
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

RUNTIME SAFETY THROUGH ADAPTIVE SHIELDING:
FROM HIDDEN PARAMETER INFERENCE TO PROVABLE
GUARANTEES

Anonymous authors
Paper under double-blind review

ABSTRACT

Unseen shifts in environment dynamics, driven by hidden parameters such as fric-
tion or gravity, can trigger safety risks during deployment. We develop a runtime
shielding mechanism for reinforcement learning, building on the formalism of con-
strained hidden-parameter Markov decision processes. Function encoders enable
real-time inference of hidden parameters from observations, allowing the shield
and the underlying policy to adapt online. To further promote safe policy learning,
we introduce a safety-regularized objective that augments reward maximization
with a bounded safety measure. This objective encourages the selection of actions
that minimize long-term safety violations. The shield constrains the action space
by forecasting future safety risks (such as obstacle proximity) and accounts for un-
certainty via conformal prediction. We prove that the proposed mechanism satisfies
probabilistic safety guarantees and yields optimal policies within safety-compliant
policies. Experiments across diverse environments with varying hidden parame-
ters show that our approach reduces safety violations while maintaining effective
task-solving performance, and achieving robust out-of-distribution generalization.

1 INTRODUCTION

Robots and other autonomous systems must operate safely in open-world environments where
the underlying dynamics can vary due to hidden parameters such as mass distribution, friction,
or terrain compliance. These parameters often change across episodes and remain unobserved,
introducing safety risks and challenging the generalization capabilities of reinforcement learning
(RL) systems (Kirk et al., 2023; Benjamins et al., 2023). Ensuring robust and safe behavior under
such uncertainty is essential in domains like autonomous driving and robotic manipulation, where
failures can have serious real-world consequences.

Despite recent progress in hidden parameter-aware and safe RL, existing methods often trade off
adaptability and safety. Approaches such as hypernetworks, contextual models, or mixtures-of-
experts (Rezaei-Shoshtari et al., 2023; Beukman et al., 2023; Celik et al., 2024) demonstrate strong
adaptation to varying dynamics, but typically lack explicit mechanisms for guaranteeing safety under
uncertainty. Conversely, safe reinforcement learning (RL) frameworks based on constrained Markov
decision processes (CMDPs) (Achiam et al., 2017; Tessler et al., 2018; Wachi & Sui, 2020; Yang
et al., 2020; 2022) enforce safety by imposing constraints on cumulative costs. Methods such as state
augmentation (Li et al., 2022) and shielding (Alshiekh et al., 2017; Yang et al., 2023) improve safety
while maintaining compatibility with a wide range of safe RL algorithms. However, these approaches
typically assume stationary dynamics and lack the ability to adapt in real time to hidden parameter
shifts.

To address this gap, we propose a runtime shielding framework for reinforcement learning that adapts
online to hidden parameters while offering provable probabilistic safety guarantees. Central to our
approach is the use of function encoders (Ingebrand et al., 2024b; 2025), a compact and expressive
model class that infers environment dynamics from transition data by projecting them onto neural
basis functions. This representation enables fast, online adaptation of both the policy and shield
without retraining.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To ensure safe learning and adaptation, our approach combines two complementary mechanisms
that operate proactively during training and reactively at execution. First, we introduce a safety-
regularized objective that augments rewards with a cost-sensitive value estimate, encouraging the
policy to avoid unsafe behavior during training. However, this objective alone cannot guarantee safety,
particularly under distribution shift. To address this, we augment policy execution with an adaptive
shield that samples candidate actions from the policy, predicts future states using a function encoder,
and applies conformal prediction to quantify uncertainty in these forecasts. Actions that fail to meet a
safety margin are filtered out, ensuring that only safe actions are executed. Empirical evaluations in
Safe-Gym benchmarks (Ji et al., 2023), including out-of-distribution scenarios with unseen hidden
parameters, demonstrate that our method reduces safety violations compared to baselines, achieving
robust generalization with minimal runtime overhead.

In summary, our main contributions are:

• Safety-Regularized RL Objective: We propose a new objective that balances reward and safety
by integrating a cost-sensitive value function, and encouraging a low-violation behavior policy.

• Online Hidden-Parameter Adaptation: We leverage function encoders to infer hidden parameters
from transitions, enabling efficient policy and shield adaptation without retraining.

• Adaptive Shield with Probabilistic Guarantees: We develop an adaptive, uncertainty-aware
runtime shield that filters unsafe actions using conformal prediction, ensuring safety during
execution with provable probabilistic guarantees.

1.1 RELATED WORK

Safe Reinforcement Learning. Safe RL methods often employ constrained MDP formulations
to ensure compliance with safety constraints. Constrained policy optimization (CPO) remains
foundational, effectively balancing performance and safety (Achiam et al., 2017; Wachi & Sui, 2020).
Further techniques use learned recovery policy to ensure safe action execution (Thananjeyan et al.,
2020). Recent zero-violation policy methods in RL aim to minimize safety violations using techniques
like genetic cost function search, energy-based action filtering, primal-dual, and primal algorithms
(Hu et al., 2023; Zhao et al., 2021; Ma et al., 2024; Liu et al., 2021; Bai et al., 2023). However,
these approaches often face scalability issues, rely on restrictive assumptions, or are limited to simple
environments. Unlike these approaches, we introduce the safety regularized-objective that can be
integrated into the optimization process of any CMDP-based RL algorithms. Shielding frameworks
proactively filter unsafe actions, selectively sampling safe actions (Alshiekh et al., 2017; Carr et al.,
2023; Yang et al., 2023). Recent developments on shielding integrate adaptive conformal prediction
into safety frameworks, enhancing uncertainty quantification for safety-critical planning (Sheng et al.,
2024a;b). Control barrier functions (CBFs) offer an alternative certificate-based safety mechanism.
However, learning a valid barrier certificate is often difficult under uncertain or varying dynamics,
as it typically requires explicit model knowledge or robust bounds on the hidden parameters (Choi
et al., 2020; Cheng et al., 2023; Ganai et al., 2023; Wang et al., 2023; Xiao et al., 2023). For details
on how this connects to our adaptive shielding mechanism, see Appendix E. However, unlike existing
methods, which are not designed to address varying hidden dynamics, our approach concurrently
enhances safety through a safety-regularized objective and adaptive shielding while adapting to
dynamic hidden parameters using function encoders.

Contextual or Hidden-Parameter Reinforcement Learning. Hidden parameters, often termed
context, have been studied in recent context-aware reinforcement learning approaches, demonstrating
their importance for generalization (Benjamins et al., 2023). When algorithms are provided with
knowledge of the hidden parameters, they are often directly integrated into the model. For exam-
ple, contextual recurrent state-space models explicitly incorporate known contextual information to
enable zero-shot generalization (Prasanna et al., 2024). Contextualized constrained MDPs further
integrate context-awareness into safety-prioritizing curricular learning (Koprulu et al., 2025). A
common approach to handle unknown context information is to infer it from observational history
using transformer models (Chen et al., 2021). Hypernetwork-based methods utilize adapter modules
to adjust policy networks based on inferred contexts (Beukman et al., 2023). Mixture-of-experts
architectures leverage specialized experts, using energy-based models to handle unknown contexts
probabilistically (Celik et al., 2024). However, these works primarily focus on enhancing generaliza-
tion to varying dynamics without incorporating safety mechanisms during adaptation in contrast to
our method.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Generalization in Reinforcement Learning. Generalization in RL, including zero-shot transfer
and meta learning, is crucial for robust policy adaptation to varying dynamics. For example, meta-
learning approaches, such as MAML (Finn et al., 2017), allow rapid parameter adaptation from
minimal interaction data. Safe meta RL (Khattar et al., 2023; Guan et al., 2024) extends meta-
reinforcement learning to adapt to new tasks while adhering to safety constraints. However, meta-
learning approaches involve parameter updates during adaptation, whereas our framework focuses on
rapid, online inference of hidden parameters without requiring such updates. Hypernetwork-based
zero-shot transfer methods explicitly condition policies on task parameters (Rezaei-Shoshtari et al.,
2023). Function encoders, i.e. neural network basis functions, have demonstrated strong zero-shot
transfer by using the coefficients of the basis functions as a fully-informative, linear representation
of the dynamics (Ingebrand et al., 2024b;a). Single-episode policy transfer and adaptive methods
effectively handle environment changes by encoding historical context (Yang et al., 2019; Chen
et al., 2022). Advanced context encoder designs further improve robustness and fast adaptation
capabilities (Luo et al., 2022). While these methods excel at adapting to varying dynamics, they do
not address safety constraints during adaptation, leaving agents vulnerable to unsafe actions in unseen
environments.

2 PROBLEM FORMULATION

Constrained hidden-parameter MDPs (CHiP-MDPs) model environments with varying transition
dynamics, where a cost function is introduced alongside a reward function to address safety constraints.
A CHiP-MDP extends the HiP-MDP framework (Konidaris & Doshi-Velez, 2014) and is defined
by the tuple M = (S,A,Φ, T,R,C, γ, PΦ), where S and A are the state and action spaces, R :
S×A×S → R is a reward function, C : S×A×S → [0, 1] is a cost function, and γ ∈ (0, 1) is the
discount factor. The transition dynamics T : S ×A× Φ→ S depend on a hidden parameter ϕ ∈ Φ.
For a specified hidden parameter ϕ ∈ Φ, we denote the transition dynamics as Tϕ : S ×A→ S. The
prior PΦ(ϕ) over the parameter space Φ represents the distribution of these hidden parameters. We
denote the initial state distribution as µ0.

Since the hidden parameters ϕ are unknown to the agent, it must infer changes in the environment
dynamics from observations. To this end, the agent follows a policy π : S × B → A, where B
denotes the set of learned representations of the transition dynamics Tϕ. We denote the resulting
representation by bϕ for each ϕ. The objective of the agent is to maximize expected cumulative
discounted reward while satisfying safety constraints in a CHiP-MDPM. To formalize this objective,
we define the reward action-value function, for a parameter ϕ, as:

QπR(s, a, bϕ) = Eπ,Tϕ

[∞∑
t=0

γtR(st, at, st+1) | s0 = s, a0 = a, ϕ

]
. (1)

The corresponding reward state-value function, which averages QπR over actions, is:

V πR (s, bϕ) = Ea∼π(·|s,bϕ) [Q
π
R(s, a, bϕ)] . (2)

Finally, the reward objective is defined as :

JR(π) = Eϕ∼Pϕ,s0∼µ0(·|ϕ),a0∼π(·|s0,bϕ) [Q
π
R(s0, a0, bϕ)] . (3)

Likewise, the cost objective is defined the same way, replacing the reward function R with the cost
function C: JC(π) = Eϕ∼Pϕ,s0∼µ0(·|ϕ),a0∼π(·|s0,bϕ) [Q

π
C(s0, a0, bϕ)] . The safety constraints aim to

minimize the average cost rate. To this end, we state our problem below.

Problem. Given a CHiP-MDPsM = (S,A,Φ, T,R,C, γ, PΦ) where the transition dynamics Tϕ
are fully unknown and vary with a hidden parameter ϕ, find an optimal policy π∗ that maximizes the
expected cumulative discounted reward JR(π∗) while satisfying the safety constraints on the average
cost rate,

ξπ
∗
(s, ϕ) = lim

H→∞

1

H
Eπ∗,Tϕ

[
H−1∑
t=0

C(st, at, st+1) | s0 = s, ϕ

]
≤ δ, (4)

where δ ∈ (0, 1) is a failure probability. Note that the transition dynamics depend on the hidden
parameter ϕ, but the policy depends on a representation of the hidden parameter, bϕ, derived from
any previously observed transitions by Tϕ.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

To enforce the safety constraint, we define the cost action-value function QπC and cost state-value
function V πC by replacing the reward function R with the cost function C from Equations 1 and 2.
Minimizing the average cost rate can be achieved by minimizing the cost-value function V πC (see
Appendix N).

