
The Batch Complexity of Bandit Pure Exploration

Adrienne Tuynman
Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189-CRIStAL, F-59000 Lille, France

adrienne.tuynman@inria.fr

Rémy Degenne
Univ. Lille, Inria, CNRS, Centrale Lille, UMR 9189-CRIStAL, F-59000 Lille, France

remy.degenne@inria.fr

Abstract

In a fixed-confidence pure exploration problem in stochastic multi-armed bandits,
an algorithm iteratively samples arms and should stop as early as possible and
return the correct answer to a query about the arms distributions. We are interested
in batched methods, which change their sampling behaviour only a few times,
between batches of observations. We give an instance-dependent lower bound
on the number of batches used by any sample efficient algorithm for any pure
exploration task. We then give a general batched algorithm and prove upper bounds
on its expected sample complexity and batch complexity.

1 Introduction

A Multi Armed Bandit (MAB) is a model of a sequential interaction that was introduced in [Thompson,
1933] to create better medical trials. This framework has since been expanded to various fields, and
has seen applications to online advertising and recommendation systems. In a MAB, an algorithm
chooses at each time an arm among a finite number (it pulls it) and then observes a sample from a
probability distribution associated with the arm. The goal of the interaction will be to identify quickly
which arm has the distribution with highest mean.

By making use of past observed rewards to continuously update the way they sample, MAB al-
gorithms reach their objective faster than traditional fixed randomized trials. For applications like
online advertising, obtaining feedback can be quick, if for example the feedback is a click on an
advertisement. Adapting after almost each interaction is then feasible. However in applications like
clinical trials, the delay between giving a treatment to a patient and seeing the effect can be on the
order of months. It is not possible to use a fully sequential algorithm, which would take too long.
Moreover, adapting at each time step can have a high computational cost.

This motivates looking into batched algorithms: the algorithm pulls multiple arms within a single
batch, and can only observe the results at the end of the batch. An advantage is that all arms in a
batch can be pulled in parallel, reducing greatly the length of the test in applications with large delay.
Its lessened adaptivity also reduces the computational cost. Of course, being less adaptive than a
typical bandit method could lead to worse algorithms. The key question is then how few batches one
can use while keeping a performance comparable to a fully sequential algorithm.

1.1 Fixed Confidence Pure Exploration

We study K-armed bandit models, which we represent by a vector of real distributions ν = (νi)i∈[K]

with finite means, with the vector of means denoted by µ = (µi)i∈[K]. At each timestep t ∈ N,
an agent interacts with the bandit by choosing an arm it ∈ [K] to sample. It then observes Xt,it

18th European Workshop on Reinforcement Learning (EWRL 2025).

a realization of νit and proceeds to the next step. One common objective is regret minimization,
where the agent must maximize E[

∑
t Xt,it]. See [Bubeck et al., 2012, Lattimore and Szepesvári,

2020] for extensive surveys. We focus on another goal, pure exploration, in which the agent must
answer a question about ν, such as identifying the arm with the highest mean [Even-Dar et al., 2002,
Kaufmann et al., 2016]. In pure exploration problems, we have a set I of possible answers, and a
function µ 7→ i⋆(µ) ∈ I that depends on the means of the distributions and provides the unique
correct answer for that instance. For a given pure exploration problem and a vector of means µ, we
denote by Altµ the set of vectors of means µ′ such that i⋆(µ′) ̸= i⋆(µ). Essentially, Altµ is the set
of means that disagree with µ.

A pure exploration algorithm samples arms in a bandit interaction (following a sampling rule) until
a time at which it decides to stop (with a stopping rule). Once it stops, it returns an answer î ∈ I.
A good pure exploration algorithm should have low probability of error Pν {̂i ̸= i⋆(µ)} and stop
quickly (use few samples). When the number of samples is fixed and the objective is to minimize
the probability of error, one talks about fixed-budget pure exploration [Audibert et al., 2010]. We
consider instead the fixed confidence objective, in which the probability of error is fixed and the agent
aims to achieve it with the minimum number of samples. We focus on δ-correct algorithms. That is,
algorithms that satisfy Pν {̂i ̸= i⋆(µ)} ≤ δ [Garivier and Kaufmann, 2016].

We focus on bandit models where each arm i ∈ [K] has a sub-Gaussian distribution νi of constant
σ2. That is, for all λ ∈ R, Eνi

[eλ(X−µi)] ≤ eσ
2λ2/2. For example, both bounded and Gaussian

distributions are sub-Gaussian.

Finally, we study batched algorithms [Agarwal et al., 2017, Jin et al., 2019]. In practical settings, it
is not always possible to adapt at every single timestep. Therefore, we want the agent to only observe
results and take decisions a limited number of times. At the beginning of a batch, the agent decides
how many times to sample each arm i ∈ [K], then observes all the realizations of those pulls. It then
can proceed to the next batch. Crucially, the agent cannot change anything during a batch: it cannot
change its sampling decision and cannot stop a batch early. For δ-correct batched algorithms, for
each pure exploration problem, we want to control the sample complexity τδ (the number of samples
used), and the batch complexity Rδ (the number of batches used, which is the number of times the
results were observed and the sampling rule was updated).

In all pure exploration problems, the expectation of the stopping time of δ-correct strategies on an
instance ν is bounded from below as follows [Garivier and Kaufmann, 2016]. Let ΣK be the simplex,
KL the Kullback-Leibler divergence and kl the KL between Bernoulli distributions.

Eν [τδ] ≥ T̃ ⋆(µ)kl(δ, 1− δ) ≥ T̃ ⋆(µ) log(1/(2.4δ)) ,

in which (T̃ ⋆(µ))−1 = sup
w∈ΣK

inf
λ∈Altµ

K∑
i=1

wiKL(νi, λi) .

This result has been expanded to pure exploration problems with multiple correct answers by [Degenne
and Koolen, 2019] in the asymptotic regime δ → 0. This T̃ ⋆(µ) is the instance-dependent complexity
of instance µ in this problem. Our objective is to develop algorithms with a sample complexity
approaching T̃ ⋆(µ) log(1/δ) for all µ. As we are in the σ-subgaussian setting, T̃ ⋆(µ) ≤ T ⋆(µ)
where

(T ⋆(µ))−1 = sup
w∈∆K

inf
λ∈Altµ

∑
i

wi
(µi − λi)

2

2σ2

(by Donsker-Varadhan duality, see for example Lemma 2 of [Wang, 2021]) with equality for Gaus-
sians with variance σ2. Our goal is to obtain algorithms that have sample complexity as close to
T ⋆(µ) log(1/δ) as possible while using few batches.

We will prove results for general identification problems, and specialize them to three particular cases.
Let σ be a permutation such that µσ(1) ≥ . . . ≥ µσ(K).

• In Best Arm Identification (BAI), I = [K] and, for some instance for which µσ(1) > µσ(2),
the correct answer is i⋆(µ) = σ(1) the best arm.

• In Top-k, I = Pk(K) the set of all subsets of [K] of size k, and the correct answer for
some instance for which µσ(k) > µσ(k+1) is i⋆(µ) = {σ(1), σ(2), . . . , σ(k)} the set of the
best k arms. Note that top-1 is BAI.

2

• In the Thresholding Bandit Problem (TBP) with threshold τ [Locatelli et al., 2016], I is
the set of all subsets of [K], and the correct answer for some instance for which ∀i, µi ̸= τ
is i⋆ = {i : µi > τ} the set of all arms that have their mean above the threshold.

1.2 Related Work

The problem of batched bandit algorithms has been studied in fixed-confidence BAI and Top-k.
Some of the works cited below consider a task with multiple agents that limit the number of rounds
in which they communicate, but their methods also give batched bandit algorithms. Hillel et al.
[2013] derived an algorithm for ε-BAI (the algorithm needs to return an arm with mean within
ε of the best) which progressively eliminates arms. They show high probability bounds on the
batch and sample complexities: with probability 1− δ, it uses less than log(1/ε) batches and uses
O
(∑

i(∆
ε
i)

−2 log
(
K
δ log(∆ε

i)
−1
))

samples with ∆ε
i = max{µ⋆ − µi, ε}. Agarwal et al. [2017]

consider δ-correct algorithms for BAI that use a given number of batches, and give a worst-case upper
bound on the number of samples used by their algorithm (also elimination based), but their method
requires the knowledge of a lower bound on the gaps of the arms.

Jin et al. [2019] and Karpov et al. [2020] designed δ-correct algorithms for the Top-k problem, and
give each bounds with high probability on the batch and sample complexities. [Jin et al., 2023] is the
work which is closest to our approach when it comes to algorithms. They study the BAI setting and
prove bounds on the expected batch and sample complexity. Compared to bounds with probability
1− δ, that requires that they control the complexities also in the event of probability δ. Their method
for finite δ is also elimination based, but they additionally propose an algorithm with guarantees as
δ → 0 that is inspired by the Track-and-Stop BAI algorithm [Garivier and Kaufmann, 2016]. Finally,
Lu et al. [2019] build a batch-based algorithm for heavy-tailed distributions in a Track-and-Stop
fashion, but with the goal of minimizing computational complexity, and thus do not aim to control
the batch complexity itself.

All those works cover Top-k or its special case BAI. However, many other pure exploration problems
have been studied in the fully sequential setting, like thresholding bandits [Locatelli et al., 2016]
or the problem of detecting if any arm has mean larger than a threshold [Kaufmann et al., 2018].
We seek to analyze general pure exploration problems and answer the following questions: what is
the minimal expected batch sample complexity needed to get an expected sample complexity close
to what is achievable by fully sequential algorithms? Can we design a general pure exploration
algorithm with near-optimal sample complexity and that reaches that minimal batch complexity?

1.3 Contributions

We show a link between sample and batch complexities. We build in Section 2 a general method
for computing batch complexities lower bounds for δ-correct pure exploration algorithms. We
demonstrate how to apply that method to Top-k (including BAI) and thresholding bandits. The lower
bounds we obtain are instance dependent: contrary to previous work, we don’t merely state that there
exist an instance on which the algorithm requires some number of batches, but we give a lower bound
for the batch complexity of each instance, function of its complexity T ⋆.

In Section 3, we construct a general batched algorithm for pure exploration problems, taking inspira-
tion from Track-and-Stop [Garivier and Kaufmann, 2016]. The batch complexity of that algorithm is
close to the lower bound under mild conditions that are satisfied on Top-k and thresholding bandits.
Moreover, its sample complexity is close to optimal in the high confidence regime (small error
probability δ).

2 Lower Bound on the Round Complexity

It seems obvious that using more batches will make it possible to use less samples, as the algorithm
can more quickly adapt to its observations. What then is the precise relation between the sample
complexity and the number of batches?

Tao et al. [2019] focus on the problem of collaborative learning with limited interaction, in which
multiple agents take samples in an environment and observe their own rewards, but must minimize
the number of times they communicate their rewards with the other agents. They manage to find

3

a link, in some specific 2-armed instances, between how much faster an algorithm can get when
communication is allowed, and the number of times the algorithm communicates. They do so by
constructing a sequence of gradually more difficult instances, each requiring one more batch than
the previous one. Generalizing this idea lets us reach the following result, for any pure-exploration
problem.

Lemma 2.1. Suppose that a δ-correct algorithm satisfies Pµ (τδ > γT ⋆(µ) ln(1/δ)) ≤ c for some
γ, c > 0 on any Gaussian instance µ with variance σ2 with T ⋆(µ) ∈ (Tmin, Tmax). Let (µn)0≤n≤N

be a sequence of such Gaussian instances with T ⋆(µn) = T ⋆(µ0)ζ−n ∈ (Tmin, Tmax) for some
ζ ∈ (0, 1). Then

PµN (Rδ > N) ≥ 1−N(2δ + c)−

√
γ ln(1/δ)

2(ζ−1 − 1)
SN

with SN =
∑N−1

n=0

[
1 +

√
T⋆(µ0)

ζn supw∈ΣK

∑
i∈[K] wi

(µn+1
i −µn

i)
2

2

]
In order to get a lower bound on the number of batches, it remains to construct the right instance
sequences for each problem. It should start with an easy instance µ0, and end with µN = µ the
instance whose complexity we want to study, with each succeeding instance being quantifiably harder
than the previous one. See an illustration in Figure 1.

