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ABSTRACT

The prediction of long sequences has always been a challenge in time series
forecasting tasks. Due to Mamba’s sequence selection capability, many Mamba-
based models have been proposed, achieving state-of-the-art results in long se-
quence prediction problems. However, much research has focused on integrating
mamba-ssm into specific model structures for better performance, while the core
of mamba-ssm, its sequence selection capability, has not been deeply explored.
We believe there is significant potential in Mamba’s sequence selection capa-
bility and propose a Repetitive Contrastive Learning (RCL) method to enhance
it. Specifically, we utilize Repeating Sequence Augmentation to expand the se-
quence while introducing Gaussian noise, thereby enhancing the Mamba block’s
sequence selection capability through both inter-sequence and intra-sequence con-
trastive techniques. Then our methods transfer parameters directly from a single
pre-trained Mamba block to a variety of Mamba-based models. This approach
provides superior initialization for forecasting tasks. Our experiments consis-
tently demonstrate that this technique improves the forecasting performance of
many Mamba-based models, without imposing additional memory requirements.

1 INTRODUCTION

Time series forecasting (TSF) has become indispensable across a range of critical domains, including
financial markets Li et al. (2023), traffic management Cheng et al. (2023), electricity consumption
prediction Sun & Zhang (2023), scientific computing Cruz-Camacho et al. (2024), and weather
forecasting Zhang et al. (2022a). TSF leverages sequential data, often of varying lengths, from
past observations to predict future trends. However, fully reliable predictors remain elusive due to
the unknown generative mechanisms underlying time series data. Compounding this challenge are
issues such as uneven sampling, missing or duplicate data points, and inherent irregular noise, which
complicate the forecasting tasks.

Deep learning has made significant strides in the time series domain, with much of the focus centered
on model architecture design, particularly for transformer-based models Wen et al. (2023) . These
models now play a pivotal role in forecasting tasks, yet they are often hindered by the quadratic
complexity of their attention mechanisms. While time series data share some structural similarities
with natural language, transformers typically underperform in this domain compared to traditional
backbones like CNNs and MLPs Zeng et al. (2022). Despite the limitations of traditional backbones
in capturing long-range dependencies, they are more effective at addressing the sequential and high-
noise characteristics of time series data, which contributes to their better performance.

The emergence of the Mamba model Gu & Dao (2024) has attracted researchers from diverse fields,
including those focused on multi-modal and multi-dimensional data, thanks to its unique selective
state-space mechanism Huang et al. (2024); Li et al. (2024). Mamba’s selective mechanism not
only resolves the quadratic time complexity of transformer attention mechanisms but also maintains
comparable long-distance propagation capabilities. Recent applications of Mamba in TSF, such as
TimeMachine Ahamed & Cheng (2024) and Bi-Mamba Liang et al. (2024), have primarily focused
on refining Mamba’s block architecture. However, these efforts have overlooked the critical chal-
lenge of teaching models how to effectively select and prioritize key moments in time series data.

One major reason for this gap is rooted in the training objectives used for TSF. Most existing models
focus on straightforward prediction tasks, analogous to causal and masked language modeling in
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NLP. Although these methods have yielded undeniable success in natural language processing, they
may not be as effective for time series data. NLP tasks often rely on models to grasp contextual
knowledge, such as common sense, syntax, and semantics, from the input text. In contrast, time
series data lack generalized knowledge, focusing instead on sequential and often sparse patterns.
Unlike NLP data, which can be pre-processed to remove noise and ensure consistency, time series
data is marked by irregular and noisy sampling points that are often imperceptible to humans and
can only be effectively classified by models during training.

Thus, directly applying modules, which are designed for NLP tasks, to time series data without
adapting the training goals leads to predictable failures. Recent experiments have shown that relying
solely on prediction tasks does not enable Mamba to fully resolve the complexities of time series
data Zhang et al. (2024). These results suggest that prediction tasks alone are insufficient for models
to gain a deep understanding of the underlying structure and dynamics of time series. In such cases,
models often struggle to selectively focus on relevant moments, instead over-integrating all available
information in an attempt to capture causal relationships.

Drawing from these insights, we propose that the central task in time series processing should em-
phasize teaching models effective selection mechanisms. By leveraging Mamba’s new selective
space models module, we believe it has the potential to surpass other models in handling selec-
tion tasks on sparse time series data. To address existing challenges, we introduce a new training
paradigm aimed at optimizing Mamba’s selection process.

Technically, our approach enhances time series data through Repeating Sequence Augmentation and
pre-trains the original models using Repetitive Contrastive Learning. During the augmentation stage,
each token in the time series is duplicated and augmented with Gaussian noise. In the learning stage,
we implement intra-sequence contrast, which forms positive and negative pairs from corresponding
tokens between the augmented sequence and the original sequence, and inter-sequence contrast,
which derives positive and negative pairs from within the augmented sequence itself.

We substitute Mamba Block parameters across various Mamba-based models with those obtained
from the pre-trained Mamba block and evaluate the resulting performance improvements relative
to the original models. Our work also details effective block substitution methods and parameter-
freezing strategies.

In summary, our main contributions are as follows:

• We propose a data augmentation method called Repeating Sequence Augmentation,
which generates extended time series and forms token-level contrastive samples.

• We introduce Repetitive Contrastive Learning, which compares original and repeated se-
quences within a Mamba block to obtain initialization parameters with enhanced sequence
selection and robustness.

• We transfer pre-trained parameters to different Mamba-based models, demonstrating a gen-
eralized approach that consistently improves the predictive capability of these models on
various datasets.

• We analyze effective parameter replacement methods, parameter freezing techniques, and
the impact on training time and memory overhead.

2 PRELIMINARY

2.1 MULTIVARIATE TIME SERIES FORECASTING

Multivariate time series forecasting involves predicting future values of multiple interrelated time-
dependent variables based on their historical data. Unlike univariate time series forecasting, which
focuses on a single variable, multivariate forecasting accounts for interactions and correlations be-
tween multiple variables to improve prediction accuracy and insightfulness.

A multivariate time series forecasting problem can be formally represented with an input time series
denoted as X ∈ RTin×F , where Tin is the input sequence length (number of time steps) and F
represents the number of features or variables at each time step. The prediction target is represented
as Y ∈ RTout×F , where Tout denotes the output sequence length for which forecasts are made.
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Figure 1: Process of the proposed method. Including Repeating Sequence Augmentation and Repeti-
tive Contrastive Learning (RCL), with RCL consisting of Intra-sequence contrast and Inter-sequence
contrast.

2.2 TIME SERIES AND INVERTED TIME SERIES

In the latest research, treating the features of a time series as tokens and embedding along the time
has proven effective for multivariate time series prediction problems.Liu et al. (2024) Consequently,
many models utilize an inverted time series as input. Here, F represents the number of features or
variables in the time series. To facilitate distinction between sequences, we define the inverted time
series as XI ∈ RF×Tin , which is obtained by transposing the original time series X ∈ RTin×F .

3 METHOD

Our proposed repetitive contrastive pre-training method involves three main steps. First, we con-
struct augmented data by repeating time steps and introducing noise, defining positive and negative
sample pairs in the process. Next, a Mamba block undergoes pre-training through contrastive learn-
ing to enhance its ability to select relevant time series features. Finally, the pre-trained parameters
of the Mamba block are transferred to various Mamba-based models for fine-tuning.

3.1 REPEATING SEQUENCE AUGMENTATION

One significant reason why Mamba performs exceptionally well in time series prediction tasks is
its selective structure. To enhance the selection capability of the Mamba Block, we designed the
Repeating Sequence Augmentation. Specifically, as shown in Fig. 1, for each time step in each time
series, we sequentially repeat this time step with repetition count nt.

Xi
repeat−−−→ Xi,1, ...,Xi,nt

Xrep = {X1,1, ...,X1,nt ,...,Xi,1, ...,Xi,nt , ...,Xs,1, ...,Xs,nt}
(1)

where Xi is the i-th step in time sequence, and s is the length of the sequence. For the time
series X ∈ RT×F , s = T , the corresponding Xrep ∈ R(nt∗T )×F . As for inverted time series
XI ∈ RF×T , s = F , the corresponding XI

rep ∈ R(nt∗F )×T .