3 BACKGROUND

We introduce key concepts essential for understanding our methods. First, function encoders have
demonstrated robust performance in estimating varying underlying dynamics (Ingebrand et al.,
2024b;a; 2025). Second, conformal prediction provides a rigorous framework for quantifying
uncertainty (Vovk et al., 2005; Tibshirani et al., 2019; Gibbs & Candès, 2024).
Function Encoder. A function encoder (FE) offers a compact and computationally efficient frame-
work for representing functions in terms of neural network basis functions. Consider a set of functions
F = {f | f : X → R}, where X ⊂ Rn is an input space with finite volume. When F forms a
Hilbert space with the inner product ⟨f, g⟩ =

∫
X f(x)g(x)dx, any f ∈ F can be expressed using a

basis {g1, g2, . . . , gk} as f(x) =
∑k
i=1 bigi(x), where bi are unique coefficients. To determine the

coefficients, we solve the following least-squares optimization problem:

(b1, b2, · · · , bk) := argmin
(b1,b2,··· ,bk)∈Rk

∥∥∥∥∥∥f −
k∑
j=1

bjgj

∥∥∥∥∥∥
2

2

. (5)

For more information on how to train the neural network basis functions, see Ingebrand et al. (2025).

Conformal Prediction. Conformal Prediction (CP) allows for the construction of prediction intervals
(or regions) that are guaranteed to cover the true outcome with a user-specified probability, under
minimal assumptions. For exchangeable random variables {Zi}t+1

i=1, CP constructs a region satisfying:
P(Zt+1 ≤ Γt) ≥ 1− δ, where δ ∈ (0, 1) is the failure probability, and the threshold Γt = Z(q) is the
q-th order statistic of {Z1, . . . , Zt}, with q = ⌈(t+1)(1−δ)⌉. Adaptive Conformal Prediction (ACP)
extends this to non-stationary settings by making the threshold learnable. For more information on
conformal prediction, see Shafer & Vovk (2008); Gibbs & Candès (2021).

4 APPROACH

Our approach has three main components. First, we introduce a novel safety-regularized objective.
This objective is used during optimization and encourages the policy to converge toward a zero-
violation policy. Second, we use a function encoder to represent underlying dynamics Tϕ, enabling
online adaptation. Finally, we leverage this dynamics representation to construct an adaptive shield.
The shield adjusts safe regions by conformal prediction and blocks unsafe actions online.

4.1 SAFETY-REGULARIZED OBJECTIVE

To promote safe policy learning, we introduce a safety measure, Qπsafe(s, a, bϕ), which quantifies
the safety of an action a ∼ π(·|s, bϕ), given the learned representation bϕ ∈ Rk. Higher values of
Qπsafe indicate actions with lower long-term costs under policy π. Since we aim to minimize the cost
action-value function QπC , higher Qπsafe values correspond to lower QπC values. Based on this intuition,
we define Qπsafe(s, a, ϕ) for an action a ∼ π(·|s, bϕ) as:

Qπsafe(s, a, bϕ) = −
∫
B(a,ϵ)∩A π(x | s, bϕ)QπC(s, x, bϕ)dx

V πC (s, bϕ) + ϵ
(6)

where ϵ > 0 is a small constant ensuring numerical stability, and B(a, ϵ) denotes a small ball of
radius ϵ centered at a.

This formulation bounds the value in (−1, 0] by its design. For continuous action spaces, the
probability of taking a specific action is always 0, so we integrate the value over a small interval
including that action. For practical implementation, we use a Monte Carlo approximation to the
integral by sampling several values around an action a and then aggregating them.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

A value near 0 for Qπsafe(s, a, bϕ) indicates one of two scenarios: 1) Safety: where the policy
selects an action a resulting in near-zero long-term cost violations, i.e., QπC(s, a, bϕ) ≈ 0; or 2)
Exploration: where the probability of selecting action a is small, i.e., π(a|s, bϕ) ≈ 0. In contrast,
when Qπsafe(s, a, bϕ) is near −1, it indicates that actions around a substantially contributes to the
expected cumulative cost V πC (s, bϕ), posing a higher risk compared to other action choices at state s.
See Appendix K for details on the design choice.

To integrate this safety measure into policy optimization, we define an augmented action-value
function, Qπaug(s, a, bϕ) = QπR(s, a, bϕ) + αQπsafe(s, a, bϕ), where QπR(s, a, bϕ) is the reward action-
value function, and α ≥ 0 is a hyperparameter balancing safety and reward. Our safety-regularized
objective (SRO) is:

Jaug(π) = Eϕ∼Pϕ,s0∼µ0(·|ϕ),a0∼π(·|s0,bϕ)
[
Qπaug(s0, a0, bϕ)

]
. (7)

A larger α encourages the policy to prioritize safe actions that result in zero-violation costs or to
select under-explored actions with lower assigned probabilities. Next, we introduce a proposition
which justifies this choice of objective.

Proposition 1. Let Πzero-violation denote the set of zero-violation policies, defined as {π | JC(π) = 0}.
Then, for any α ≥ 0, the optimal policy obtained by maximizing the safety-regularized objective
function Jaug(π) within Πzero-violation is equivalent to the optimal policy obtained by maximizing the
standard reward objective JR(π) within the same set of policies.

Proof Sketch. For any policy within the zero-violation set, all actions sampled from the policy lead
to QπC(s, a, ϕ) = 0. By our design of the safety term, this condition implies Qπsafe(s, a, bϕ) = 0.
Substituting this into our regularized objective, Jaug(π) simplifies to JR(π).

Proposition 1 proves that the safety regularization does not degrade performance unnecessarily
when an agent already behaves safely. Specifically, it guarantees that if we focus only on the set of
policies that satisfy all safety constraints, maximizing the safety-regularized objective is equivalent to
maximizing the standard reward objective. For a theoretical analysis of how the safety-regularized
objective (SRO) combines with TRPO and CPO, see Appendix B. The detailed integration of SRO
into the actor-critic training loop is provided in Appendix D.

4.2 INFERRING HIDDEN PARAMETERS ONLINE

To infer the underlying dynamics Tϕ and predict the next state st+1 based on transition sam-
ples and (st, at), we use a function encoder, denoted by f̂FE. Given observed transition samples
{(si, ai, si+1)}t−1

i=1 and the current state-action pair (st, at), the function encoder predicts the next
state ŝt+1 as: ŝt+1 = f̂FE(st, at) =

∑k
i=1 bi · gi(st, at), where gi(st, at) are pretrained basis func-

tions, and bi are coefficients derived from a subset of transition samples. These coefficients bi
additionally serve as a representation for Tϕ. Due to the properties of basis functions, these rep-
resentations are fully informative and linear (Ingebrand et al., 2024b). We concatenate them with
the state to form an augmented input (st, b1, . . . , bk), which the policy uses as input. As the agent
interacts with the environment, collecting new transitions (st, at, st+1), we refine the coefficients bi
by solving Equation 5 with updated transition samples. Consequently, the agent receives an online
representation of the dynamics. Note that with a fixed number of basis functions k, the computation,
involving the inverse of a k × k matrix, remains efficient even for large samples. We denote the
coefficients (b1, · · · , bk) as bϕ for the dynamics Tϕ.

4.3 ADAPTIVE SHIELDING MECHANISM

To ensure safety during policy execution, we propose an adaptive shielding mechanism that dynami-
cally intervenes based on uncertainty in model predictions. This shield wraps any underlying policy
π, adjusting actions to prevent unsafe outcomes. We illustrate the shielding process at timestep t.

We first introduce the necessary settings. The cost function is defined using an indicator function
I as C(st, at, st+1) = I {ν(e(st+1), Et+1) ≤ 0}, where e : S → Rn1 extracts agent-centric safety
features, Et+1 ∈ Rn2 captures environment features, and ν : Rn1 × Rn2 → R is Lipschitz
continuous with Lipschitz constant Lν . We assume the agent-centric safety features change smoothly,

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

i.e., ∥e (st+1)− e (st)∥ ≤ ∆max, where ∆max is a bound on the per-step feature change. By the
Lipschitz property, the equation ∥e(st+1)− e(st)∥ ≤ ∆max implies:

ν(e(st+1), Et+1) ≥ ν(e(st), Et)− Lν∆max. (8)

Thus, if ν(e(st), Et) > Lν∆max, then C(st, at, st+1) = 0 for all at ∈ A. Since the value
ν (e (st) , Et) can be computed at state st before selecting action at to assess its safety, we call
it as the pre-safety indicator.

1. Pre-Safety Check: To minimize intervention, we evaluate the pre-safety indicator:

ν(e(st), Et) > Lν∆, (9)

where ∆ is a predefined value larger than ∆max. If this condition is violated, full safety verifi-
cation is triggered; otherwise, the policy executes directly. This pre-safety check step improves
computational efficiency when full safety verification is excessive.

2. Action Generation: The policy π generates N candidate actions {a(i)t }Ni=1 by sampling from its
action distribution π(· | st, bϕ), where bϕ derived by a subset of transition samples up to time step
t explained in Section 4.2.

3. Transition Prediction: For each candidate action a(i)t , a function encoder f̂FE predicts the next
state: ŝ(i)t+1 = f̂FE(st, a

(i)
t). Note that any pre-trained forward dynamics model f̂ can be used for

prediction. However, the function encoder enables inference of varying underlying dynamics and
next-state prediction at once.

4. Safety Verification: Using ACP, we compute uncertainty-aware safety margins for each action:

SafetyScore(a(i)t) = ν
(
e(ŝ

(i)
t+1), Êt+1

)
− 2LνΓt, (10)

where Êt+1 represents predicted environment features and Γt is the adaptive conformal prediction
bound for ŝ(i)t+1 and Êt+1 calibrated to maintain a 1− δ safety probability. Actions are ranked by
their safety scores, with positive scores indicating safety compliance.

5. Action Selection: Define the safe action set at state st as Âsafe(st) = {a(i)t : SafetyScore(a(i)t) >

0} and sampled action set as Âsample = {a(i)t }i∈[N] . The shield executes the following selection
rule:

a∗t =

{
a ∼ U(Topk(Âsafe(st)), if Âsafe ̸= ∅,
argmaxa∈Âsample

SafetyScore(a), otherwise,
(11)

where U(Topk(·)) denotes a uniform distribution over the top k actions ranked by their safety
scores.

When the shield predicts multiple steps h ahead, we repeat the procedure for steps 2, 3, 4, aggregating
the safety score over future steps. However, long-term predictions often increase compounding errors
and runtime. Thus, we typically use a shorter prediction horizon such as h = 1 or h = 2.

The following theorem demonstrates that an optimal policy, augmented with an adaptive shield,
maximizes the expected cumulative discounted return while maintaining a tight bound on the average
cost rate. See Appendix A for details.