µ2

µ1

µ1 = µ2

µn

µn+1

µn+2

supw∈∆K

∑
i∈[K] wi

(µn+1
i −µn

i)
2

2σ2

(T ⋆(µn))−1

Figure 1: Illustration of a sequence of instances

An ideal sequence would minimize the sum SN , thus allowing us to get to a larger N . As getting
such a minimizing sequence is difficult, we use simpler sequences µn = y + xn(µ0 − y) with y the
constant vector (y, y, . . . , y) with y ∈ R, for some starting mean vector µ0. In order to be able to do
so, an important ingredient is the following condition:

Assumption 2.2. For any mean vector µ, there exists y ∈ R such that for all x ∈ (0, 1] and
µ′ = xµ+ (1− x)y (where y is the constant vector (y, y, . . . , y)), (T ⋆(µ′))−1 = x2(T ⋆(µ))−1.

This assumption essentially states that the complexity of the instance scales quadratically as the
instance is linearly scaled in that manner, with all arm means concentrating around some value y.
This is useful for constructing sequences of instances and analyzing how the complexity evolves.

Top-k and thresholding bandits both satisfy that assumption. For top-k, concentrating arm means
around any value makes arm means get closer, makes gaps shrink linearly, and thus makes the
complexity grow quadratically. For thresholding bandits, concentrating arm means around the
threshold value has the same effect. With that condition, it is possible to simplify the bound of
Lemma 2.1. We give a general result for the exploration problems satisfying this condition in
Appendix B. We then apply this result to Top-k and TBP.

Theorem 2.3. For Top-k and TBP, for a δ-correct algorithm on Gaussian instances with variance
σ2 of complexity T ⋆ ∈ (Tmin, Tmax), we have for any such Gaussian instance µ of complexity
T ⋆(µ) ∈ (Tmin, Tmax) that

Eµ[Rδ] ≥ min

{
ln T⋆(µ)

Tmin

2 ln

((
ln T⋆(µ)

Tmin

)2
max{e, Cδ}

) ,
1

6
ln

T ⋆(µ)

Tmin
,
1

6δ

}

4

with Cδ = 1 + 4γ ln
(
1
δ

)
ln T⋆(µ)

Tmin

(
1 +

√
T⋆(µ)∆2

σ2

)2

, γ = supν:T⋆(µ)∈(Tmin,Tmax)
Eν [τδ]

ln(1/δ)T⋆(µ)

and where ∆ = maxi µi−mini µi

2 in the Top-k setting and ∆ = maxi |µi − τ | in thresholding bandits.

We give all details of the proofs in Appendix B. For δ small enough, the batch complexity is of order

Ω

 ln T⋆(µ)
Tmin

ln
(
ln T⋆(µ)

Tmin

)
+ ln

(
γ ln(δ−1)K

maxi ∆2
i

mini ∆2
i

)
 .

This is the first lower bound on batch complexity as a function of the sample complexity for all pure
exploration problem satisfying Assumption 2.2. Our algorithm will have a batch complexity of order
ln T⋆(µ)

Tmin
, almost matching the lower bound.

For collaborative bandits (where periods without communication are the analog of batches), Tao et al.
[2019] have worked on algorithms Ab satisfying EAb

[τδ] = O (infA EA[τδ]), where the infimum
is over fully sequential algorithms. Their results can be adapted to the batched setting to show that
there are two-armed instances on which those algorithms must satisfy E[Rδ] = Ω

(
ln∆−1

2

ln(ln∆−1
2)

)
. Our

result is valid for more pure exploration problems than just BAI; it is a bound on general K-armed
Gaussian instances rather than specific two-armed instances; and gives instance-dependent bounds
instead of merely the existence of an unspecified hard instance.

Theorem 2.3 does not contradict the guarantees of Tri-BBAI [Jin et al., 2023]. Their algorithm always
uses 3 batches, but the sample complexity is only controlled in the regime δ → 0, in which our lower
bound goes to 0. Since Eν [τδ] is not controlled otherwise, γ can be large, making our lower bound
small and consistent with 3 batches.

Necessity of Tmin. The bound depends on Tmin, which is the minimal complexity for which the
sample complexity of the algorithm is bounded by γT ⋆(µ) log(1/δ). Since no algorithm uses less
than 1 sample, every algorithm has such a Tmin greater than (log(1/δ))−1, and the lower bound is
then of order log(T ⋆(µ) log(1/δ)). Tmin is a tradeoff between prior knowledge and batch complexity.
In the extreme situation in which T ⋆(µ) is known and the algorithm is δ-correct only on instances
of that complexity, the lower bound is 0. Our algorithm will use at most 5 batches in that case: any
lower bound has to be a small constant.

3 A General Algorithm

We present an algorithm for pure exploration in bandits with upper bounds on both its batch and
sample complexities. We take inspiration from the Track-and-Stop method [Garivier and Kaufmann,
2016], which is fully sequential (it does not use batches) and has asymptotically optimal sample
complexity. The principle of Track-and-Stop for Gaussians is to try to sample according to w⋆(µ) =
argmaxw∈∆K

infλ∈Altµ

∑
i wi(µi − λi)

2/(2σ2), the vector of ideal sampling proportions at µ.
At time t, having sampled arm i approximately w⋆

i t times leads to an algorithm that has minimal
asymptotic sample complexity. Of course w⋆(µ) is unknown: Track-and-Stop estimates µ by its
empirical mean µ̂, then approximates w⋆(µ) by w⋆(µ̂) and uses those proportions. Some amount of
uniform exploration is added to ensure convergence of the estimates.

We introduce a batched algorithm that first samples uniformly until it has estimated the sampling
proportions and complexity well enough, then uses a last phase in which it samples like Track-and-
Stop.

3.1 Stopping Rule

To check whether we can stop, a commonly used method in parametric pure exploration is the
Generalized Likelihood Ratio (GLR) test [Garivier and Kaufmann, 2016]. Since we consider the
non-parametric class of sub-Gaussian distributions, we use a Gaussian version of that test. The
stopping rule of the algorithm is to stop at the end of a phase if

inf
λ∈Altµ̂t

∑
i

N t
i

(µ̂t
i − λi)

2

2σ2
> β(t, δ) . (1)

5

Lemma 3.1 ([Garivier and Kaufmann, 2016]). Any algorithm using stopping rule (1) with a threshold
β(t, δ) satisfying P

(
∃t,
∑K

i=1 N
t
i
(µ̂t

i−µi)
2

2σ2 > β(t, δ)
)
≤ δ and returning i⋆(µ̂t) is δ-correct.

We provide below a threshold that works for sub-Gaussian distributions in any pure exploration
problem. For particular problems like BAI it should be possible to derive improved thresholds, as
was done in parametric cases by Kaufmann and Koolen [2021]. Our threshold is derived using the
method of mixtures, as in that paper and other bandit articles [Abbasi-Yadkori et al., 2011]. It uses
the techniques of [Degenne, 2019] to fine-tune the constants. While the BAI literature contains many
similar thresholds for parametric settings, we could not find that result for sub-Gaussian distributions.

Let W−1 be the negative branch of the Lambert W function and let W : (1,+∞) → R be the
function defined by W (x) = −W−1(−e−x). It satisfies x+ lnx ≤W (x) ≤ x+ lnx+ 1/2 ≤ 2x.
Lemma 3.2. The following threshold satisfies the condition of Lemma 3.1 for σ2-sub-Gaussian
distributions: β(t, δ) = K

2 W
(

2
K ln 1

δ + 4 ln
(
ln et

K

)
+ 2 ln eπ2

6

)
See Appendix C for the proof. Roughly, ignoring additive constants, β(t, δ) ≈ ln(1/δ) + 2K ln ln t .
The linear dependence in K may be unavoidable in general (for the problem of telling if the means
belong to the unit ball, if µ is the center) but could be improved in problems like BAI. The threshold
for exponential families of [Kaufmann and Koolen, 2021] depends logarithmically on the number of
arms.

3.2 Known Confidence Set

In order to design an algorithm, we first ask the following questions: given enough information, could
we return a correct answer within one batch? How would we sample and what would be the sample
complexity?

Suppose that we know a set B which likely contains µ and will likely contain the empirical mean
vector µ̂t for any amount of sampling we perform. Since we will be using only one batch, we have
to select the number of samples for each arm in advance. We want that number of samples to be
sufficient to enable the stopping rule, for any µ′ ∈ B. Our solution will be based on two worst-case
definitions.
Definition 3.3. For any B a set of instances, define (with 0−1 = +∞)

w⋆(B) = argmax
w∈∆K

inf
ν∈B

inf
λ∈Altν

∑
i

wi
(νi − λi)

2

2σ2
, T

⋆
(B) =

(
max
w∈∆K

inf
ν∈B

inf
λ∈Altν

∑
i

wi
(νi − λi)

2

2σ2

)−1

Note that T
⋆
(B) ≥ maxµ∈B T ⋆(µ) , but those two quantities may not be equal. To see this, imagine

an instance ν such that wi(µ) ̸= wj(µ), and instance ν′ such that arms i and j are switched. Then,
T ⋆(µ) = T ⋆(µ′), but it is strictly more difficult to sample so that both instances are solved at the
same time, so T

⋆
({µ,µ′}) > T ⋆(µ).

Lemma 3.4. If T
⋆
(B) < +∞, then if after sampling each arm Ni ≥ γw⋆

i (B)T
⋆
(B) times the

empirical estimate µ̂ is in B, then infλ∈Altµ̂

∑
i Nid(µ̂i, λi) ≥ γ .

This entails that picking γ ≥ β(t, δ) allows us to meet the stopping condition after that one batch, if
indeed µ̂ ∈ B. The number of samples used in the batch would be T

⋆
(B)γ ≥ T ⋆(µ)β(t, δ). A good

set B is therefore a confidence zone for µ̂, and additionally has a small T
⋆
(B)

T⋆(µ̂) ratio to not oversample.

3.3 The Algorithm

Our algorithm is shown in pseudo-code in Algorithm 1. It works in phases. Each phase contains
at most two batches, although the second batch is rarely done. We define a “phase complexity”
Tr = 2rT0 for T0 a parameter of the algorithm. In each phase r, in a first batch we start by sampling
arms uniformly until the number of samples for each arm is at least 2rl1,r, where l1,r will be set later.

Then we use the empirical mean at that point µ̃r to find a set Br that likely contains µ. B̂r is defined
as a ball in infinity norm centered at µ̃r and of radius εr which we will choose later. We write
B∞(µ̃r, εr) := {µ′ | ∥µ̃r − µ′∥ ≤ εr} and set B̂r = B∞(µ̃r, εr).

6

We then check whether the worst-case complexity T
⋆
(Br) exceeds the phase complexity Tr. If it

does, we skip to the next phase: we need more exploration to get a tighter set. If it does not, we enter
the second batch of the phase and sample according to γrw

⋆(Br)T
⋆
(Br). γr is chosen large enough

such that under a typical event, the algorithm then stops. The expected number of batches will be the
number of phases required to reach the right complexity range plus a small constant.

Algorithm 1 Phased Explore then Track (PET)

1: Input: Starting complexity T0 ≥ 1
2: r ← 0, t← 0, ∀i Ni ← 0
3: while not stop do
4: for each arm i ∈ [K] do
5: while Ni < 2rl1,r do
6: Pull arm i
7: Ni ← Ni + 1; t← t+ 1
8: end while
9: end for

10: Compute the empirical mean vector µ̃r.
11: B̂r ← {µ′ | ∥µ̃r − µ′∥ ≤ εr}

w⋆ ← argmax
w∈∆K

inf
ν∈B̂r

inf
λ∈Altν

∑
i

wi
(νi − λi)

2

2σ2
,

T
⋆
(B̂r)

−1 ← inf
ν∈B̂r

inf
λ∈Altν

∑
i

w⋆
i

(νi − λi)
2

2σ2
.