Then, we add Gaussian noise of increasing intensity, from weak to strong, to the repeated time steps.
In our experiments, we choose nt = 3, each time step Xi is repeated and obtain Xi,1,Xi,2,Xi,2.
We then sample a strong Gaussian noise and a weak Gaussian noise, and add them to the repeated
time steps in increasing order of intensity, from weak to strong.
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Noiseα ∼ N (0, σ2
α)

Noiseβ ∼ N (0, σ2
β)

σα < σβ

X̂i,2 = Xi,2 + Noiseα

X̂i,3 = Xi,3 + Noiseβ

Xaug,i = {Xi,1, X̂i,2, X̂i,3}
Xaug = Xaug,1∥Xaug,2∥ . . . ∥Xaug,s

(2)

where Noiseα and Noiseβ represent weak and strong Gaussian noise, controlled by the variances σα

and σβ . Since the effect of noise accumulates progressively with the sequential modeling, gradually
increasing the noise effectively enlarges the distance between time steps, enhancing the difficulty of
the subsequent contrastive learning task.

3.2 MAMBA BLOCK AND IMAMBA BLOCK

The Mamba block, Gu & Dao (2024), consists of two parts : selection and State Space Model
(SSM), as shown in Fig. 2. Firstly, the input X undergoes a one-dimensional convolution (Conv1d)
to extract local features, followed by Linear Projection that maps it to matrices B, C, and ∆.

Xc = σ(Conv1d(X))

B = fc(Xc), C = fc(Xc)

∆ = softplus(fc(Xc) +A)

(3)

where σ is SiLU activation function and softplus means the Softplus activation functions, and A is
an optimizable matrix. Then, matrices A and B are discretized into A, B,

A = exp (∆A)

B = (exp (∆A)− I)(∆A)−1(∆B)
(4)

Finally, Mamba inputs A, B, C, ∆ and X into the SSM, and uses residual connections.

H = SSM(A,B,∆,X) · σ(fc(X)) (5)

where fc is fully connected layers, and σ is SiLU activation function.

The iMamba block retains the same structural design as the traditional Mamba block; however, the
Mamba block processes embedded time vectors along the feature dimension. In contrast, iMamba
operates on an inverted time series XI , where each token represents a feature in the time series data.
The resulting output is the corresponding sequence HI . This output is then passed through linear
layers applied to the embedded time vectors to achieve the desired output length.

3.3 REPETITIVE CONTRASTIVE LEARNING

We input both the original sequence X and its augmented version Xaug into the same Mamba
Block, comparing their respective outputs H and Haug to evaluate the Mamba Block’s modeling
capabilities across both sequences. As illustrated in Fig.1, Repetitive Contrast Learning (RCL)
encompasses two types of comparisons: intra-sequence contrast and inter-sequence contrast. Firstly,
we define the output at any time step i with a repetition count nt of the original sequence Xi as Hi,
and the output at the subsequent time step as Hi+1. The outputs of the augmented sequence are
represented as {H{i·nt,aug},H{i·nt+1,aug}, . . . ,H{i·nt+nt−1,aug}}, while the output at the next time
step is {H{(i+1)·nt,aug},H{(i+1)·nt+1,aug}, . . . ,H{(i+1)·nt+nt−1,aug}}.

Intra-sequence contrast We hypothesize that if the Mamba Block possesses strong sequence se-
lection capabilities, then the outputs {H{i·nt,aug},H{i·nt+1,aug}, . . . ,H{i·nt+nt−1,aug}} of the aug-
mented sequence at the same time step should exhibit high similarity, while ignoring progressively
increasing noise. Conversely, the outputs H{i·nt,aug} at the current time step and H{(i+1)·nt,aug} at
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Figure 2: (a) The structure of the Mamba block. (b) Pre-training MambaPB and iMambaPB. (c)
Parameter replacement during fine-tuning.

the subsequent time step should have low similarity. Therefore, we define outputs at the same time
step as positive examples, while outputs at the current and subsequent time steps serve as negative
examples. The objective is to minimize the distance between positive examples and maximize the
distance between negative examples within the sequence, thereby enhancing the Mamba Block’s
sequence selection capabilities. Specifically, we use H{i·nt,aug} as an anchor to form nt−1 positive
samples and one negative sample, measuring similarity between samples using cosine similarity and
employing the InfoNCE loss function Oord et al. (2018).

LIntra = − 1

s− 1

s−2∑
i=0

1

nt − 1

nt−1∑
z=1

log
exp(sim(H{i·nt,aug},H{i·nt+z,aug})/τ)

exp(sim(H{i·nt,aug},H{(i+1)·nt,aug})/τ)
(6)

where s is the sequence length, i is the time step index, nt is the repetition count, τ is a temperature
coefficient controlling the distinction of negative samples, and sim(·, ·) denotes the cosine similarity
function, defined as:

sim(hi, hj) =
hi · hj

∥hi∥∥hj∥
(7)

Intra-sequence contrast allows the Mamba Block to disregard noisy, repetitive time steps while pri-
oritizing meaningful and effective ones, thereby strengthening its selection capabilities and noise
resilience.

Inter-sequence contrast The inter-sequence contrast further enhances contrastive learning ef-
fects while preserving selection capability and temporal correlations on the original se-
quence, ensuring that the Mamba Block does not overfit to augmented data. Here,
{H{i·nt,aug},H{i·nt+1,aug}, . . . ,H{i·nt+nt−1,aug}} and Hi are defined as positive samples since
they both represent the same time step and should maintain consistency across different time se-
ries lengths. Simultaneously, Hi and Hi+1 are defined as negative samples to maintain selection
capability on the original sequence.

LInter = − 1

s− 1

s−2∑
i=0

1

nt

nt−1∑
z=0

log
exp(sim(Hi,H{i·nt+z,aug})/τ)

exp(sim(Hi,Hi+1)/τ)
(8)

where s, i, nt, τ , and sim(·, ·) are defined as above.

The overall optimization objective for Repetitive Contrastive Learning is:

Lrc = LIntra + LInter (9)
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It is noteworthy that the pre-training process for Repetitive Contrastive Learning is conducted exclu-
sively on a single Mamba Block rather than the entire Mamba model. Even when sequence length is
repeated, the memory usage and training time are typically lower than what is required for the entire
model.

3.4 REPLACE AND INFERENCE

Based on different input sequences, we categorize Mamba blocks pre-trained with the input time se-
ries X and the inverted time series XI as MambaPB and iMambaPB, respectively. These two types
of Mamba blocks can be integrated into the majority of existing Mamba-based models. For example,
in the Origin Mamba model Gu & Dao (2024), we substitute the parameters of the Mamba block
with MambaPB. Similarly, for the iMamba model, we replace the block’s parameters with iMam-
baPB. In the case of the TimeMachine model Ahamed & Cheng (2024), we also utilize iMambaPB
for parameter substitution.

Since the pre-trained Mamba block is designed to achieve enhanced selection capabilities, we freeze
the matrix A, which governs the Mamba’s selectivity, during the inference stage. Other parame-
ters, however, can be adjusted to suit the requirements of specific prediction tasks. Our experiments
include a comparison of various parameter-freezing methods to illustrate the impact on model per-
formance.

Additionally, Mamba-based models are often constructed with multiple stacked blocks, and select-
ing which blocks to replace with pre-trained parameters plays a crucial role in performance improve-
ment. We replace the parameters of the Mamba SSM in all blocks with MambaPB and iMambaPB,
and our experiments compare the results of different replacement ratios to highlight their effect on
model performance.

4 EXPERIMENT

We conducted extensive experiments to validate the effectiveness of our method. In Section 4.1, we
compare the prediction performance of various Mamba-based models—Mamba Gu & Dao (2024),
iMamba, TimeMachine Ahamed & Cheng (2024), and Bi-Mamba Liang et al. (2024)—both with
and without pre-trained parameters across multiple datasets: ETTh1, ETTh2, ETTm1, ETTm2,
Traffic, and Electricity. In Section 4.2, we demonstrate the effectiveness of each component through
ablation studies. In Section 4.3, we examine the time and memory overhead with and without pre-
training. In Section 4.4, we show how RCL can enhance Mamba’s selectivity by visualizing the
hidden state and Delta ∆. Details regarding the models, datasets, metrics, and training settings are
provided in Appendix A. Additional visualization results are available in Appendix B, and detailed
comparative experiments are presented in Appendix C.