Theorem 1. Given a Constrained Hidden Parameter MDPM = (S,A,Φ, T,R,C, γ, PΦ) with initial
state s0 ∈ S and failure probability δ ∈ (0, 1), an optimal policy π∗ : S × Φ→ A augmented with
an adaptive shield maximizes the expected cumulative discounted return Jaug(π

∗) while satisfying
the average cost rate constraint: for ϕ ∼ PΦ and some 0 ≤ ϵ̄ ≤ 1,

ξπ
∗
(s, ϕ) = lim

H→∞

1

H
Eπ∗,Tϕ

[
H−1∑
t=0

C(st, at, st+1) | s0 = s, ϕ

]
≤ δ + ϵ̄(1− δ). (12)

Given this bound, if safe actions exist at each step, this theorem proves that our algorithm achieves a
low average cost rate constraint, governed by the ACP failure probability, i.e., ξπ

∗
(s, ϕ) ≤ δ.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Proof Sketch. The ACP provides a probabilistic guarantee on the deviation between the predicted
state ŝt+1 = f̂ (st, at) and the true state st+1: (∥st+1 − ŝt+1∥ ≤ Γt) ≥ 1 − δ, where Γt is the
confidence region at time t + 1. Since ν is Lipschitz continuous with constant Lν , we bound
the difference in the safety margin between the true and predicted states: ν (e (st+1) , Et+1) ≥
ν(e (ŝt+1) , Êt+1)−Lν ∥e (st+1)− e (ŝt+1)∥−Lν

∥∥∥Et+1 − Êt+1

∥∥∥ . Given that e and Et+1 depend
on the state prediction, their errors are bounded with high probability: if e is Lipschitz with constant
Le, then ∥e (st+1)− e (ŝt+1)∥ ≤ LeΓt; similarly, the error in Et+1 is bounded by ΓE ≤ LEΓt.
For simplicity, we take a uniform bound Γt when Le, LE ≤ 1. The set of safe actions is defined
as: Âsafe (st) = {a ∈ A | ν(e(f̂ (st, a)), Êt+1) > 2LνΓt}. If an action is selected from Âsafe , we
guarantee ν (e (st+1) , Et+1) > 0, ensuring a safe state at t + 1 . The final bound depends on the
failure probability of state prediction and the probability of selecting safe actions.

5 EXPERIMENTS

We empirically evaluate our approach to assess its safety, generalization, and efficiency across diverse
RL tasks. We compare against established safe RL baselines and analyze three variants of our method:
using only the safety-regularized objective, only the adaptive shield, and their combination. Our
experiments are guided by the following research questions:

• RQ1: How does our approach balance safety and task performance during training without being
informed of changing hidden parameters?

• RQ2: How well does our approach generalize to out-of-distribution test environments by inferring
varying hidden parameters online?

5.1 EXPERIMENTAL SETUP

Environments. We conduct experiments using the Safe-Gym benchmark (Ji et al., 2023) for safe
RL, with two robot types: Point and Car. Each robot performs four tasks: (1) Goal: navigate to a
target while avoiding obstacles; (2) Button: activate a button while avoiding hazards; (3) Push: push
an object to a goal under contact constraints; (4) Circle: follow a circular path while staying within
safe boundaries. Robot-task combinations are denoted as robot-task (e.g., Point-Goal, Car-Circle).
Each task includes a safety constraint (e.g., obstacle avoidance or region adherence). Episode-level
randomness is introduced by sampling gravity, and four hidden dynamics parameters: damping, mass,
inertia, and friction.

Baselines. We compare our approach to six established safe RL algorithms:

• Saute: A state augmentation technique with safety budgets for almost sure constraint satisfaction,
applicable to a wide range of RL algorithms such as PPO or RCPO (Li et al., 2022).

• PPO-Lag: Proximal Policy Optimization with Lagrangian updates for both reward and con-
straint (Schulman et al., 2017; Ray et al., 2019).

• RCPO: Reward Constrained Policy Optimization, which uses policy gradients to optimize a reward
function penalized by safety violations (Tessler et al., 2018).

• CPO: Constrained Policy Optimization with joint second-order updates to enforce linearized cost
constraints (Achiam et al., 2017).

• CUP: Constrained Update Projection, a policy optimization method that projects updates to satisfy
safety constraints with theoretical guarantees (Yang et al., 2022).

• USL: Unrolling Safety Layer, which re-weights the policy loss for safety and projects unsafe
actions into a feasible set at execution (Zhang et al., 2023).

Baselines directly access hidden parameters ϕ (i.e., bϕ = ϕ) for dynamics adaptation, as they do
not perform inference. In contrast, our approach uses f̂FE to infer hidden parameters online and is
evaluated without this privileged information, demonstrating robustness under limited parameter
awareness. We use RCPO without access to the hidden parameters ϕ as the base RL algorithm.
On top of this, we evaluate RCPO combined with SRO, RCPO combined with Shield, and RCPO
combined with both SRO and Shield. For brevity, we refer to these as SRO, Shield, and SRO + Shield,
respectively. We also provide results using PPO-Lag combined with our methods in Appendix G.

Hyperparameters. All methods use the default hyperparameters provided by their respective
implementations: Omni-Safe (Ji et al., 2024) for Saute, PPO-Lag, RCPO, CPO, and CUP, and Safe-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 2 4

−5

0

5

10

15

20
R

et
u

rn
Point-Goal

0.0 2.5 5.0 7.5

0

5

10

Point-Button

0 1 2

−4

−2

0

Point-Push

0 5 10

0

10

20

30

Point-Circle

0 1 2 3

Cost Rate (%)

−5

0

5

10

15

R
et

u
rn

Car-Goal

0 2

Cost Rate (%)

−2.5

0.0

2.5

5.0

7.5

Car-Button

0.0 0.5 1.0 1.5

Cost Rate (%)

−2.0

−1.5

−1.0

−0.5

0.0

Car-Push

0 1 2

Cost Rate (%)

0.0

2.5

5.0

7.5

10.0

12.5

Car-Circle

Shield (ours)

SRO (ours)

SRO + Shield (ours)

CPO

RCPO

PPO-Lag

CUP

USL

PPO-Saute

RCPO-Saute

Figure 1: Results display the mean reward and cost rate (%) over the last 20 epochs across seeds. The
top-left position is desirable, indicating higher returns with lower cost rates. Solid points represent
mean return and cost rate, while transparent points depict individual seed results.

RL-Kit (Zhang et al., 2023) for USL. When evaluating our approach on top of each base algorithm
(e.g., RCPO), we adopt the same hyperparameters as the corresponding baseline to ensure a fair
comparison. Each method is trained for 2 million environment steps using 3 random seeds. Each
trained policy is evaluated over 100 episodes at test time.

We set the pre-safety distance to 0.275 and the ACP failure probability to 2%. The function encoder
f̂FE is pre-trained on 1000 episodes (1000 steps each) collected by a trained PPO policy. The f̂FE
remains fixed during policy training, introducing realistic prediction error that is managed by ACP.
All agents are trained under a strict safety constraint, with a cost limit of zero.

For training, environment parameters ϕ (gravity, damping, mass, inertia, friction) are sampled uni-
formly from the interval [0.3, 1.7]. For out-of-distribution evaluation, the parameters are sampled from
the interval [0.15, 0.3] ∪ [1.7, 2.5], and the number of obstacles is increased to stress generalization.

Metrics. We evaluate each method using per-episode averages for the following metrics, each
capturing a different aspect of performance: (1) Return, measuring task performance as the cumulative
reward per episode; (2) Cost Rate, reflecting safety by measuring the frequency of constraint violations
per timestep.

5.2 RESULTS ANALYSIS

RQ1: Trade-offs Between Safety and Return. Figure 1 shows the episodic return and cost rate
across four tasks during training. Baseline methods exhibit a range of trade-offs. PPO-Lag tends to
achieve high returns but incur higher cost rates. CPO, PPO-Saute, and RCPO-Saute enforce strict
safety via a zero-violation constraint, often sacrificing reward learning, which leads to suboptimal
policies in multiple tasks. USL, dependent on cost-Q-value estimation, underperforms across all
tasks due to its sensitivity to environmental stochasticity, such as randomly reset obstacle positions
and dynamic changes, which disrupt cost estimation. CUP preserves task-solving performance but
frequently violates strict cost limits. RCPO maintains a reasonable balance between safety and return
but struggles to meet lower cost thresholds. These results highlights the challenge of balancing safety
and returns, even when hidden parameters are provided as inputs, in the presence of varying hidden
parameters. To assess the impact of providing fixed parameters, we compare performance with and
without fixed parameters. See Appendix L for details.

In contrast, our methods (using RCPO as the base RL algorithm) consistently achieve lower cost
rates while maintaining competitive returns, demonstrating their ability to balance safety and task

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5 10

−15

−10

−5

0

5
R

et
u

rn
Point-Goal

2.5 5.0 7.5

−15

−10

−5

0

Point-Button

2 4

−15

−10

−5

0

Point-Push

20 40
0.0

2.5

5.0

7.5

10.0

12.5

Point-Circle

0 5 10 15

Cost Rate (%)

−6

−4

−2

0

2

R
et

u
rn

Car-Goal

2 4 6

Cost Rate (%)

−4

−2

0

Car-Button

0 1 2 3

Cost Rate (%)

−6

−4

−2

Car-Push

10 20

Cost Rate (%)

0.5

1.0

1.5

2.0

2.5

3.0

Car-Circle

Shield (ours)

SRO (ours)

SRO + Shield (ours)

CPO

RCPO

PPO-Lag

CUP

USL

PPO-Saute

RCPO-Saute

Figure 2: Trade-off between average episodic return and cost rate in out-of-distribution domains. The
top-left position is desirable, indicating higher returns with lower cost rates. Solid points represent
mean return and cost rate, while transparent points depict individual seed results.

performance during training. Variants using only safety-regularized objective (SRO) or only adaptive
shield also reduce cost violations compared to baselines, but are less effective than the combined
method. We observe similar results when using PPO as the base RL algorithm for our methods (see
results in G).

Takeaway: Our combined method (SRO + shield) achieves an effective reward–cost trade-off during
training and remains consistently robust to unseen variations in environmental parameters.

RQ2: Generalization to Out-of-Distribution Environments. Figure 2 illustrates the trade-off
between average episodic return and cost rate in out-of-distribution test environments across all tasks.
Each marker corresponds to the mean performance across three trained policies (one per seed) for a
given method, evaluated separately on Point and Car robots.

Our full method (SRO + Shield) consistently appears near the desirable position (high return and low
cost rate) across all tasks, indicating strong generalization to previously unseen dynamics. SRO-only
and Shield-only variants also perform well but tend to deviate more from the desirable position.
Shield typically remains stable because its logic, which filters unsafe actions based on predicted
states and safety measures like proximity to obstacles, holds regardless of OOD conditions. This
trend highlights the complementary effect of combining proactive (SRO) and reactive (Shield) safety
mechanisms.

Among the baselines, CPO and Saute maintain low cost rates but sacrifice return, often positioning
them outside the desirable region. The remaining algorithms exhibit inconsistent performance across
environments, lacking consistent patterns.

Takeaway: our approach generalizes effectively to out-of-distribution settings, consistently achieving
a favorable balance between return and safety across robot types and task variations.

Ablation Studies. We conduct additional ablation studies, presented in the appendix. These include:
comparing runtime overhead for executing shielding (Appendix C); Analyzing the connection between
our shielding mechanism and control theory (Appendix E); Analyzing key hyperparameters like
sampling size and safety bonus (Appendix F); Applying our method to other base RL algorithms,
such as PPO-Lag (Appendix G); Evaluating the impact of the function encoder representation
on both task performance and dynamics prediction accuracy compared to alternative predictors
(Appendices H and I); and providing additional experiments on HalfCheetah (Appendix J). Our
ablations show that augmenting RL algorithms with shielding or SRO enhances safety without
compromising performance, which remains stable across varying sampling sizes and safety bonus

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

values. Additionally, our function encoder-based inference effectively adapts to changing transition
dynamics Tϕ, achieving performance comparable to oracle representations.

6 CONCLUSION

We presented a novel approach for safe and generalizable reinforcement learning in settings with
dynamically varying hidden parameters. Our approach comprises three key components: (1) a safety-
regularized objective that promotes low-violation behavior during training, (2) function encoder-based
inference of hidden dynamics, and (3) an adaptive runtime shield that uses conformal prediction
to filter unsafe actions based on uncertainty at execution time. Experimental results demonstrate
that our approach consistently outperforms baselines in reducing safety violations while maintaining
competitive task performance, and generalizes effectively across diverse tasks and out-of-distribution
environments.

Despite its effectiveness, our approach has several limitations. First, the safety guarantees rely on
assumptions about the structure of the cost function, although these apply to a broad range of practical
scenarios. Second, the method depends on an offline dataset to train the function encoder, which
may limit applicability in settings without prior data. Third, our evaluation has so far been limited
to simulated environments. Future work will aim to address these limitations by relaxing modeling
assumptions, reducing reliance on offline data, and extending evaluations to physical robotic platforms
to assess scalability and real-world applicability.