12: if T ⋆
(B̂r) ≤ Tr then

13: for each arm i ∈ [K] do
14: Pull arm i ⌈γrw⋆

i T
⋆⌉ times;

15: Ni ← Ni + ⌈γrw⋆
i T

⋆⌉; t← t+ ⌈γrw⋆
i T

⋆⌉
16: end for
17: Compute the empirical mean vector µ̂r

18: end if
19: if infλ∈Altµ̂r

∑
i Ni

(µ̂r
i−λi)

2

2σ2 > β(t, δ) then
20: i⋆ ← argmaxi µ̂

r
i

21: stop← true
22: end if
23: r ← r + 1
24: end while

There are several quantities appearing in the algorithm, which we now specify. Ni is the number of
samples observed for arm i and t =

∑K
i=1 Ni. β(t, δ) is the threshold of Lemma 3.2. The uniform

exploration amount is parametrized by l1,r = 32T0 ln(2
√
2KTr). The confidence region width

is εr =
√

2σ2

2rl1,r
ln 2K

pr
with pr = T−2

r+1 . Finally, γr is the solution to γ = β(t̄r, δ), in which

t̄r = K2rl1,r + γTr. t̄r is an upper bound for the sample complexity until the end of phase r for any
r. It is obtained by considering that in the worst case, both batches are entered at each phase up to r.

Theorem 3.5. Algorithm 1 is δ-correct.

This is a consequence of Lemma 3.1 and 3.2.

In order to describe the number of batches and of samples used by the algorithm, we introduce a
“good” event, under which the algorithm behaves as expected.

Definition 3.6. Let Er be the event that in phase r, µ̂r and µ belong to B̂r.

That event will happen with high probability and when it does, we can bound the batch and sample
complexity.

Lemma 3.7. For any pure exploration problem, PET (Algorithm 1) is such that at phase r, if Er
holds then either T

⋆
(B̂r) > Tr and the second batch is not entered, or the algorithm stops.

7

Let R∗ := min{r | ∀r′ ≥ r, Er′ =⇒ T
⋆
(B̂r′) ≤ Tr′} be the first phase after which when the good

event happens, the estimated worst-case complexity is small enough. The batch complexity Rδ and
sample complexity τδ of PET satisfy, with ⌈x⌉+ = max{0, ⌈x⌉},

Rδ ≤ R∗ +max

{
0, R∗ −

⌈
log2

T ⋆(µ)

T0

⌉
+

}
+ 1 + 2

+∞∑
r=1

I(Ecr) , τδ ≤ t̄R∗ +

+∞∑
r=R∗

I(Ecr)t̄r+1 .

Proof in Appendix D.3. The theorem gives upper bounds on the batch and sample complexities that
depend on the random variable R∗. We then need to control R∗, which requires an understanding of
how T

⋆
(B̂r) changes as we explore.

3.4 Batch and Sample Complexities

Our algorithm explores uniformly until the worst-case complexity T
⋆
(B̂r) is close to T ⋆(µ). For

that to work, the distributions of the arms and the problem geometry need to be such that we can
indeed estimate the complexity. To be able to write a bound on the sample and batch complexities, we
further need to quantify the speed of estimation. We introduce an assumption to that effect. We will
check that this assumption is satisfied on various tasks like best arm identification and thresholding
bandits.
Assumption 3.8. There exists a function b : RK 7→ R+ such that for any µ, for all ε ≤ b(µ) and
any µ′ ∈ B∞(µ, ε) := {ν ∈ RK | ∥ν − µ∥∞ ≤ ε}, lnT ⋆

(B∞(µ, ε))− lnT ⋆(µ′) ≤ ε/b(µ) .

Assumption 3.8 allows us to know how much uniform exploration is enough to relate the worst
case complexity T

⋆
(B∞(µ, ε)) over a ball and T ⋆(µ′) for µ′ in that ball. We introduce another

assumption, which is simpler to check on many problems.

Assumption 3.9. For all µ, for all ε ≥ 0, T
⋆
(B∞(µ, ε)) = supµ′∈B∞(µ,ε) T

⋆(µ′).

We show with Lemma D.4 in Appendix D.5 that if Assumption 3.9 is satisfied, then Assumption 3.8
is satisfied with b(µ) =

√
σ2/(8T ⋆(µ)).

We can now present the guarantees of our algorithm, for any pure exploration problem for which
Assumption 3.8 holds.

Theorem 3.10. Suppose that Assumption 3.8 is satisfied and let T ⋆
b (µ) := max

{
σ2

b(µ)2 , 2eT
⋆(µ)

}
.

Then PET (Algorithm 1) has expected batch and sample complexities which satisfy

E [Rδ] ≤ max

{
log2

T ⋆
b (µ)

T0
+ log2

T ⋆
b (µ)

T ⋆(µ)
, 0

}
+ 2 ,

E [τδ] ≤ 4 ln

(
1

δ

)
(max{T0, T

⋆
b (µ)}+ T−1

0) + 20K(lnK + 4)(max{T0, T
⋆
b (µ)}+ T−1

0)

+ 48K
(
max{T0, T

⋆
b (µ)} lnmax{T0, T

⋆
b (µ)}+ T−1

0 ln(4T0)
)
.

If Assumption 3.9 is satisfied, we get from Lemma D.4 that T ⋆
b (µ) ≤ 8T ⋆(µ). The batch complexity

of the algorithm is then bounded by log2
T⋆(µ)
T0

+ 5. This should be compared to the ln T⋆(µ)
Tmin

term
of the lower bound, where Tmin is the smallest complexity on which the algorithm is both δ-correct
and has expected sample complexity close to T ⋆(µ) log(1/δ). Since PET uses T0 for the first guess
of the sample complexity, it cannot match the sample complexity of an instance µ with T ⋆(µ) ≤ T0,
hence T0 is the Tmin of our algorithm. Hence, PET matches the ln T⋆(µ)

Tmin
component of the batch

complexity lower bound. We also remark that if we know exactly T ⋆(µ) in advance, then we can use
it as T0 and the algorithm runs in at most 5 batches.

On the sample complexity side, the δ-dependent term is proportional to T ⋆(µ) log(1/δ), which is
the right dependence in δ, up to the multiplicative constant. The optimal asymptotic complexity as
δ → 0 is exactly T ⋆(µ) log(1/δ), with factor 1. Our constant could be improved: we made the bound
simple at the expanse of a few larger constants. For example the factor 4 in 4 ln

(
1
δ

)
(T ⋆

b (µ) + T−1
0)

is the result of using the coarse inequality x+ log x ≤ 2x twice. In the definition of T ⋆
b (µ), the 2

8

in 2eT ⋆(µ) is due to the choice of doubling Tr at each phase: choosing a multiplication by (1 + ε)
instead of 2 would reduce that. The e factor, as well as the 8 in b(µ), could also be reduced to 1 + ε
at the cost of constant terms elsewhere.

The dominant term of the sample complexity as function of T ⋆(µ) is 48KT ⋆(µ) lnT ⋆(µ). Jamieson
et al. [2014] have shown that for two arms the optimal dependence is O(T ⋆(µ) ln lnT ⋆(µ)), which
means that our algorithm loses a factor K. This is due to the uniform exploration: we sample until
every arm’s mean is estimated within

√
T ⋆(µ)/σ2. We conjecture that a more adaptive exploration

could improve that dependence. It is possible in BAI, as demonstrated by Jin et al. [2023]. How to do
it for any pure exploration problem is an open question.

3.5 Best Arm Identification and Thresholding Bandits

We have provided a general theorem about Algorithm 1 on a generic pure exploration task with
sub-Gaussian distributions. However, that theorem requires that Assumption 3.8 be satisfied. We now
show that Assumption 3.8 holds on the Top-k task (including BAI) and on the thresholding bandit
problem, by showing that we have Assumption 3.9.
Lemma 3.11. In Top-k, including best arm identification, as well as for thresholding bandits,
Assumption 3.9 holds.

The proof (in Appendix D.6) hinges on the fact that, whenever it contains only one answer, B∞(µ, ε)
contains one instance that is more difficult than all the others, in the sense that sampling optimally
to decide the answer of that instance also solves all other instances in the set. This is a stronger
property than the equality of the lemma. From the existence of that hardest instance, we also get a
computationally easy way to compute w⋆(B∞(µ, ε)) and T

⋆
(B∞(µ, ε)): first compute b, and then

compute w⋆(b) and T ⋆(b).

µ2

µ1

µ1 = µ2B∞(µ, ε)

µ

b

towards more difficulty

Figure 2: b satisfying T
⋆
(B∞(µ, ε)) = T ⋆(b)

We display in Figure 2 a representation of what happens in two-armed BAI. As long as µ1 > µ2,
bringing µ1 down and µ2 up can only make the problem harder. If ε is small enough that all the
instances in B∞(µ, ε) have the same answer, then the instance on the corner of B∞(µ, ε) closest to
the line µ1 = µ2 is strictly more difficult than all the others. That means that sampling enough to
solve it is enough to solve all the other instances.

4 Perspectives

We proved instance-dependent lower bounds for the batch complexity of any δ-correct pure explo-
ration algorithm. These lower bounds get larger as the sample complexity of the algorithm decreases.
We introduced the Phased Explore then Track algorithm, for which we proved an upper bound for the
sample complexity close to the lower bound for fully adaptive methods, as well as an upper bound
for the batch complexity that is close to our lower bound.

The main open question raised by our work is how to explore in a better way than uniformly for a
general pure exploration problem. The goal of the exploration is to find a set B̂r such that the worst
case complexity T

⋆
(B̂r) is close to T ⋆(µ), which means estimating both T ⋆(µ) and w⋆(µ). Uniform

exploration leads to a close to optimal batch complexity and to a sample complexity which has a good
dependence in log(1/δ). However, it comes at the cost of KT ⋆(µ) samples used to explore every
arm, which should ideally be around T ⋆(µ) instead. For BAI and Top-k, the elimination strategies

9

of [Hillel et al., 2013, Jin et al., 2023] achieve that improvement, but the elimination criterion uses
the particular link between the gaps and T ⋆ in Top-k. We would need to find a way to extend the
elimination approach to other problems, for which there might not even be an obvious notion of
gaps.

Acknowledgments

The authors acknowledge the funding of the French National Research Agency under the project
FATE (ANR22-CE23-0016-01) and the PEPR IA FOUNDRY project (ANR-23-PEIA-0003). The
authors are members of the Inria team Scool.

References
Yasin Abbasi-Yadkori, Dávid Pál, and Csaba Szepesvári. Improved algorithms for linear stochastic

bandits. Advances in neural information processing systems, 24, 2011.

Arpit Agarwal, Shivani Agarwal, Sepehr Assadi, and Sanjeev Khanna. Learning with Limited Rounds
of Adaptivity: Coin Tossing, Multi-Armed Bandits, and Ranking from Pairwise Comparisons. In
Proceedings of the 2017 Conference on Learning Theory, pages 39–75. PMLR, June 2017.

Jean-Yves Audibert, Sébastien Bubeck, and Remi Munos. Best Arm Identification in Multi-Armed
Bandits. In COLT 2010 - The 23rd Conference on Learning Theory, pages 41–53, November 2010.

Sébastien Bubeck, Nicolo Cesa-Bianchi, et al. Regret analysis of stochastic and nonstochastic
multi-armed bandit problems. Foundations and Trends® in Machine Learning, 5(1):1–122, 2012.

Rémy Degenne. Impact of Structure on the Design and Analysis of Bandit Algorithms. PhD thesis,
Université Paris-Diderot, 2019.

Rémy Degenne and Wouter M Koolen. Pure Exploration with Multiple Correct Answers. In Advances
in Neural Information Processing Systems 32 (NeurIPS 2019), 2019.

Rémy Degenne, Wouter M. Koolen, and Pierre Ménard. Non-Asymptotic Pure Exploration by
Solving Games. In 33rd Conference on Neural Information Processing Systems (NeurIPS 2019),
June 2019.

Eyal Even-Dar, Shie Mannor, and Yishay Mansour. PAC Bounds for Multi-armed Bandit and Markov
Decision Processes. In Jyrki Kivinen and Robert H. Sloan, editors, Computational Learning
Theory, pages 255–270, Berlin, Heidelberg, 2002. Springer. ISBN 978-3-540-45435-9. doi:
10.1007/3-540-45435-7_18.

Aurelien Garivier and Emilie Kaufmann. Optimal Best Arm Identification with Fixed Confidence. In
Conference on Learning Theory (COLT), 2016.

Eshcar Hillel, Zohar S. Karnin, Tomer Koren, R. Lempel, and O. Somekh. Distributed Exploration
in Multi-Armed Bandits. In 26th International Conference on Neural Information Processing
Systems, November 2013.