4.1 MAIN RESULT

ETTh1 ETTh2 ETTm1 ETTm2 Traffic Electricity

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

Mamba
w/o 0.6546 0.7672 1.4013 2.8442 0.5053 0.5432 0.5763 0.6008 0.4939 1.0279 0.4205 0.3863
w 0.5974 0.6542 1.1536 2.0506 0.4798 0.4946 0.5646 0.5677 0.4604 0.9076 0.4168 0.3879

up-rate% 8.7382 14.729 17.676 27.902 5.0465 8.9470 2.0302 5.5093 6.7827 11.704 0.8799 -0.4142

iMamba
w/o 0.4987 0.4928 0.6926 0.9084 0.4316 0.3998 0.4160 0.3666 0.3234 0.6538 0.2627 0.1857
w 0.4472 0.4278 0.6833 0.8595 0.3970 0.3669 0.3304 0.2469 0.2913 0.6003 0.2597 0.1827

up-rate% 10.327 13.190 1.3428 5.3831 8.0167 8.2291 20.577 32.651 9.9258 8.1829 1.1420 1.6155

TimeMachine
w/o 0.3905 0.3833 0.3344 0.2911 0.3606 0.3342 0.2525 0.1746 0.3064 0.4983 0.2611 0.1872
w 0.3869 0.3787 0.3298 0.2822 0.3458 0.3179 0.2508 0.1731 0.2991 0.4844 0.2586 0.1826

up-rate% 0.9219 1.2001 1.3756 3.0574 4.1043 4.8773 0.6733 0.8591 2.3825 2.7895 0.9575 2.4573

Bi-Mamba
w/o 0.3948 0.3813 0.3443 0.2937 0.4680 0.5775 0.2704 0.1883 0.2786 0.587 0.2629 0.185
w 0.3893 0.3794 0.3462 0.2955 0.4634 0.5701 0.2707 0.1857 0.2761 0.5787 0.2611 0.1818

up-rate% 1.3931 0.4983 -0.5518 -0.6129 0.9829 1.2814 -0.1109 1.3808 0.8973 1.4140 0.6847 1.7280

Table 1: Comparison of performance improvement by replacing parameters obtained by RCL. w/o
denotes no parameter replacement, w denotes parameter replacement, and up-rate represents the
improvement rate.
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We validated the performance improvements brought by the parameters of the pre-trained Mamba
block across multiple Mamba-based models, as shown in Table 1. By leveraging the pre-trained
Mamba block parameters, the Mamba model demonstrated substantial gains across various datasets,
with the Mean Squared Error (MSE) reduced by up to 27.9% and the Mean Absolute Error (MAE)
improved by up to 17.7%, averaging an improvement of over 5%. For the iMamba model, the MAE
showed gains of up to 20.6%, while the MSE improved by up to 32.7%, with an average performance
increase exceeding 8%. These results indicate that the Mamba block parameters, refined through
Repetitive Contrastive Learning, significantly enhance the predictive capabilities of the Mamba and
iMamba models in time series tasks, yielding average improvements of 5% to 8%.

For the TimeMachine model, MSE improved by up to 4.88% and MAE by up to 4.10%, with an
average improvement of 2%. While these gains are smaller compared to the Mamba and iMamba
models, they remain noteworthy given that Bi-Mamba and TimeMachine are already state-of-the-art
models for long-term sequence prediction. Achieving an additional 1% to 2% improvement solely
by replacing the Mamba block parameters represents a meaningful advancement.

In summary, the parameters of the Mamba block, learned through the Repetitive Contrastive Learn-
ing method, consistently enhance the performance of various Mamba-based models. This under-
scores our method’s efficacy in improving the sequence selection capability of the Mamba block
and highlights its adaptability and potential for broad application.

4.2 ABLATION STUDY

ETTh1 ETTh2

MAE MSE MAE MSE

w/o intra-sequence contrast 0.636 0.743 1.351 2.659
w/o inter-sequence contrast 0.622 0.710 1.296 2.421

w/o noise 0.655 0.767 1.401 2.844
our approach 0.597 0.654 1.154 2.051

Table 2: Ablation results for our contrastive method settings, highlighting the effects of intra-
sequence, inter-sequence, and noise augmentation components, which correspond to the three key
parts of our model design.

ETTh1 ETTh2

MAE MSE MAE MSE

RCL w uniform noise 0.601 0.664 1.158 2.060
RCL w constant-intensity Gaussian noise 0.600 0.660 1.155 2.059

RCL w increasing-intensity Gaussian noise 0.597 0.654 1.154 2.051

Table 3: Ablation study on the design of increasing-intensity Gaussian noise. We conducted a series
of explorations examining different noise formats and their impact.

We conducted two ablation experiments to evaluate our proposed RCL method. All ablation ex-
periments used a 4-layer Mamba as the baseline model. In the first ablation experiment, as shown
in Table 2, we separately removed intra-sequence contrast, inter-sequence contrast, and noise. Re-
moving intra-sequence contrast significantly reduced prediction performance because this contrast
enhances the Mamba block’s ability to select time steps and denoise. Without it, the model’s ability
to select time steps diminishes. Similarly, removing inter-sequence contrast also led to performance
loss, as repeated time sequences can disrupt temporal consistency. The purpose of inter-sequence
contrast is to maintain consistency with the temporal features of the original sequence. Without it,
RCL cannot learn temporal features in broken sequences. The most significant performance drop
occurred when noise was removed. Without added noise, repeated time steps are indistinguishable
from the original ones, reducing task difficulty and failing to enhance the Mamba block’s ability to
resist noise and select time steps.
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In the second ablation experiment, as shown in Table 3, we compared the effects of different types of
noise on performance. Specifically, we compared uniform noise, constant-intensity Gaussian noise,
and increasing-intensity Gaussian noise used in RCL. All three types of noise yielded good results,
with uniform noise performing slightly worse than constant-intensity Gaussian noise, and constant-
intensity Gaussian noise performing slightly worse than increasing-intensity Gaussian noise. The
increasing-intensity Gaussian noise further accentuates differences between repeated time steps,
increasing the difficulty of distinguishing effective information from noise, thereby enhancing pre-
training performance.

4.3 ANALYSIS OF TIME AND MEMORY OVERHEAD

Memory(Unit: MB) Time(Unit: S)

ETTh1 Pretrain Inference Max Memory Pretrain Inference Total
w/o - 11733 11733 - 1.69 1.71
w 13131 11470 13131 5 1.62 6.54

Traffic Pretrain Inference Max Memory Pretrain Inference Total
w/o - 1602 1602 - 2.67 2.68
w 1994 1298 1994 6 2.54 8.54

Table 4: Peak memory consumption and average time overhead. The batch size for the ETTh1
dataset is 2000, while for the Traffic dataset it is 100.

Sequence repetition and Repetitive Contrastive Learning introduce additional memory and time
overhead. To better understand the implications, we analyze the time and space complexity of the
entire training process. The memory overhead for Mamba is determined by the number of blocks,
nb, and sequence length, sl, yielding a complexity of O(slnb). During pre-training, only a single
Mamba block is utilized, with input sequence lengths nts and s, resulting in a space complexity
of O((nt + 1)s). Meanwhile, the memory consumption during inference is represented as O(snb).
Table 4 details the memory consumption for Mamba training with nt = 3 and nb = 4 layers, illus-
trating that the peak memory overhead is comparable. As the number of Mamba layers increases,
the memory requirement for pre-training remains significantly lower than that of the inference stage.

Due to Mamba’s unique computational optimizations, the time complexity of a Mamba block is
linear with respect to the sequence length sl, denoted as O(sl). During pre-training, the sequence
length is nts, whereas during inference, it is s. As such, the training time with pre-training is
approximately nt + 1 times longer compared to training without pre-training. Table 4 shows that
when nt = 3, the pre-training time consumption is about three times that of inference, which is
consistent with our theoretical analysis.

4.4 ANALYSIS OF ENHANCED SELECTIVITY

We demonstrate that our proposed RCL effectively enhances the time step selection capability of
the Mamba block by visualizing the Hidden state and Delta corresponding to the input time series
of the Mamba block. The visualization results are shown in Figure 3. According to the principles of
SSM, the Hidden state can be represented in a form similar to a recurrent neural network:

Ht+1 = AHt +BXt+1 (10)

The matrix A determines how historical temporal information is retained. In the Mamba block,
the matrix A is determined by a fixed matrix A and ∆, where A influences part of the historical
information selection, and ∆ influences another part. The visualization results indicate that without
initializing with RCL parameters, the Hidden state is almost directly proportional to the input, and
∆ is similarly proportional to the input. This suggests that directly training the Mamba block does
not effectively retain historical information; the matrix A nearly forgets all historical information,
retaining only the current information as the hidden state.