ETHICS STATEMENT

This research adheres to the ICLR Code of Ethics (https://iclr.cc/public/CodeOfEthics). Our
reinforcement learning framework, incorporating runtime shielding and safety-regularized objectives,
was evaluated in simulated Safe-Gym environments, ensuring no involvement of human subjects,
sensitive data, or real-world deployment that could pose ethical risks. We prioritized safety and
robustness by addressing generalization to unseen dynamics, with experiments designed to minimize
potential unsafe behavior. No conflicts of interest or external funding influenced this work. A large
language model was used solely to polish text and assist in generating visualizations, with all core
research and results developed independently by the authors. We uphold the highest standards of
research integrity and transparency as outlined in the ICLR guidelines.

REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide the complete source code, including all hyperpa-
rameters, training scripts, evaluation protocols, and shielding mechanisms, via an anonymous reposi-
tory: https://osf.io/pc2fg/files/osfstorage?view_only=7d9c265765074d59a6cdecdbce6b66aa.
All theoretical results, including proofs of probabilistic safety guarantees, are included in Appendix
A, with clear explanations of assumptions and derivations. These materials collectively ensure that
our findings can be independently verified and reproduced.

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization. In
Proceedings of the 34th International Conference on Machine Learning, 2017.

Mohammed Alshiekh, R. Bloem, Rüdiger Ehlers, Bettina Könighofer, S. Niekum, and U. Topcu.
Safe reinforcement learning via shielding. In AAAI Conference on Artificial Intelligence, 2017.

Qinbo Bai, Amrit Singh Bedi, and Vaneet Aggarwal. Achieving zero constraint violation for
constrained reinforcement learning via conservative natural policy gradient primal-dual algorithm.
In AAAI, 2023.

Carolin Benjamins, Theresa Eimer, Frederik Schubert, Aditya Mohan, Sebastian Döhler, André
Biedenkapp, Bodo Rosenhahn, Frank Hutter, and Marius Lindauer. Contextualize me – the case
for context in reinforcement learning. Transactions on Machine Learning Research, 2023.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Michael Beukman, Devon Jarvis, Richard Klein, Steven James, and Benjamin Rosman. Dynamics
generalisation in reinforcement learning via adaptive context-aware policies. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023.

Steven Carr, Nils Jansen, Sebastian Junges, and Ufuk Topcu. Safe reinforcement learning via shielding
under partial observability. In The Thirty-Seventh AAAI Conference on Artificial Intelligence, 2023.

Onur Celik, Aleksandar Taranovic, and Gerhard Neumann. Acquiring diverse skills using curriculum
reinforcement learning with mixture of experts. In Proceedings of the 41st International Conference
on Machine Learning, 2024.

Baiming Chen, Zuxin Liu, Jiacheng Zhu, Mengdi Xu, Wenhao Ding, Liang Li, and Ding Zhao.
Context-aware safe reinforcement learning for non-stationary environments. In 2021 IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2021.

Xiaoyu Chen, Xiangming Zhu, Yufeng Zheng, Pushi Zhang, Li Zhao, Wenxue Cheng, Peng CHENG,
Yongqiang Xiong, Tao Qin, Jianyu Chen, and Tie-Yan Liu. An adaptive deep RL method for
non-stationary environments with piecewise stable context. In Advances in Neural Information
Processing Systems, 2022.

Yikun Cheng, Pan Zhao, and Naira Hovakimyan. Safe and efficient reinforcement learning using
disturbance-observer-based control barrier functions. In Proceedings of the Learning for Dynamics
and Control Conference, L4DC. PMLR, 2023.

Jason Choi, Fernando Castañeda, Claire J. Tomlin, and Koushil Sreenath. Reinforcement learning
for safety-critical control under model uncertainty, using control lyapunov functions and control
barrier functions. In Robotics: Science and Systems 2020, 2020.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In International Conference on Machine Learning, 2017.

Milan Ganai, Panagiotis Bakolas, Amin Karbasi, and Gloria Yale. Iterative reachability estimation for
safe reinforcement learning. In Advances in Neural Information Processing Systems, volume 36,
pp. 69764–69797, 2023.

Ian Gibbs and Emmanuel Candès. Adaptive conformal inference under distribution shift. In Advances
in Neural Information Processing Systems, 2021.

Ian Gibbs and Emmanuel J Candès. Conformal inference for online prediction with arbitrary
distribution shift. Journal of Machine Learning Research, 2024.

Cong Guan, Ruiqi Xue, Ziqian Zhang, Lihe Li, Yi-Chen Li, Lei Yuan, and Yang Yu. Cost-aware
offline safe meta reinforcement learning with robust in-distribution online task adaptation. In
Proceedings of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS ’24), 2024.

Yingtao Hu, Jianye Hao, Junyou Li, Yujing Hu, Chongjie Zhang, Changjie Fan, and Yang Gao.
Autocost: Evolving intrinsic cost for zero-violation reinforcement learning. In AAAI, 2023.

Tyler Ingebrand, Adam Thorpe, and Ufuk Topcu. Zero-shot transfer of neural ODEs. In The
Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024a.

Tyler Ingebrand, Amy Zhang, and Ufuk Topcu. Zero-shot reinforcement learning via function
encoders. In Proceedings of the 41st International Conference on Machine Learning, 2024b.

Tyler Ingebrand, Adam J. Thorpe, and Ufuk Topcu. Function encoders: A principled approach
to transfer learning in hilbert spaces. In Proceedings of the 2025 International Conference on
Machine Learning (ICML), 2025.

Jiaming Ji, Borong Zhang, Jiayi Zhou, Xuehai Pan, Weidong Huang, Ruiyang Sun, Yiran Geng, Yifan
Zhong, Josef Dai, and Yaodong Yang. Safety gymnasium: A unified safe reinforcement learning
benchmark. In Thirty-seventh Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jiaming Ji, Jiayi Zhou, Borong Zhang, Juntao Dai, Xuehai Pan, Ruiyang Sun, Weidong Huang,
Yiran Geng, Mickel Liu, and Yaodong Yang. Omnisafe: An infrastructure for accelerating safe
reinforcement learning research. Journal of Machine Learning Research, 2024.

Vanshaj Khattar, Yuhao Ding, Bilgehan Sel, Javad Lavaei, and Ming Jin. A CMDP-within-online
framework for meta-safe reinforcement learning. In The Eleventh International Conference on
Learning Representations, 2023.

Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. A survey of zero-shot
generalisation in deep reinforcement learning. J. Artif. Int. Res., 2023.

George Konidaris and Finale Doshi-Velez. Hidden parameter markov decision processes: An
emerging paradigm for modeling families of related tasks. In Knowledge, Skill, and Behavior
Transfer in Autonomous Robots: Papers from the 2014 AAAI Fall Symposium, 2014.

Cevahir Koprulu, Thiago D. Simão, Nils Jansen, and Ufuk Topcu. Safety-prioritizing curricula
for constrained reinforcement learning. In The Thirteenth International Conference on Learning
Representations, 2025.

Aivar Li, Long Yang, Zhaoran Xu, Meng Wang, and Wei Zhang. Sauté rl: A state-action augmentation
approach for safe reinforcement learning. In International Conference on Learning Representations,
2022.

Tao Liu, Ruida Zhou, Dileep Kalathil, Panganamala R. Kumar, and Chao Tian. Learning policies
with zero or bounded constraint violation for constrained mdps. In Advances in Neural Information
Processing Systems, 2021.

Fan-Ming Luo, Shengyi Jiang, Yang Yu, ZongZhang Zhang, and Yi-Feng Zhang. Adapt to en-
vironment sudden changes by learning a context-sensitive policy. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2022.

Haitong Ma, Yuhong Liu, Jianye Hao, Zhaopeng Meng, Chongjie Zhang, and Yang Gao. Learn
zero-constraint-violation safe policy in model-free constrained reinforcement learning. IEEE
Transactions on Neural Networks and Learning Systems, 2024.

Sai Prasanna, Karim Farid, Raghu Rajan, and André Biedenkapp. Dreaming of many worlds:
Learning contextual world models aids zero-shot generalization. Reinforcement Learning Journal,
2024.

Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, 2014.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement
learning. arXiv preprint arXiv:1910.01708, 2019.

Sahand Rezaei-Shoshtari, Charlotte Morissette, Francois R. Hogan, Gregory Dudek, and David
Meger. Hypernetworks for zero-shot transfer in reinforcement learning. In Proceedings of the
Thirty-Seventh AAAI Conference on Artificial Intelligence, 2023.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In Proceedings of the 32nd International Conference on Machine Learning,
2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. Journal of Machine Learning
Research, 2008.

Shili Sheng, David Parker, and Lu Feng. Safe pomdp online planning via shielding. In 2024 IEEE
International Conference on Robotics and Automation, 2024a.

Shili Sheng, Pian Yu, David Parker, Marta Kwiatkowska, and Lu Feng. Safe pomdp online planning
among dynamic agents via adaptive conformal prediction. IEEE Robotics and Automation Letters,
2024b.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Chen Tessler, D. Mankowitz, and Shie Mannor. Reward constrained policy optimization. In
International Conference on Learning Representations, 2018.

Brijen Thananjeyan, A. Balakrishna, Suraj Nair, Michael Luo, K. Srinivasan, M. Hwang, Joseph E.
Gonzalez, Julian Ibarz, Chelsea Finn, and Ken Goldberg. Recovery rl: Safe reinforcement learning
with learned recovery zones. In IEEE Robotics and Automation Letters, 2020.

Ryan J Tibshirani, Rina Foygel Barber, Emmanuel Candès, and Aaditya Ramdas. Conformal
prediction under covariate shift. In Advances in Neural Information Processing Systems, 2019.

Vladimir Vovk, Alex Gammerman, and Glenn Shafer. Algorithmic learning in a random world.
Springer, 2005.

Akifumi Wachi and Yanan Sui. Safe reinforcement learning in constrained markov decision processes.
In Proceedings of the 37th International Conference on Machine Learning, 2020.

Yixuan Wang, Sathyakiruthan Ganesh, Negar Mehr, Nazanin Bedrossian, and Nathan Ratliff. En-
forcing hard constraints with soft barriers: Safe reinforcement learning in unknown stochastic
environments. In Proceedings of the 40th International Conference on Machine Learning, ICML.
PMLR, 2023.

Wenhao Xiao, Saït Caliskan, and Calin Belta. Safe reinforcement learning via neural control
barrier functions. IEEE Transactions on Neural Networks and Learning Systems, 2023. doi:
10.1109/TNNLS.2023.3288689.

Jiachen Yang, Brenden Petersen, Hongyuan Zha, and Daniel Faissol. Single episode policy transfer
in reinforcement learning. In International Conference on Learning Representations, 2019.

Long Yang, Siyuan He, Jiaming Zhou, Peng Chen, Ruipeng Wang, Bei Wang, and Wei Zhang.
Cup: A constrained update projection approach for safe reinforcement learning. In International
Conference on Machine Learning, pp. 24941–24957, 2022.

Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, and Peter J. Ramadge. Projection-based
constrained policy optimization. In International Conference on Learning Representations, 2020.

Wen-Chi Yang, Giuseppe Marra, Gavin Rens, and Luc De Raedt. Safe reinforcement learning via
probabilistic logic shields. In Proceedings of the Thirty-Second International Joint Conference on
Artificial Intelligence, IJCAI-23, 2023.

Linrui Zhang, Qin Zhang, Li Shen, Bo Yuan, Xueqian Wang, and Dacheng Tao. Evaluating model-
free reinforcement learning toward safety-critical tasks. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2023.

Weiye Zhao, Tairan He, and Changliu Liu. Model-free safe control for zero-violation reinforcement
learning. In 5th Conference on Robot Learning, 2021.

