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In this paper, we consider an unconstrained �2,q minimization for group sparse 
signal recovery. For this nonconvex and non-Lipschitz problem, we mainly focus 
on its local minimizers. Firstly, a uniform lower bound for nonzero groups of the 
local minimizers is presented. Secondly, under group restricted isometry property 
(GRIP) assumption, we provide a global recovery bound for points in a sublevel 
set of the objective function, as well as a local recovery bound for local minimizers. 
Thirdly, a sufficient condition for a stationary point to be a local minimizer is 
shown. Fourthly, inspired by the lower bound theory which indicates the sparsity of 
solutions, we propose a new efficient iteratively reweighted least square (IRLS) with 
thresholding algorithm, with nonexpansiveness of the group support set. Compared 
with the classical IRLS with smoothing algorithm, our algorithm performs better 
in both theoretical global convergence guarantee and numerical computation.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Different from element sparse data in conventional sense, a wide class of data, like segments and features, 
usually have natural grouping structures. Recently, group sparsity reconstruction has received a great deal 
of attention. The target is to restore xo ∈ RN , which has few nonzero groups rather than elements, from a 
noisy observation d ∈ RM :

d = Axo + ξ, (1)

where A ∈ RM×N (M < N) is the measurement matrix, and ξ ∈ RM is the measurement error like the 
most common Gaussian noise.

Using convex �1 minimization to recover sparse vectors has lasted for a long history [1–3]. Therefore, one 
natural idea is to consider the group version of �1 minimization to obtain group sparse vectors, i.e., Group 
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Lasso (�2,1) minimization. Group Lasso was firstly introduced for grouped variable selection in statistics 
in 2006 [4], and then was applied to other areas like DNA microarrays [5,6], dynamic MRI [7], source 
localization [8], color imaging [9] and so on. However, these �1 based minimization methods suffer from 
some frustrations in practical applications, and the solutions obtained are much less sparse than expected 
[10–14].

Instead, as shown in [15,16], the group sparsity of x can be better measured by nonconvex �p,q “norm”, 
defined as

‖x‖p,q :=
(

n∑
i=1

‖xGi
‖qp

) 1
q

, p ≥ 1, 0 < q < 1,

where xGi
is the ith group of x (see Section 2 for more details about group structure). Clearly, when all group 

sizes equal 1, ‖x‖p,q degenerates to be ‖x‖qq =
∑N

j=1 |xj |q. Meanwhile, since ‖x‖2,q regularization performs 
better than a general ‖x‖p,q in most cases [15,16], we focus on the following �2,q regularized minimization 
in this paper:

min
x∈RN

F (x) := ‖Ax− d‖2 + α‖x‖q2,q, 0 < q < 1, (2)

where α > 0 is the regularization parameter.
Generally speaking, the minimizers of F (x) are not xo in (1), thus it is important to estimate the distance 

between them. There is quite a lot of literature on the recovery of conventional (non-group) �q minimization. 
Their results were established under some mild conditions on A, such as the restricted isometry property 
(RIP, [17–22,14,23]) and restricted eigenvalue condition (REC, [24]). For group sparse minimization, see 
[25–27,15]. By generalizing RIP to group sparse case, namely GRIP, [25,26] showed that the convex Group 
Lasso is guaranteed to exactly recover group sparse signals. [27] also established the robust recovery for 
constrained �2,q model under GRIP conditions. For the recovery property of unconstrained �2,q minimization, 
[15] is the only work, as far as we know. Their local and global recovery bounds were established based 
on group restricted eigenvalue condition (GREC). However, the local recovery result in [15] is given under 
some assumptions like the activeness and group support conditions. To the best of our knowledge, a general 
form of local recovery bound for unconstrained �2,q problem is still undiscovered.

It is well known that the nonsmooth and non-Lipschitz �2,q minimization is a great challenge in algorithm 
design and convergence analysis. Some existing solvers include majorization minimization approach in [16], 
proximal gradient method with explicit subsolvers for q = 1/2, 2/3 in [15], a support-shrinking iterative 
reweighted �1 (IRL1) algorithm with two loops of iterations in [28] extended from the references in it. 
Especially, motivated by the great success of the iteratively reweighted least square (IRLS) method for 
conventional �q minimization problem (which smoothes the objective function at first and then solves a 
series of linear systems) [11,29–31], [27] generalized this IRLS with smoothing algorithm to the unconstrained 
�2,q minimization. Although this IRLS algorithm is simple to implement and performs well in numerical 
experiments, the sequence generated is shown to have only convergent subsequences.

In this work, starting from a lower bound theory of local minimizers of F (x), we show both local and 
global recovery bounds of F (x) and propose an effective and globally convergent IRLS with thresholding 
algorithm. We also provide a sufficient condition for a stationary point of F (x) to be a local minimizer. Our 
main contributions are summarized below.

• We show a uniform lower bound for nonzero groups of local minimizers of F (x); see Theorem 3.1. Com-
pared with the smoothed �2,q regularized model, the solutions of F (x) are sharper; see Proposition 6.1.

• Under the group restricted isometry property (GRIP) [26] assumption, we provide a recovery bound for 
each point x satisfying F (x) ≤ F (xo). Meanwhile, if x is also a local minimizer with the columns of A
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corresponding to its support linearly independent, a local recovery bound is derived by the means of the 
lower bound theory in Theorem 3.1; see Theorem 4.3. The assumptions we need are weaker than those 
for �2,1 model, which implies the better group sparse recovery ability of the nonconvex �2,q model.

• A sufficient condition for a stationary point of F (x) to be a local minimizer is proven; see Theorem 5.3. 
Since most algorithms for this problem can only converge to stationary points, this helps to identify 
whether an algorithm solution is a local minimizer.

• Motivated by our lower bound theory, we propose a new IRLS with thresholding algorithm for F (x); see 
Algorithm 2. In each iteration, the groups whose norms are less than a threshold are truncated, and then 
fixed to be 0 in the following steps. Compared with the classical IRLS with smoothing algorithm, our 
algorithm is superior in both global convergence and computational efficiency. An error bound analysis 
of our algorithm is also given.

The rest of this paper is organized as follows. In Section 2, there are some basic notations and prelimi-
naries. In Section 3, we show a uniform lower bound for nonzero groups of local minimizers. In Section 4, 
both local and global recovery bounds for F (x) are established. In Section 5, we aim at the relationship 
between stationary points and local minimizers. In Section 6, the focus is on two algorithms. Numerical 
experiments are discussed in Section 7. Conclusions are presented in Section 8.

2. Notations and preliminaries

In this paper, we use x = (xT
G1
, . . . , xT

Gn
)T ∈ RN , i.e.,

x = (x1, · · · , xN1︸ ︷︷ ︸
xG1

, xN1+1, · · · , xN1+N2︸ ︷︷ ︸
xG2

, · · · , xN−Nn+1, · · · , xN︸ ︷︷ ︸
xGn

)T , (3)

to represent a predefined group structure of x. Here, xGi
denotes the ith group of x where Gi is an index 

subset of {1, 2, . . . , n}, Ni is the group size of the ith group, and n is the group number. For a group xGi
, 

xGi
= 0 means xj = 0 for all j ∈ Gi. There is no overlapping between any two groups, i.e., Gi ∩ Gk = ∅ for 

any i �= k. Obviously, if Ni = 1 for all i, the group structured signal degenerates to be a conventional signal.
Denote I = {1, 2, . . . , n}, J = {1, 2, . . . , N}. For a vector x ∈ RN , we denote the (group) support set of 

x by

supp(x) := {j ∈ J : xj �= 0}, gsupp(x) := {i ∈ I : xGi
�= 0}. (4)

For any S ⊆ J , let Sc ⊆ J be the complementary set of S. For any G ⊆ I, let Gc ⊆ I be the complementary 
set of G. We denote x

S
as the subvector of x indexed by S, and denote AS as the submatrix of A consisting 

of columns indexed by S. For S ⊆ J , we construct x
S
∈ RN as an extension of x

S
:

(x
S
)S = x

S
, (x

S
)Sc = 0. (5)

Without loss of generality, we use ‖ · ‖ to represent �2 norm, i.e., ‖ · ‖ = ‖ · ‖2. Note that ‖x‖0 denotes the 
number of the nonzero entries in x. In particular, for x ∈ RN , ‖x‖2,2 = ‖x‖, ‖x‖2,0 = #{i ∈ I : xGi

�= 0}, 
and ‖x‖2,∞ = maxi∈I ‖xGi

‖.
We denote

σt,q′(x) = min ‖x− y‖q
′

2,q′ , where q′ > 0. (6)

‖y‖2,0≤t
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If σt,q′(x) is small, we say x has a very small tail. Then, if S0 ⊂ J where S0 is the indices over the first t
largest groups of x, we have σt,q′(x) = ‖x − x

S0
‖q

′

2,q′ . Here, the first t largest groups mean the first t groups 
after a rearrangement of the vector with decreasing group �2 norms.

Lemma 2.1. ([32]) Let 0 < s < s′ ≤ ∞. Then, for all x ∈ RN ,

‖x‖s′ ≤ ‖x‖s ≤ N
1
s− 1

s′ ‖x‖s′ . (7)

Moreover, for x ∈ RN with group structure in (3), we have

‖x‖2,s′ ≤ ‖x‖2,s ≤ n
1
s− 1

s′ ‖x‖2,s′ . (8)

We then introduce the concept of RIP.

Definition 2.2. (RIP, or, restricted isometry property, [17]) For t = 1, 2, . . . , N , the restricted isometry 
constant δt ∈ (0, 1) of matrix A is the smallest number such that

(1 − δt)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δt)‖x‖2, ∀x ∈ RN satisfying ‖x‖0 ≤ t. (9)

For simplification, we say matrix A satisfies RIP of order t with constant δt.

The matrix 2-norm is denoted by ‖A‖2, which equals the largest singular value of A. We denote

�(A) := min
{
‖Ax‖2

‖x‖2 : x ∈ RN ,det
(
AT

supp(x)Asupp(x)

)
�= 0

}
> 0. (10)

Next, we present the generalization of RIP in group sparse setting.

Definition 2.3. (GRIP, or, group restricted isometry property, [26]) For integer t = 1, 2, . . . , n, the group 
restricted isometry constant δ′t ∈ (0, 1) of matrix A over G = {G1, . . . , Gn} is the smallest number such that

(1 − δ′t)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δ′t)‖x‖2, ∀x ∈ RN satisfying ‖x‖2,0 ≤ t. (11)

For simplification, we say matrix A satisfies GRIP of order t over G with constant δ′t.

As shown in [26], the GRIP constant is typically smaller than the standard RIP constant. Furthermore, 
if A is a random matrix, it satisfies GRIP almost surely.