In contrast, when training with initialized parameters, the Hidden state exhibits more complex rep-
resentations, and ∆ shows a more intricate temporal pattern. This indicates that the model learns
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Figure 3: Visualizing the Hidden state and Delta corresponding to the input time series

complex inter-dependencies between time steps. The matrix A learned by RCL demonstrates dif-
ferent memory and forgetting patterns for historical information across various time steps. It retains
more of the input at critical time steps while preserving more historical information at non-critical
time steps, thereby significantly enhancing the Mamba block’s ability to select relevant information
from time series data.

5 RELATED WORK

5.1 MODELS IN DEEP TIME SERIES FORECASTING

There has been extensive research focused on solving time series forecasting problems, with most
works aiming to propose new models that improve prediction accuracy. Based on their model
backbones, the research can be categorized into five primary groups: Transformer-based, RNN-
basedHochreiter & Schmidhuber (1997), CNN-based, MLP-based, and Mamba-based models.
While each of these approaches may emphasize different aspects, the key improvements revolve
around addressing the specific challenges of time series tasks.

TimesNetWu et al. (2023), a CNN-based model, utilizes different periodical segmentations in both
the frequency and time domains, helping models extract features from inter-period variations and
infer patterns from intra-period variations. TimeMixerWang et al. (2024), which relies solely on
MLP and pooling layers, outperformed all previous models by focusing on decomposing and mixing
multi-scale time series data.

Transformer-based and Mamba-based models, on the other hand, mainly enhance the adaptability
of their respective architectures to better address time series tasks. LogTrans Li et al. (2020) and
Informer Zhou et al. (2021) introduced sparse attention mechanisms tailored for serialized data,
allowing transformers to align more effectively with the nature of time series. Further advancements,
such as Autoformer Wu et al. (2022) and FEDformer Zhou et al. (2022), demonstrated the critical
importance of decomposing time series into seasonal and trend components. This decomposition
serves as an instructive process, guiding models to better process data along the time dimension,
which is essential even for attention-heavy transformer models.

9
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PatchTST Nie et al. (2023), by segmenting time series into fixed-length patches, significantly en-
hances models’ abilities to denoise and selectively process relevant information. Meanwhile, iTrans-
former Liu et al. (2024) introduces an innovative method by swapping the roles of features and
time in the series, passing the time dimension through a linear layer to create ’time embeddings.’
Mamba-based approaches, like TimeMachineAhamed & Cheng (2024), unify channel-mixing and
channel-independence, enabling the model to effectively select the most relevant content for pre-
diction. These methods underscore the importance of auxiliary mechanisms to enhance time series
selection and processing.

5.2 CONTRASTIVE LEARNING

Most contrastive self-supervised learning methods have been applied primarily in the fields of vi-
sionJaiswal et al. (2021) and multimodal learningManzoor et al. (2024). This is because the objects
used for contrast typically possess distinguishable high-level attributes that are easy for humans to
recognize and are less susceptible to being obscured by noise. For example, image data remains
interpretable to humans even when subjected to perturbations like color alterations or geometric
transformations. Similarly, multimodal contrastive learning leverages cross-modality correlations,
such as in visual-textual contrastive learning, where each modality provides intrinsic information to
enhance the contrastive task.

In contrast, the application of contrastive learning to unimodal sequential data has been less com-
mon, often requiring specialized features. For example, CodeRetrieverLi et al. (2022) employs a
similarity contrastive loss in code semantic spaces to capture nuances in code sequences. Other
contrastive methods, such as those used in sequential recommendationXie & Li (2024) or text sum-
marizationXu et al. (2022), rely on distinct sequence representations and specific training techniques
to enhance contrastive performance in these domains.

In the time series domain, numerous works have focused on improving representation learning
through contrastive pre-training. TS2VecYue et al. (2022) introduced a universal framework for
learning time series representations at arbitrary semantic levels, emphasizing context view augmen-
tation and hierarchical contrastive learning. Subsequently, TF-CZhang et al. (2022b) proposed a dif-
ferent contrastive approach by aligning time-based and frequency-based representations to achieve
improved representations. Building upon this, InfoTS applied principles from information theory to
prioritize high-fidelity and diverse representations, presenting a novel contrastive learning method.
Meanwhile, SoftCLSLee et al. (2024) introduced soft assignments for instance-wise and temporal
contrastive losses, capturing both inter-sample and intra-temporal relationships.

These methods primarily target enhanced representation learning of time series, resulting in strong
performance on classification tasks but limited applicability to forecasting tasks. In contrast, our
approach focuses on pre-training mamba models to capture the characteristics of recurrent noise
patterns within time series. Consequently, the pre-trained parameters can be directly applied to
downstream forecasting models, marking a significant point of distinction and novelty compared to
existing methods.

6 CONCLUSION

In this paper, we propose a novel training paradigm called Repetitive Contrastive Learning (RCL)
for Mamba-based models in time series tasks. The sequence selection ability of mamba block was
enhanced by sequence repetition and intra-sequence and inter-sequence comparison. We conducted
extensive experiments to demonstrate the efficacy of the Mamba block within the broader Mamba
architecture. Our results highlight the capability of our approach in capturing the key characteristics
inherent to time series data. To further substantiate our findings, we applied the method across
various Mamba-based models, consistently observing significant improvements in generalization.
Additionally, we evaluated resource consumption and found our method does not create additional
memory burden, and the time consumption only increases linearly. Future work will aim to refine
noise addition techniques and reduce training overhead to further enhance task performance.
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Appendix

A BASIC INFORMATION

A.1 MAMBA-BASED BASELINE

• Mamba Gu & Dao (2024): Mamba is a new Selective State Spaces model proposed by
Albert Gu and Tri Dao in 2024.Li et al. (2024) It demonstrates outstanding performance
in sequence modeling through its selective state space formulation, effectively capturing
long-range dependencies while maintaining computational efficiency.

• iMamba: An enhancement of Mamba, iMamba builds upon the principles of the iTrans-
former, where features are treated as tokens. This model is tailored specifically for time
series forecasting tasks, offering improved flexibility in feature tokenization.

• TimeMachine Ahamed & Cheng (2024): TimeMachine, introduced by Md Atik Ahamed
and Qiang Cheng in 2024, is designed for long-term sequence forecasting. By integrating
channel-independent and channel-mixed modeling approaches, it achieves state-of-the-art
performance. The architecture incorporates four Mamba blocks, optimizing predictive ca-
pability over extended sequences.

• Bi-Mamba Liang et al. (2024): Proposed in 2024, Bi-Mamba extends the Mamba frame-
work by adaptively capturing both internal and inter-series dependencies in multivariate
time series data. The model introduces forget gates, enabling it to retain relevant historical
information over extended time periods, thereby enhancing its forecasting accuracy.

A.2 TEMPORAL BASELINE

• Transformer: The Transformer model, introduced by VaswaniVaswani et al. (2023) et
al. in 2017, revolutionized sequence modeling by using self-attention mechanisms. Its
architecture allows for efficient parallelization and effectively captures long-range depen-
dencies, making it highly suitable for various tasks such as natural language processing and
time series forecasting.

• TimeMixer: TimeMixerWang et al. (2024) is a novel approach designed for time series
modeling, leveraging the power of mixing operations to combine temporal features. By fo-
cusing on capturing intricate temporal dependencies and interactions, TimeMixer provides
robust performance in both short-term and long-term forecasting tasks.

• CrossFormer: CrossFormerWang et al. (2021) introduces a cross-attention mechanism
specifically tailored for time series data. It excels in integrating multiple time series inputs,
enabling the model to learn complex relationships across different temporal sequences, thus
improving forecasting accuracy and adaptability to diverse datasets.

• PatchTST: PatchTSTNie et al. (2023) is a model that applies the concept of patch-based
processing from computer vision to time series data. By segmenting time series into patches
and processing them independently, PatchTST enhances the model’s ability to capture local
temporal patterns, improving efficiency and scalability for large datasets.