Kevin Jamieson, Matthew Malloy, Robert Nowak, and Sébastien Bubeck. Lil’ UCB : An Optimal
Exploration Algorithm for Multi-Armed Bandits. In Proceedings of The 27th Conference on
Learning Theory, pages 423–439. PMLR, May 2014.

Tianyuan Jin, Jieming Shi, Xiaokui Xiao, and Enhong Chen. Efficient Pure Exploration in Adaptive
Round model. In 33rd Conference on Neural Information Processing Systems (NeurIPS 2019),
Vancouver, Canada, 2019.

Tianyuan Jin, Yu Yang, Jing Tang, Xiaokui Xiao, and Pan Xu. Optimal Batched Best Arm Identifica-
tion, October 2023.

Nikolai Karpov, Qin Zhang, and Yuan Zhou. Collaborative Top Distribution Identifications with
Limited Interaction. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS), pages 160–171, Durham, NC, USA, November 2020. IEEE. ISBN 978-1-72819-621-3.
doi: 10.1109/FOCS46700.2020.00024.

10

Emilie Kaufmann and Wouter M. Koolen. Mixture martingales revisited with applications to
sequential tests and confidence intervals. Journal of Machine Learning Research, 22(246):1–44,
2021.

Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On the complexity of best-arm identification
in multi-armed bandit models. The Journal of Machine Learning Research, 17(1):1–42, 2016.

Emilie Kaufmann, Wouter M Koolen, and Aurélien Garivier. Sequential test for the lowest mean:
From Thompson to Murphy sampling. Advances in Neural Information Processing Systems, 31,
2018.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms. Cambridge University Press, 2020.

Andrea Locatelli, Maurilio Gutzeit, and Alexandra Carpentier. An optimal algorithm for the Thresh-
olding Bandit Problem. In 33rd International Conference on Machine Learning (ICML 2016),
2016.

Shiyin Lu, Guanghui Wang, Yao Hu, and Lijun Zhang. Optimal Algorithms for Lipschitz Bandits
with Heavy-tailed Rewards. In Proceedings of the 36th International Conference on Machine
Learning, 2019.

Chao Tao, Qin Zhang, and Yuan Zhou. Collaborative Learning with Limited Interaction: Tight
Bounds for Distributed Exploration in Multi-Armed Bandits. In Symposium on Foundations of
Computer Science (FOCS). IEEE, 2019.

William R. Thompson. On the Likelihood that One Unknown Probability Exceeds Another in View
of the Evidence of Two Samples. Biometrika, 25(3/4):285–294, 1933. ISSN 0006-3444. doi:
10.2307/2332286.

Yan Wang. Sub-gaussian error bounds for hypothesis testing. In 2021 IEEE International Symposium
on Information Theory (ISIT), pages 3050–3055. IEEE, 2021.

A Experiments on the BAI setting

(a) Number of samples before
stopping in a random BAI instance,
logarithmic scale

(b) Number of rounds before stop-
ping in a random BAI instance

(c) Number of samples before
stopping in the min. threshold set-
ting, hard instance

Figure 3: Experimental results, δ = 0.05, N = 1000 runs

Our algorithm PET is near-optimal in round and sample complexities for many pure exploration
problems, and has theoretical guarantees for any pure exploration problem. To ascertain its practical
performances, we compare it to baselines and state of the art algorithms for best arm identification
and thresholding bandits.

Each experiment is repeated over 1000 runs. All reward distributions are Gaussian with variance 1
and we use the confidence level δ = 0.05, which is chosen for its relevance to statistical practice. We
compare

• Round Robin (or uniform sampling), where the stopping rule is checked only at timesteps
(900× 2r)r≥1;

• Track-and-Stop (TaS) [Garivier and Kaufmann, 2016], where the empirical value of w is
updated only at timesteps (900× 2r)r, and the stopping rule is only checked at those times;

11

• Our algorithm PET, with T0 = 1;
• Opt-BBAI [Jin et al., 2023] with α = 1.05 and the quantities described in their Theorem

4.2.

The initial batch sizes for TaS and Round Robin were chosen to approximate the initial batch size of
our algorithm, to not disadvantage them in terms of round complexity. We modified TaS in order
to turn it into a batch algorithm. Note that there is no formal guarantee for the batch or sample
complexity of that modification of TaS, but we use it as a sensible baseline.

For the BAI experiment, we run each algorithm on 10-arm instances where the best arm has mean 1,
and each other arm i has mean uniformly sampled between 0.6 and 0.9. See Figure 3(a) for the box
plots of the sample complexities. The mean is indicated by a black cross. While both our algorithm
and Opt-BBAI use similarly few batches, PET outperforms Opt-BBAI for the sample complexity.
That algorithm is asymptotically optimal as δ → 0 but it uses batches that seem to be too large for
moderate values of δ like the 0.05 we use.

While the batch modification of TaS might seem to be a good alternative for the BAI experiment,
there are instances of the thresholding setting where it performs sub-optimally. That effect was first
observed in [Degenne et al., 2019] for the fully online TaS and reflects that, contrary to our results, the
sample complexity guarantees of TaS are only asymptotic. We run the algorithms on a thresholding
bandit with threshold 0.6 and two arms with means 0.5 and 0.6 and observe that batched TaS has
high average sample complexity (see Figure 3(c); the mean is the black cross), while PET does not.

B Proofs of the lower bounds

B.1 Preliminary lemmas

For the sake of completeness, we start by restating and proving some results from [Tao et al., 2019]
in slightly more general language.
Definition B.1. For some integers r and n, define τ rδ the number of samples before the end of round
r.
Lemma B.2 (Generalization of Lemma 27 of [Tao et al., 2019]). For an algorithm, two instances ν
and ν′ and r ∈ N,
Pν′{Rδ ≥ r + 1, τ r+1

δ ≤ n+m} ≥ Pν{Rδ ≥ r + 1, τ rδ ≤ m} − Pν{τδ > n} − ∥Dm
ν −Dm

ν′∥TV

where Dm
ν is the distribution of rewards the algorithm got from ν over m steps.

Proof. Fix a deterministic algorithm.

First of all,
(Rδ ≥ r + 1, τ rδ ≤ m, τ r+1

δ − τ rδ < n) ⊆ (Rδ ≥ r + 1, τ r+1
δ ≤ n+m) (2)

And, since (Rδ ≥ r + 1, τ rδ ≤ m, τ r+1
δ − τ rδ < n) is determined by the first m rewards (at the end

of round r using less than m samples, the algorithm must choose the length of round r + 1),
Pν′{Rδ ≥ r+1, τ rδ ≤ m, τ r+1

δ −τ rδ < n} ≥ Pν{Rδ ≥ r+1, τ rδ ≤ m, τ r+1
δ −τ rδ < n}−∥Dm

ν −Dm
ν′∥TV

(3)

On the other hand,
(Rδ ≥ r + 1, τ rδ ≤ m) \ (Rδ ≥ r + 1, τ rδ ≤ m, τ r+1

δ − τ rδ < n) = (Rδ ≥ r + 1, τ rδ ≤ m, τ r+1
δ − τ rδ ≥ n)

⊆ (τδ > n)

hence
Pν{Rδ ≥ r + 1, τ rδ ≤ m, τ r+1

δ − τ rδ < n} ≥ Pν{Rδ ≥ r + 1, τ rδ ≤ m} − Pν{τδ > n} (4)

Hence, using Equations (2), (3) then (4),
Pν′{Rδ ≥ r + 1, τ r+1

δ ≤ n+m} ≥ Pν′{Rδ ≥ r + 1, τ rδ ≤ m, τ r+1
δ − τ rδ < n}

≥ Pν{Rδ ≥ r + 1, τ rδ ≤ m, τ r+1
δ − τ rδ < n} − ∥Dm

ν −Dm
ν′∥TV

≥ Pν{Rδ ≥ r + 1, τ rδ ≤ m} − Pν{τδ > n} − ∥Dm
ν −Dm

ν′∥TV

12

Lemma B.3 (Generalization of Lemma 26 of [Tao et al., 2019]). For any δ-correct algorithm, for all
m, r ∈ N and any two bandit instances ν,ν′, we have

Pν{Rδ ≥ r + 1, τ rδ ≤ m} ≥ Pν{Rδ ≥ r, τ rδ ≤ m} − 2δ − ∥Dm
ν −Dm

ν′∥TV .

Proof. Consider the event F1 = (Rδ = r, τδ ≤ m). Denote by F2 the event that the algorithm
returns the best arm of instance ν. Then Pν{F1} = Pν{F1 ∧ F2}+ Pν{F1 ∧ F2}
With Dm

ν the distribution of rewards over m samples and some ν′ ∈ Altν ,

Pν{F1 ∧ F2} ≤ Pν′{F1 ∧ F2}+ ∥Dm
ν −Dm

ν′∥TV

≤ Pν′{F2}+ ∥Dm
ν −Dm

ν′∥TV

≤ δ + ∥Dm
ν −Dm

ν′∥TV .

On the other hand, Pν{F1 ∧ F2} ≤ Pν{F2} ≤ δ. Therefore Pν{F1} ≤ 2δ + ∥Dm
ν − Dm

ν′∥TV .
Using Pν{Rδ ≥ r + 1, τ rδ ≤ m} ≥ Pν{Rδ ≥ r, τ rδ ≤ m} − Pν(F1), we conclude.

Lemma B.4. For any δ-correct algorithm, for all m, r ∈ N and any bandit instance ν, we have

Pν{Rδ ≥ r + 1, τ rδ ≤ m} ≥ Pν{Rδ ≥ r, τ rδ ≤ m} − 2δ −
√

m

2
(T ⋆(ν))−1 .

Proof. First apply Lemma B.3 to an arbitrary instance ν′ ∈ Altν . Then using Pinsker’s inequality
yields

∥Dm
ν −Dm

ν′∥TV ≤
√

1

2
KL(Dm

ν ∥Dm
ν′) =

√√√√1

2

∑
i∈[K]

Eν [Nm,i]
(µi − µ′

i)
2

2

with Nm,i the number of times arm i is pulled before time m.

As this is true for all instances ν′ ∈ Altν , we can obtain an inequality using the infimum over those
instances,

inf
ν′∈Altν

∥Dm
ν −Dm

ν′∥TV ≤

√√√√m

2
inf

λ∈Altν

∑
i∈[K]

Eν [Nm,i]

m

(µi − λi)2

2

≤

√√√√m

2
sup

w∈ΣK

inf
λ∈Altν

∑
i∈[K]

wi
(µi − λi)2

2

=

√
m

2
(T ⋆(ν))−1 ,

by definition of T ⋆.

Finally, we also give a technical result to solve inequalities of the form (k +N2(a+ b lnN))N ≤ ρ.

Lemma B.5. Let ρ ≥ e, a, b ≥ 0 and k be real numbers, and let A = max{e, k + a}. Then

N :=
⌊

ln ρ
ln((ln ρ)2(A+b ln ln ρ))

⌋
satisfies (k +N2(a+ b lnN))N ≤ ρ .

Proof. If N = 0, the equality is 1 ≤ ρ, which is true since ρ ≥ e. Otherwise, N ≥ 1 and
(ln ρ)2(A+ b ln ln ρ) ≥ A ≥ e, so N ≤ ⌊ln ρ/ ln e⌋ ≤ ln ρ. Therefore

N ln(k +N2(a+ b lnN)) ≤ N ln(N2(A+ b lnN))

≤ N ln((ln ρ)2(A+ b ln ln ρ))

≤ ln ρ

and finally (k +N2(a+ b lnN))N ≤ ρ .

13

B.2 The lower bound in the general cases

We give here a result for any sequence of instances.

Lemma B.6. Let there be a sequence of instances (νn)0≤n≤N such that the probability of error is
bounded by δ and for any n ∈ [0, N − 1], cn ≥ Pνn [τδ > xn]. Then

PνN [Rδ > N] ≥ 1− 2Nδ −
N−1∑
i=0

cn +

√
Xn−1

2

√ 1

T ⋆(µn)
+

√√√√∑
i∈[K]

E[NXn−1,i]

Xn−1

(µn+1
i − µn

i)
2

2σ2


where Xn =

∑n
i=−1 xi, x−1 is any positive real number, and Nt,i is the number of times arm i is

sampled before time t.