Lemma 2.4. Given A ∈ RM×N , we have

|〈Ax,Ay〉| ≤ δ′2t(A)‖x‖‖y‖, ∀x, y ∈ RN satisfying ‖x‖2,0 ≤ t, ‖y‖2,0 ≤ t. (12)

Proof. It follows from

‖A(x + y)‖2 ≤ (1 + δ′2t(A))‖x + y‖2, −‖A(x− y)‖2 ≤ −(1 − δ′2t(A))‖x− y‖2. �
A point whose subdifferential contains 0 is called a stationary point. Moreover, the well known Fer-

mat’s rule remains barely unchanged, i.e., if x is a local minimizer of a function φ, then 0 ∈ ∂φ(x). The 
subdifferential of F (x) at x is given by ∀ j ∈ J with j ∈ Gi,
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(∂F (x))j =
{
{2AT

j (Ax− d) + αq‖xGi
‖q−2xj}, if xGi

�= 0;

(−∞,+∞), otherwise.

See Appendix 9.1 or Section 3.1 of [28] for more details. Thus, if x is a local minimizer of F (x), we have

2AT
S
(Ax− d) + α

[
q‖xGi

‖q−2xGi

]
i∈G = 0, (13)

where G = gsupp(x), S = ∪i∈GGi.

3. Lower bound theory

In this section, we aim at the lower bound theory about the local minimizers of F (x), i.e., there is a 
uniform lower bound for nonzero groups of any local minimizer of F (x).

Our lower bound theory applies to a general �p,q(p ≥ 1) regularized minimization:

min
x∈RN

F p(x) := ‖Ax− d‖2 + α‖x‖qp,q, where α > 0, 0 < q < 1. (14)

Note that F (x) defined in our paper equals F 2(x) here.

Theorem 3.1. (Lower bound theory) For any d ∈ RM , if F p(x) has a local minimum at x∗, then for all 
i ∈ I,

x∗
Gi

�= 0, =⇒

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
‖x∗

Gi
‖p ≥

(
αq(1 − q)

2‖A‖2
2

) 1
2−q

, when 1 ≤ p ≤ 2,

‖x∗
Gi
‖p ≥

(
αq(1 − q)

2N1−2/p
i ‖A‖2

2

) 1
2−q

,when p > 2.

(15)

Proof. Denote S = supp(x∗). Since x∗ is a local minimizer of F p(x), x∗ is also a local minimizer of the 
following problem:

min
x∈RN, x

Sc =0
F p(x).

It follows that y∗ := x∗
S

with 
(
(y∗Ḡ1

)T , . . . , (y∗Ḡn̄
)T
)T

as a group formula of y∗, i.e., ∀ i = 1, 2, . . . , ̄n,

∃ l ∈ I, such that y∗Ḡi
= x∗

Gl∩S ,

is a local minimizer of the following problem:

min
y∈RN̄

H(y) := ‖A
S
y − d‖2 + α

n̄∑
i=1

‖yḠi
‖qp,

where N̄ = #S, N̄i = #Ḡi. Then, it is sufficient to find the lower bound for each y∗Ḡi
.

We can see that H(y) is smooth at y∗, and its first order derivative at y∗ is

2AT
S
(A

S
y∗ − d) + α

⎛⎜⎜⎝
q‖y∗Ḡ1

‖q−p
p

[
|y∗j |p−1sgn(y∗j )

]
j∈Ḡ1

...
q‖y∗ ‖q−p

[
|y∗|p−1sgn(y∗)

]
⎞⎟⎟⎠ = 0.
Ḡn̄
p j j j∈Ḡn̄
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To obtain its second order derivative at y∗, for all i = 1, 2, . . . , ̄n, we define

φj(y) = q‖yḠi
‖q−p
p |yj |p−1sgn(yj), if j ∈ Ḡi.

Take k ∈ Ḡi. If k �= j, we have

∂φj(y)
∂yk

= q(q − p)‖yḠi
‖q−2p
p · |yk|p−1sgn(yk) · |yj |p−1sgn(yj).

If k = j, we have when p > 1,

∂φj(y)
∂yj

= q(q − p)‖yḠi
‖q−2p
p · |yj |p−1sgn(yj) · |yj |p−1sgn(yj) + q(p− 1)‖yḠi

‖q−p
p |yj |p−2;

when p = 1,

∂φj(y)
∂yj

= q(q − p)‖yḠi
‖q−2p
p · |yj |p−1sgn(yj) · |yj |p−1sgn(yj).

Thus, the second derivative of H at y∗ is

∇2H(y∗) = 2AT
S
A

S
+ α

⎛⎜⎝M1 + D1 0 0

0
. . . 0

0 0 M n̄ + Dn̄

⎞⎟⎠ � 0, (16)

where M i, Di ∈ RN̄i×N̄i ,

M i = q(q − p)‖y∗Ḡi
‖q−2p
p μiμ

T
i , Di = q(p− 1)‖y∗Ḡi

‖q−p
p diag(di),

and μi, di ∈ RN̄i ,

μi =

⎛⎜⎜⎝
|(y∗Ḡi

)1|p−1sgn( (y∗Ḡi
)1 )

...
|(y∗Ḡi

)N̄i
|p−1sgn((y∗Ḡi

) N̄i
)

⎞⎟⎟⎠ , di =

⎛⎜⎜⎝
|(y∗Ḡi

)1|p−2

...
|(y∗Ḡi

)N̄i
|p−2

⎞⎟⎟⎠ .

Note that Di = 0 when p = 1.
Let i ∈ {1, 2, . . . n̄}. We define z ∈ RN̄ as

zḠl
=

⎧⎨⎩y∗Ḡi
,if l = i,

0, otherwise.

Therefore,

0 ≤ zT∇2H(y∗)z

= 2‖A
S
z‖2 + αq(q − p)‖y∗Ḡi

‖q−2p
p ((y∗Ḡi

)Tμi)2 + αq(p− 1)‖y∗Ḡi
‖q−p
p (y∗Ḡi

)Tdiag(di)y∗Ḡi

= 2‖A
S
z‖2 + αq(q − p)‖y∗Ḡi

‖q−2p
p ‖y∗Ḡi

‖2p
p + αq(p− 1)‖y∗Ḡi

‖q−p
p ‖y∗Ḡi

‖pp
≤ 2‖A ‖2‖y∗ ‖2 + αq(q − 1)‖y∗ ‖q ,
S 2 Ḡi Ḡi p
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followed by,

αq(1 − q)‖y∗Ḡi
‖qp ≤ 2‖A

S
‖2
2‖y∗Ḡi

‖2.

If p ≤ 2, then ‖y∗Ḡi
‖2 ≤ ‖y∗Ḡi

‖p by (7). Thus, combining it with ‖A
S
‖2 ≤ ‖A‖2, we can deduce

‖y∗Ḡi
‖p ≥

(
αq(1 − q)

2‖A‖2
2

) 1
2−q

.

If p > 2, then ‖y∗Ḡi
‖2 ≤ N̄

1
2− 1

p

i ‖y∗Ḡi
‖p by (7), implying

‖y∗Ḡi
‖p ≥

⎛⎝ αq(1 − q)

2N̄1− 2
p

i ‖A‖2
2

⎞⎠
1

2−q

.

Finally, (15) is obtained by using y∗ = x∗
supp(x∗). �

The corresponding result for the non-group case

f(x) := ‖Ax− d‖2 + α‖x‖qq, where α > 0, 0 < q < 1, (17)

was already given in Theorem 2.1 of [33]. However, due to the group structure of x in F (x), it is not trivial 
to generalize their result here.

4. The recovery bound

This section aims at conditions on the exponent q and matrix A to guarantee the local and global recovery 
for F (x), e.g., to estimate the distance between the local (global) minimizers of F (x) and the target signal 
xo in (1).

Instead of the unconstrained �2,q group sparse minimization, most existing analysis focuses on recovering 
element t sparse xo via constrained �q minimization. We therefore mainly review some results for �q mini-
mization. Among the first is to ensure the uniqueness of the solution. It is easy to verify that the solution, 
at sparsity level t, of the linear system Ax = d is unique provided that

ρ2t(A) := min
‖x‖0≤2t

xTATAx

‖x‖2 > 0; (18)

see [15] for more details. However, it is not enough to recover xo from �q minimization. Note that ρ2t > 0 is 
satisfied if A has RIP of order 2t with constant δ2t ∈ (0, 1) as defined in Definition 2.2. Most of the recovery 
analysis has been built under different assumptions on RIP condition. For instance, δt(A) +δ2t(A) +δ3t(A) <
1 in [19], δ3t(A) +3δ4t(A) < 2 in [20], and δ2t(A) < 0.3333, 0.4142, 0.4531, 0.4731 in [21,22,14,23] respectively. 
Many random matrices with i.i.d. entries satisfy those requirements, but when δ2t → 1, all of these conditions 
fail. To handle this problem, Sun proved that the exponent q can be chosen to be about 0.6796 × (1 − δ2t)
so that xo can be recovered from constrained �q minimization in [18]. For �2,q group sparse optimization, 
[27] also established the robust recovery for constrained �2,q model by using GRIP defined in Definition 2.3.

Inspired by the work above, we propose a recovery bound theory for F (x) under GRIP assumption. 
Especially, by the means of the lower bound theory, we derive a recovery bound for the local minimizers.
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We adopt a continuous function b(q, C) with (q, C) ∈ (0, 1) × (0, 1) as [18]:

b(q, C) := C−1 inf
0<z<1

max
{

1 + zC

(1 + zqCq)1/q
, sup√

2(1−z)C/2≤y≤1

2y
(1 + 2−q/2y2+q)1/q

, (19)

sup√
2(1−z)C/2≤y≤1

3y
(1 + y)1/q

, sup
1≤y

2y
(1 + y)1/q

}
.

Lemma 4.1. ([18]) Let 0 < q < 1, s ≥ 1 be a positive integer, and let {zj}j≥1 be a finite decreasing sequence 
of nonnegative numbers with

∑
k≥1

(
s∑

i=1
z2
ks+i

) 1
2

≥ C

(
s∑

i=1
z2
i

) 1
2

,

for some C ∈ (0, 1). Then,

∑
k≥1

(
s∑

i=1
z2
ks+i

) 1
2

≤ Cb(q, C)s
1
2− 1

q

⎛⎝∑
j≥1

zqj

⎞⎠
1
q

.