• TimesNet: TimesNetWu et al. (2023) is an advanced time series network that leverages a
hierarchical structure to model temporal dependencies at multiple scales. This architecture
allows TimesNet to adaptively focus on different temporal resolutions, providing superior
performance in multiscale time series forecasting.

• FEDFormer: FEDFormer(Federated Transformer)Zhou et al. (2022) incorporates feder-
ated learning principles into the Transformer framework, allowing for decentralized time
series modeling. This model is particularly effective in scenarios where data privacy is
crucial, as it can learn from distributed data sources without centralizing the datasets.

• Informer: InformerZhou et al. (2021) is designed to efficiently handle long sequences in
time series forecasting. It introduces a ProbSparse self-attention mechanism that reduces
computational complexity and memory usage, making it ideal for real-time applications
and large-scale datasets. Informer achieves state-of-the-art results by focusing on signifi-
cant temporal patterns while filtering out noise.
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A.3 TEMPORAL PRE-TRAINING BASELINE

• SoftCLS: SoftCLS? is a cutting-edge model designed for contextual sequence learning.
By incorporating soft clustering techniques, SoftCLS dynamically groups similar temporal
patterns, enhancing the model’s ability to generalize across varied contexts. This approach
ensures superior performance in complex classification tasks, offering robust adaptability
to fluctuating sequences while maintaining high interpretability.

• InfoTS: InfoTS? leverages information-theoretic principles to optimize time series mod-
eling. By prioritizing the retention of informative features and minimizing redundancy,
InfoTS significantly enhances predictive accuracy. This model excels in both supervised
and unsupervised learning scenarios, making it versatile for diverse applications such as
anomaly detection and trend analysis.

A.4 DATASET

Frequency, number of features, adn time point information of the datasets.

Dataset Frequency Features Time Points Split
ETTh1 Hour 7 17420 60%/20%/20%
ETTh2 Hour 7 17420 60%/20%/20%
ETTm1 15 Minutes 7 69680 60%/20%/20%
ETTm2 15 Minutes 7 69680 60%/20%/20%
Traffic Hour 862 17544 60%/20%/20%

Electricity Hour 321 26304 60%/20%/20%

A.5 METRIC

Mean Absolute Error (MAE):

MAE =
1

n

n∑
i=1

|yi − ŷi|

Mean Squared Error (MSE):

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

A.6 MODEL SETTINGS

The parameter settings for the Mamba block during pre-training are as follows: The model dimen-
sion (dmodel) is set to values [16, 32, 64], and the state dimension (dstate) is set to [16, 64, 128].
The convolution dimension (dconv) is fixed at 4, and pad vocab size multiple is set to 8 to ensure
consistent padding sizes. The expansion factor (expand) is configured to 2, with conv bias enabled
(set to True) and bias disabled (set to False). The repeat time, denoted as nt, is set to 3, while noise
variance is varied between [0.001, 0.01]. During the inference phase, the Mamba Selective State
Space Model (SSM) parameters are aligned with the corresponding pre-trained block parameters to
maintain consistency and leverage learned patterns effectively.

A.7 TRAINING SETTINGS

The experiment was conducted on a server equipped with four NVIDIA GeForce RTX 3090 GPUs
and an AMD EPYC 7282 16-Core Processor. During the pre-training phase, the number of layers
(n layer) is set to 1, the number of epochs (epoch) is 100, the learning rate (lr) is configured to 1e-4,
and the regularization coefficient is also set to 1e-4. In the inference stage, the maximum number of
training epochs remains at 100, while n layer is increased to 4. The Mean Absolute Error (MAE)
serves as the loss function, and model selection is based on the lowest validation set loss. The
parameter frozentype is chosen as needed from the options [None, FrozenA], and the number of
layers used for parameter replacement is selected from [25%, 50%, 75%, 100%], according to the

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

specific experimental requirements. For the prediction length, we selected four different lengths:
[96, 192, 336, 720] and conducted a series of experiments. However, all results tables presented in
our paper, unless otherwise specified, use a prediction length of 96. This length was chosen because
it effectively illustrates the corresponding conclusions and provides a clear basis for our findings.

B VISUALIZATION

B.1 VISUALIZATION OF EMBEDDING IN AUGMENTATION SEQUENCE

To visually demonstrate the impact of our contrastive learning methods, we plotted the cosine simi-
larity values between embedding vectors of the same input sequence from the ETTm1 dataset using
a heatmap Shin et al. (2006). This comparison involves identical Mamba blocks—one trained with-
out contrastive pre-training and the other with it. The resulting variations in distribution highlight
the influence of our pre-training objectives, which enhance the model’s ability to selectively focus
on relevant features. The images illustrate the differences in the embedding space (Figure 5) and the
refined distribution achieved through contrastive learning (Figure 4).

It is evident that the Mamba model without RCL struggles to effectively distinguish between ir-
relevant noise and valid time steps, and it fails to make effective selections within the time series.
Additionally, the original Mamba model cannot adequately separate different time steps, maintain-
ing high correlation, which indicates that new time step information fails to be effectively encoded
and merely perturbs the coding. In contrast, Mamba with RCL effectively differentiates between
valid time steps and filters out noise, mitigating the effects of long sequences and introducing more
valid information, thereby improving the modeling of the entire sequence.

Figure 4: Visualization of model results after contrastive pre-training: the left image shows results
on repeated sequences, while the right image shows results on original sequences.
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Figure 5: Visualization of model results from non-pretrained models.

Figure 6: UMAP reduction results. Anchor points are randomly selected, and all other points are
related to the anchor.

B.2 VISUALIZATION OF CLUSTERING OF POSITIVE AND NEGATIVE CASES

We also visualized the detailed distribution of vectors using the UMAP technique for dimensionality
reduction, where the original dimensionality of the embedding vectors is 32. UMAP is based on a
theoretical framework rooted in Riemannian geometry and algebraic topology, resulting in a scalable
and practical algorithm suitable for contrastive learning data McInnes et al. (2020). In the visual-
izations (Figure 6), we randomly selected embedding vectors from input sequences and plotted the
corresponding vectors for both positive and negative pairs in our method.

The clustering results demonstrate that the model can effectively distinguish between positive and
negative examples, with positive examples clustering near the anchor and negative examples retreat-
ing farther away. The significance of this distinction is evident in the clustering results, indicating
that our method can better recognize valid and invalid time steps, and possesses stronger differenti-
ation and selection capabilities.
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C COMPARISON

C.1 COMPARISON WITH TEMPORAL MODEL

We compared our approach with existing state-of-the-art time series prediction models, as shown in
Table 5. TimeMachine* and Bi-Mamba* refer to the TimeMachine and Bi-Mamba models initial-
ized with parameters obtained using RCL. We set all input lengths to 96 and conducted experiments
across multiple prediction horizons T = {96, 192, 336, 720}. Our method achieves optimal results
across various datasets and prediction horizons. For datasets with fewer data channels, our approach
consistently achieves the best Mean Absolute Error (MAE) results across all prediction horizons,
and Mean Squared Error (MSE) results are generally among the top two. For datasets with more
channels, such as traffic and electricity, our method shows more significant improvements for longer
prediction targets. This indicates enhanced stability in long-sequence predictions, attributed to the
parameters obtained through RCL, which enable the Mamba block to have stronger selectivity for
time series data.