A PROOFS

This section presents our main theoretical results, including proofs. We first introduce the necessary
notations.

Notations. We introduce the notation for dimensions and sets as follows. For n,m, k1, k2 ∈ N, let
n denote the state dimension, m the action dimension, k1 the hidden parameter dimension, and k2
the dimension of the function encoder’s learned representation. Note that the dimension k2 of the
learned representation may differ from k1, depending on the number of chosen basis functions. The
state space is S ⊆ Rn, the action space is A ⊆ Rm, the hidden parameter space is Φ ⊆ Rk1 , and the
learned representation space is B ⊆ Rk2 , where B is the coefficient space of basis functions for the
function encoder.

• M: Constrained Hidden Parameter Markov Decision Process.

• st ∈ Rn: State at time step t.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

• ŝt ∈ Rn: Predicted State for time step t.
• Xi,t (Xt) ∈ R2: Position of the i-th obstacle at time step t. The index i is omitted when referring

to a single obstacle without ambiguity.

• X̂i,t (X̂t) ∈ R2: Predicted position of the i-th obstacle at time step t. The index i is omitted when
referring to a single obstacle without ambiguity.

• at ∈ Rm: Action at time step t.

• f̂ : S ×A→ S: Continuous transition dynamics predictor.
• ϕ ∈ Rk1 : hidden parameter.
• bϕ ∈ Rk2 : learned representation to Tϕ.
• s′ ∼ T (· | s, a, ϕ): Transition dynamics given parameter ϕ. When s, a, s′ are unspecified, we

denote this by Tϕ.
• C : S ×A× S → [0, 1]: Cost function bounded in [0, 1].
• Ssafe(st, at): Safe state set, defined as {st ∈ S | C(st, at, st+1) = 0 s.t T (st+1 | st, at, ϕ) > 0}

where ϕ is a parameter sampled per episode.
• QπR(s, a, bϕ): State-action value function for reward under policy π defined as

Eπ,Tϕ

[∞∑
t=0

γtR(st, at, st+1) | s0 = s, a0 = a, ϕ

]
.

We aim to maximize this value.
• QπC(s, a, bϕ): State-action value function for cost under policy π defined as

Eπ,Tϕ

[∞∑
t=0

γtC(st, at, st+1) | s0 = s, a0 = a, ϕ

]
.

We aim to minimize this value.
• Qπaug(s, a, bϕ): Safety-regularized state-action value function defined as QπR(s, a, bϕ) +
αQπsafe(s, a, bϕ) where α is a positive constant and

Qπsafe(s, a, bϕ) = −
∫
B(a,ϵ)∩A π(x | s, bϕ)QπC(s, x, bϕ)dx

V πC (s, bϕ) + ϵ

where ϵ > 0 is a small constant ensuring numerical stability, and B(a, ϵ) denotes a small ball of
radius ϵ centered at a. We aim to maximize this value, whose maximum value is 0.

• Jsafe(π): Safety-regularizer for policy π defined as

Eϕ∼Pϕ,s0∼µ0(·|ϕ),a0∼π(·|s0,bϕ) [Q
π
safe(s0, a0, bϕ)] .

The policy π aims to maximize this value.
• Jaug(π): Safety-regularized objective function for policy π defined as

Eϕ∼Pϕ,s0∼µ0(·|ϕ),a0∼π(·|s0,bϕ)
[
Qπaug(s0, a0, bϕ)

]
.

The policy π aims to maximize this value.
• JR(π): Standard reward objective function for policy π defined as

Eϕ∼Pϕ,s0∼µ0(·|ϕ),a0∼π(·|s0,bϕ) [Q
π
R(s0, a0, bϕ)] .

The policy π aims to maximize this value.
• JC(π): Standard cost objective function for policy π defined as

Eϕ∼Pϕ,s0∼µ0(·|ϕ),a0∼π(·|s0,bϕ) [Q
π
C(s0, a0, bϕ)] .

The policy π aims to minimize this value.
• Πzero-violation: Set of zero-violation policies defined as {π | JC(π) = 0}.
• δ ∈ (0, 1): Failure probability.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

• Γt ∈ R+: Adaptive Conformal Prediction (ACP) threshold at time step t.
• ξπ(s, ϕ): Average cost under policy π defined as

ξπ
∗
(s, ϕ) = lim

H→∞

1

H
Eπ∗,Tϕ

[
H−1∑
t=0

C(st, at, st+1) | s0 = s, ϕ

]
,

starting from state s and parameter ϕ.
• π∗: Optimal policy satisfying constraint on the average cost rate.

We restate our proposition and theorems, then provide detailed proofs.

Proposition 1. Let Πzero-violation be the set of zero-violation policies. Then, for any α ≥ 0, the optimal
policy obtained by maximizing the safety-regularized objective function Jaug(π) within Πzero-violation
is equivalent to the optimal policy obtained by maximizing the standard reward objective JR(π)
within the same set of policies.

Proof. By definition, if π ∈ Πzero-violation, then for any state s, parameter ϕ, and action a with
π(a|s, bϕ) > 0, the state-action value function for the cost is zero: QπC(s, a, bϕ) = 0. Hence, any
action sampled around a by the policy π will have QπC(s, a, bϕ) = 0 leading to∫

B(a,ϵ)∩A
π(x | s, bϕ)QπC(s, x, bϕ)dx = 0.

This implies that for such policies, the safety term Qπsafe(s, a, bϕ) in the regularized objective is a
constant value of 0.

Therefore, for any policy π ∈ Πzero-violation, the safety-regularized objective function becomes:

Jaug(π) = Eϕ∼Pϕ,s0∼µ0(·|ϕ),a0∼π(·|s0,bϕ) [Q
π
R(s0, a0, bϕ) + α ·Qπsafe(s0, a0, bϕ)]

= Eϕ∼Pϕ,s0∼µ0(·|ϕ),a0∼π(·|s0,bϕ) [Q
π
R(s0, a0, bϕ) + α · 0]

= JR(π)

Thus, maximizing Jaug(π) within Πzero-violation is equivalent to maximizing JR(π) within the same
set.

Next, we will prove our main theorem. To prove the main theorem, we first establish the necessary
notation and settings.

We define the safe state set for a given state s ∈ S, action a ∈ A, and hidden parameter ϕ ∈ Φ
as: Ssafe(s, a) = {s′ ∈ S | C(s, a, s′) = 0 s.t. T (s′ | s, a, ϕ) > 0} . Thus, Ssafe(s, a) contains next
states s′ where the safety condition is satisfied. Throughout the theorem, we address a cost function
defined by safe distance

C(st, at, st+1) =

{
1 if minXt+1 ∥pos(st+1)−Xt+1∥ ≤ d
0 otherwise,

where Xt+1 denotes the positions of obstacles at time step t+1, and pos(st+1) represents the agent’s
position in state st+1. As our theorem applies to any norm satisfying the triangle inequality, we do
not specify a particular norm.

We assume the state includes the agent’s position, a natural choice for navigation tasks. Generally,
the state contains critical information needed to evaluate the cost function. Hence, a function
pos : S → R2 is a projection mapping, which is 1-Lipschitz continuous, meaning that

∥pos(s)− pos(s′)∥ ≤ ∥s− s′∥
for all s, s′ ∈ S.

We assume that the obstacle position Xt can be derived from the state st. This assumption is
reasonable, as the agent’s state typically includes safety-critical information. For instance, robots in
navigation tasks use sensors to detect nearby obstacles, with this information integrated into the agent’s
state. This setup applies to all navigation environments in Safety Gymnasium. Formally, we assume a

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

1-Lipschitz continuous function sensor : S → R2M , defined as sensor(st) = [X1,t, X2,t, . . . , XM,t],
where Xi,t ∈ R2 is the position of the i-th obstacle detected by the robot, and M is the number of
detected obstacles. When more than M obstacles are present, the sensor typically detects the M
closest ones.

We adopt a Gaussian policy π, commonly employed in training RL policies across various algorithms.

Remark 1 (Exchangeability of Episode Data). The validity of conformal prediction depends on the
assumption that the calibration and test data are exchangeable. In our sequential decision-making
context, this requires careful consideration. We ensure this property by treating each episode as an
independent data-generating process governed by a transition dynamics model Tϕ given a specified
parameter ϕ. Specifically, a hidden parameter ϕ is sampled at the beginning of each episode, and
this hidden parameter remains fixed for the episode’s entire duration. The dataset collected within
this episode is a sequence of transition tuples, Dep = {(s0, a0, st+1) , (s1, a1, s2) , . . .}. While
the sequence of states is temporally dependent, the individual transition tuples are conditionally
independent and identically distributed (i.i.d.) given the parameter ϕ. That is, each next state st+1

is drawn independently from the distribution Tϕ (· | st, at), a process that is identical for all steps t
within the episode. Formally, the joint probability of observing the sequence of transitions in Dep

conditioned on ϕ is given by P (Dep | ϕ) = µ(s0 | ϕ)
∏T−1
t=0 Tϕ (st+1 | st, at). Because the product

operator is commutative, the joint probability is invariant to any permutation of the transition tuples
in the sequence. This conditional i.i.d. property implies that the sequence of transition tuples is
exchangeable. Our online calibration procedure adheres to this principle. By collecting the calibration
set from the initial steps of the same episode, we guarantee that both the calibration data and the
subsequent test data (within that episode) are drawn from the same distribution Tϕ given ϕ, thereby
satisfying the exchangeability assumption required for valid conformal prediction. Thereby, during
the first 100 steps, we gather samples for calibration without using ACP region. After 100 steps, we
employ the online-collected calibration set to determine ACP region.

Our argument extends to any Lipschitz continuous cost function bounded in [0, 1], with the proof
following a similar approach. If the cost function is bounded by a constant D > 1, the proof remains
valid, but the final bound is scaled by D.

Lemma 1. Let f̂ be a transition dynamics predictor and e(a) = minX̂t+1
∥pos(f̂(st, a))− X̂t+1∥.

Under the adaptive shielding mechanism with sampling size N for each episode with parameter ϕ,
one of the following conditions holds:

1. P(st+1 ∈ Ssafe(st, at)) ≥ 1− δ, where st+1 ∼ T (· | st, at, ϕ),
2. minXt+1 ∥pos(st+1)−Xt+1∥ ≥ maxa∈A e(a)− ϵN − 2Γt,

where limN→∞ ϵN = 0 and Γt is the ACP confidence region for the state prediction at time step
t+ 1.

Proof. Note that st+1 is safe if minXt+1 ∥pos (st+1)−Xt+1∥ > d. The ACP gives us a probabilistic
bound on the deviation between the true next state st+1 and the predicted state ŝt+1 = f̂(st, at) :

P (∥ŝt+1 − st+1∥ ≤ Γt) ≥ 1− δ
We connect the safety of st+1 to the position of the predicted state ŝt+1, using this bound. By triangle
inequality, we have

min
Xt+1

∥pos (st+1)−Xt+1∥ ≥ min
Xt+1

∥ pos (ŝt+1)− X̂t+1∥ − ∥X̂t+1 −Xt+1∥ − ∥pos (st+1)− pos (ŝt+1)∥ .
(13)

Since pos function and sensor function are 1-Lipschitz, we have

∥pos (st+1)− pos (ŝt+1)∥ ≤ ∥st+1 − ŝt+1∥ and ∥Xt+1 − X̂t+1∥ ≤ ∥st+1 − ŝt+1∥ .
Hence, if ∥st+1 − ŝt+1∥ ≤ Γt (which occurs with probability at least 1− δ), then

∥pos (st+1)− pos (ŝt+1)∥ ≤ Γt and ∥Xt+1 − X̂t+1∥ ≤ Γt.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

This implies
min
Xt+1

∥pos (st+1)−Xt+1∥ ≥ min
Xt+1

∥pos (ŝt+1)−Xt+1∥ − 2Γt. (14)

Thus, if
h(at) = min

Xt+1

∥∥∥pos (ŝt+1)− X̂t+1

∥∥∥ > d+ 2Γt,

then minXt+1
∥pos (st+1)−Xt+1∥ > d whenever ∥st+1 − ŝt+1∥ ≤ Γt. Let us define the set of safe

actions on the predicted state by

Âsafe (st) = {a ∈ A | e(a) > d+ 2Γt} .