Lemma 4.2. Let G ⊂ I, T = ∪i∈GGi ⊆ J . Then, for any x, y ∈ RN , we have

‖(x− y)
Tc‖q2,q ≤ ‖(x− y)

T
‖q2,q + ( ‖x‖q2,q − ‖y‖q2,q + 2‖y

Tc‖q2,q ). (20)

Proof. It is due to

‖(x− y)
Tc ‖q2,q =

∑
i/∈G

‖(x− y)Gi
‖q

≤
∑
i/∈G

(‖xGi
‖ + ‖yGi

‖)q

≤ ‖x
Tc ‖q2,q + ‖y

Tc‖q2,q
= ‖x‖q2,q − ‖x

T
‖q2,q − ‖y‖q2,q + ‖y

T
‖q2,q + 2‖y

Tc ‖q2,q
≤ ‖(x− y)

T
‖q2,q + (‖x‖q2,q − ‖y‖q2,q + 2‖y

Tc ‖q2,q). �
With preparations above, we can show the following result.

Theorem 4.3. Let t be an integer with 2t ≤ n, and d = Axo + ξ with ‖ξ‖ = ε. Then the following statements 
hold.
(i) (global recovery bound) Assume A satisfies GRIP of order 2t with δ′2t ∈ (0, 1) and

(q, δ′2t) ∈ {(q, δ′2t) : Cδ′ < 1} ∪ {(q, δ′2t) : Cδ′ > 1, b(q, 1/Cδ′) < 1}, (21)

where Cδ′ = (1+
√

2)δ′2t
2(1−δ′2t)

. Then for all x ∈ RN satisfying F (x) ≤ F (xo), we have

‖x− xo‖q2,q ≤ c1
ε2

α
+ c2σt,q(xo) + c3t

1− q
2 εq + c4t

1− q
2F (xo)

q
2 , (22)

where c1, c2, c3, c4 are positive constants depending on A, q.



X. Feng et al. / Appl. Comput. Harmon. Anal. 49 (2020) 381–414 389
(ii) (local recovery bound) Let x be a local minimizer of F (x). Under the assumptions in (i) and that the 
columns of AT

supp(x) are linearly independent, we have

‖x− xo‖q2,q ≤ c1
ε2

α
+ c2σt,q(xo) + c3t

1− q
2 εq + c5t

1− q
2n

q
2α

q
2−q ; (23)

or, under the assumptions that the columns of Asupp(x) are linearly independent and supp(xo) ⊆ supp(x), 
we have

‖x− xo‖ ≤ c′1ε + c′2α
1

2−q , (24)

where c5, c′1, c
′
2 are positive constants depending on A, q.

Proof. (i). For better presentation, we set η := x − xo,

G := {indices of the first t largest groups of xo} ⊂ I, T =
⋃
i∈G

Gi ⊂ J ,

and partition the complement of T as T c = T1 ∪ T2 ∪ · · · , where

G1 := {indices of the t largest groups of η in T c } ⊂ I, T1 =
⋃

i∈G1

Gi ⊂ J , (25)

G2 := {indices of the next t largest groups of η in T c } ⊂ I, T2 =
⋃

i∈G2

Gi ⊂ J ,

...

By Lemma 4.2, we obtain

‖η
Tc ‖q2,q ≤ ‖η

T
‖q2,q + ( ‖x‖q2,q − ‖xo‖q2,q + 2‖xo

Tc ‖q2,q ).

It follows from F (x) ≤ F (xo) that

‖x‖q2,q ≤ 1
α
F (x) ≤ 1

α
F (xo) = ε2

α
+ ‖xo‖q2,q.

Thus, we get

‖η
Tc‖q2,q ≤ ‖η

T
‖q2,q + ε2

α
+ 2σt,q(xo), (26)

and

‖η‖q2,q = ‖η
T
‖q2,q + ‖η

Tc ‖q2,q ≤ 2‖η
T
‖q2,q + ε2

α
+ 2σt,q(xo). (27)

Step 1: find a preliminary bound for ‖η
T
‖2,q.

We first observe that

‖η
T
‖2 + ‖η

T1
‖2 = ‖η

T
+ η

T1
‖2 ≤ 1

(1 − δ′2t)
‖A(η

T
+ η

T1
)‖2

= 1
′
〈
A(η − η

T2
− η

T3
− · · · ), A(η

T
+ η

T1
)
〉

(1 − δ2t)
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= 1
(1 − δ′2t)

{
〈Aη,A(η

T
+ η

T1
)〉 +

∑
k≥2

[
〈A(−η

Tk
), Aη

T
〉 + 〈A(−η

Tk
), A(η

T1
)〉
]}

[ Equ. (12) ] ≤ 1
(1 − δ′2t)

{
‖Aη‖ · ‖A(η

T
+ η

T1
)‖ + δ′2t

∑
k≥2

[
‖η

Tk
‖ · ‖η

T
‖ + ‖η

Tk
‖ · ‖η

T1
‖
] }

≤ 1
(1 − δ′2t)

{
‖Aη‖ ·

√
1 + δ′2t‖ηT

+ η
T1
‖ + δ′2t

∑
k≥2

‖η
Tk
‖ · (‖η

T
‖ + ‖η

T1
‖)
}

≤

⎛⎝ √
1 + δ′2t

(1 − δ′2t)
‖Aη‖ + δ′2t

(1 − δ′2t)
∑
k≥2

‖η
Tk
‖

⎞⎠ (‖η
T
‖ + ‖η

T1
‖),

where [ Equ. (12) ] denotes Equation (12) as the reason for next step. We use this reasoning notation 
throughout the paper, when needed. Denote

ζ :=
√

1 + δ′2t
1 − δ′2t

‖Aη‖, β := δ′2t
1 − δ′2t

, Σ :=
∑
k≥2

‖η
Tk
‖.

Then we have [
‖η

T
‖ − ζ + βΣ

2

]2

+
[
‖η

T1
‖ − ζ + βΣ

2

]2

≤ (ζ + βΣ)2

2 ,

which implies

‖η
T
‖ ≤ 1 +

√
2

2 (ζ + βΣ), and ‖η
T1
‖ ≤ 1 +

√
2

2 (ζ + βΣ). (28)

It follows from (8) and q < 2 that

‖η
T
‖2,q ≤ t

1
q− 1

2 ‖η
T
‖2 ≤ 1 +

√
2

2 t
1
q− 1

2 ζ + Cδ′t
1
q− 1

2 Σ. (29)

Step 2: find the bound of Σ in three cases.
Take k ≥ 1. Then, by (25), we have ∀ i ∈ Gk, ‖ηGi

‖ ≥ max{‖ηGl
‖, l ∈ Gk+1} = ‖η

Tk+1
‖2,∞, which 

indicates

‖η
Tk
‖2,q =

( ∑
i∈Gk

‖ηGi
‖q
) 1

q ≥ t
1
q ‖η

Tk+1
‖2,∞

[Equ. (8)]
≥ t

1
q− 1

2 ‖η
Tk+1

‖2,2 = t
1
q− 1

2 ‖η
Tk+1

‖2.

Therefore,

Σ =
∑
k≥2

‖η
Tk
‖ ≤ t

1
2− 1

q

∑
k≥1

‖η
Tk
‖2,q

[Equ. (7)]
≤ t

1
2− 1

q

(∑
k≥1

‖η
Tk
‖q2,q

) 1
q = t

1
2− 1

q ‖η
Tc‖2,q. (30)

The bound for Σ in (30) always holds. However, when Cδ′ > 1, we have a better bound. Since b is a 
continuous function and b(q, 1/Cδ′) < 1, there must exists e > 0 such that

0 <
1

(1 + e)Cδ′
< 1, and b

(
q,

1
(1 + e)Cδ′

)
< 1.

If ζ ≥ eβΣ, then
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Σ ≤ ζ

eβ
. (31)

If ζ < eβΣ, by (28), one has

‖η
T1
‖ ≤ (1 + e) (1 +

√
2)δ′2t

2(1 − δ′2t)
Σ, i.e., Σ =

∑
k≥2

⎛⎝∑
i∈Gk

‖ηGi
‖2

⎞⎠
1
2

≥ 1
(1 + e)Cδ′

⎛⎝∑
i∈G1

‖ηGi
‖2

⎞⎠
1
2

.

Recall Lemma 4.1. It implies

Σ ≤ 1
(1 + e)Cδ′

b
(
q,

1
(1 + e)Cδ′

)
t

1
2− 1

q ‖η
Tc‖2,q. (32)

Now we have obtained the bound (30) (31) (32) for Σ. Thus, we are ready to give the bound for ‖η‖q2,q, 
except for the bound of ζ left in step 4.

Step 3(a): find the bound of ‖η‖q2,q when Cδ′ < 1.
Since Cδ′ < 1, combining (29) and (30) gives

‖η
T
‖2,q ≤ 1 +

√
2

2 t
1
q− 1

2 ζ + Cδ′‖ηTc ‖2,q. (33)

Substituting (26) into it, we have

‖η
T
‖q2,q ≤

(
1 +

√
2

2

)q

t1−
q
2 ζq + (Cδ′)q

(
‖η

T
‖q2,q + ε2

α
+ 2σt,q(xo)

)
. (34)

Therefore, we obtain

‖η
T
‖q2,q ≤ 1

1 − γ

(
1 +

√
2

2

)q

t1−
q
2 ζq + γ

1 − γ

(
ε2

α
+ 2σt,q(xo)

)
,

where γ := (Cδ′)q < 1. Finally, plugging it into (27) gives

‖η‖q2,q ≤ 1 + γ

1 − γ
· ε

2

α
+ 21 + γ

1 − γ
σt,q(xo) + 2

1 − γ

(
1 +

√
2

2

)q

t1−
q
2 ζq. (35)

Step 3(b): find the bound of ‖η‖q2,q when Cδ′ > 1 and ζ ≥ eβΣ.
Under the assumption, combining (29) and (31) yields

‖η
T
‖2,q ≤ t

1
q− 1

2 ‖η
T
‖2 ≤ 1 +

√
2

2

(
1 + 1

e

)
t

1
q− 1

2 ζ,

which indicates

‖η‖q2,q ≤ ε2

α
+ 2σt,q(xo) + 2

(
1 +

√
2

2

)q (
1 + 1

e

)q

t1−
q
2 ζq. (36)

Step 3(c): find the bound of ‖η‖q2,q when Cδ′ > 1 and ζ < eβΣ.
Under the assumption, combining (29) and (32) yields

‖η
T
‖2,q ≤ 1 +

√
2
t

1
q− 1

2 ζ + 1
b
(
q,

1 )
‖η

Tc‖2,q.
2 1 + e (1 + e)Cδ′



392 X. Feng et al. / Appl. Comput. Harmon. Anal. 49 (2020) 381–414
Substituting (26) into it gives

‖η
T
‖q2,q ≤

(
1 +

√
2

2

)q

t1−
q
2 ζq + 1

(1 + e)q b
(
q,

1
(1 + e)Cδ′

)q (
‖η

T
‖q2,q + ε2

α
+ 2σt,q(xo)

)
, (37)

and thus,

‖η
T
‖q2,q ≤ 1

1 − γ′

(
1 +

√
2

2

)q

t1−
q
2 ζq + γ′

1 − γ′

(
ε2

α
+ 2σt,q(xo)

)
,

where γ′ := 1
(1+e)q b

(
q, 1

(1+e)Cδ′

)q
< 1. Finally,

‖η‖q2,q ≤ 1 + γ′

1 − γ′ ·
ε2

α
+ 21 + γ′

1 − γ′σt,q(xo) + 2
1 − γ′

(
1 +

√
2

2

)q

t1−
q
2 ζq. (38)

Step 4: find the bound of ζq.
Note that d = Axo + ξ. Then,

‖Ax− d‖2 = ‖Ax− (Axo + ξ)‖2 = ‖Aη − ξ‖2 ≥ (‖Aη‖ − ε)2,

implying

‖Aη‖ ≤ ε + ‖Ax− d‖.