Model TimeMachine* TimeMachine Bi-Mamba* Bi-Mamba iTransformer TimeMixer CrossFormer PatchTST TimesNet FEDFormer Informer

Metric MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

ETTh1

96 0.387 0.379 0.391 0.383 0.389 0.379 0.395 0.381 0.405 0.386 0.400 0.375 0.448 0.423 0.419 0.414 0.402 0.384 0.419 0.376 0.713 0.865
192 0.420 0.440 0.423 0.440 0.421 0.425 0.428 0.427 0.436 0.441 0.421 0.429 0.474 0.471 0.445 0.460 0.429 0.436 0.448 0.420 0.792 1.008
336 0.442 0.482 0.446 0.490 0.456 0.481 0.459 0.484 0.458 0.487 0.458 0.484 0.546 0.570 0.466 0.501 0.469 0.491 0.465 0.459 0.809 1.107
720 0.466 0.488 0.470 0.496 0.496 0.496 0.496 0.516 0.491 0.503 0.482 0.498 0.621 0.653 0.488 0.500 0.500 0.521 0.507 0.506 0.865 1.181

ETTh2

96 0.330 0.282 0.334 0.291 0.347 0.300 0.349 0.307 0.349 0.297 0.341 0.289 0.584 0.745 0.348 0.302 0.374 0.340 0.397 0.358 1.525 3.755
192 0.382 0.355 0.385 0.369 0.394 0.373 0.398 0.377 0.400 0.380 0.392 0.372 0.656 0.877 0.400 0.388 0.414 0.402 0.439 0.429 1.931 5.602
336 0.420 0.412 0.428 0.421 0.429 0.434 0.434 0.435 0.432 0.428 0.414 0.386 0.731 1.043 0.433 0.426 0.452 0.452 0.487 0.496 1.835 4.721
720 0.430 0.412 0.439 0.424 0.602 0.731 0.597 0.715 0.445 0.427 0.434 0.412 0.763 1.104 0.446 0.431 0.468 0.462 0.474 0.463 1.625 3.647

ETTm1

96 0.346 0.318 0.361 0.334 0.358 0.332 0.364 0.332 0.368 0.334 0.357 0.320 0.426 0.404 0.367 0.329 0.375 0.338 0.419 0.379 0.571 0.672
192 0.377 0.375 0.379 0.379 0.384 0.369 0.389 0.378 0.391 0.377 0.381 0.361 0.451 0.450 0.385 0.367 0.387 0.374 0.441 0.426 0.669 0.795
336 0.387 0.396 0.394 0.401 0.407 0.404 0.412 0.405 0.420 0.426 0.404 0.390 0.515 0.532 0.410 0.399 0.411 0.410 0.459 0.445 0.871 1.212
720 0.429 0.455 0.431 0.467 0.441 0.458 0.452 0.466 0.459 0.491 0.441 0.454 0.589 0.666 0.439 0.454 0.450 0.478 0.490 0.543 0.823 1.166

ETTm2

96 0.251 0.173 0.253 0.175 0.271 0.186 0.270 0.188 0.264 0.180 0.258 0.175 0.366 0.287 0.259 0.175 0.267 0.187 0.287 0.203 0.453 0.365
192 0.293 0.238 0.294 0.238 0.313 0.254 0.315 0.257 0.309 0.250 0.299 0.237 0.492 0.414 0.302 0.241 0.309 0.249 0.328 0.269 0.563 0.533
336 0.333 0.299 0.337 0.307 0.364 0.316 0.387 0.392 0.348 0.311 0.340 0.298 0.542 0.597 0.343 0.305 0.351 0.321 0.366 0.325 0.887 1.363
720 0.392 0.402 0.394 0.407 0.413 0.404 0.430 0.429 0.407 0.412 0.396 0.391 1.042 1.730 0.400 0.402 0.403 0.408 0.415 0.421 1.338 3.379

Traffic

96 0.299 0.484 0.306 0.498 0.276 0.579 0.279 0.587 0.268 0.395 0.285 0.462 0.290 0.522 0.359 0.544 0.321 0.593 0.366 0.587 0.368 0.274
192 0.273 0.412 0.274 0.417 0.308 0.625 0.306 0.630 0.276 0.417 0.296 0.473 0.293 0.530 0.354 0.540 0.336 0.617 0.373 0.604 0.386 0.296
336 0.279 0.429 0.281 0.433 0.311 0.666 0.307 0.659 0.283 0.433 0.296 0.498 0.305 0.558 0.358 0.551 0.336 0.629 0.383 0.621 0.394 0.300
720 0.298 0.459 0.300 0.467 0.336 0.689 0.338 0.702 0.302 0.467 0.313 0.506 0.328 0.589 0.375 0.586 0.350 0.640 0.382 0.626 0.439 0.373

Electricity

96 0.259 0.183 0.261 0.187 0.261 0.182 0.263 0.185 0.240 0.148 0.247 0.153 0.314 0.219 0.285 0.195 0.272 0.168 0.308 0.193 0.391 0.719
192 0.246 0.152 0.250 0.158 0.270 0.188 0.272 0.191 0.253 0.162 0.256 0.166 0.322 0.231 0.289 0.199 0.289 0.184 0.315 0.201 0.379 0.696
336 0.261 0.169 0.268 0.172 0.283 0.200 0.290 0.212 0.269 0.178 0.277 0.185 0.337 0.246 0.305 0.215 0.300 0.198 0.329 0.214 0.420 0.777
720 0.295 0.201 0.298 0.207 0.317 0.255 0.323 0.259 0.317 0.225 0.310 0.225 0.363 0.280 0.337 0.256 0.320 0.220 0.355 0.246 0.472 0.864

Table 5: Comparison results with temporal model. Bolded numbers indicate optimal results and
underscores indicate sub-optimal results.

C.2 COMPARISON WITH PRE-TRAINING METHODS

We conducted a series of experiments on the latest pre-training methods in the time series domain
Luo et al. (2023); Lee et al. (2024). The results, presented in Table 6, were derived from models
trained using official code on multivariate forecasting tasks. Two important aspects warrant atten-
tion. First, both methods are designed to enhance the representation learning of time series features
through contrastive pre-training, heavily relying on the capabilities of feature extraction modules.

Model TimeMachine* Bi-Mamba* Mamba* iMamba* InfoTS(TS2Vec) SoftCLS(TS2Vec) SoftCLS(Mamba) InfoTS(Mamba)

Metric MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

ETTh1
96 0.387 0.379 0.389 0.379 0.575 0.657 0.499 0.493 0.623 0.736 0.616 0.704 0.696 0.891 0.816 1.147
192 0.420 0.440 0.421 0.425 0.602 0.713 0.508 0.532 0.690 0.857 0.670 0.810 0.737 0.959 0.835 1.186
336 0.442 0.482 0.456 0.481 0.608 0.715 0.513 0.550 0.769 1.024 0.740 0.950 0.640 1.064 0.861 1.231

ETTh2
96 0.330 0.282 0.347 0.300 1.228 2.124 0.693 0.908 0.754 0.936 0.799 1.015 0.997 1.542 0.897 1.219
192 0.382 0.355 0.394 0.373 1.237 2.164 1.023 1.821 1.112 2.022 1.251 2.559 1.343 2.820 1.251 2.506
336 0.420 0.412 0.429 0.434 1.234 2.153 1.073 2.042 1.264 2.482 1.312 2.639 1.402 2.952 1.327 2.733

ETTm1
96 0.346 0.318 0.358 0.332 0.492 0.528 0.432 0.400 0.540 0.602 0.534 0.581 0.623 0.808 0.741 0.985
192 0.377 0.375 0.384 0.369 0.513 0.587 0.450 0.439 0.575 0.649 0.569 0.635 0.654 0.849 0.756 1.014
336 0.387 0.396 0.407 0.404 0.817 1.457 0.491 0.509 0.622 0.729 0.610 0.697 0.681 0.885 0.770 1.040

ETTm2
96 0.251 0.173 0.271 0.186 0.576 0.601 0.416 0.367 0.452 0.377 0.460 0.400 0.491 0.437 0.782 0.969
192 0.293 0.238 0.313 0.254 0.667 0.847 0.497 0.495 0.560 0.542 0.580 0.587 0.591 0.590 0.857 1.152
336 0.333 0.299 0.364 0.316 0.705 0.922 0.793 1.032 0.713 0.846 0.730 0.885 0.730 0.855 0.969 1.461

Electricity
96 0.259 0.183 0.261 0.182 0.423 0.393 0.260 0.183 0.290 0.380 0.401 0.326 0.553 0.571 0.531 0.524
192 0.246 0.152 0.270 0.188 0.430 0.405 0.280 0.205 0.293 0.383 0.403 0.327 0.555 0.573 0.532 0.524
336 0.261 0.169 0.283 0.200 0.435 0.411 0.298 0.222 0.311 0.396 0.416 0.344 0.565 0.581 0.540 0.538

Table 6: Comparison results with pre-training methods. Bolded names with an asterisk indicate
models using our pre-training methods. Parentheses following InfoTS and SoftCLS denote the
backbone models utilized during pre-training. The best results for each metric are highlighted in
bold.
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Specifically, their experiments utilized the TSEncoder from woTS2VecYue et al. (2022) or TC from
CATCCEldele et al. (2023) as feature extractors. These models are structurally distinct from mamba-
based models, leading to a decline in performance when feature extraction is adapted to mamba
models. Second, these approaches primarily benefit classification tasks due to their ability to accu-
rately and effectively represent time series nodes, which aids classification but demonstrates limited
improvements in forecasting tasks especially in multivariate tasks. Consequently, during their pre-
diction stages, they use feature vectors from pre-training train a linear model to predict future values
instead of leveraging pre-trained modules to construct new models. In contrast, our pre-training ap-
proach guides mamba blocks to learn sampling rules inherent in natural time sequences and identify
meaningful historical information. This aligns with the requirements of forecasting tasks, allowing
us to directly leverage parameters in forecasting models for superior results.