Proof of Lemma B.6. By lemmas B.2 and B.4, for any m,

Pνn+1{Rδ ≥ n+ 1, τn+1
δ ≤ m+ xn} ≥ Pνn{Rδ ≥ n+ 1, τnδ ≤ m} − cn − ∥Dm

νn −Dm
νn+1∥TV

≥ Pνn{Rδ ≥ n, τnδ ≤ m} − 2δ −
√

m

2
(T ⋆(µn))−1

− cn −

√√√√1

2

∑
i∈[K]

E[Nm,i]
(µn+1

i − µn
i)

2

2σ2

and with Xn =
∑n

i=−1 xi,

Pνn+1{Rδ ≥ n+ 1, τn+1
δ ≤ Xn} ≥ Pνn{Rδ ≥ n, τnδ ≤ Xn−1} − 2δ − cn −

√
Xn−1

2
(T ⋆(µ))−1

−

√√√√Xn−1

2

∑
i∈[K]

E[NXn−1,i]

Xn−1

(µn+1
i − µn

i)
2

2σ2

So that finally

PνN {Rδ ≥ N, τNδ ≤ XN−1} ≥ Pν0{Rδ ≥ 0, τ0δ ≤ x−1} − 2Nδ

−
N−1∑
i=0

cn +

√
Xn−1

2

√(T ⋆(µn))−1 +

√√√√∑
i∈[K]

E[NXn−1,i]

Xn−1

(µn+1
i − µn

i)
2

2σ2


and we conclude since for any x−1 ≥ 0, Pν0{Rδ ≥ 1, τ0δ ≤ x−1} = 1 (we always use at least 1
round).

From there, we derive the result for T ⋆(µn) = ζ−nT ⋆(µ0).

Lemma 2.1. Suppose that a δ-correct algorithm satisfies Pµ (τδ > γT ⋆(µ) ln(1/δ)) ≤ c for some
γ, c > 0 on any Gaussian instance µ with variance σ2 with T ⋆(µ) ∈ (Tmin, Tmax). Let (µn)0≤n≤N

be a sequence of such Gaussian instances with T ⋆(µn) = T ⋆(µ0)ζ−n ∈ (Tmin, Tmax) for some
ζ ∈ (0, 1). Then

PµN (Rδ > N) ≥ 1−N(2δ + c)−

√
γ ln(1/δ)

2(ζ−1 − 1)
SN

with SN =
∑N−1

n=0

[
1 +

√
T⋆(µ0)

ζn supw∈ΣK

∑
i∈[K] wi

(µn+1
i −µn

i)
2

2

]

14

Proof of Lemma 2.1. We apply Lemma B.6 on the sequence (νn)0≤n≤N with x−1 =
γT ⋆(µ0) log(1/δ) 1

ζ−1−1 . That way,

Xn = x−1 +

n∑
i=0

γT ⋆(µi) log(1/δ)

= γT ⋆(µ0) log(1/δ)

(
1

ζ−1 − 1
+

n∑
i=0

ζ−i

)

= γT ⋆(µ0) log(1/δ)
ζ−(n+1)

ζ−1 − 1

Under Assumption 2.2, we can pick a sequence of instances of means µn+1 = xµn + (1− x)y and
control the sequence of T ⋆(µn). That way, we get the following result:

Lemma B.7 (Batch lower bound on affine sequences). For problems on which Assumption 2.2 is
satisfied; for any algorithm such that, for any Gaussian instance ν satisfying T ⋆(µ) ∈ (Tmin, Tmax)
the probability of error is smaller than δ and such that Pν(τδ > γ log(1/δ)T ⋆(µ)) ≤ c; we have for
any σ-Gaussian instance ν of complexity T ⋆(µ) ∈ (Tmin, Tmax), for the corresponding y ∈ R given
by Assumption 2.2 for µ, that Pν(Rδ ≥ N) ≥ 1/2 for

N = min


ln T⋆(µ)

Tmin

ln

((
ln T⋆(µ)

Tmin

)2
max{e, C}

) ,
1

2δ + c


with C = 1 + 4γ log(1δ)

(
1 +

√
T⋆(µ)∆2

2σ2

)2

and ∆ = maxi |µi − y|.

Proof. Fix some (σ-Gaussian) instance ν0 = ν of complexity T ⋆(µ) = T0 ∈ (Tmin, Tmax).

For some ζ ∈ (0, 1) to be fixed later, define the instance of mean µn+1 = ζ−1/2µn + (1− ζ−1/2)y.
We then have ζnT ⋆(µ0) = T ⋆(µn) by hypothesis. We can thus construct a sequence of instances of
length N as long as ζN > Tmin

T⋆(µ0) .

(µN−n−1
i − µN−n

i)2

2σ2
=

(ζ−(N−n−1)/2 − ζ−(N−n)/2)2(µ0
i − y)2

2σ2

≤ ζn−N∆2

2σ2
(1− ζ1/2)2

We apply Theorem 2.1 on the reversed sequence (νN−i)0≤i≤N :

Pν(Rδ > N) ≥ 1−N(2δ + c)−

√
γ log(1/δ)

2(ζ−1 − 1)
×

N−1∑
i=0

1 +
√√√√T ⋆(µ) sup

w∈∆K

∑
i∈[K]

wi
∆2

2σ2
(1− ζ1/2)2


≥ 1−N

(
2δ + c+

√
γ log(1/δ)

2(ζ−1 − 1)

(
1 +

√
T ⋆(µ0)∆2

2σ2

))
≥ 5/8−N(2δ + c)

for

ζ =

(
1 + 4N2γ log

(
1

δ

)(
1 +

√
T ⋆(µ0)∆2

2σ2

)2)−1

15

We can apply Lemma B.5 with ρ = T⋆(µ0)
Tmin

, k = 1, b = 0, and a = 4γ log(1/δ)

(
1 +

√
T⋆(µ0)∆2

2σ2

)2

.

We get that a sufficient condition is

N ≤
ln T⋆(µ0)

Tmin

ln

((
ln T⋆(µ0)

Tmin

)2
max {e, C}

) (5)

with C = 1 + 4γ log(1/δ)

(
1 +

√
T⋆(µ0)∆2

2σ2

)2

.

Therefore, by picking N that satisfies (5) and N ≤ 1
8(2δ+c) , we have that Pν(Rδ > N) > 1

2 .

Lemma B.8 (Batch lower bound on affine sequences, expectation constraint). For problems on
which Assumption 2.2 is satisfied; for any δ-correct algorithm such that, for any Gaussian instance ν
satisfying T ⋆(µ) ∈ (Tmin, Tmax) Eν [τδ] ≤ γ log(1/δ)T ⋆(µ), we have for any σ-Gaussian instance
ν of complexity T ⋆(µ) ∈ (Tmin, Tmax), for the corresponding y ∈ R given by Assumption 2.2 for µ
that Pν(Rδ ≥ N) ≥ 1/2 for

N ≥ min


ln T⋆(µ)

Tmin

ln

((
ln T⋆(µ)

Tmin

)2
max{e, C ′

δ}
) ,

1

3
ln

T ⋆(µ)

Tmin
,
1

3δ


with C ′

δ = max

{
e, 1 + 4γ log(1/δ) ln T⋆(µ)

Tmin

(
1 +

√
T⋆(µ)∆2

2σ2

)2
}

and ∆ = maxi |µi − y|.

Proof. For instance ν, for some algorithm satisfying Eν [τδ] ≤ γ log(1/δ)T ⋆(µ), we have by the
Markov inequality that Pν(τδ ≥ (γ/c)T ⋆(µ) log(1/δ)) ≤ c. Applying Lemma B.7, Pν(Rδ ≥ N) ≥
1/2 for

N = min


ln T⋆(µ)

Tmin

ln

((
ln T⋆(µ)

Tmin

)2
max{e, C}

) ,
1

2δ + c


with C = 1 + 4γ/c log(1δ)

(
1 +

√
T⋆(µ)∆2

2σ2

)2

and ∆ = maxi |µi − y|.

Choosing c = max

{
δ,
(
log T⋆(µ)

Tmin

)−1
}

, if δ <
(
log T⋆(µ)

Tmin

)−1

, then

N ≥ min


ln T⋆(µ)

Tmin

ln

((
ln T⋆(µ)

Tmin

)2
max{e, C ′

δ}
) ,

1

3
ln

T ⋆(µ)

Tmin


with C ′

δ = max

{
e, 1 + 4γ log(1/δ) ln T⋆(µ)

Tmin

(
1 +

√
T⋆(µ)∆2

2σ2

)2
}

.

If δ ≥
(
log T⋆(µ)

Tmin

)−1

,

N ≥ min


ln T⋆(µ)

Tmin

ln

((
ln T⋆(µ)

Tmin

)2
max{e, C ′

δ}
) ,

1

3δ



16

B.3 The top-k and BAI settings

All that remains is to show that our problems satisfy Assumption 2.2. We start with top-k, and first
give a technical result giving a simple formula for T ⋆(µ).

Lemma B.9. For any w ∈ ΣK ,

inf
λ∈Altµ

∑
i∈[K]

wid(µi, λi)

 = min
b≥k+1
a≤k

wad(µa, µab) + wbd(µb, µab)

where µab =
waµa+wbµb

wa+wb
(arms are assumed to be ordered, µ1 ≥ µ2 ≥ . . .).

Lemma B.10. In the top-k problem, setting µ′ = xµ+ (1− x)y where y is a constant vector and
x > 0, Altµ′ = Altµ, ∆µ′

i = x∆µ
i and (T ⋆(µ′))−1 = x2(T ⋆(µ))−1.

Proof. First of all, for any two arms i, j, µ′
i−µ′

j = x(µi−µj) with x > 0. Therefore, the ordering of

arms is conserved, and Altµ′ = Altµ. Moreover, since ∆µ′

i = µ′
i − µ′

k+1 = x(µi − µk+1) = x∆µ
i

for i ≤ k and ∆µ′

i = µ′
k − µ′

i = x∆µ
i otherwise, we do have ∆µ′

i = x∆µ
i .

Furthermore,

(T ⋆(µ′))−1 = sup
w∈ΣK

inf
λ∈Altµ

∑
i∈[K]

wi
(µ′

i − λi)
2

2σ2


= sup

w∈ΣK

min
b≥k+1
a≤k

wa
(µ′

a − µ′
ab)

2

2σ2
+ wb

(µ′
b − µ′

ab)
2

2σ2

with

µ′
ab(w) =

waµ
′
a + wbµ

′
b

wa + wb
= xµab + (1− x)y

So that

(T ⋆(µ′))−1 = x2 sup
w∈ΣK

min
b≥k+1
a≤k

wa
(µa − µab)

2

2σ2
+ wb

(µb − µab)
2

2σ2

= x2(T ⋆(µ))−1

With these results, we can apply Lemmas B.7 and B.8. We see that the value of y does not impact the
proof: we thus choose the value that minimizes maxi |µi − y|, which is y = maxi µi+mini µi

2 .

B.4 The thresholding setting

Lemma B.11. In the thresholding bandit problem, setting µ′ = xµ + (1 − x)τ where τ is the
constant vector of value τ the threshold and x > 0, Altµ′ = Altµ, ∆µ′

i = x∆µ
i and (T ⋆(µ′))−1 =

x2(T ⋆(µ))−1.

Proof. First of all, for any arm i, µ′
i − τ = x(µi − τ) with x > 0. Therefore, Altµ = Altµ′ .

Moreover, ∆µ′

i = |µ′
i − τ | = x|µi − τ | = x∆µ′

i .

17

Furthermore,

(T ⋆(µ′))−1 = sup
w∈ΣK

inf
λ∈Altµ

∑
i∈[K]

wi
(µ′

i − λi)
2

2σ2


= sup

w∈ΣK

sup
i∈[K]

wi
(µ′

i − τ)2

2σ2

= x2 sup
w∈ΣK

sup
i∈[K]

wi
(µi − τ)2

2σ2

= x2(T ⋆(µ))−1

C Concentration and threshold for the stopping rule

We suppose that each arm is sampled once during the first K time steps.
Theorem C.1. Suppose that the arm distributions are σ2-sub-Gaussian. Let µ̂t,k be the average
of arm k at time t and Nt,k be the number of times arm k is sampled up to time t. With probability
1− δ, for all t > K,

1

2

K∑
k=1

Nt,k
(µ̂t,k − µk)

2

2σ2
≤ K

2
W

(
2 ln

(
eπ2

6

)
+

2

K
ln

(
K∏

k=1

(1 + lnNt,k)
2

)
+

2

K
ln

1

δ

)
.