Since F (x) ≤ F (xo), we have F (xo) ≥ F (x) ≥ ‖Ax − d‖2, and

‖Aη‖ ≤ ε +
√

F (xo).

Therefore,

ζq =
(√

1 + δ′2t
1 − δ′2t

‖Aη‖
)q

≤
(√

1 + δ′2t
1 − δ′2t

)q (
εq + F (xo)

q
2

)
. (39)

Step 5: conclusion.
From step 3 and 4, one can see that if F (x) ≤ F (xo), there exist c1, c2, c3, c4 > 0 such that

‖η‖q2,q ≤ c1
ε2

α
+ c2σt,q(xo) + c3t

1− q
2 εq + c4t

1− q
2F (xo)

q
2 .

This completes the proof of (i).
(ii) Let x be a local minimizer. Denote G = gsupp(x) and S = supp(x). Since x is a local minimizer, it 
satisfies the first order necessary condition:

2AT
S
(A

S
x

S
− d) + αw

S
= 0,

where wj = q‖xGi
‖q−2xj for any j ∈ S ∩ Gi, i ∈ G.

Assume that the columns of AT
S are linearly independent and the assumptions in (i) hold. Like �(A) in 

(10), we introduce

�′(A) := min
{
‖AT

S′y‖2

2 : y ∈ RM , S′ ⊆ J such that det
(
AS′AT

S′
)
�= 0

}
> 0.
‖y‖
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Back to the step 4 in the proof of (i), we have,

�′(A)‖(Ax− d)‖2 ≤ ‖AT
S (Ax− d)‖2

= α

2 ‖wS
‖

= α2q2

4
∑

xGi
�=0

‖xGi
‖2q−2

[ Theorem 3.1 ] ≤ α2q2n

4

(
αq(1 − q)

2‖A‖2
2

) 2q−2
2−q

.

It then follows that,

‖Aη‖ ≤ ε + q

2
√
�′(A)

(
q(1 − q)
2‖A‖2

2

) q−1
2−q

n
1
2α

1
2−q ,

and

ζq ≤
(√

1 + δ′2t
1 − δ′2t

)q [
εq +

(
q

2
√
�′(A)

(q(1 − q)
2‖A‖2

2

) q−1
2−q

)q

n
q
2α

q
2−q

]
. (40)

Similar to the proof of (i), there exists c5 > 0 such that

‖η‖q2,q ≤ c1
ε2

α
+ c2σt,q(xo) + c3t

1− q
2 εq + c5t

1− q
2n

q
2α

q
2−q .

Now, we assume that the columns of AS are linearly independent and supp(xo) ⊆ supp(x). Since 
supp(xo) ⊆ S, we have d = A

S
xo

S
+ ξ and

2AT
S
(A

S
x

S
−A

S
xo

S
− ξ) + αw

S
= 0.

It follows that

x
S
− xo

S
= (AT

S
A

S
)−1AT

S
ξ − α

2 (AT
S
A

S
)−1w

S
.

Thus,

‖x
S
− xo

S
‖ ≤ ‖(AT

S
A

S
)−1AT

S
ξ‖ + α

2 ‖(A
T
S
A

S
)−1w

S
‖

≤ ‖(AT
S
A

S
)−1AT

S
‖ · ‖ξ‖ + α

2 ‖(A
T
S
A

S
)−1‖ · ‖w

S
‖

≤ ‖A‖
�(A)ε + αq

2�(A)n
1
2

(
αq(1 − q)

2‖A‖2
2

) q−1
2−q

.

Therefore, there exist c′1, c′2 > 0 such that

‖x− xo‖ ≤ c′1ε + c′2α
1

2−q .

�
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Fig. 1. The optimal q∗ to minimize the recovery bound R(q;α) in (41) in terms of α under the setting of Remark 4.4.

Remark 4.4. Given A ∈ RM×N and noise level ε. We can see that the recovery bound, the right hand of 
(23), is related to the regularization parameter α, and q. Then, we define the recovery bound in (23) as a 
function in terms of α and q:

R(α, q) := c1(q)
ε2

α
+ c2(q)σt,q(xo) + c3(q)t1−

q
2 εq + c5(q)t1−

q
2n

q
2α

q
2−q , (41)

where α > 0, q ∈ (0, 1). For any given q, we can obtain that there exists an optimal α∗ such that

α∗ = arg min
α

R(α; q) =
(

(2 − q)c1(q)ε2

qc5(q)t1−
q
2n

q
2

) 2−q
2

,

since ∂αR(α; q) < 0 when α → 0; ∂αR(α; q) > 0 when α → ∞; and ∂αR(α; q) = 0 has only one solution. 
However, for any given α, an optimal q∗ to minimize R(q; α) is hard to obtain. Thus, we show the optimal q∗

in terms of α for a specific example in Fig. 1. We set n = 120, t = 12, δ′2t = 0.4, ε = 0.1, �′(A) = 0.1, ‖A‖2 =
2, σt,q(xo) = 0.001. As can be seen, the optimal q∗ is decreasing in terms of α. When α is small, the optimal 
q∗ is nearly 1; as α approaches 0.5, the optimal q∗ drops rapidly to 0.46; then, q∗ continues to decrease. 
Unfortunately, we have to admit that due to many inequalities used in our proof, this recovery bound is 
hard to provide a good reference of optimal parameters; see also [15,18] and references therein.

Remark 4.5. In Theorem 4.3, Cδ′ < 1 means δ′2t < 0.4531. The feasible set of (q, δ′2t) ∈ (0, 1) × (0, 1)
satisfying (21) is depicted in Fig. 2. We can see that whatever δ′2t is, there exists some q ∈ (0, 1) such 
that any group sparse signal can be recovered approximately from its noisy measurements via solving �2,q
regularized minimization. This result is much stronger than the recovery theory for Group Lasso (�2,1) 
minimization in [26] which holds only when δ′2t < 0.414. Thus, the nonconvex minimization method can 
enhance performance of group sparsity recovery.

In the proof of the recovery bound of local minimizer, the lower bound theory of local minimizers helps 
to make ‖Aη‖ bounded by a term of parameter α, instead of function value F (xo) which is always unknown. 
Since the �2,q regularization is nonconvex, the global minimizer is barely obtained, and thus this local 
recovery bound is meaningful. Furthermore, we can see from the recovery bound that less noise and smaller 
sparsity level of xo both lead to a smaller distance between minimizers of F (x) and xo.

For an intuitive understanding of our recovery bound, we give the following corollary.
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Fig. 2. The feasible region of (q, δ′2t) ∈ (0, 1) × (0, 1) satisfying (21).

Corollary 4.6. (Recovery bound for noiseless data) Let t be an integer with 2t ≤ n and d = Axo with 
‖xo‖2,0 ≤ t. Assume that A satisfies GRIP of order 2t with δ′2t ∈ (0, 1) and (q, δ′2t) satisfies (21). Then for 
all x ∈ RN with F (x) ≤ F (xo), we have

‖x− xo‖q2,q ≤ c̃1t
1− q

2F (xo)
q
2 ,

where c̃1 is a positive constant depending on A, q. Furthermore, let x be a local minimizer of F (x). Under 
the same assumptions and that the columns of AT

supp(x) are linearly independent, we have

‖x− xo‖q2,q ≤ c̃2t
1− q

2n
q
2α

q
2−q ;

On the other hand, under the assumptions that the columns of Asupp(x) are linearly independent and 
supp(xo) ⊆ supp(x), we have

‖x− xo‖ ≤ c̃′α
1

2−q ,

where c̃2, ̃c′ are positive constants depending on A, q.

Remark 4.7. Since an optimal solution x∗ of F (x) is also a local minimizer of F (x) and satisfies F (x∗) ≤
F (xo), the recovery bound for global minimizers is obvious.

From Corollary 4.6, we can see that the sparse solution xo can be recovered near perfectly by the solutions 
of F (x), as long as α is sufficiently small. Applying Lemma 2.1, we have the order of our recovery bound

‖x− xo‖2 = O(α
2

2−q ), (42)

which equals the one under group restricted eigenvalue condition of A assumptions (see Theorem 9 in [15]). 
When q approaches 1, this bound approaches the classical recovery bound O(α2) for group Lasso (�2,1
minimization) under GRIP assumptions [34,35].

Remark 4.8. For non-group case f(x) in (17), the columns of Asupp(x∗) where x∗ is a local minimizer are 
linearly independent [33]. Thus, a local recovery bound, like (24), of f(x) can be easily obtained under 
supp(xo) ⊆ supp(x∗).
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5. From a stationary point to a local minimizer

Due to the nonconvexity of F (x), most algorithms can only find a stationary point of F (x). Although a 
local minimizer is a stationary point, the inverse is usually not true. Thus, it is important to find when a 
stationary point is a local minimizer.

We begin with an easy but instructive result.

Proposition 5.1. For any d ∈ RM , α > 0, A ∈ RM×N , 0 is a strict local minimizer of F (x).

Proof. It follows from

F (x) − F (0) = ‖Ax− d‖2 + α‖x‖q2,q − ‖d‖2

≥ −2dTAx + α‖x‖q2,q
=

∑
i∈I,xGi

�=0

[
α‖xGi

‖q − 2(dTA)Gi
xGi

]
≥

∑
i∈I,xGi

�=0

[
α‖xGi

‖q − 2‖(dTA)Gi
‖ · ‖xGi

‖
]

=
∑

i∈I,xGi
�=0

‖xGi
‖
(
α‖xGi

‖q−1 − 2‖(dTA)Gi
‖
)

> 0,

when x is sufficiently close to 0. �
Remark 5.2. In a similar way, we can prove that 0 is a trivial local minimizer of F p(x) defined in (14).

Since 0 is a trivial local minimizer of F (x), initialization with zero in algorithms is not suitable.