C.3 IMPROVEMENTS UNDER DIFFERENT PARAMETERS

Dataset ETTh1 ETTh2 ETTm1 ETTm2

dstate MAE MSE MAE MSE MAE MSE MAE MSE

MambaDs16
w/o 0.6546 0.7672 1.4013 2.8442 0.5053 0.5432 0.5763 0.6008
w 0.5974 0.6542 1.1536 2.0506 0.4798 0.4946 0.5646 0.5677

up-rate% 8.7382 14.7289 17.6764 27.9024 5.0465 8.9470 2.0302 5.5093

MambaDs32
w/o 0.6394 0.7359 1.2478 2.3706 0.5246 0.5729 0.6106 0.6778
w 0.5741 0.6369 1.2137 2.2131 0.4958 0.5182 0.5199 0.5106

up-rate% 10.2127 13.4529 2.7328 6.6439 5.4899 9.5479 14.8542 24.6680

MambaDs64
w/o 0.6382 0.7424 1.1759 2.1532 0.4961 0.5562 0.5803 0.5379
w 0.6247 0.7280 1.1323 2.0257 0.4828 0.5124 0.5771 0.5289

up-rate% 2.1153 1.9397 3.7078 5.9214 2.6809 7.8749 0.5514 1.6732

Table 7: Comparison of Mamba’s performance under different dstate. Mamba-DsN represents
Mamba with dstate set to N.

Dataset ETTh1 ETTh2 ETTm1 ETTm2 Traffic

dmodel MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

MambaDm32
w/o 0.6096 0.7107 1.2655 2.6822 0.7123 0.9830 0.6630 0.7246 0.4959 1.0047
w 0.5993 0.6707 1.0751 2.0090 0.6628 0.9166 0.5739 0.6602 0.4865 0.9621

up-rate% 1.6896 5.6283 15.0454 25.0988 6.9493 6.7548 13.4389 8.8877 1.8955 4.2401

MambaDm64
w/o 0.6243 0.7188 1.2142 2.2030 0.7026 1.0190 0.5793 0.6063 0.3347 0.6652
w 0.6000 0.6778 1.1267 1.8989 0.6959 0.9642 0.5580 0.5635 0.2976 0.5976

up-rate% 3.8924 5.7040 7.2064 13.8039 0.9536 5.3778 3.6769 7.0592 11.0846 10.1624

MambaDm128
w/o 0.6546 0.7672 1.4013 2.8442 0.5053 0.5432 0.5763 0.6008 0.4791 0.9903
w 0.5974 0.6542 1.1536 2.0506 0.4798 0.4946 0.5646 0.5677 0.4622 0.9467

up-rate% 8.7382 14.7289 17.6764 27.9024 5.0465 8.9470 2.0302 5.5093 3.5274 4.4027

Table 8: Comparison of Mamba’s performance under different dmodel. Mamba-DmN represents
Mamba with dmodel set to N.

To further illustrate the generality of our method, we evaluated its enhancement capabilities on
the Mamba model with varying parameters. Specifically, we standardized all Mamba models to
contain four Mamba blocks and compared their performance under different values of dstate and
d model. Table 7 presents a performance comparison of the model across various dstate values.
While Mamba’s performance varied depending on dstate for the same dataset, our method consis-
tently delivered improvements, achieving an average increase of over 5% and a maximum gain of
24.67%. Similarly, we assessed the improvement effects of our method under different values of
dmodel, as detailed in Table 8. Across multiple datasets, every tested dmodel exhibited significant
improvements, with a maximum gain of 27.9% and an average increase of 6%.

These experiments demonstrate that our method is robust and unaffected by specific model parame-
ters, consistently providing performance enhancements regardless of parameter variations. Results
across diverse datasets and parameter settings reinforce this conclusion. Furthermore, within the
same dataset, our method effectively narrows performance gaps caused by parameter variations,
aligning results closer to optimal performance. This not only boosts the stability and robustness of
Mamba-based models but also reduces the time and effort required for parameter tuning.
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C.4 COMPARISON OF REPLACEMENT AND FREEZING METHODS

ETTm1 ETTm2

None FrozenA None FrozenA

MAE MSE MAE MSE MAE MSE MAE MSE

w/o 0.5053 0.5432 0.5053 0.5432 0.5763 0.6008 0.5763 0.6008

layer-25%
w 0.4921 0.5394 0.4921 0.5393 0.6609 0.7902 0.5611 0.5696

up-rate% 2.6123 0.6996 2.6123 0.7180 -14.6799 -31.5246 2.6375 5.1931

layer-50%
w 0.4798 0.4946 0.4976 0.5548 0.6021 0.6230 0.6389 0.7423

up-rate% 5.0465 8.9470 1.5238 -2.1355 -4.4768 -3.6951 -10.8624 -23.5519

layer-75%
w 0.4816 0.5256 0.4816 0.5255 0.5299 0.5366 0.5646 0.5676

up-rate% 4.6903 3.2401 4.6903 3.2585 8.0514 10.6858 2.0302 5.5260

layer-100%
w 0.5106 0.5692 0.5016 0.5658 0.5486 0.5735 0.5296 0.5258

up-rate% -1.0489 -4.7865 0.7322 -4.1605 4.8065 4.5439 8.1034 12.4834

Table 9: Comparison of Replacement and Freezing Methods. The ”layer-x%” indicates that the first
x% of layers were replaced by pre-trained blocks.

A Mamba-based model typically comprises multiple Mamba blocks. Each Mamba block contains a
matrix A, which is defined in 3.2. The parameters are responsible for controlling the block’s selec-
tivity towards information before. To evaluate the impact of parameter replacement and parameter
freezing during the inference stage, we used a 4-layer Mamba model as a baseline. The replacement
strategy involved substituting 25%, 50%, 75%, and 100% of the Mamba blocks, while the parame-
ter freezing strategy was categorized into no freezing (None) and freezing of matrix A (FrozenA).
Freezing matrix A helps preserve the enhanced selectivity gained during pre-training.

As shown in Table 9, the optimal parameter replacement and freezing strategies differ across
datasets. For the ETTm1 dataset, replacing 50% of the Mamba blocks without freezing any pa-
rameters yielded the greatest improvement, while replacing 100% of the blocks resulted in the low-
est performance. This suggests that the selection capabilities of the pre-trained parameters do not
fully align with the prediction target. By replacing only 50% of the Mamba blocks, the model can
better encode the time series, while the remaining blocks focus on fitting the specific prediction
requirements of the dataset, ultimately enhancing model performance.

Conversely, for the ETTm2 dataset, the greatest improvement was achieved by replacing all Mamba
blocks and freezing matrix A. In this case, the selective enhancements from pre-training aligned
well with the dataset’s prediction targets. This approach preserved the pre-trained parameters’ se-
lectivity while allowing the remaining parameters to adjust to fit the prediction targets effectively.

Similar results were observed across other datasets. Broadly, the findings can be grouped into two
effective strategies: replacing 50% of the Mamba blocks without freezing any parameters and re-
placing 100% of the Mamba blocks while freezing matrix A. We recommend choosing between
these two approaches during the inference phase for optimal performance.

C.5 DETAIL COMPARISON OF IMPROVEMENTS

To demonstrate that pre-training Mamba blocks with RCL can effectively enhance the temporal
prediction capabilities of Mamba-based models, we present the performance improvements of four
Mamba-based models after using pre-trained parameters. We conducted extensive testing on six
datasets, each with an input length of 96 and prediction lengths of {96, 192, 336, 720}. To clearly
illustrate the performance improvements, we provide the percentage increase in MSE and MAE
when using pre-trained parameters compared to not using them, as shown by the up-rate in Table
10.