C.1 Proof of the concentration theorem

We can assume w.l.o.g. that µk = 0 for all k and σ2 = 1.

Let St,k =
∑t

s=1 Xs,kI{ks = k}. We want a bound on 1
2

∑K
k=1

S2
t,k

Nt,k
.

We first remark that 1
2x

2 = supλ λx− 1
2λ

2 . Apply that to x = St,k/
√
Nt,k to get

K∑
k=1

1

2

S2
t,k

Nt,k
= sup

λ1,...,λK

K∑
k=1

(
λkSt,k −

1

2
Nt,kλ

2
k

)

= sup
λ1,...,λK

t∑
s=1

λksXs,ks −
1

2
λ2
ks

.

The advantage of that formulation is that we can concentrate the sum for any fixed value of λ (or any
distribution on λ) thanks to a martingale argument.

Lemma C.2. For all ρ ∈ P(RK), the process t 7→ Eλ∼ρ

[
exp

(∑t
s=1 λksXs,ks − 1

2λ
2
ks

)]
is a

non-negative supermartingale with expectation bounded by 1.
Corollary C.3. For all ρ ∈ P(RK) and x ≥ 0,

P

(
∃t, lnEλ∼ρ

[
exp

(
t∑

s=1

λksXs,ks −
1

2
λ2
ks

)]
≥ x

)
≤ e−x .

Equivalently, for all δ ∈ (0, 1],

P

(
∃t, lnEλ∼ρ

[
exp

(
t∑

s=1

λksXs,ks −
1

2
λ2
ks

)]
≥ ln

1

δ

)
≤ δ .

Proof. Use Ville’s inequality and the fact that the process is a non-negative supermartingale.

We don’t want to bound an integral over λ ∼ ρ, but the supremum over λ, so we need to relate the
two quantities. We do that for Gaussian priors over λ.

18

Lemma C.4. For ρ = N (0,diag(σ−2
k)),

lnEλ∼ρ

[
exp

(
t∑

s=1

λksXs,ks −
1

2
λ2
ks

)]
= −1

2

K∑
k=1

ln(1 +Nt,kσ
−2
k) +

1

2

K∑
k=1

S2
t,k

(Nt,k + σ2
k)

.

Proof.

Eλ∼ρ

[
exp

(
t∑

s=1

λksXs,ks −
1

2
λ2
ks

)]

=
∏
k

Eλk∼N (0,σ−2
k)

[
exp

(
λkSt,k −

1

2
Nt,kλ

2
k

)]
=
∏
k

1√
2πσ−2

k

∫
λk

exp

(
λkSt,k −

1

2
Nt,kλ

2
k −

σ2
k

2
λ2
k

)
dλk

=
∏
k

1√
(1 +Nt,kσ

−2
k)

1√
2π(Nt,k + σ2

k)
−1

∫
λk

exp

(
−1

2
(Nt,k + σ2

k)

(
λk −

St,k

(Nt,k + σ2
k)

)2

+
1

2

S2
t,k

Nt,k + σ2
k

)
dλk

=
∏
k

1√
(1 +Nt,kσ

−2
k)

exp

(
1

2

S2
t,k

Nt,k + σ2
k

)

Corollary C.5. Let ρ = N (0,diag(σ−2
k)), ηt,max = maxk

σ2
k

Nt,k
and ηt,min = mink

σ2
k

Nt,k
. Then

1

2

K∑
k=1

S2
t,k

Nt,k
≤ (1 + ηt,max)

(
lnEλ∼ρ

[
exp

(
t∑

s=1

λks
Xs,ks

− 1

2
λ2
ks

)]
+

K

2
ln(1 + η−1

t,min)

)

Proof. Using Lemma C.4,

1

2

K∑
k=1

S2
t,k

Nt,k + σ2
k

= lnEλ∼ρ

[
exp

(
t∑

s=1

λks
Xs,ks

− 1

2
λ2
ks

)]
+

1

2

K∑
k=1

ln(1 +Nt,kσ
−2
k) .

Then

1

2

K∑
k=1

S2
t,k

Nt,k + σ2
k

≥ 1

2

K∑
k=1

S2
t,k

Nt,k(1 + ηt,max)
=

1

1 + ηt,max

1

2

K∑
k=1

S2
t,k

Nt,k

Finally, Nt,kσ
−2
k ≤ η−1

t,min.

If Nt,k was a known, unchanging number, we could choose σ2
k ∝ Nt,k to get ηt,max = ηt,min, and

we would choose it to minimize the right hand side. The strategy to use that “known Nt,k” case even
if they are random is to put geometric grids on the number of pulls of each arm, define distributions
that are adapted to each cell of the grid, and combine them into a mixture of Gaussians.

Let (ηn1,...,nK
)n1,...,nK∈N be non-negative real numbers that will be chosen later. For i ∈ N, let

wi =
6
π2

1
(i+1)2 . The weights (wi) satisfy

∑
i∈N wi = 1, hence also

∑
n1,...,nK

(
∏K

k=1 wnk
) = 1.

Let ρn1,...,nK
=
⊗K

k=1N (0, e−nkη−1
n1,...,nK

). This is a product distribution, with each marginal
being a Gaussian with mean 0 and variance that depends on the number of grid cell.

With probability 1− δ, for all (n1, . . . , nK) ∈ NK and all t,

lnEλ∼ρn1,...,nK

[
exp

(
t∑

s=1

λks
Xs,ks

− 1

2
λ2
ks

)]
≤ ln

1

δ
+

K∑
k=1

ln
1

wnk

.

19

This is simply an union bound using Corollary C.3, with weight
∏K

k=1 wnk
for ρn1,...,nK

.

In particular, there exists (n1, . . . , nk) such that for all k ∈ [K], enk ≤ Nt,k ≤ enk+1. For that
choice, e−1ηn1,...,nK

≤ enkηn1,...,nK

Nt,k
≤ ηn1,...,nK

. For those values, using Corollary C.5 with
σ2
k = enkηn1,...,nK

, with probability 1− δ,

1

2

K∑
k=1

S2
t,k

Nt,k
≤ (1 + ηn1,...,nK

)

(
ln

1

δ
+

K∑
k=1

ln
1

wnk

+
K

2
ln(1 + eη−1

n1,...,nK
)

)

≤ (1 + ηn1,...,nK
)

(
ln

eK/2

δ
+

K∑
k=1

ln
1

wnk

+
K

2
ln(1 + η−1

n1,...,nK
)

)

= (1 + ηn1,...,nK
)

(
ln

(
√
eπ2/6)K

∏K
k=1(nk + 1)2

δ
+

K

2
ln(1 + η−1

n1,...,nK
)

)

This is where we choose ηn1,...,nK
to minimize the right hand side.

By Lemma A.3 of [Degenne, 2019], the minimal value is attained at some ηn1,...,nK
such that

(1 + ηn1,...,nK
)

(
ln

(
√
eπ2/6)K

∏K
k=1(nk + 1)2

δ
+

K

2
ln(1 + η−1

n1,...,nK
)

)

=
K

2
W

(
1 +

2

K
ln

(
√
eπ2/6)K

∏K
k=1(nk + 1)2

δ

)

By the choice of nk, it satisfies nk ≤ lnNt,k. We get that with probability 1− δ, for all t,

1

2

K∑
k=1

S2
t,k

Nt,k
≤ K

2
W

(
1 +

2

K
ln

(
√
eπ2/6)K

∏K
k=1(1 + lnNt,k)

2

δ

)

=
K

2
W

(
2

K
ln

(
(eπ2/6)K

K∏
k=1

(1 + lnNt,k)
2

)
+

2

K
ln

1

δ

)
.

This ends the proof of the theorem.

C.2 Upper bounds on β(t, δ) and on γr

We choose the threshold

β(t, δ) =
K

2
W

(
2 ln

(
eπ2

6

)
+

2

K
ln

(
K∏

k=1

(1 + lnNt,k)
2

)
+

2

K
ln

1

δ

)
.

We can get an upper bound that is not random by maximizing over (Nt,k)k∈[K] under the constraint∑K
k=1 Nt,k = t. We get

β(t, δ) ≤ K

2
W

(
2 ln

(
eπ2

6

)
+ 4 ln

(
1 + ln

t

K

)
+

2

K
ln

1

δ

)
.

We can get further upper bounds by using W (x) ≤ x+ lnx+ 1/2 ≤ 2x. This gives

β(t, δ) ≤ 2K ln

(
eπ2

6

)
+ 4K ln

(
1 + ln

t

K

)
+ 2 ln

1

δ

≤ 2K ln

(
eπ2

6

)
+ 4K ln

t

K
+ 2 ln

1

δ
.

The right asymptotic for β(t, δ) as δ → 0 is ln(1/δ). We lost a factor 2 in the upper bound above.

20

Lemma C.6. Let γr be the solution to β(t̄r, δ) = γr , for t̄r = 2(Kl1,r/T0 + γr)Tr and l1,r =

32T0 ln(2
√
2KTr). Then

γr ≤ 4 ln
1

δ
+ 8K ln(Tr) + 4K(11 + lnK) .

Proof. We use an upper bound for β(t, δ): γr is bounded from above by the solution γ′
r to

γ = 2K ln

(
eπ2

6

)
+ 4K ln

(
2(32 ln(2

√
2KTr) +

γ

K
)Tr

)
+ 2 ln

1

δ
.

Then either γ′
r ≤ 8K ln(2

√
2KTr) or γ′

r is less than the solution to

γ = 2K ln

(
eπ2

6

)
+ 4K ln

(
10

γTr

K

)
+ 2 ln

1

δ

= 2K ln

(
50eπ2

3

)
+ 4K ln

(
γTr

K

)
+ 2 ln

1

δ
.

That is,

γ′
r = 4KW

(
1

2K
ln

1

δ
+ ln(Tr) +

1

2
ln

800eπ2

3

)
≤ 4 ln

1

δ
+ 8K ln(Tr) + 4K ln

800eπ2

3
.

At this point, we get

γr ≤ max

{
4 ln

1

δ
+ 8K ln(Tr) + 4K ln

800eπ2

3
, 8K ln(2

√
2KTr)

}
≤ 8K ln(Tr) + max

{
4 ln

1

δ
+ 4K ln

800eπ2

3
, 8K ln(2

√
2K)

}
≤ 8K ln(Tr) + 4 ln

1

δ
+ 4K ln

800eπ2

3
+ 8K ln(2

√
2K)

≤ 8K ln(Tr) + 4 ln
1

δ
+ 4K ln

(
6400eπ2

3
K

)
≤ 8K ln(Tr) + 4 ln

1

δ
+ 4K(11 + lnK) .

D Proofs related to the algorithm

D.1 Additional Lemmas

Lemma D.1. Let (Xi)i∈N be i.i.d. σ2-sub-Gaussian random variables with mean µ. For n ∈ N, let
µ̂n be the average of the first n random variables. Then

P(∃n ≥ N, µ̂n ≥ µ+ ε) ≤ e−
Nε2

2σ2 ,

P(∃n ≥ N, µ̂n ≤ µ− ε) ≤ e−
Nε2

2σ2 .

Proof. Given (X1, . . . , XN), the process Mn(λ) : n 7→ eλ
∑N+n

i=1 (Xi−µ)− 1
2 (N+n)σ2λ2

is a non-
negative supermartingale for any λ ∈ R by the sub-Gaussian hypothesis, with expectation
eλ

∑N
i=1(Xi−µ)− 1

2Nσ2λ2

at n = 0.

By Ville’s inequality,

P(∃n, Mn(λ) ≥ 1/δ | X1, . . . , XN) ≤ δeλ
∑N

i=1(Xi−µ)− 1
2Nσ2λ2

21

For all λ ∈ R and all δ ∈ (0, 1),

P

(
∃n ≥ N, λ

n∑
i=1

(Xi − µ)− 1

2
nσ2λ2 ≥ ln(1/δ)

)
= E [P(∃n ≥ 0, Mn(λ) ≥ 1/δ | X1, . . . , XN)]

≤ δE
[
eλ

∑N
i=1(Xi−µ)− 1

2Nσ2λ2
]

≤ δ .