Theorem 5.3. Suppose that x∗ is a stationary point of F (x) with the columns of Asupp(x∗) linearly indepen-
dent. If for all i ∈ gsupp(x∗),

‖x∗
Gi
‖ >

(
αq(1 − q)

2�(A)

) 1
2−q

, (43)

then x∗ is a strict local minimizer of F (x).

Proof. We denote

G∗ := gsupp(x∗), S̃ :=
⋃

i∈G∗

Gi, ñ := #G∗, ỹ∗ := x∗
S̃
,

with 
(
(ỹ∗G̃1

)T , . . . , (ỹ∗G̃ñ
)T
)T

as a group structure of ỹ∗ ∈ RÑ , i.e., ∀ i = 1, 2, . . . , ̃n,

∃ l ∈ I, such that ỹ∗G̃i
= x∗

Gl
,

where Ñ = #S̃, Ñi = #G̃i. Note that 
(
(ỹ∗G̃1

)T , . . . , (ỹ∗G̃ñ
)T
)T

is different from 
(
(y∗Ḡ1

)T , . . . , (y∗Ḡn̄
)T
)T

in the 

proof of Theorem 3.1. Since x∗ is a stationary point of F (x), it is not hard to check that ỹ∗ is a stationary 
point of H̃(y) defined as
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H̃(y) := ‖A
S̃
y − d‖2 + α

ñ∑
i=1

‖yG̃i
‖q.

Similar to (16), we have H̃(y) is smooth at ỹ∗ with

∇2H̃(ỹ∗) = 2AT
S̃
A

S̃
+ α

⎛⎜⎝ M̃1 + D̃1 0 0

0
. . . 0

0 0 M̃ ñ + D̃ñ

⎞⎟⎠ ,

where M̃ i, D̃i ∈ RÑi×Ñi ,

M̃ i = q(q − 2)‖ỹ∗G̃i
‖q−4 ỹ∗G̃i

(ỹ∗G̃i
)T , D̃i = q‖ỹ∗G̃i

‖q−2I.

Clearly, for any z ∈ RÑ ,

zT∇2H̃(ỹ∗)z = 2‖A
S̃
z‖2 +

ñ∑
i=1

[
−αq(2 − q)‖ỹ∗G̃i

‖q−4(zTG̃i
ỹ∗G̃i

)2 + αq‖ỹ∗G̃i
‖q−2zTG̃i

zG̃i

]

≥ 2‖A
S̃
z‖2 +

ñ∑
i=1

[
−αq(2 − q)‖ỹ∗G̃i

‖q−2‖zG̃i
‖2 + αq‖ỹ∗G̃i

‖q−2‖zG̃i
‖2
]

≥ 2�(A)‖z‖2 −
ñ∑

i=1
αq(1 − q)‖ỹ∗G̃i

‖q−2‖zG̃i
‖2

[ Equ. (43) ] > 2�(A)‖z‖2 − αq(1 − q)
[(

αq(1 − q)
2�(A)

) 1
2−q

]q−2

‖z‖2

= 0.

Hence, ∇2H̃(ỹ∗) is positive definite and ỹ∗ is a strict local minimizer of H̃(y).
Let v ∈ RN be sufficiently close to 0. Then,

F (x∗ + v) = ‖A(x∗ + v) − d‖2 + α‖x∗ + v‖q2,q
= ‖AS̃cv

S̃c − (d−A
S̃
(x∗ + v)

S̃
)‖2 + α

∑
i∈(G∗)c

‖vGi
‖q + α

∑
i∈G∗

‖(x∗ + v)Gi
‖q.

The second step is due to x∗
S̃c

= 0. When v
S̃c �= 0, we can regard (d −A

S̃
(x∗ + v)

S̃
), α

∑
i∈G∗ ‖(x∗ + v)Gi

‖q
in last step above as constant. Then, applying Proposition 5.1 with N = #S̃c gives

F (x∗ + v) > ‖AS̃c · 0 − (d−A
S̃
(x∗ + v)

S̃
)‖2 + α

∑
i∈(G∗)c

‖0‖q + α
∑
i∈G∗

‖(x∗ + v)Gi
‖q

= ‖A
S̃
(ỹ∗ + v

S̃
) − d‖2 + α

∑
i∈G∗

‖(x∗ + v)Gi
‖q

= H̃(ỹ∗ + v
S̃
)

≥ H̃(ỹ∗)

= F (x∗).

When v ˜c = 0, we can deduce

S
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F (x∗ + v) = H̃(ỹ∗ + v
S̃
) > H̃(ỹ∗) = F (x∗),

from that ỹ∗ is a strict local minimizer of H̃(y).
This shows that x∗ is a strict local minimizer of F (x). �

Remark 5.4. According to the theorem above and Theorem 3.1, we have that if F (x) has a local minimum 
at x∗, then

∀ i ∈ gsupp(x∗), ‖x∗
Gi
‖ ≥

(
αq(1 − q)

2‖A‖2

) 1
2−q

. (44)

Conversely, if x∗ is a stationary point of F (x) with the columns of Asupp(x∗) linearly independent and

∀ i ∈ gsupp(x∗), ‖x∗
Gi
‖ >

(
αq(1 − q)

2�(A)

) 1
2−q

, (45)

then x∗ is a strict local minimizer of F (x).
Denote ι > 0 as the bound in (45), and ι > 0 as the bound in (44). Clearly, for a stationary point, if 

its minimal �2 norm of nonzero groups is greater than ι, it is a local minimizer; if its minimal �2 norm of 
nonzero groups is less than ι, it is definitely not a local minimizer; if the norm is between ι and ι, we are 
not sure whether it is a local minimizer.

6. Algorithms

In this section, we present two IRLS based algorithms to minimize F (x). Generally, in each iteration of 
IRLS method, one needs to solve

xk+1 = arg min
x∈RN

‖Ax− d‖2 + α

2

N∑
j=1

(wk
j xj)2,

where wk is the weight vector dependent on xk. The first algorithm in [27] is a generalization of classical 
IRLS with smoothing algorithm for the �2,q regularized minimization. It generates a sequence which has 
convergent subsequences, and the cluster points are critical points of smoothed F (x). The second is our novel 
IRLS with thresholding algorithm. It not only has global convergence with the limit being a critical point 
of F (x), but also greatly improves the computation efficiency. From the comparisons of the two algorithms, 
we show the superiority of thresholding technique.

6.1. IRLS with smoothing algorithm

The function F (x) is non-Lipschitz since the �q quasi-norm is non-Lipschitz around 0. Thus, the classical 
IRLS algorithm starts with the following smoothed objective function:

Fε(x) := ‖Ax− d‖2 + α
n∑

i=1
(‖xGi

‖2 + ε)
q
2 , (46)

where ε > 0 is the smoothing parameter. If x∗ is a local minimizer of Fε(x), then it satisfies the first-order 
necessary condition as follows:

2AT (Ax∗ − d) + αq
[

(‖x∗
Gi
‖2 + ε)

q
2−1x∗

Gi

]
= 0.
1≤i≤n
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We first provide a bound analysis of Fε(x).

Proposition 6.1. There exists ε0 > 0 such that when 0 < ε < ε0, any local minimizer x∗ of Fε(x) satisfies

∀ i ∈ I, either ‖x∗
Gi
‖ ≤ θ1 or ‖x∗

Gi
‖ ≥ θ2, (47)

where θ1 < θ2 are positive constants.

Proof. Note that Fε(x) is smooth everywhere. Following the process in (16), the second-order condition 
indicates

∇2Fε(x∗) = 2ATA + α

⎛⎜⎝M1 + D1 0 0

0
. . . 0

0 0 Mn + Dn

⎞⎟⎠ � 0,

where M i, Di ∈ RNi×Ni ,

M i = q(q − 2)(‖x∗
Gi
‖2 + ε)

q
2−2 x∗

Gi
(x∗

Gi
)T , Di = q(‖x∗

Gi
‖2 + ε)

q
2−1I.

Take i ∈ I. We then wish to find an upper or lower bound for nonzero x∗
Gi

. Define z ∈ RN as a unite 
vector whose group support is {i}:

zGl
=

⎧⎪⎨⎪⎩
x∗
Gi

‖x∗
Gi
‖ ,if l = i,

0, otherwise.

Therefore,

0 ≤ zT∇2Fε(x∗)z

= 2‖Az‖2 + αq(q − 2)(‖x∗
Gi
‖2 + ε)

q
2−2((zGi

)Tx∗
Gi

)2 + αq(‖x∗
Gi
‖2 + ε)

q
2−1(zGi

)T zGi

≤ 2‖A‖2
2 + αq(‖x∗

Gi
‖2 + ε)

q
2−2 [(q − 1)‖x∗

Gi
‖2 + ε

]
.

We introduce a function φ : [0, +∞) → R as follows

φ(t) = 2‖A‖2
2 + αq (t + ε)

q
2−2 [(q − 1)t + ε] .

Then, we solve φ(t) ≥ 0. One can see that φ(0) > 0, and the derivative of φ(t) is

φ′(t) = αq(1 − q/2)(t + ε)
q
2−3[(1 − q)t− 3ε].

Thus, φ(t) is decreasing in [0, 3ε/(1 −q)) and increasing in (3ε/(1 −q), +∞). If φ(3ε/(1 −q)) < 0, equivalently, 
ε < ε0 where ε0 :=

(
αq

‖A‖2
2

)2/(2−q)( 4−q
1−q

)(q−4)/(2−q), there exist θ1, θ2 such that 0 < θ2
1 < 3ε/(1 − q) < θ2

2 and 

{t ≥ 0 : φ(t) ≥ 0} = [0, θ2
1] ∪ [θ2

2, +∞). That is, ‖x∗
Gi
‖2 ∈ (0, θ2

1] ∪ [θ2
2, +∞), indicating the result. �

From the above proposition, we can see that there is no lower bound for local minimizers of the smoothed 
model. That is, it may allow some small values in its solution, making the solution approximately sparse but 
not exactly sparse. This result is not surprising, since the �2,q “norm” is smoothed and there is less penalty 
for values close to 0. The IRLS with smoothing algorithm for �2,q regularized minimization is summarized 
in Algorithm 1. By using ε, large values in the weight vector wk are avoided (see [27] for more details).
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Algorithm 1 IRLS with smoothing (IRLS-sm) [27].
Input: x0 such that Ax0 = b, ε0 = 1, β ∈ (0, 1) and estimated sparsity level s.
for k = 0, 1, 2, . . . do

Set the weight vector wk ∈ RN :

∀ j ∈ J , w
k
j = q(‖xk

Gi
‖2 + ε

k)
q

2
−1

, if j ∈ Gi.