The results indicate that, for the vast majority of datasets and prediction lengths, the parameters
obtained through our method enhance the predictive performance of Mamba-based models, demon-
strating that our approach is generally effective. By pre-training a Mamba block and using the
pre-trained parameters to initialize all mamba blocks in Mamba-based model, the original model’s
temporal prediction performance can be significantly improved.
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ETTh1 ETTh2 ETTm1 ETTm2 Traffic Electricity

MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE

Mamba

96
w/o 0.6546 0.7672 1.4013 2.8442 0.5053 0.5432 0.5763 0.6008 0.4939 1.0279 0.4205 0.3863
w 0.5974 0.6542 1.1536 2.0506 0.4798 0.4946 0.5646 0.5677 0.4604 0.9076 0.4168 0.3879

up-rate% 8.7382 14.729 17.676 27.902 5.0465 8.9470 2.0302 5.5093 6.7827 11.704 0.8799 -0.4142

192
w/o 0.6298 0.7115 1.2371 2.1642 0.5126 0.5866 0.6670 0.8471 0.5617 1.1962 0.4298 0.4053
w 0.6021 0.7127 1.0509 1.9490 0.4970 0.5524 0.5655 0.5573 0.5610 1.1877 0.4288 0.4130

up-rate% 4.3982 -0.1687 15.0513 9.9436 3.0433 5.8302 15.2174 34.2108 0.1246 0.7106 0.2327 -1.8998

336
w/o 0.6383 0.7210 1.2341 2.1528 0.8172 1.4569 0.7052 0.9220 0.6025 1.3079 0.4354 0.4108
w 0.6084 0.7145 1.0497 1.9485 0.8008 1.4479 0.6270 0.6842 0.5848 1.2560 0.4324 0.4176

up-rate% 4.6843 0.9015 14.9421 9.4900 2.0069 0.6178 11.0891 25.7918 2.9378 3.9682 0.6890 -1.6553

720
w/o 0.6776 0.7727 1.2206 2.1005 0.8235 1.4557 0.7374 0.9942 0.4893 1.0108 0.4529 0.4326
w 0.6461 0.7556 1.0541 1.9537 0.8142 1.4588 0.6682 0.7811 0.4645 0.9189 0.4447 0.4320

up-rate% 4.6488 2.2130 13.6408 6.9888 1.1293 -0.2130 9.3843 21.4343 5.0685 9.0918 1.8106 0.1387

iMamba

96
w/o 0.4987 0.4928 0.6926 0.9084 0.4316 0.3998 0.4160 0.3666 0.3234 0.6538 0.2627 0.1857
w 0.4472 0.4278 0.6833 0.8595 0.3970 0.3669 0.3304 0.2469 0.2913 0.6003 0.2597 0.1827

up-rate% 10.3268 13.1899 1.3428 5.3831 8.0167 8.2291 20.5769 32.6514 9.9258 8.1829 1.1420 1.6155

192
w/o 0.5075 0.5320 1.0228 1.8207 0.4500 0.4390 0.4973 0.4949 0.3129 0.6354 0.2801 0.2047
w 0.4871 0.5143 0.9430 1.5825 0.4356 0.4174 0.4763 0.4557 0.3091 0.6335 0.2788 0.2025

up-rate% 4.0197 3.3271 7.8021 13.0829 3.2000 4.9203 4.2228 7.9208 1.2144 0.2990 0.4641 1.0747

336
w/o 0.5125 0.5498 1.0727 2.0417 0.4909 0.5085 0.7932 1.0322 0.3233 0.6605 0.2987 0.2238
w 0.4750 0.4992 0.9913 1.7052 0.4677 0.4998 0.5854 0.6272 0.3216 0.6645 0.2975 0.2222

up-rate% 7.3171 9.2033 7.5883 16.4814 4.7260 1.7109 26.1977 39.2366 0.5258 -0.6056 0.4017 0.7149

720
w/o 0.5418 0.5818 1.0534 1.8199 0.6238 0.7306 1.0698 2.0298 0.3486 0.7105 0.3342 0.2683
w 0.5391 0.5640 1.0172 1.7220 0.5120 0.5534 0.9936 1.5644 0.3475 0.7172 0.3323 0.2627

up-rate% 0.4983 3.0595 3.4365 5.3794 17.9224 24.2540 7.1228 22.9284 0.3155 -0.9430 0.5685 2.0872

TimeMachine

96
w/o 0.3905 0.3833 0.3344 0.2911 0.3606 0.3342 0.2525 0.1746 0.3064 0.4983 0.2611 0.1872
w 0.3869 0.3787 0.3298 0.2822 0.3458 0.3179 0.2508 0.1731 0.2991 0.4844 0.2586 0.1826

up-rate% 0.9219 1.2001 1.3756 3.0574 4.1043 4.8773 0.6733 0.8591 2.3825 2.7895 0.9575 2.4573

192
w/o 0.4225 0.4401 0.3851 0.3685 0.3785 0.3787 0.2941 0.2381 0.2740 0.4170 0.2500 0.1580
w 0.4202 0.4399 0.3821 0.3551 0.3770 0.3750 0.2930 0.2381 0.2732 0.4115 0.2460 0.1520

up-rate% 0.5444 0.0454 0.7790 3.6364 0.3963 0.9770 0.3740 0.0000 0.2920 1.3189 1.6000 3.7975

336
w/o 0.4458 0.4902 0.4281 0.4206 0.3937 0.4010 0.3371 0.3066 0.2810 0.4330 0.2680 0.1720
w 0.4419 0.4824 0.4201 0.4119 0.3867 0.3956 0.3327 0.2991 0.2790 0.4290 0.2610 0.1690

up-rate% 0.8748 1.5912 1.8687 2.0685 1.7780 1.3466 1.3053 2.4462 0.7117 0.9238 2.6119 1.7442

720
w/o 0.4702 0.4959 0.4386 0.4243 0.4310 0.4670 0.3940 0.4073 0.3000 0.4670 0.2980 0.2070
w 0.4656 0.4883 0.4295 0.4119 0.4291 0.4552 0.3920 0.4018 0.2980 0.4590 0.2950 0.2010

up-rate% 0.9783 1.5326 2.0748 2.9225 0.4408 2.5268 0.5076 1.3504 0.6667 1.7131 1.0067 2.8986

Bi-Mamba

96
w/o 0.3948 0.3813 0.3443 0.2937 0.3641 0.3319 0.2704 0.1883 0.2786 0.587 0.2629 0.185
w 0.3893 0.3794 0.3462 0.2955 0.3578 0.3316 0.2707 0.1857 0.2761 0.5787 0.2611 0.1818

up-rate% 1.3931 0.4983 1.7303 0.0904 0.9829 1.2814 -0.1109 1.3808 0.8973 1.4140 0.6847 1.7280

192
w/o 0.4280 0.4270 0.3977 0.3772 0.3894 0.3780 0.3145 0.2572 0.3057 0.6301 0.2715 0.1914
w 0.4210 0.4250 0.3935 0.3733 0.3840 0.3692 0.3131 0.2544 0.3081 0.6250 0.2698 0.1881

up-rate% 1.6355 0.4684 1.0561 1.0339 1.3867 2.3280 0.4452 1.0886 -0.7851 0.8094 0.6262 1.7241

336
w/o 0.4593 0.4838 0.4340 0.4354 0.4119 0.4045 0.3871 0.3915 0.3068 0.6585 0.2896 0.2117
w 0.4563 0.4805 0.4286 0.4344 0.4069 0.4036 0.3644 0.3158 0.3107 0.6659 0.2831 0.1999

up-rate% 0.6532 0.6821 1.2442 0.2297 1.2139 0.2225 5.8641 19.3359 -1.2712 -1.1238 2.2445 5.5739

720
w/o 0.4963 0.5164 0.5970 0.7150 0.4517 0.4659 0.4300 0.4292 0.3384 0.7015 0.3228 0.2591
w 0.4960 0.4962 0.6020 0.7310 0.4413 0.4579 0.4131 0.4044 0.3364 0.6894 0.3174 0.2547

up-rate% 0.0604 3.9117 -0.8375 -2.2378 2.3024 1.7171 3.9302 5.7782 0.5910 1.7249 1.6729 1.6982

Table 10: Detail Comparison of performance improvement by replacing parameters obtained by
RCL. w/o denotes no parameter replacement, w denotes parameter replacement, and up-rate repre-
sents the improvement rate.
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