We now consider two cases based on the feasibility of selecting an action from the set Âsafe.

Case 1: If we can select at ∈ Âsafe (st) and ∥st+1 − ŝt+1∥ ≤ Γt, then st+1 is safe by Equation 14.
By ACP of our adaptive shielding mechanism, we guarantee

P (∥ŝt+1 − st+1∥ ≤ Γt) ≥ 1− δ
where δ is a failure probability of ACP. Thus, condition 1 holds.

Case 2: If we cannot select at ∈ Âsafe(st), our adaptive shielding mechanism samples N actions
{a(i)t } and picks the action at such e(at) = max

a∈{a(i)t } e(a). Note that e(a) is continuous on a and
a Gaussian policy π assigns positive probability to any subset of action space A. Hence, as sample
size N goes to∞, maxa∈A e(a)− e(at) = ϵN goes to 0. Also, by Equation 14, we have

∥pos(st+1)−Xt+1∥ ≥ e(at)− 2Γt = max
a∈A

e(a)− ϵN − 2Γt.

Thus, condition 2 holds.

To prove the theorem, we recall the function e(a) = minX̂t+1
∥pos(f̂(st, a))− X̂t+1∥, representing

the minimum distance between the predicted state and predicted obstacles. Using this, we define the
safe action set for the predicted state as:

Âsafe (st) = {a ∈ A | e(a) > d+ 2Γt} .

Lemma 1 considers two cases based on whether sampling from Âsafe(st) is feasible. To derive a
bound for the average cost rate constraint, we analyze both cases by defining ϵt = P(Âsafe(st) = ∅).
We assume that if Âsafe(st) is non-empty, a large sample size N allows sampling an action from this
set, as discussed in Lemma 1.

Theorem 1. Given a Constrained Hidden Parameter MDPM = (S,A,Φ, T,R,C, γ, Pϕ) with initial
state s0 ∈ S, and failure probability δ ∈ (0, 1), an optimal policy π∗ : S × Φ→ A, augmented with
an adaptive shield, maximizes the expected cumulative discounted return JR(π∗), while satisfying
the average cost rate constraint:

ξπ
∗
(s, ϕ) = lim

H→∞

1

H
Eπ∗,Tϕ

[
H−1∑
t=0

C(st, at, st+1) | s0 = s, ϕ

]
≤ δ + ϵ̄(1− δ), (15)

for some 0 ≤ ϵ̄ ≤ 1 and ϕ ∼ PΦ.

Proof. At each time step t, Âsafe(st) is non-empty with probability 1 − ϵt, allowing us to sample
actions with a large sample size N . By Lemma 1, this guarantees:

P (st+1 ∈ Ssafe (st, at)) ≥ 1− δ

where st+1 ∼ T (· | st, at, ϕ), and the safe state set is defined as:

Ssafe (st, at) = {s′ ∈ S | C (st, at, s
′) = 0, T (s′ | st, at, ϕ) > 0}

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Thus, when Âsafe(st) is non-empty with probability 1− ϵt, the cost function satisfies:

C (st, at, st+1) =

{
1 with probability at most δ
0 with probability at least 1− δ ,

which implies P(C = 1) ≤ δ and P(C = 0) ≥ 1 − δ. In this case, the expected cost per step is
bounded as follows:

Eπ∗ [C (st, at, st+1)] ≤ δ(1− ϵt).
When Âsafe(st) is empty with probability ϵt, the expected cost per step is bounded as follows:

Eπ∗ [C (st, at, st+1)] ≤ ϵt.
Combining both cases, the expected cost per step is bounded by:

Eπ∗ [C (st, at, st+1)] ≤ δ(1− ϵt) + ϵt = δ + ϵt(1− δ).
By the linearity of expectation, this per-step bound extends to the long-term average cost for a fixed
parameter ϕ:

ξπ
∗
(s0, ϕ) = lim

H→∞

1

H

H−1∑
t=0

Eπ∗,Tϕ [C (st, at, st+1)] (16)

≤ lim sup
H→∞

1

H

H−1∑
t=0

(δ + ϵt(1− δ)) (17)

= δ + ϵ̄(1− δ) (18)

where ϵ̄ = lim supH→∞
1
H

∑H−1
t=0 E [ϵt]. This satisfies Equation 15, completing the proof. Moreover,

if safe actions exist at each time step t, i.e., ϵt = P(Âsafe = ∅) = 0, ϵ̄ becomes 0. Hence, we can
bound the equation with a small failure probability δ.

B THEORETICAL GUARANTEES FOR SAFETY-REGULARIZED TRPO AND CPO

This section provides a formal extension of the monotonic improvement guarantee of Trust Region
Policy Optimization (TRPO) (Schulman et al., 2015) to our proposed safety-regularized objective,
Jaug(π). We first recap the foundational theorem of TRPO and then prove that this guarantee directly
applies to our augmented objective. Finally, we provide a rigorous analysis of the trade-off between
reward and safety that this guarantee implies

We now prove that this same guarantee holds for our safety-regularized objective, Jaug(π). The core
insight is that the TRPO proof structure is agnostic to the definition of the reward function; it depends
only on the MDP dynamics and the relationship between the policies. Our method can be viewed as
replacing the standard reward with an augmented reward signal.

We formally define the augmented objective as JR(π) = E [QπR] , Jsafe(π) = E[Qπsafe] and Jaug (π) =
E[Qπaug]. We restate the policy improvement guarantee of TRPO with SRO. During the optimization,
KL constraint plays the same role as in standard TRPO. This only limits how far the updated policy
is allowed to move from the current policy in one step, and is independent of whether we optimize
the original reward JR or our safety-augmented objective Jaug.
Theorem 2 (Schulman et al., 2015). Let Laug

π (π̃) = Jaug(π) + Eϕ∼Pϕs∼ρπ,a∼π̃
[
Aπaug (s, a, bϕ)

]
.

The performance of the new policy π̃ is lower-bounded by:

Jaug (π̃) ≥ Lπaug(π̃)− Caug ·Dmax
KL (π, π̃)

where Caug = 2γ
(1−γ)2 maxs,a,ϕ

∣∣Aπaug (s, a, bϕ)
∣∣.

Monotonic improvement condition.. If the update π̃ satisfies

Laug
π (π̃)− Caug D

max
KL (π, π̃) ≥ Jaug (π),

then Jaug (π̃) ≥ Jaug (π). In other words, any update that sufficiently increases the surrogate while
keeping KL small yields non-decreasing augmented performance.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Analysis of the Reward-Safety Trade-off. Let ∆JR = JR(π̃) − JR(π) and ∆Jsafe = Jsafe(π̃) −
Jsafe(π). Under the monotonic-improvement condition above, for any valid policy update step:

∆JR + α ·∆Jsafe ≥ 0

This inequality provides a formal characterization of the trade-off between reward and safety.

Bounded Reward Degradation for Safety Improvement. If an update improves the safety objective
(∆Jsafe > 0), we can rearrange the inequality to bound the permissible change in reward:

∆JR
∆Jsafe

≥ −α =⇒ ∆JR ≥ −α ·∆Jsafe

This proves that for a given gain in safety, the reward is guaranteed not to decrease by more than α
times that gain. The hyperparameter α thus acts as a maximum acceptable cost in reward for a unit of
safety improvement.

Bounded Safety Degradation for Reward Improvement. Conversely, if an update improves the
reward objective (∆JR > 0), we can bound the permissible change in the safety term:

∆Jsafe ≥ −
1

α
∆JR

This proves that for a given gain in reward, the safety term is guaranteed not to decrease by more than
1/α times that gain. This demonstrates that the algorithm will forgo policy updates that yield high
rewards at the expense of excessive safety violations, where the threshold for excessive is explicitly
controlled by α.

Now, we also consider safety perspectives of SRO. We mainly analyze how SRO affects safety
perspective considering theorems from CPO (Achiam et al., 2017).

Relation to CPO-style constraint guarantees. CPO’s worst-case bound (Achiam et al.,
2017) depends only on KL constraint and cost advantage AπkC . This is agnostic to how the updated
policy πk+1 is produced. Therefore, the bound from Proposition 2 in Achiam et al. (2017)

JC (πk+1) ≤ JC (πk) +

√
2δγ

(1− γ)2 ϵ
πk+1

C

remains the same with Jaug. The sole role of SRO is to restrict the updated policy πk+1 so that
the quantity ϵπk+1

C = maxs
∣∣Ea∼πk+1

[AπkC (s, a)]
∣∣ remains small. Because SRO penalizes actions

with high estimated long-term cost, we can upper-bound ϵπk+1

C in terms of the safety weight α.
Substituting this bound into the CPO inequality provided a worst-case cost guarantee for the
SRO-TRPO update.

Throughout this section, we assume that the ball B(a, ϵ) is small enough that local aver-
ages approximate point values, i.e., Qπsafe(s, a) ≈ −

QπC(s,a)
V πC (s)+ϵ . We begin with introducing necessary

Lemma for bound of Aπaug.

Lemma 2. Let Aπaug(s, a) = AπR(s, a) + αAπsafe(s, a), where AπR(s, a) = QπR(s, a)− V πR (s),

Aπsafe (s, a) = Qπsafe (s, a)− V πsafe (s), and V πsafe (s) = Ea′∼π(·|s) [Qπsafe (s, a
′)].

Then, Qπsafe (s, a) ∈ (−1, 0] for all (s, a), and
∣∣Aπaug(s, a)∣∣ ≤ |AπR(s, a)|+ α

Proof. By design, Qπsafe (s, a) ∈ (−1, 0]. Consequently, the value function V πsafe (s), being an expec-
tation of Q, is also in (−1, 0]. The advantage is defined as Aπsafe (s, a) = Qπsafe (s, a)−V πsafe (s). The
maximum possible value is 0− (−1) = 1 (when Q = 0, V = −1). The minimum possible value is
−1 − 0 = −1 (when Q = −1, V = 0). Thus, |Aπsafe(s, a)| ≤ 1. By triangular inequality, we have∣∣Aπaug(s, a)∣∣ = |AπR(s, a) + αAπsafe(s, a)| ≤ |AπR(s, a)|+ α.

We will split Aπaug into two parts AπR and AπC . Since the ball B(a, ϵ) is small enough that local
averages approximate point values, our construction reduces to

Aπksafe(s, a) = Qπksafe(s, a)− V πksafe(s) ≈ −
QπkC (s, a)− V πkC (s)

V πkC (s) + ε
= − AπkC (s, a)

V πkC (s) + ε
. (19)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Hence, we have

Aπkaug(s, a) = AπkR (s, a) + αAπksafe(s, a) ≈ AπkR (s, a)− λ(s)AπkC (s, a), (20)

where
λ(s) =

α

V πkC (s) + ϵ
. (21)

We assume that the reward and cost are bounded by Rmax and Cmax, respectively. Then, for all s, a,
we have

|AπkR (s, a)| ≤ Rmax

1− γ , |A
πk
C (s, a)| ≤ Cmax

1− γ and V πkC (s) ≤ Cmax

1− γ . (22)

This implies that, for all s, we have

λ(s) =
α

V πkC (s) + ϵ
≥ α

Cmax

1−γ + ϵ
=

α(1− γ)
Cmax + ϵ(1− γ) . (23)

Moreover, by rearranging Equation 20, we have

AπkC (s, a) ≈
AπkR (s, a)−Aπkaug(s, a)

λ(s)
.