Solve the following linear system for xk+1:

2AT (Ax
k+1 − d) + α diag(wk)xk+1 = 0. (48)

Update εk+1 = min(εk, β · r(xk+1)s+1) where r(xk+1) is the rearrangement of the group norms of xk+1 in decreasing order.
end for

6.2. IRLS with thresholding algorithm

Motivated by the sparsity of local minimizers of F (x) as shown in Theorem 3.1, we can adopt a threshold 
on nonzero groups of xk, making xk sparse. Meanwhile, we keep the zero groups of xk in the following 
iterations. That is, at the (k + 1)th iteration, we solve

xk+1 = arg min
x∈RN

‖Ax− d‖2 + α

2
∑
i∈Gk

∑
j∈Gi

(wk
j xj)2,

s.t. xGi
= 0, ∀ i /∈ Gk,

(49)

where Gk = gsupp(xk). Our algorithm is summarized in Algorithm 2.

Algorithm 2 IRLS with thresholding (IRLS-th).
Input: threshold τ > 0, x0 ∈ RN such that ‖x0

Gi
‖ ≥ τ, ∀ i ∈ I;

for k = 0, 1, 2, . . . do
Set: Gk = gsupp(xk), Sk = ∪i∈GkGi, Ak = ASk , Nk = #Sk and the weight vector wk = w

Sk where w ∈ RN :

∀ j ∈ S
k
, wj = q‖xk

Gi
‖q−2

, if j ∈ Gi.

Solve the following linear system for x̃k+1 ∈ RNk

:

2(Ak)T (Ak
x̃
k+1 − d) + α diag(wk)x̃k+1 = 0. (50)

Set: xk+1
Sk = x̃k+1, xk+1

(Sk)c = 0.
Thresholding: ∀ i ∈ I, xk+1

Gi
= 0, if ‖xk+1

Gi
‖ < τ.

end for

In Algorithm 2, since ‖xk
Gi
‖ ≥ τ , we can avoid large values in wk. Meanwhile, the constraints in (49)

help to eliminate the number of variables, thus reducing the dimension of linear equations solved in each 
iteration. We mention that the support-shrinking strategy therein was also derived in [28,36,37], but for 
reweighted �1 variants with two-loop algorithmic structure for different signal and image reconstruction 
problems. Similar to these IRL1 variants, we have finite convergence property of the group support in our 
one-loop Algorithm 2.

Lemma 6.2. In Algorithm 2, the group support set sequence {Gk} satisfies ∀ k ≥ 0, Gk+1 ⊆ Gk, and thus 
converges. Specifically, there exists K ≥ 0 and G∗ ⊂ I such that ∀ k ≥ K,

Gk = G∗. (51)
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6.2.1. Convergence and error bound analysis of Algorithm 2
In this part, we analyze the convergence of xk generated by Algorithm 2, and give an error bound for its 

limit point. The convergence of xk relies on the Kurdyka-Łojasiewicz (KL) property of F (x). We establish 
our result by proving three conditions critical to the convergence under KL framework, i.e., that xk is 
bounded, the function value sequence F (xk) has sufficient descent and the subdifferential sequence ∂F (xk)
is bounded relatively. See Appendix for more details. Note that our algorithm does not have a proximal 
term.

Lemma 6.3. For all x, y ∈ RN with x �= 0,

‖x‖q − ‖y‖q − q‖x‖q−2(x− y)T y ≥ q

2‖x‖
q−2‖x− y‖2. (52)

Proof. It is obvious by modifying the proof of Lemma 2.3 in [31], where we replace the scalar product with 
vector inner product. �

We give some notations at first. Let k ≥ 0. Note that x̃k+1 in (50) belongs to RNk . We denote x̃k+1 ∈ RN

as an extension of x̃k+1:

x̃k+1
Sk = x̃k+1, x̃k+1

(Sk)c = 0, (53)

that is, its support supp
(
x̃k+1

)
⊆ Sk. Also, we denote

rk+1 = x̃k+1 − xk+1, (54)

so its support supp(rk+1) ⊆ Sk\Sk+1 and its group support gsupp(rk+1) ⊆ Gk\Gk+1. Then, we have

Axk = Akxk
Sk , Axk+1 = A

(
x̃k+1 − rk+1

)
, and Ax̃k+1 = Akx̃k+1, (55)

When Gk+1 = Gk, one has rk+1 = 0 and Axk+1 = Akx̃k+1.

Lemma 6.4. (Boundedness, and sufficient descent of objective function value) Let {xk} be the sequence 
generated from Algorithm 2. The following statements hold:

(i) there exists C > 0 such that

C ≥ ‖xk
Gi
‖ ≥ τ, ∀ i ∈ Gk, k ≥ 0; (56)

(ii) there exist a > 0, ̃τ > 0 such that

F (xk) − F (xk+1) ≥ a‖xk − xk+1‖2, (57)

holds for all k ≥ K where K is defined in Lemma 6.2; meanwhile, (57) holds for all k ≥ 0 when the 
threshold τ ≤ τ̃ .

Proof. (i). Let k ≥ 0. Note that Gk+1 ⊆ Gk according to Lemma 6.2.
When Gk+1 = Gk, we have rk+1 = 0 and

F (xk) − F (xk+1)
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=(‖Axk − d‖2 + α‖xk‖q2,q) − (‖Axk+1 − d‖2 + α‖xk+1‖q2,q)

=(‖Akxk
Sk − d‖2 − ‖Akx̃k+1 − d‖2) + α

∑
i∈Gk

(‖xk
Gi
‖q − ‖xk+1

Gi
‖q)

= ‖Akxk
Sk−Akx̃k+1‖2 + 2(Akx̃k+1 − d)T (Akxk

Sk−Akx̃k+1) + α
∑
i∈Gk

(‖xk
Gi
‖q − ‖xk+1

Gi
‖q)

≥
[
2(Ak)T (Akx̃k+1 − d)

]T (xk
Sk− x̃k+1) + α

∑
i∈Gk

(‖xk
Gi
‖q − ‖xk+1

Gi
‖q)

[ Equ. (50) ] =[−α diag(wk)x̃k+1]T (xk
Sk− x̃k+1) + α

∑
i∈Gk

(‖xk
Gi
‖q − ‖xk+1

Gi
‖q)

=α
∑
i∈Gk

[ ‖xk
Gi
‖q − ‖xk+1

Gi
‖q − q‖xk

Gi
‖q−2(xk

Gi
− xk+1

Gi
)Txk+1

Gi
]

[ Equ. (52) ] ≥αq

2
∑
i∈Gk

‖xk
Gi
‖q−2‖xk+1

Gi
− xk

Gi
‖2, (58)

implying F (xk) − F (xk+1) ≥ 0 when Gk+1 = Gk.
When Gk+1 � Gk, we have

F (xk) − F (xk+1) =
[
F (xk) − F (x̃k+1)

]
−
[
F (xk+1) − F (x̃k+1)

]
,

where x̃k+1 is defined in (53). The next is to find a lower bound for F (xk) − F (x̃k+1) and an upper bound 
for F (xk+1 − F (x̃k+1)). Similar to (58), one has

F (xk) − F (x̃k+1)

≥αq

2
∑
i∈Gk

‖xk
Gi
‖q−2‖x̃k+1Gi

− xk
Gi
‖2

=
∑

i∈Gk+1

αq

2 ‖xk
Gi
‖q−2‖xk+1

Gi
− xk

Gi
‖2 +

∑
i∈Gk\Gk+1

αq

2 ‖xk
Gi
‖q−2‖rk+1

Gi
− xk

Gi
‖2. (59)

Meanwhile, applying rk+1 = x̃k+1 − xk+1 yields

F (xk+1) − F (x̃k+1) = (‖Axk+1 − d‖2 − ‖Ax̃k+1 − d‖2) + α(‖xk+1‖q2,q − ‖x̃k+1‖q2,q)

= ‖Ark+1‖2 − 2(Ax̃k+1 − d)T (Ark+1) − α
∑

Gk\Gk+1

‖rk+1
Gi

‖q.

It follows from Ax̃k+1 = Akx̃k+1 and gsupp{rk+1} ⊆ Gk\Gk+1, that

‖Ark+1‖2 ≤
∑

i∈Gk\Gk+1

‖A‖2‖rk+1
Gi

‖2,

and

−2(Ax̃k+1 − d)T (Ark+1) =
∑

i∈Gk\Gk+1

−2
[
AT

Gi
(Akx̃k+1 − d)

]T
rk+1
Gi

[ Equ. (50) ] =
∑

i∈Gk\Gk+1

αq‖xk
Gi
‖q−2‖rk+1

Gi
‖2.
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It then follows that

F (xk+1) − F (x̃k+1) ≤
∑

i∈Gk\Gk+1

[
(‖A‖2 + αq‖xk

Gi
‖q−2‖)‖rk+1

Gi
‖2 − α‖rk+1

Gi
‖q
]
. (60)

Since ‖rk+1
Gi

‖ ≤ τ and ‖xk
Gi
‖ ≥ τ for i ∈ Gk, we get

F (xk+1) − F (x̃k+1) ≤
∑

i∈Gk\Gk+1

(‖A‖2τ2 + αqτ q) = #(Gk\Gk+1) · (‖A‖2τ2 + αqτ q).

Recall (59) which indicates F (xk) − F (x̃k+1) ≥ 0. Therefore, one has

F (xk) − F (xk+1) ≥ −#(Gk\Gk+1) · (‖A‖2τ2 + αqτ q). (61)

It follows from F (xk) − F (xk+1) ≥ 0 when Gk+1 = Gk and (61) when Gk+1 � Gk that

F (xk+1) − F (x0) ≤
k∑

l=0

#(Gl\Gl+1) · (‖A‖2τ2 + αqτ q) ≤ n(‖A‖2τ2 + αqτ q),

which means F (xk+1) ≤ F (x0) + n(‖A‖2τ2 + αqτ q), i.e., F (xk+1) is bounded. Thus,

‖xk+1‖q2,q ≤ 1
α
F (xk+1) ≤ 1

α
F (x0) + n

α
(‖A‖2τ2 + αqτ q).

Considering ‖x0‖q2,q ≤ 1
αF (x0), there exists C > 0 dependent on x0 such that τ ≤ ‖xk

Gi
‖ ≤ C, for any 

i ∈ Gk. Thus statement (i) can be obtained.
(ii). By Lemma 6.2, if k ≥ K, we have Gk = Gk+1 = G∗. Recall (58). We can see that when k ≥ K

F (xk) is decreasing, and

F (xk) − F (xk+1) ≥ αq

2 Cq−2
∑
i∈G∗

‖xk+1
Gi

− xk
Gi
‖2 = αq

2 Cq−2‖xk − xk+1‖2.

Let a = αq
4 Cq−2, then (57) is true for all k ≥ K.

