(solution, idea,

subtask)) for idea, solution in zip(new_ideas, new_solutions)]
best_idea, best_solution, best_utility = min(

solutions_with_utilities, key=lambda x: x[2])

return best_idea, best_solution, best_utility
#"best_sol": new_solution, "utility": utility(new_solution, task)

Figure 14: An example of the meta-optimizer generated by LLM, which utilizes Variable Neighbor-
hood Search to dynamically explore solution neighborhoods to enhance optimization performance.
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Adaptive Exploration-Exploitation Strategy with Dynamic and Tabu Mechanisms

def optimize_algorithm(population, utility, language_model, subtask_prompt, subtask):
elite_count = 4 # Parameter Initialization
diversity_count = 3
pheromone_levels = {}
# Step 1: Select elite and diverse solutions
population_size = population.get_subtask_size(subtask)
elite_solutions = [population.get_solution_by_index(subtask, i) for i in range(min(

elite_count, population_size))]
diverse_solutions = [population.get_random_solution(subtask) for _ in range(

diversity_count)]
selected_solutions = elite_solutions + diverse_solutions
# Step 2: Generate dynamic exploration insights with adaptive rates
for solution in selected_solutions:

temperature = 1 if solution[’utility’] > 0 else 0.75 # Dynamic adjustment
prompt = f"Given the solution ’{solution[’best_sol’]}’ with utility score ’{solution[’

utility’]}’, please suggest innovative optimization strategies that could enhance
this code. Return your recommendations in JSON format: ‘‘‘json {{\"insights\":[\"
content\",\"content\",...]}} ‘‘‘."

response = language_model.prompt(expertise, prompt, temperature=temperature)
try:

insights = json.loads(extract_code(response))["insights"]
for insight in insights:

pheromone_levels[insight] = pheromone_levels.get(insight, 1.0) + 1.0
except (json.JSONDecodeError, KeyError):

continue
# Step 3: Rank directions based on pheromone levels (dynamic evaluation)
sorted_insights = sorted(pheromone_levels.items(), key=lambda x: x[1], reverse=True)
top_insights = [insight[0] for insight in sorted_insights if insight[1] > 1.0]
# Step 4: Create batch messages for generating optimized solutions based on directions
message_batch = []
for direction in top_insights:

message = f"Refine the solution for the task ’{subtask}’ by focusing on this
optimization approach: {direction}. Consider elite solutions: {[sol[’best_sol’]
for sol in elite_solutions]}. Ensure your output adheres to the following format:
{subtask_prompt}. In addition, provide a summary of changes made."

message_batch.append(message)
# Step 5: Generate new solutions using the language model through batch prompts
responses = language_model.prompt_batch(expertise, message_batch, temperature=0.9)
# Step 6: Evaluate and keep the best-performing solutions
solutions_with_utilities = []
for response in responses:

try:
new_solution = extract_code(response)
important_idea = extract_idea(response)
score = utility(new_solution, important_idea, subtask)
pheromone_levels[important_idea] = pheromone_levels.get(important_idea, 1.0) + (2.0

/ (score + 1e-6))
solutions_with_utilities.append((important_idea, new_solution, score))

except Exception:
continue

if not solutions_with_utilities: # Best Solution Selection
best_existing = population.get_solution_by_index(subtask, 0)
return best_existing[’idea’], best_existing[’best_sol’], best_existing[’utility’]

best_idea, best_solution, best_utility = min(solutions_with_utilities, key=lambda x: x[2])
# Adjustments for ongoing adaptability of pheromones

for key in pheromone_levels:
pheromone_levels[key] *= 0.9 # Mild evaporation to allow exploration

return best_idea, best_solution, best_utility

Figure 15: An example of the meta-optimizer generated by LLM, which employs an adaptive
exploration-exploitation strategy that combines real-time performance evaluation of solutions with
dynamic exploration rates. This approach customizes search focus within a genetic algorithm
framework enhanced by adaptive, tabu-like mechanisms for efficient solution refinement, achieving
the best performance during inference.
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F BROADER IMPACTS

This work explores a general framework for improving COP heuristics through LLMs. By introducing
a meta-optimization structure, our method demonstrates how LLMs can autonomously generate and
improve heuristics across diverse problem domains such as TSP, CVRP, and BPP. Potential social
impacts of MoH may include: 1) Improved optimization capabilities in practical applications such as
logistics, manufacturing, and resource allocation; 2) Bridging AI and Operations Research (OR) by
designing a unified framework that benefits both communities, especially when solving problems
with larger sizes; 3) Lower barrier to high-quality algorithm design, especially in low-resource or
less-studied problem domains where handcrafted heuristics are not readily available. Meanwhile,
a potential negative impact of our method lies in the reliance on LLMs, where both training and
inference involve substantial token usage. This can lead to increased energy consumption and raise
environmental concerns due to the computational resources required.

G THE USE OF LARGE LANGUAGE MODELS

In addition to enhancing the paper writing, LLMs serve as a core component of our methodology to
generate and refine optimizers, as well as to support downstream heuristic generation. More precisely,
LLMs are used to produce and optimize code implementations aimed at developing high-performing
heuristics for solving COPs. A detailed workflow of LLM involvement is presented in Section 3.

H LICENSES

We list all the used assets and their licenses in Table 18.

Table 18: Used assets and their licenses.

Type Asset License Usage

Code

Concorde (Applegate et al., 2003) Available for academic research use Evaluation
OR-Tools (Furnon & Perron, 2023) Apache-2.0 license Evaluation

FunSearch (Romera-Paredes et al., 2024) MIT License Evaluation
EoH (Liu et al., 2024a) MIT License Evaluation
ReEvo (Ye et al., 2024) MIT License Evaluation

HSEvo (Dat et al., 2024) MIT License Evaluation
MCTS-AHD (Zheng et al., 2025) MIT License Evaluation

POMO (Kwon et al., 2020) MIT License Evaluation
LEHD (Luo et al., 2023) MIT License Evaluation

Dataset TSPLib (Reinelt, 1991) Available for any non-commercial use Evaluation
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