Combining Equations 22 and 23, and Lemma 2, we have

|AπkC (s, a)| ≤ 1

λ(s)

(
|AπkR (s, a)|+ |Aπkaug(s, a)|

)
(24)

≤ 1

λ(s)

(
Rmax

1− γ +
Rmax

1− γ + α

)
(25)

≤ Cmax + ϵ(1− γ)
α(1− γ)

(
2Rmax

1− γ + α

)
(26)

=
2Rmax(Cmax + ϵ(1− γ))

α(1− γ)2 +
Cmax

(1− γ) + ϵ. (27)

Thus, we have

|AπkC (s, a)| ≤ O
(
1

α

)
+

Cmax

(1− γ) + ϵ. (28)

By the definition of ϵπk+1

C = maxs
∣∣Ea∼πk+1

[AπkC (s, a)]
∣∣, and Equation 28, CPO worst-case bound

(Proposition 2 in Achiam et al. (2017))

JC(πk+1) ≤ JC(πk) +
√
2δγ

(1− γ)2 ε
πk+1

C (29)

becomes

JC(πk+1) ≤ JC(πk) +O

(√
δ

α

)
+
Cmax
√
2δγ

(1− γ)3 + ϵ

√
2δγ

(1− γ)2 , (30)

showing that stronger safety regularization (larger α) tightens the worst-case constraint-violation
bound for a fixed KL radius δ.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C EXECUTION-TIME EFFICIENCY

Robots Methods & Metrics Goal Button Push Circle

Car
RCPO Runtime (s) 3.94±0.03 4.18±0.04 4.72±0.01 2.58±0.02
Ours Runtime (s) 5.05±0.09 5.63±0.10 6.54±0.13 3.04±0.03
Ours Shield Triggers (%) 18.10±2.16 27.51±2.24 25.72±1.37 7.32±2.95

Point
RCPO Runtime (s) 3.81±0.01 4.14±0.03 3.48±0.01 2.49±0.16
Ours Runtime (s) 4.32±0.66 5.60±0.11 5.03±0.21 2.61±0.04
Ours Shield Triggers (%) 15.51±3.82 29.07±2.49 7.53±0.54 7.25±2.84

Table 1: Runtime (in seconds) and shielding rate (in percent) across tasks for each robot type. “Ours”
refers to the combined method using SRO and the adaptive shield.

Table 1 compares the average runtime per episode between the baseline method (RCPO) and our
full approach (SRO + Shield). Across all tasks and both robot types, our method introduces only
a modest runtime overhead, demonstrating practical efficiency during execution. Additionally, the
shield trigger rate remains moderate, indicating that safety shielding is invoked selectively and does
not dominate execution time.

For runtime execution comparisons, we standardize the hardware to ensure fairness. Experiments are
run on a CPU server with 256 GB of memory, dual AMD CPUs (56 cores, 224 threads).

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D PSEUDOCODE FOR THE SAFETY-REGULARIZED ACTOR-CRITIC OBJECTIVE.

For clarity in this section only, we denote the parameters for policy, reward value critic, cost value
critic, and cost Q-critic by θ, ϕ, ψ, and ω, respectively. We use sg(·) to indicate a stop-gradient
operation.

Algorithm 1 Actor-Critic with Safety-Regularized Objective

1: Initialize: Policy πθ, Reward Critic V ϕR , Cost Value Critic V ψC , Cost Q-Critic QωC .
2: Hyperparameters: Safety bonus coefficient α, KL constraint δKL.
3: for each training epoch do
4: Collect trajectories D using current policy πθ.
5: Compute targets V targ

R , V targ
C and advantages AR, AC using GAE.

6: Store observations, actions, log-probs, and targets in buffer.
7: for k = 1 to K update iterations do
8: Sample mini-batch B = {(s, a, log πold, V targ, A)} from D.
9: // 1. Update Reward Critic

10: Minimize LVR = EB

[
(V ϕR (s)− V

targ
R)2

]
.

11: // 2. Update Cost Critics (VC and QC)
12: Compute Vstop_grad = sg(V ψC (s)).
13: Minimize LVC = EB

[
(Vstop_grad − V targ

C)2
]
.

14: Minimize LQC = EB
[
((QωC(s, a)− Vstop_grad)−AC)2

]
.

15: // 3. Compute Safety Estimates
16: Sample N noise vectors ϵ ∼ N (0, σ) to generate local actions a′ = a+ ϵ.
17: Estimate local Cost Q-values Qapprox = 1

N

∑
a′ π(a

′ | s)QωC(s, a′).
18: Compute safety regularizer Qsafe =

Qapproxi

sg(V ψC)+ϵ
≈ Equation 6, .

19: // 4. Update Actor
20: Compute surrogate advantage:

Aaug = AR + α ·Qsafe

21: Update θ by maximizing policy objective Lπ using Aaug.
22: // 5. Early Stopping
23: if DKL(πθold ||πθ) > δKL then
24: Break inner loop.
25: end if
26: end for
27: end for

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

E CONNECTION TO CONTROL THEORY

In this section, we introduce a brief overview of barrier certificate approaches in control theory and
then relate these ideas to our shielding mechanism.

Recent advances in safe control and safe reinforcement learning suggest using Control Bar-
rier Functions (CBFs) or barrier-like certificates to establish forward invariance of a safe set. Classical
and neural CBF methods construct a differentiable barrier function h(s) whose evolution satisfies a
discrete- or continuous-time invariance condition, and use this certificate to guarantee safety under
learned or partially known dynamics. This paradigm has been widely applied to safe RL, including
disturbance-observer-based barrier methods (Cheng et al., 2023), reachability-based approximations
(Ganai et al., 2023), soft-barrier formulations for stochastic environments (Wang et al., 2023), neural
CBFs integrated directly into RL pipelines (Xiao et al., 2023), and the joint use of CBFs and control
Lyapunov functions (CLFs) for enhanced stability and safety under model uncertainty (Choi et al.,
2020). These approaches learn or optimize a barrier function jointly with the policy or the dynamics
model, and safety depends on the existence of a valid barrier certificate, which is often difficult to
find.

Control Barrier Function A function α : [0, a) → [0,∞) is called a class-K function if it is
continuous, strictly increasing, and satisfies α(0) = 0. In classical nonlinear control, forward
invariance of a safe set Ssafe ⊆ S is certified through a Control Barrier Function (CBF) h : S → R
that satisfies the differential constraint

ḣ(s) + α(h(s)) ≥ 0, (31)

for an extended class-K function α. If (31) holds for all admissible controls, then trajectories starting
in Ssafe = {s | h(s) ≥ 0} remain in that set for all future times, guaranteeing forward invariance.
The shielding guarantee proposed in Theorem 1 is closely related to the notion of forward invariance
in control theory.

Relation to our Shield. Our adaptive shield provides an analogous guarantee in the discrete-time
and data-driven setting. Rather than enforcing the differential condition (31), we bound the change in
a safety function ν(e(st), Et) between successive steps using its Lipschitz continuity,

ν(e(st+1), Et+1) ≥ ν(e(st), Et)− Lν ∥e(st+1)− e(st)∥ ≥ ν(e(st), Et)− Lν∆max. (32)

Thus, whenever ν(e(st), Et) > Lν∆max, the next state st+1 remains within the safe region. This
is a discrete-time forward-invariance condition derived from the structure of the cost function
C(st, at, st+1) and the Lipschitz property of ν. The adaptive conformal bound Γt introduced in the
shield plays the role of a stochastic disturbance margin, producing a probabilistic forward invariance
guarantee.

While neural and classical CBF methods construct a barrier certificate h(s) satisfying the
invariance condition Equation 31 either through analytical dynamics or by learning h jointly with a
dynamics model, our approach leverage the structure of the cost function such as Lipschitz property,
and conformal prediction bound without learning a barrier function.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

F ABLATION STUDY ON SAFETY BONUS AND SAMPLING SIZE

We evaluate the hyperparameter sensitivity of our method combined with RCPO, focusing on safety
bonus α and sampling size s.

Varying Safety Bonus α with RCPO. To assess the sensitivity of the safety bonus, we vary the
safety bonus α across {0.05, 0.1, 0.5, 1.0}. We observe that performance with SRO often improves
both reward and safety. This is mainly because SRO encourages the policy to select safe actions while
also exploring under-explored actions. However, SRO does not consistently enhance both reward and
safety; instead, it frequently improves either reward or cost. These findings align with the theoretical
results presented in Appendix B.

Algo.
Env. Point-Goal Point-Button Point-Push Point-Circle

R ↑ C(%) ↓ R ↑ C(%) ↓ R ↑ C(%) ↓ R ↑ C(%) ↓
RCPO 16.35±1.14 2.50±0.02 8.97±0.56 1.69±0.23 0.12±0.15 0.63±0.28 30.78±5.55 2.47±0.51
SRO + RCPO (α=0.05) 17.49±1.82 2.89±0.52 10.38±1.89 1.76±0.24 0.33±0.16 0.88±0.48 24.33±4.58 1.55±0.03
SRO + RCPO (α=0.1) 17.56±1.35 2.63±0.25 10.28±2.00 1.64±0.23 0.32±0.15 0.65±0.37 25.95±4.37 0.98±0.02
SRO + RCPO (α=0.5) 17.58±0.56 2.49±0.34 11.26±1.28 1.82±0.31 0.33±0.12 0.61±0.10 25.18±4.50 1.28±0.29
SRO + RCPO (α=1.0) 15.93±0.78 2.37±0.11 9.05±1.43 1.77±0.43 0.33±0.04 0.82±0.56 24.97±3.74 1.55±0.34

Algo.
Env. Car-Goal Car-Button Car-Push Car-Circle

R ↑ C(%) ↓ R ↑ C(%) ↓ R ↑ C(%) ↓ R ↑ C(%) ↓
RCPO 15.64±2.27 2.23±0.33 5.74±0.34 1.89±0.22 -0.09±0.13 0.60±0.09 11.83±0.49 1.58±0.57
SRO + RCPO (α=0.05) 18.54±0.65 2.13±0.14 7.01±0.51 1.80±0.26 -0.10±0.17 0.88±0.25 11.29±0.28 1.29±0.19
SRO + RCPO (α=0.1) 15.88±1.12 2.31±0.66 7.68±1.21 1.85±0.19 0.06±0.09 0.68±0.41 11.47±0.53 1.51±0.61
SRO + RCPO (α=0.5) 17.33±0.58 2.55±0.50 6.71±1.11 1.88±0.46 -0.05±0.12 0.59±0.39 11.19±0.25 1.52±0.47
SRO + RCPO (α=1.0) 16.73±2.46 1.73±0.29 7.89±0.95 1.95±0.47 -0.14±0.18 0.67±0.19 11.50±0.16 2.15±0.50

Table 2: Ablation Study on the Varying Effects of Safety Bonus α on Safety and Performance. Best
performances (highest return and lowest cost rate) are highlighted in bold.

Varying Sampling Numbers s with RCPO. We evaluate the impact of sampling size, varying
it across {5, 10, 20, 50} by fixing safety bonus α = 1.0. Table 3 demonstrates that sampling size
influences performance. Sampling numbers exhibit no consistent pattern due to randomness in the
sampling procedure. This arises primarily from high prediction errors, which often lead to incorrect
action sampling, even within conformal prediction boundaries. For example, a large error widens
the conformal interval range, causing the shield to include numerous sampled actions to meet the
probabilistic guarantee. However, even when selecting actions based on safety scores, these high
errors may inaccurately represent safe actions.