Next, we will prove (57) for k ≥ 0 under the assumption τ ≤ τ̃ :=
(

α−αq
‖A‖2+ã

)1/(2−q)
where ã is an arbitrary 

positive constant.
When Gk+1 � Gk, we take an i ∈ Gk\Gk+1. Now, since

(‖A‖2 + αq‖xk
Gi
‖q−2 + ã)‖rk+1

Gi
‖2−q − α

≤(‖A‖2 + ã + αqτ q−2)τ2−q − α

=(‖A‖2 + ã)τ2−q + αq − α

≤0,

one can see that

(‖A‖2 + αq‖xk
Gi
‖q−2)‖rk+1

Gi
‖2 − α‖rk+1

Gi
‖q ≤ −ã‖rk+1

Gi
‖2.

Substituting it into (60) gives

F (xk+1) − F (x̃k+1) ≤ −ã
∑
k k+1

‖rk+1
Gi

‖2. (62)

i∈G \G
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Note that xk+1
Gi

= 0 and 2‖rk+1
Gi

− xk
Gi
‖2 + 2‖rk+1

Gi
‖2 ≥ ‖xk

Gi
‖2 for all i ∈ Gk\Gk+1. Combining (62) with 

(59), we have

F (xk) − F (xk+1)

≥
∑

i∈Gk+1

αq

2 ‖xk
Gi
‖q−2‖xk+1

Gi
− xk

Gi
‖2 +

∑
i∈Gk\Gk+1

[αq
2 ‖xk

Gi
‖q−2‖rk+1

Gi
− xk

Gi
‖2 + ã‖rk+1

Gi
‖2
]

≥
∑

i∈Gk+1

αq

2 ‖xk
Gi
‖q−2‖xk+1

Gi
− xk

Gi
‖2 +

∑
i∈Gk\Gk+1

min
{
αq

4 ‖xk
Gi
‖q−2,

ã

2

}
‖xk

Gi
− 0‖2

≥
∑
i∈Gk

min
{
αq

4 Cq−2,
ã

2

}
‖xk+1

Gi
− xk

Gi
‖2. (63)

Therefore, combining (58) when Gk+1 = Gk and (63) when Gk+1 � Gk, one can see that if τ ≤ τ̃ , F (xk)
is decreasing for all k ≥ 0. Let a = min

{
αq
4 Cq−2, ã

2
}
. Then, we have

F (xk) − F (xk+1) ≥ a‖xk − xk+1‖2, ∀ k ≥ 0.

The proof of statement (ii) is completed. �
Lemma 6.5. (Relatively bounded subdifferential) For each k ≥ 0, there exists uk+1 ∈ ∂F (xk+1) such that

‖uk+1‖ ≤ b‖xk − xk+1‖, (64)

where b is a positive constant.

Proof. Let k ≥ 0. According to (13), we denote{
∀ i ∈ Gk+1, uk+1

Gi
= 2(AGi

)T (Axk+1 − d) + αq‖xk+1
Gi

‖q−2xk+1
Gi

,

∀ i /∈ Gk+1, uk+1
Gi

= 0.

For any i ∈ Gk+1, since 2(AGi
)T (Akx̃k+1 − d) + αq‖xk

Gi
‖q−2xk+1

Gi
= 0, one has

uk+1
Gi

= αq‖xk+1
Gi

‖q−2xk+1
Gi

+ 2(AGi
)T (Akx̃k+1 − d) − 2(AGi

)TArk+1,

= αq‖xk+1
Gi

‖q−2xk+1
Gi

− αq‖xk
Gi
‖q−2xk+1

Gi
− 2(AGi

)TArk+1.

Then, we denote ũ ∈ RN as{
∀ i ∈ Gk+1, ũGi

:= αq‖xk+1
Gi

‖q−2xk+1
Gi

− αq‖xk
Gi
‖q−2xk+1

Gi
= αq

(
‖xk+1

Gi
‖q−2 − ‖xk

Gi
‖q−2)xk+1

Gi
,

∀ i /∈ Gk+1, ũGi
= 0.

It follows that

‖uk+1‖ = ‖uk+1
Sk+1‖ = ‖ũSk+1 − 2(ASk+1)TArk+1‖ ≤ ‖ũSk+1‖ + ‖2(ASk+1)TArk+1‖.

Take i ∈ Gk+1. Since τ ≤ ‖xk
Gi
‖, ‖xk+1

Gi
‖ ≤ C and φ(t) = tq−2 is Lipschitz-continuous on [τ, C] with 

Lipschitz constant lτ , we obtain

‖ũGi
‖ ≤ αqClτ

∣∣ ‖xk+1
Gi

‖ − ‖xk
Gi
‖
∣∣ ≤ αqClτ‖xk+1

Gi
− xk

Gi
‖ = b̃‖xk+1

Gi
− xk

Gi
‖,
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followed by

‖ũSk+1‖ ≤ b̃‖xk+1
Sk+1 − xk

Sk+1‖,

where b̃ := αqClτ .
Note that gsupp(rk+1) ⊆ Gk\Gk+1. Since for all i ∈ Gk\Gk+1, ‖rk+1

Gi
‖ ≤ τ, xk+1

Gi
= 0 and ‖xk

Gi
‖ ≥ τ , we 

have

‖rk+1‖ ≤ ‖xk
Sk\Sk+1‖ = ‖xk+1

Sk\Sk+1 − xk
Sk\Sk+1‖.

Therefore,

‖uk+1‖ ≤ b̃‖xk+1
Sk+1 − xk

Sk+1‖ + 2‖A‖2‖rk+1‖

≤ max{b̃, 2‖A‖2}
(
‖xk+1

Sk+1 − xk
Sk+1‖ + ‖xk

Sk\Sk+1‖
)

≤ b‖xk+1 − xk‖,

where b =
√

2 max{b̃, 2‖A‖2}. �
Now, we are ready to prove the global convergence of our algorithm. Meanwhile, we also will provide an 

error bound for the limit point of sequence generated by our algorithm.

Theorem 6.6. (Global convergence and error bound) Let {xk} be the sequence generated by Algorithm 2. The 
following statements hold:

(i) xk converges to a stationary point x∗ of F (x).
(ii) Suppose xo is t group sparse, i.e., ‖xo‖2,0 ≤ t. Assume that Ax0 = d and A satisfies GRIP of order 2t

with δ′2t < 1. When the threshold τ ≤ τ̃ with τ̃ defined in Lemma 6.4, we have

‖x∗ − xo‖ ≤ C1
√
α + C2

√
σt,2(x∗), (65)

where C1, C2 are positive constants depending on x0, A, t, δ′2t.

Proof. (i). In Lemma 6.4, since {xk} is bounded, there exists a subsequence {xkl} converging to a point 
x∗ ∈ RN . Recall (57) and (64). By Theorem 2.9 in [38] (see Lemma 9.4 for details), we obtain that xk

converges to a stationary point x∗ of F (x).
(ii). The following argument is a group extension of the one in Theorem 2.2 in [31]. When τ ≤ τ̃ , F (xk)

is decreasing and

‖Ax∗ − d‖ ≤
√

F (x∗) ≤
√

F (x0) =
√
α‖x0‖q2,q.

Let Go be the index set of nonzero group of xo with T o = ∪i∈GoGi. Let G be the index set of the first t
largest groups of x∗ with T = ∪i∈GGi. Note that ‖xo‖2,0 ≤ t and x∗−xo = (x∗ − xo)T∪T o +(x∗ − xo)(T∪T o)c . 
Then, we have

‖x∗ − xo‖ ≤ ‖(x∗ − xo)T∪T o‖ + ‖(x∗ − xo)(T∪T o)c‖

≤ 1√ ′ ‖A(x∗ − xo)T∪T o‖ + ‖(x∗ − xo)(T∪T o)c‖
1 − δ2t
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≤ 1√
1 − δ′2t

‖Ax∗ − d‖ +
(

‖A‖√
1 − δ′2t

+ 1
)
‖(x∗ − xo)(T∪T o)c‖

= 1√
1 − δ′2t

‖Ax∗ − d‖ +
(

‖A‖√
1 − δ′2t

+ 1
)
‖x∗

(T∪T o)c‖

≤ 1√
1 − δ′2t

√
α‖x0‖q2,q +

(
‖A‖√
1 − δ′2t

+ 1
)√

σt,2(x∗),

which proves (65). �
We can see that the new IRLS with thresholding algorithm globally converges to a stationary point of 

F (x); by contrast, IRLS with smoothing algorithm has only local convergence (subsequence convergence). 
Meanwhile, the limit is away from the true solutions by a factor of 

√
α plus the tail σt,2(x∗) of x∗. If both 

α and the tail are small, then x∗ is close to the true sparse signal. In addition, if the threshold τ is equal or 
larger than the bound proven in Theorem 5.3, the limit of xk is also a local minimizer of F (x).

7. Numerical experiments

Here, we present some numerical results of our IRLS with thresholding (IRLS-th) algorithm, as well as 
comparisons with some state-of-the-art algorithms. All of the tests were performed using Windows 7 64-bit 
and Matlab 2018A, on a HP workstation Z840 with Intel Xeon CPU E5-2667.

Now, we give a general experiment setting. Unless otherwise noted, we use this setting in the whole 
section. Firstly, we set M = 28, N = 210, n = 27, and Ni = 8 for any i ∈ I. That is, the original signal 
xo ∈ RN is split equally into 128 groups, with indices of its non-zero groups chosen randomly. The sparsity 
level is t/n where t is the number of nonzero groups in xo, and is not fixed. The non-zero values in xo are 
i.i.d. generated from standard Gaussian distribution. We also randomly generate an i.i.d. Gaussian matrix 
A ∈ RM×N , and normalize it to satisfy AAT = I. Then, the noisy simulated observation is

d = Axo + 0.001 · randn(M, 1).

For our IRLS-th algorithm, the regularization parameter α = 10−3||AT d||∞, the threshold τ = 0.01, expo-
nent q = 0.5, initial vector x0 = 1.

For all of the algorithms, the stopping criterion is

||xk − xk−1||
||xk−1|| < 10−4.

The recovery result x∗ is regarded as successful if

||x∗ − xo||
||xo|| < 0.01.

The success rate is the ratio of success over 100 trials.

7.1. Convergence of IRLS-th algorithm

In this subsection, we will show the convergence of IRLS-th algorithm. We set the sparsity level to 10%, 
i.e., we have 12 nonzero groups; see Fig. 3.

It can be seen from Fig. 3(b) that the group support size of xk is decreasing and converges. As 
demonstrated in Fig. 3(c), the value of the objective function is monotonically decreasing and converges. 
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Fig. 3. Convergence of proposed IRLS-th algorithm for a group sparse recovery problem with sparsity level 10%.