Reordering, we get, for λ ≥ 0,

P
(
∃n ≥ N, µ̂n ≥ µ+

1

2
σ2λ+

1

Nλ
ln

1

δ

)
≤ P

(
∃n ≥ N, µ̂n ≥ µ+

1

2
σ2λ+

1

nλ
ln

1

δ

)
≤ δ .

Choose δ = e−
Nε2

2σ2 and λ = ε
σ2 to obtain

P (∃n ≥ N, µ̂n ≥ µ+ ε) ≤ e−
Nε2

2σ2 .

The second inequality is obtained similarly, with λ ≤ 0.

Lemma D.2. The probability of Er satisfies
P(Er) ≥ 1− 2K exp(−2rl1,rε2r/2σ2) .

Proof. Er is the event that ∥µ − µ̃r∥∞ ≤ εr and ∥µ − µ̂r∥∞ ≤ εr. We use an union bound over
the arms to bound the probability of the complement Ecr . For each i ∈ [K], µ̃r

i and µ̂r
i are empirical

means of at least 2rl1,r samples. We can thus apply Lemma D.1 (twice, once for deviations from
above and once for deviations from below).

Lemma D.3. Let pr ∈ (0, 1]. For the choice εr =
√

2σ2

2rl1
ln 2K

pr
, the probability of the event Er is

P(Er) ≥ 1− pr.

D.2 Proof of Lemma 3.4

Proof. By the condition on Ni, then the fact that µ̂ ∈ B and finally definitions of w⋆ and T
⋆
,

inf
λ∈Altµ̂

∑
i

Nid(µ̂i, λi) ≥ γT
⋆
(B) inf

λ∈Altµ̂

∑
i

w⋆
i (B)d(µ̂i, λi)

≥ γT
⋆
(B) inf

ν∈B
inf

λ∈Altν

∑
i

w⋆
i (B)d(νi, λi) = γ .

D.3 Proof of Lemma 3.7

If T
⋆
(B̂r) > Tr then the algorithm does not enter the second batch of the phase by definition of the

algorithm.

If T
⋆
(B̂r) ≤ Tr then by the choice of γr and Lemma 3.4, under Er the stopping condition is triggered.

We now prove the complexity upper bounds. Let Cr be the event that the algorithm attains phase
r and does not stop at that phase. We proved that {T ⋆

(B̂r) ≤ Tr} ∩ Er ⊆ Ccr for all r. That is,
Cr ⊆ Ecr ∪ {T

⋆
(B̂r) > Tr}.

Recall that R∗ = min{r | ∀r′ ≥ r, Er′ =⇒ T
⋆
(B̂r′) ≤ Tr′}.

Rδ =

+∞∑
r=1

I(Cr−1) + I(Cr−1 ∧ {T
⋆
(B̂r) ≤ Tr}) .

≤ R∗ + 2

+∞∑
r=R∗+1

I(Cr−1) +

R∗∑
r=1

I(Cr−1 ∧ {T
⋆
(B̂r) ≤ Tr}) .

22

By definition of R∗, for r ≥ R∗ we have {T ⋆
(B̂r) > Tr} ⊆ Ecr . Using that property and the

inclusion we proved on Cr we have, for r > R∗,

Cr−1 ⊆ Ecr−1 ∪ {T
⋆
(B̂r−1) > Tr−1} ⊆ Ecr−1 .

Therefore,

Rδ ≤ R∗ + 2

+∞∑
r=R∗+1

I(Ecr−1) +

R∗∑
r=1

I(Cr−1 ∧ {T
⋆
(B̂r) ≤ Tr}) .

When Er happens T ⋆(µ) ≤ T
⋆
(B̂r), hence {T ⋆

(B̂r) ≤ Tr} ⊆ Ecr ∪ {T ⋆(µ) ≤ Tr}.

Rδ ≤ R∗ + 2

+∞∑
r=R∗+1

I(Ecr−1) +

R∗∑
r=1

I(Ecr) +
R∗∑
r=1

I({T ⋆(µ) ≤ Tr})

≤ R∗ + 1 + 2

+∞∑
r=1

I(Ecr) +
R∗∑
r=1

I({T ⋆(µ) ≤ Tr}) .

Finally,
∑R∗

r=1 I({T ⋆(µ) ≤ Tr}) = max

{
0, R∗ −

⌈
log2

T⋆(µ)
T0

⌉
+

}
, with ⌈x⌉+ = max{0, ⌈x⌉}.

We now bound the sample complexity τδ . Since t̄r is an upper bound on the sample complexity up to
phase r,

τδ ≤
+∞∑
r=1

t̄rI{Cr−1}

≤ t̄R∗ +

+∞∑
r=R∗+1

t̄rI{Cr−1}

≤ t̄R∗ +

+∞∑
r=R∗+1

t̄rI{Ec
r−1} .

D.4 Proof of the batch and complexity upper bounds

By Lemma 3.7, we can bound the batch and sample complexities by finding an upper bound of
R∗ = min{r | ∀r′ ≥ r, Er′ ⇒ T

⋆
(B̂r′) ≤ Tr′} and bounding the probability of Er.

Let r0 = min{r | 2εr ≤ b(µ)}, where b(µ) is defined in Assumption 3.8. Then for any r ≥ r0,
under Er, B̂r = B∞(µ̃r, εr) ⊆ B∞(µ, 2εr0) and thus for any µ′ ∈ B̂r, lnT

⋆
(B̂r)− lnT ⋆(µ′) ≤ 1

. Hence in the event Er, we get T
⋆
(B̂r) ≤ eT ⋆(µ) since µ ∈ B̂r.

Let r1 = min{r | Tr ≥ eT ⋆(µ)}. Then for r ≥ max{r0, r1}, in the event Er, Tr ≥ eT ⋆(µ) ≥
T

⋆
(B̂r). We get that R∗ ≤ r∗ := max{r0, r1}.

By concentration, since we suppose σ2-sub-Gaussian arm distributions, for εr =
√

2σ2

2rl1,r
log 2K

pr
we

have P(Er) ≤ pr. We can thus bound the expected batch and sample complexities.

E [Rδ] ≤ r∗ +max

{
0, r∗ −

⌈
log2

T ⋆(µ)

T0

⌉
+

}
+ 1 , E [τδ] ≤ t̄r∗ +

+∞∑
r=1

pr t̄r+1 .

With our choices of pr, γr and l1,r, we can finally compute bounds on the sums, r0 and r1?

In those expressions, r∗ = max{r0, r1} with r0 = min{r | 2εr ≤ b(µ)}, r1 = min{r | Tr ≥
eT ⋆(µ)}, and t̄r = (Kl1,r/T0 + 2γr)Tr with l1,r/T0 = 32 ln(2

√
2KTr).

The choice of pr is a trade-off between the sums and r0. We choose pr = T 2
r+1.

23

Bounding the sums The sum in the batch complexity is bounded by T−2
0 /3. The sum that appears

in the sample complexity is

+∞∑
r=max{r0,r1}+1

pr−1t̄r =

+∞∑
r=max{r0,r1}+1

t̄r
T 2
r

.

We will need the values of a few sums.
+∞∑
r=1

1

Tr
=

+∞∑
r=1

1

2rT0
=

1

T0
,

+∞∑
r=1

lnTr

Tr
=

1

T0

+∞∑
r=1

r ln 2 + lnT0

2r
=

ln(4T0)

T0
.

Let cK,δ = 4 ln 1
δ + 4K(11 + lnK). By Lemma C.6, γr ≤ 8K ln(Tr) + cK,δ . An upper bound on

the sample complexity until the end of phase r is then

t̄r = (Kl1,r/T0 + 2γr)Tr

= (32K ln(2
√
2KTr) + 2γr)Tr

≤ (48K ln(Tr) + 32K ln(2
√
2K) + cK,δ)Tr .

The sum that appears in the sample complexity is at most

+∞∑
r=1

t̄r
T 2
r

≤ 48K ln(4T0) + 32K ln(2
√
2K) + cK,δ

T0
.

Bound on r∗ and t̄r∗

t̄r∗ ≤ (48K ln(max{Tr0 , Tr1}) + 32K ln(2
√
2K) + cK,δ)max{Tr0 , Tr1} .

Recall that r0 = min{r ≥ 0 | 2εr ≤ b(µ)}, r1 = min{r ≥ 0 | Tr ≥ eT ⋆(µ)}.
If we get an upper bound n on Ti, we then have ri ≤ log2

n
T0

. We get a bound on Tr1 from its
definition: if r0 ≥ 1, then Tr1−1 ≤ eT ∗(µ) hence in the end Tr1 ≤ max{T0, 2eT

⋆(µ)}.
If r0 ≥ 1, then since εr0−1 ≥ b(µ)/2, we get an inequality on Tr0−1.√

2σ2

2r0−1l1,r0−1
ln
(
2KT 2

r0

)
≥ b(µ)

2
.

With the value of l1,r and using 2Tr0−1 = Tr0 , this becomes in the end

Tr0 ≤ max{T0,
σ2

b(µ)2
} .

Let T ⋆
b (µ) = max{ σ2

b(µ)2 , 2eT
⋆(µ)}. We have proved max{Tr0 , Tr1} ≤ max{T0, T

⋆
b (µ)}, hence

t̄r∗ ≤ (48K lnmax{T0, T
⋆
b (µ)}+ 32K ln(2

√
2K) + cK,δ)max{T0, T

⋆
b (µ)}

and r∗ ≤ max{0, log2
T⋆
b (µ)
T0
}.

Putting things together For the round complexity,

E [Rδ] ≤ max

{
0, log2

T ⋆
b (µ)

T0

}
+max

{
0,max

{
0, log2

T ⋆
b (µ)

T0

}
−
⌈
log2

T ⋆(µ)

T0

⌉
+

}
+1+T−2

0

24

If T ⋆
b (µ) ≥ T0, then

E [Rδ] ≤ 2 log2
T ⋆
b (µ)

T0
− log2

T ⋆(µ)

T0
+ 1 + T−2

0

≤ log2
T ⋆
b (µ)

T0
+ log2

T ⋆
b (µ)

T ⋆(µ)
+ 2

If T ⋆
b (µ) < T0, by definition, T0 > T ⋆

b (µ) ≥ T ⋆(µ). We then have

E [Rδ] ≤ 0 + max

{
0, log2

T ⋆
b (µ)

T0
− 0

}
+ 1 + T−2

0

≤ 1 + T−2
0

So that finally,

E [Rδ] ≤ max

{
log2

T ⋆
b (µ)

T0
+ log2

T ⋆
b (µ)

T ⋆(µ)
, 0

}
+ 1 + T−2

0 ,

E [τδ] ≤ (48K lnmax{T0, T
⋆
b (µ)}+ 32K ln(2

√
2K) + cK,δ)max{T0, T

⋆
b (µ)}

+
48K ln(4T0) + 32K ln(2

√
2K) + cK,δ

T0
.

Let us simplify the sample complexity.

32K ln(2
√
2K) + cK,δ = 32K ln(2

√
2K) + 4 ln

1

δ
+ 4K(11 + lnK)

= 4 ln
1

δ
+ 4K(5 lnK + 11 + 4 ln(8))

≤ 4 ln
1

δ
+ 20K(lnK + 4) .

E [τδ] ≤ (48K lnmax{T0, T
⋆
b (µ)}+ 4 ln

1

δ
+ 20K(lnK + 4))max{T0, T

⋆
b (µ)}

+ (48K ln(4T0) + 4 ln
1

δ
+ 20K(lnK + 4))T−1

0

=

(
4 ln

(
1

δ

)
+ 20K(lnK + 4)

)
(max{T0, T

⋆
b (µ)}+ T−1

0)

+ 48K(max{T0, T
⋆
b (µ)} lnmax{T0, T

⋆
b (µ)}+ T−1

0 ln(4T0)) .

D.5 Implication between the two assumptions

Lemma D.4. For all µ and µ′ with ∥µ− µ′∥∞ ≤
√

σ2/(2T ⋆(µ)),

|lnT ⋆(µ′)− lnT ⋆(µ)| ≤
√

8

σ2
T ⋆(µ) ∥µ− µ′∥∞ .