By Fig. 3(d), the relative error is decreasing and converges. As shown in Fig. 3(e), the recovery error 
Log( ||x

k−xo||2
||xo||2 ) at each iteration is decreasing, meaning that the approximation becomes more and more ac-

curate and perfectly recover xo in the end. This experiment clearly justifies the global convergence property 
of IRLS-th algorithm shown in Theorem 6.6.

7.2. Choice of τ

In this subsection, we discuss the choice of τ . Recall the lower bound theory in Theorem 3.1. The 
established lower bound is supposed to provide a reference value for τ . However, this bound is independent 
of observation d and local minimizers, and it might be too rough since we used a lot of inequalities to 
estimate it. Thus, for a specific problem, we may use a larger threshold to speed up the computation, while 
preserving the recovery accuracy.

Under our experimental settings, the theoretical lower bound is 0.0027. We therefore test our algorithm 
with different τ among {10−6, 10−3, 0.0027, 10−2, 10−1, 1} in terms of the sparsity level. The success rates 
and average running time are plotted in Fig. 4. As can be seen, the success rates with different τ are equal 
when τ < 0.01, but the average running time (only successful recovery is considered) is decreasing as τ
increases. Therefore, in the following experiments, we use τ = 0.01.
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Fig. 4. The success rates and average running time of IRLS-th algorithm with different threshold τ .

Fig. 5. The success rates of IRLS-th algorithm with different exponent q.

7.3. Choice of q

In this subsection, we will discuss the performances of our algorithm with different q among {0.1, 0.3, 
0.5, 0.7, 0.9} in terms of the sparsity level. For each sparsity level, we generate 100 independent xo. For each 
xo, we run the IRLS-th algorithm with different q. The success rates of the results are shown in Fig. 5. 
We can see that when q = 0.9 with the objective function approximately convex, our algorithm performs 
worst. Similar to [15,31], when q = 0.5, it performs best. Therefore, in the following experiments, we choose 
q = 0.5.

7.4. Adaptability to group size

In this subsection, we test the sensitivity of our IRLS-th algorithm on the group size. With the group 
number n = 128, we change the group size Ni to be 22, 23, 24 and 25. The corresponding (M, N) are 
(27, 29), (28, 210), (29, 211), and (210, 212). For each pair of (M, N), we generate 100 independent xo to test 
the success rate. By Fig. 6, we can see that when the group size becomes larger, the success rate increases. 
This is reasonable because larger groups contain more information for recovery.
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Fig. 6. The success rates of IRLS-th algorithm for recovery problems with different group size Ni.

Fig. 7. The success rates of IRLS-th algorithm with different measurement matrix A.

7.5. Adaptability to different types of A

In this subsection, we test our algorithm with different measurement matrices A, i.e., random Gaussian 
matrices and random Bernoulli matrices. Also, A is normalized by AAT = I for the random Bernoulli 
matrices. The results are shown in Fig. 7. We can find that the IRLS-th algorithm could achieve almost the 
same success rate with different types of A.

7.6. Adaptability to different kinds of original signal xo

In this subsection, we generate xo from different kinds of distribution, i.e., the standard Gaussian distri-
bution, uniform distribution and Bernoulli distribution (0.5). For each distribution, we generate 100 original 
signal xo. The results are in Fig. 8. We can see that our algorithm would fit different kinds of signal with 
comparable success rates.
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Fig. 8. The success rates of IRLS-th algorithm with different true signal xo.

Fig. 9. Comparison of success rates and average running time between IRLS-th algorithm and state-of-the-art group sparse opti-
mization algorithms.

7.7. Comparisons to some state-of-the-art algorithms

In this subsection, we compare our IRLS-th algorithm with several state-of-the-art group sparse opti-
mization algorithms, i.e., IRLS with smoothing (IRLS-sm) algorithm [27], Group Lasso algorithm [4], and 
PGM-GSO algorithm [15]. The comparisons include the success rates and the average running time (only 
successful recovery is considered) in terms of sparsity level.

The results are shown in Fig. 9. Overall speaking, both IRLS algorithms perform better than PGM-GSO 
algorithm and Group Lasso algorithm. In Fig. 9(a), the success rate curves of IRLS-th algorithm and IRLS-
sm algorithm coincide with each other, which means our IRLS-th algorithm perfectly keeps the excellent 
recovery ability of the classical IRLS-sm algorithm. From Fig. 9(b), we can see that our IRLS-th algorithm 
shows significant superiority in running time. It is at least 50% faster than IRLS-sm algorithm. When the 
sparsity level increases, the advantage is more obvious.
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8. Conclusion

In this article, we have studied the �2,q regularized minimization model, including lower bound the-
ory, recovery bound, algorithms and so on. Our work not only shows theoretical merits of the nonconvex 
group sparse optimization model, but also provides a new way to improve IRLS method in terms of global 
convergence and numerical performance.

Our study so far is only concerned with the group sparse signal recovery without overlapping group 
structure. While in many real applications, such as the gene expression data in bioinformatics, elements in 
different groups could potentially be overlapped. Besides, instead of the squared �2 fidelity term considered 
here, the fidelity term would be in other forms in applications with different types of measurement noise. 
All these extensions will be part of our future research.

9. Appendix

9.1. Subdifferential

The following is the definition of subdifferential.

Definition 9.1. (Subdifferential, [39]) Let φ : RN → (−∞, +∞] be a proper and lower semicontinuous 
function. The domain of φ is defined as domφ = {x ∈ RN : φ(x) < +∞}. For a point x ∈ domφ,

1. the regular subdifferential of φ at x is defined as

∂̂φ(x) =
{
u ∈ RN : lim

y �=x
inf
y→x

φ(y) − φ(x) − 〈u, y − x〉
‖y − x‖ ≥ 0

}
;

2. the subdifferential of φ at x is defined as

∂φ(x) = {u ∈ RN : ∃xk → x, φ(xk) → φ(x) and ∂̂φ(xk) � uk → u, as k → ∞}.

9.2. Kurdyka-Łojasiewicz property

The foundational works on the Kurdyka-Łojasiewicz(KL) property are given by Łojasiewicz and Kurdyka 
[40,41]. Recently, there were great successes for the applications of KL property in optimization theory; see 
[42–45,38,46]. This subsection is a brief introduction of KL property, and most of the results are from [45].

For any subset S ⊆ RN and any point x ∈ RN , the distance from x to D is defined by dist(x, D) :=
inf{‖y − x‖ : y ∈ D}. When D = ∅, we have that dist(x, D) = +∞.

Definition 9.2. (KL property, [45])

1. The function φ : RN → (−∞, +∞] is said to have the Kurdyka-Łojasiewicz property at x∗ ∈ dom ∂φ :=
{x ∈ RN : ∂φ(x) �= ∅} if there exists η ∈ (0, +∞], a neighborhood U of x∗, and a continuous concave 
function ψ : [0, η) → (0, +∞] such that
(i) ψ(0) = 0;
(ii) ψ is continuous differentiable on (0, η);
(iii) for all t ∈ (0, η), ψ′(t) > 0;
(iv) for all x ∈ U ∩ {y ∈ RN : φ(x∗) < φ(y) < φ(x∗) + η}, the Kurdyka-Łojasiewicz (KL) inequality 

holds:

ψ′(φ(x) − φ(x∗))dist(0, ∂φ(x)) ≥ 1.
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2. If φ satisfies the KL property at each point of dom∂φ, φ is called a KL function.

There is a rich class of KL functions defined based on o-minimal structure (see definition below).

Definition 9.3. (o-minimal structure on R, Definition 4.1, [45]) Let O = {On}n∈N such that each On is a 
collection of subsets of Rn. The family O is an o-minimal structure on R, if it satisfies the following axioms:

(i) Each On is a boolean algebra. Namely ∅ ∈ On and for each A, B in On, A ∪ B, A ∩ B, and Rn \ A

belong to On.
(ii) For all A in On, A × R and R ×A belong to On+1.
(iii) For all A in On+1, Π(A) := {(x1, . . . , xn) ∈ Rn : (x1, . . . , xn, xn+1) ∈ A} belongs to On.
(iv) For all i �= j in {1, 2, . . . , n}, {(x1, . . . , xn) ∈ Rn : xi = xj} belongs to On.
(v) The set {(x1, x2) ∈ R2 : x1 < x2} belongs to O2.
(vi) The elements of O1 are exactly finite unions of intervals.

Let O be an o-minimal structure on R. We say that a set A ⊆ Rn is definable on O if A ∈ On. A map 
f : Rn → Rm (resp. a real-extended-valued function f : Rn → R ∪ {+∞}) is definable if its graph is a 
definable subset of Rn × Rm (resp. Rn × R). It is known that any proper lower semicontinuous function 
definable on an o-minimal structure is a KL function (see Theorem 4.1 in [45]). Note that o-minimal structure 
has very stable properties as follows:

(1) finite sums of definable functions are definable;
(2) indicator functions of definable sets are definable;
(3) compositions of definable functions or mappings are definable.

A class of o-minimal structure is the log-exp structure (see Example 2.5, [47]). By this structure, the 
following functions are all definable:

1. semi-algebraic functions (see Definition 5 in [46]), such as real polynomial functions, and absolute value 
function f : R → R defined by x �→ |x|.

2. power function f : R → R defined by

x �→
{
xr, x > 0
0, x ≤ 0,

where r ∈ R.

For f(x) and F (x) defined in this paper, ‖Ax − d‖2 is semi-algebraic functions. Using properties (1) 
and (3) of definable functions, their regularization terms are both finite sums and compositions of definable 
functions. Thus, f(x) and F (x) are KL functions. See also [28,36].

9.3. Convergence of descent methods for KL functions

For KL functions, [38] has proven a very useful abstract convergence result for descent methods provided 
that three essential conditions are satisfied. See below.

Theorem 9.4. (Theorem 2.9, [38]) Let φ : RN → R ∪ {+∞} be a proper lower semi-continuous function. 
Consider a sequence {xk} that satisfies the following conditions:
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• ∃ a ∈ R+, s.t. ∀ k ≥ 1, φ(xk) − φ(xk+1) ≥ a‖xk − xk+1‖2;
• ∃ b ∈ R+, s.t. ∀ k ≥ 1, ∃ uk+1 ∈ ∂φ(xk+1) such that ‖uk+1‖ ≤ b‖xk − xk+1‖;
• ∃ a subsequence {xkj} and x∗, s.t. xkj → x∗ and φ(xkj ) → φ(x∗).

If φ has the KL property at x∗, then {xk} converges to x∗, and x∗ is a stationary point of φ. Moreover {xk}
has a finite length, i.e.,

∞∑
k=0

‖xk+1 − xk‖ < +∞.
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