As a consequence, if Assumption 3.9 is satisfied, then Assumption 3.8 is satisfied with b(µ) =√
σ2/(8T ⋆(µ)).

Lemma D.5. Let ν and ν′ be two instances and let ωµ = argmaxω infλ∈Altµ

∑K
i=1 ωi(µi − λi)

2.
Then √

T ⋆(µ)−1 −
√

T ⋆(µ′)−1 ≤ 1√
2σ2
∥µ− µ′∥∞ .

Proof. For ω ∈ ΣK and x ∈ RK , let ∥x∥ω =
√∑K

i=1 ωix2
i . It satisfies the triangle inequality and

∥x∥ω ≤ ∥x∥∞. For any λ and ω,

∥µ− λ∥ω ≤ ∥µ′ − λ∥ω + ∥µ− µ′∥ω .

25

We can take an infimum on both sides over lambda in Altµ and then apply the result to ωµ to get√
2σ2T ⋆(µ)−1 ≤ inf

λ∈Altµ
∥µ′ − λ∥ωµ + ∥µ− µ′∥ωµ .

Either Altµ = Altµ′ and we can replace by that on the right hand side, or µ′ ∈ Altµ. In that second
case infλ∈Altµ ∥µ′ − λ∥ωµ = 0 ≤ infλ∈Altµ′ ∥µ′ − λ∥ωµ . We thus have√

2σ2T ⋆(µ)−1 ≤ inf
λ∈Altµ′

∥µ′ − λ∥ωµ + ∥µ− µ′∥ωµ .

We maximize over ω to get infλ∈Altµ′ ∥µ′ − λ∥ωµ ≤
√
2σ2T ⋆(µ′)−1, hence√

2σ2T ⋆(µ)−1 ≤
√
2σ2T ⋆(µ′)−1 + ∥µ− µ′∥ωµ

≤
√
2σ2T ⋆(µ′)−1 + ∥µ− µ′∥∞ .

After dividing by
√
2σ2, this is the inequality of the lemma.

Corollary D.6. For all µ and µ′,

lnT ⋆(µ′)− lnT ⋆(µ) ≤
√

2

σ2
T ⋆(µ′) ∥µ− µ′∥∞ .

Proof.

lnT ⋆(µ′)− lnT ⋆(µ) = 2 ln

(
1 +

√
T ⋆(µ)−1 −

√
T ⋆(µ′)−1√

T ⋆(µ′)−1

)

≤ 2

√
T ⋆(µ)−1 −

√
T ⋆(µ′)−1√

T ⋆(µ′)−1

≤
√

2

σ2
T ⋆(µ′) ∥µ− µ′∥∞ .

Corollary D.7. For all µ and µ′ with ∥µ− µ′∥∞ ≤
√
σ2/(2T ⋆(µ)),

|lnT ⋆(µ′)− lnT ⋆(µ)| ≤
√

8

σ2
T ⋆(µ) ∥µ− µ′∥∞ .

Proof. One of the two inequalities we need to prove is due to Corollary D.6. For the other, by the
same corollary,

lnT ⋆(µ′)− lnT ⋆(µ) ≤
√

2

σ2
T ⋆(µ′) ∥µ− µ′∥∞ .

To finish the proof of Lemma D.4, itt remains to show T ⋆(µ′) ≤ 4T ⋆(µ). By Lemma D.5 and the
the hypothesis on ∥µ− µ′∥∞,√

T ⋆(µ)−1 −
√

T ⋆(µ′)−1 ≤ 1√
2σ2
∥µ− µ′∥∞ ≤

1

2

√
T ⋆(µ)−1 .

Reordering proves the inequality.

26

D.6 Proofs for Top-K and thresholding bandits

This section is devoted to the proof of Lemma 3.11. We start with a preliminary result allowing us to
compute w⋆(B) once we have found a suitable instance in B.
Lemma D.8. If all instances in B share the same correct answer i⋆ and if there exists some mean
vector b ∈ B such that

inf
ν∈B

inf
λ∈Altb

∑
i

wi(b)
(µi − λi)

2

2σ2
≥ inf

λ∈Altb

∑
i

wi(b)
(bi − λi)

2

2σ2
(6)

where w(µ) = argmaxw∈ΣK
infλ∈Altµ

∑
i wi

(µi−λi)
2

2σ2 , then T
⋆
(B) = maxµ∈B T ⋆(µ).

Proof. For some w ∈ ΣK , writing f(w,µ′) = infλ∈Altb

∑
i wi

(µ′
i−λi)

2

2σ2 for clarity,

inf
ν∈B̂r

f(w,µ) ≤ f(w, b) because b ∈ B̂r

≤ f(wb, b) from the definition of wb

≤ inf
µ′∈B̂r

f(wb,µ
′) from the hypothesis

so that w⋆(b) = argmaxw∈ΣK
infν∈B̂r

f(w, ν) = w⋆(B).

T
⋆
(B) =

(
inf

ν′∈B
inf

λ∈Altν′

∑
i

w⋆
i (B)

(µ′
i − λi)

2

2σ2

)−1

=

(
inf

ν′∈B
inf

λ∈Altν′

∑
i

w⋆
i (b)

(µ′
i − λi)

2

2σ2

)−1

=

(
inf

λ∈Altb

∑
i

w⋆
i (b)

(bi − λi)
2

2σ2

)−1

by Equation (6)

= T ⋆(b)

hence T (B) ≤ maxν∈B T ⋆(ν). By definition, we have the other inequality, and we conclude.

Lemma 3.11. In Top-k, including best arm identification, as well as for thresholding bandits,
Assumption 3.9 holds.

We prove the result separately for top-k and TBP. In both cases, we give a certain mean vector
b, and then we show it satisfies the premise of Lemma D.8, then we use that result to show that
T

⋆
(B∞(µ, ε)) = T ⋆(b).

Proof of Lemma 3.11 for top-k. Assume without loss of generality that the arms are well ordered,
µ1 ≥ µ2 ≥ · · · ≥ µK .

If µk − µk+1 ≤ 2ε, then there exists b ∈ B∞(µ, ε) such that bk = bk+1. T
⋆
(B∞(µ, ε)) ≥

maxν′∈B∞(µ,ε) T
⋆(ν′) ≥ T ⋆(b) = +∞, therefore

T
⋆
(B∞(µ, ε)) = max

ν′∈B∞(µ,ε)
T ⋆(ν′) .

When µk − µk+1 > 2ε, define {
bi = µi − ε if i ≤ k

bi = µi + ε if i ≥ k + 1

and, for any ν′,

wν′ = argmax
w∈ΣK

inf
λ∈Altν′

∑
i

wi
(µ′

i − λi)
2

2σ2
.

27

Let there be some ν′ ∈ B∞(µ, ε). Then for i ≤ k, µ′
i ≥ µi − ε = bi and for i ≥ l + 1,

µ′
i ≤ µi + ε = bi, and Altν′ = Altb.

We know from Lemma B.9

min
λ∈Altb

∑
i

wi(b)
(µ′

i − λi)
2

2σ2
= wa(b)

(µ′
a − µ′

aj)
2

2σ2
+ wj(b)

(µ′
j − µ′

aj)
2

2σ2
(7)

for some a ≤ k < k + 1 ≤ j, and µ′
aj =

wa(b)
wa(b)+wj(b)

µ′
a +

wj(b)
wa(b)+wj(b)

µ′
j .

• If µ′
aj ∈ (ba, µ

′
a), then

wa(b)(µ
′
a − µ′

aj)
2 + wj(b)(µ

′
j − µ′

aj)
2 ≥ 0 + wj(b)(µ

′
j − ba)

2

≥ wa(b)(ba − ba)
2 + wj(b)(bj − ba)

2

• If µ′
aj ∈ (bj , ba),

wa(b)(µ
′
a − µ′

aj)
2 + wj(b)(µ

′
j − µ′

aj)
2 ≥ wa(b)(ba − µ′

aj)
2 + wj(b)(bj − µ′

aj)
2

• If µ′
aj ∈ (µ′

j , bj),

wa(b)(µ
′
a − µ′

aj)
2 + wj(b)(µ

′
j − µ′

aj)
2 ≥ wa(b)(µ

′
a − bj)

2 + 0

≥ wa(b)(ba − bj)
2 + wj(b)(bj − bj)

2

In all three cases,

wa(b)(µ
′
a − µ′

aj)
2 + wj(b)(µ

′
j − µ′

aj)
2 ≥ inf

λ∈[bj ,ba]
wa(b)(ba − λ)2 + wj(b)(bj − λ)2

≥ inf
λ∈Altb

∑
i

wi(b)(bi − λi)
2

and therefore, by Equation (7),

∀ν′ ∈ B∞(µ, ε), inf
λ∈Altb

∑
i

wi(b)
(νi − λi)

2

2σ2
≥ inf

λ∈Altb

∑
i

wi(b)
(bi − λi)

2

2σ2

and therefore

inf
ν∈B∞(µ,ε)

inf
λ∈Altb

∑
i

wi(b)
(νi − λi)

2

2σ2
≥ inf

λ∈Altb

∑
i

wi(b)
(bi − λi)

2

2σ2
(8)

We can thus apply Lemma D.8, and conclude

T (B∞(µ, ε)) = max
ν∈B∞(µ,ε)

T ⋆(ν) .

Proof of Lemma 3.11 for thresholding bandits. If for some i, |µi − τ | ≤ ε, then there exists b ∈
B∞(µ, ε) such that bi = τ . Therefore, T

⋆
(B∞(µ, ε)) ≥ maxν′∈B∞(µ,ε) T

⋆(ν′) ≥ T ⋆(b) = +∞,
therefore

T
⋆
(B∞(µ, ε)) = max

ν′∈B∞(µ,ε)
T ⋆(ν′) .

When mink |µk − τ | > ε, define U = {i ∈ [K] : µi > τ} and L = [K] \ U . Define{
bi = µi − ε if i ∈ U

bi = µi + ε if i ∈ L.

and for any ν′, wν′ = argmaxw∈ΣK
infλ∈Altν′

∑
i wi

(µ′
i−λi)

2

2σ2 .

28

Let there be some ν ∈ B∞(µ, ε). We know minλ∈Altb

∑
i wi(b)

(µ′
i−λi)

2

2σ2 = wj(b)
(µ′

j−τ)2

2σ2 for
some j.

For all i ∈ U , µ′
i ≥ µi − ε = bi > τ ; for all i ∈ L, µ′

i ≤ µi + ε = bi < τ . Therefore,

wj(b)
(µ′

j − τ)2

2σ2
≥ wj(b)

(bj − τ)2

2σ2
≥ inf

λ∈Altb

∑
i

wi(b)
(bi − λi)

2

2σ2

We thus have ∀ν′ ∈ B∞(µ, ε), infλ∈Altb

∑
i wi(b)

(µ′
i−λi)

2

2σ2 ≥ infλ∈Altb

∑
i wi(b)

(bi−λi)
2

2σ2 , and

inf
ν∈B̂r

inf
λ∈Altb

∑
i

wi(b)
(νi − λi)

2

2σ2
≥ inf

λ∈Altb

∑
i

wi(b)
(bi − λi)

2

2σ2

and by Lemma D.8,
T (B∞(µ, ε)) = max

ν∈B∞(µ,ε)
T ⋆(ν) .

29

	Introduction
	Fixed Confidence Pure Exploration
	Related Work
	Contributions

	Lower Bound on the Round Complexity
	A General Algorithm
	Stopping Rule
	Known Confidence Set
	The Algorithm
	Batch and Sample Complexities
	Best Arm Identification and Thresholding Bandits

	Perspectives
	Experiments on the BAI setting
	Proofs of the lower bounds
	Preliminary lemmas
	The lower bound in the general cases
	The top-k and BAI settings
	The thresholding setting

	Concentration and threshold for the stopping rule
	Proof of the concentration theorem
	Upper bounds on (t,) and on r

	Proofs related to the algorithm
	Additional Lemmas
	Proof of Lemma 3.4
	Proof of Lemma 3.7
	Proof of the batch and complexity upper bounds
	Implication between the two assumptions
	Proofs for Top-K and thresholding bandits