Algo.
Env. Point-Goal Point-Button Point-Push Point-Circle

R ↑ C(%) ↓ R ↑ C(%) ↓ R ↑ C(%) ↓ R ↑ C(%) ↓
RCPO 16.35±1.14 2.50±0.02 8.97±0.56 1.69±0.23 0.12±0.15 0.63±0.28 30.78±5.55 2.47±0.51
Shield + SRO (s=5) 12.83±1.91 2.27±0.60 8.68±2.51 2.43±0.39 0.13±0.27 0.51±0.27 26.76±4.71 1.38±0.45
Shield + SRO (s=10) 16.40±0.73 2.29±0.21 8.22±3.31 1.98±0.72 0.36±0.40 0.65±0.04 29.97±0.43 2.16±0.43
Shield + SRO (s=20) 14.74±1.18 1.96±0.37 7.43±1.55 2.19±0.45 0.03±0.18 0.90±0.53 26.76±5.40 1.81±0.36
Shield + SRO (s=50) 14.37±0.65 2.34±0.23 7.34±1.27 1.58±0.47 0.31±0.20 0.53±0.37 28.24±4.54 1.87±0.63

Algo.
Env. Car-Goal Car-Button Car-Push Car-Circle

R ↑ C(%) ↓ R ↑ C(%) ↓ R ↑ C(%) ↓ R ↑ C(%) ↓
RCPO 15.64±2.27 2.23±0.33 5.74±0.34 1.89±0.22 -0.09±0.13 0.60±0.09 11.83±0.49 1.58±0.57
Shield + SRO (s=5) 14.43±0.27 2.12±0.15 5.24±0.90 1.86±0.28 0.09±0.07 0.75±0.24 11.55±0.29 1.28±1.02
Shield + SRO (s=10) 13.65±0.35 1.84±0.14 5.52±0.90 1.92±0.43 0.23±0.09 0.86±0.24 11.61±0.67 1.44±0.84
Shield + SRO (s=20) 15.69±0.47 2.51±0.50 4.93±0.81 1.99±0.20 0.04±0.18 0.61±0.41 11.44±0.20 1.88±1.02
Shield + SRO (s=50) 13.23±1.73 2.65±0.86 4.88±1.37 1.52±0.17 0.00±0.10 0.50±0.20 11.08±0.37 1.49±0.74

Table 3: Ablation Study on the Varying Effects of Sampling Numbers s on Safety and Performance
with fixed safety bonus α = 1.0. Best performances (highest return and lowest cost rate) are
highlighted in bold.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

G ADAPTIVE SHIELDING AND SAFETY-REGULARIZED OBJECTIVE WITH
PPO-LAG

Our method is compatible with a wide range of RL algorithms, as it wraps the policy with a shielding
layer and incorporates an augmented term based on QC and VC , which are commonly used in safe
RL algorithms. To demonstrate this, we examine its impact when applied to a PPO-Lagrangian-based
policy. Here, we study PPO-Lag augmented with SRO and Adaptive Shielding mechanisms. The
baseline PPO-Lag method is provided with access to the hidden parameter ϕ. First, we analyze how
SRO affects PPO-Lagrangian method. Then, we show how Shielding mechanism combined with
SRO affects PPO-Lagrangian method. All results shown represent the mean reward and cost rate over
the last 20 epochs of training across seeds.

Safety-Regularized Objective with PPO-Lag. Table 4 demonstrate that SRO generally enhances
safety. In Point Robot case, a clear pattern emerges: higher safety bonus values α improve safety the
most, while lower α have minor effects. Notably, adding SRO does not degrade reward performance
substantially, with cost violations improving by up to 20% (Point-Button) to as much as 520% (Point-
Circle). Meanwhile, reward degradation occurs only in the Point-Circle and Car-Button environments;
in many other cases, SRO improves not only safety but also the reward signal. This is primarily
because our augmented objective is bounded in (−1, 0], mildly influencing the training objective to
compensate for actions leading to zero long-term cost violations and under-explored actions, without
causing significant shifts during training due to the bounded values.

Algo.
Env. Point-Goal Point-Button Point-Push Point-Circle

R ↑ C(%) ↓ R ↑ C(%) ↓ R ↑ C(%) ↓ R ↑ C(%) ↓
PPOLag 18.20±0.78 3.35±0.20 10.83±1.56 2.94±0.22 0.24±0.19 1.15±0.27 30.90±3.52 13.38±6.74
SRO + PPOLag (α=0.05) 19.41±0.45 2.97±0.25 10.92±1.65 3.16±0.54 0.19±0.08 1.16±0.10 25.20±2.31 4.56±1.87
SRO + PPOLag (α=0.1) 17.65±0.26 2.52±0.07 11.63±0.80 3.04±0.58 0.53±0.27 1.32±0.36 27.79±1.04 2.93±1.49
SRO + PPOLag (α=0.5) 17.12±0.97 2.51±0.50 10.49±0.68 2.88±0.32 0.32±0.03 0.85±0.24 26.50±3.41 3.58±1.07
SRO + PPOLag (α=1.0) 16.98±1.36 2.79±0.36 9.69±0.55 2.44±0.35 0.36±0.20 0.59±0.16 26.07±4.88 2.15±1.27

Algo.
Env. Car-Goal Car-Button Car-Push Car-Circle

R ↑ C(%) ↓ R ↑ C(%) ↓ R ↑ C(%) ↓ R ↑ C(%) ↓
PPOLag 15.85±1.01 3.36±0.46 8.62±1.26 3.58±0.36 0.02±0.09 1.14±0.12 11.48±0.38 2.57±0.23
SRO + PPOLag (α=0.05) 16.10±1.07 3.08±0.11 8.37±1.69 3.31±1.13 0.02±0.07 0.95±0.20 11.24±0.13 2.32±0.36
SRO + PPOLag (α=0.1) 16.81±1.17 3.16±0.18 8.53±1.64 3.56±0.36 0.02±0.04 1.07±0.09 11.46±0.45 2.00±0.20
SRO + PPOLag (α=0.5) 15.50±1.11 3.18±0.34 8.24±0.54 3.14±0.43 -0.02±0.10 1.14±0.29 11.52±0.47 2.02±0.88
SRO + PPOLag (α=1.0) 16.41±0.57 3.60±0.53 8.11±1.17 3.78±0.16 -0.01±0.10 0.99±0.23 11.42±0.56 1.74±0.60

Table 4: Ablation Study on the Varying Effects of Safety Bonus α on Safety and Performance. Best
performances (highest return and lowest cost rate) are highlighted in bold.

Adaptive Shielding with PPO-Lag. For sampling numbers, unlike the safety bonus α, no consistent
pattern emerges due to randomness in the sampling procedure. The same reasoning outlined in
Appendix F applies here. Thus, reducing prediction errors and mitigating the inherent randomness in
the sampling process represent key areas for future research to enhance shielding-based approaches.

Algo.
Env. Point-Goal Point-Button Point-Push Point-Circle

R ↑ C(%) ↓ R ↑ C(%) ↓ R ↑ C(%) ↓ R ↑ C(%) ↓
PPOLag 18.20±0.78 3.35±0.20 10.83±1.56 2.94±0.22 0.24±0.19 1.15±0.27 30.90±3.52 13.38±6.74
Shield + SRO (s=5) 17.41±1.96 2.84±0.36 10.27±1.30 2.87±0.36 0.38±0.11 1.01±0.12 25.74±3.26 4.25±1.30
Shield + SRO (s=10) 18.38±0.84 2.86±0.25 10.18±0.86 2.87±0.23 0.20±0.06 0.92±0.36 27.34±8.09 2.42±2.48
Shield + SRO (s=20) 17.10±2.28 2.75±0.32 8.84±0.05 2.67±0.27 0.15±0.12 0.82±0.10 28.83±3.36 2.03±0.87
Shield + SRO (s=50) 17.44±0.90 2.60±0.26 11.23±3.43 3.12±1.07 0.37±0.10 1.27±0.64 27.55±4.32 2.43±1.54

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Algo.
Env. Car-Goal Car-Button Car-Push Car-Circle

R ↑ C(%) ↓ R ↑ C(%) ↓ R ↑ C(%) ↓ R ↑ C(%) ↓
PPOLag 15.85±1.01 3.36±0.46 8.62±1.26 3.58±0.36 0.02±0.09 1.14±0.12 11.48±0.38 2.57±0.23
Shield + SRO (s=5) 15.56±0.47 3.66±0.64 7.57±0.39 3.28±0.12 0.03±0.11 1.48±0.46 10.38±0.39 1.43±0.70
Shield + SRO (s=10) 16.87±5.59 3.79±0.24 7.62±0.91 3.35±0.57 0.05±0.10 1.12±0.30 10.15±0.67 1.01±0.27
Shield + SRO (s=20) 15.97±1.36 3.43±0.83 7.56±1.01 2.64±0.47 0.09±0.14 1.22±0.36 10.33±0.15 0.93±0.09
Shield + SRO (s=50) 13.93±2.09 3.48±0.50 6.25±1.47 3.22±0.41 0.05±0.10 1.01±0.55 11.38±0.54 1.49±0.07

Table 5: Ablation Study on the Varying Effects of Sampling Numbers s on Safety and Performance
with fixed safety bonus α = 1.0. Best performances (highest return and lowest cost rate) are
highlighted in bold.

0 1 2

0

5

10

15

20

R
et

u
rn

Car-Goal

0 1 2

−2.5

0.0

2.5

Car-Button

0 1 2

−1.5

−1.0

−0.5

0.0

0.5

Car-Push

0 1 2

0

5

10

Car-Circle

0 1 2

Timesteps (×106)

0

2

4

6

8

10

C
os

t
R

at
e

(%
)

0 1 2

Timesteps (×106)

0

2

4

6

8

10

0 1 2

Timesteps (×106)

0

2

4

6

8

10

0 1 2

Timesteps (×106)

0

2

4

6

8

10

Oracle-RCPO FE-RCPO Oracle-PPOLag FE-PPOLag

0 1 2

0

5

10

15

20

R
et

u
rn

Point-Goal

0 1 2

0

5

10

15

Point-Button

0 1 2

−0.5

0.0

0.5

1.0

Point-Push

0 1 2

0

10

20

30

40

Point-Circle

0 1 2

Timesteps (×106)

0

2

4

6

8

10

C
os

t
R

at
e

(%
)

0 1 2

Timesteps (×106)

0

2

4

6

8

10

0 1 2

Timesteps (×106)

0

2

4

6

8

10

0 1 2

Timesteps (×106)

0

2

4

6

8

10

Oracle-RCPO FE-RCPO Oracle-PPOLag FE-PPOLag

Figure 3: Ablation study on Representation. "Oracle-" refers to a policy directly informed of hidden
parameters, while "FE-" denotes the function encoder’s representation derived from observations.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

H FUNCTION ENCODERS AND ITS REPRESENTATION

For completeness, we present the necessary background on function encoders. For more information,
see (Ingebrand et al., 2024a; 2025).

Overview of Function Encoders. Function encoders, as introduced by Ingebrand et al. (2025),
provide a principled framework for representing tasks in a Hilbert space H through a finite set of
neural network-based basis functions {g1, . . . , gk}, each parameterized by θj . A task function f ∈ H
is approximated as a linear combination of these basis functions:

f(x) =

k∑
j=1

bjgj(x | θj),

where bj are coefficients tailored to the specific task. This approach enables efficient representation
of complex functions, such as those encountered in reinforcement learning or classification, by
learning a versatile basis that spans the function space. By defining appropriate inner products,
function encoders can generalize to various function spaces, including probability distributions for
classification tasks. During supervised training, the neural basis functions {gj} are optimized such
that

∑
j bjgj(xi) ≈ f(xi) for all training points (xi, f(xi)). As expected from functional analysis,

using more basis functions increases expressive power and allows modeling more complex dynamics.
Empirically, we demonstrate that a larger number of basis functions yields richer representations
showing faster convergence of the dynamics prediction loss. Models with fewer basis functions
eventually reach similar final performance but require more training epochs (Appendix I).

The training process consists of two phases: offline training of the basis functions and online inference
to compute task-specific coefficients. The offline phase optimizes the basis to minimize reconstruction
error across a set of source datasets, while the online phase efficiently computes coefficients for new
tasks using the learned basis.

Training Function Encoders via Least Squares. Function encoder is trained by using a least-squares
optimization approach (Ingebrand et al., 2025). Given a set of task functions {f1, . . . , fn}, the goal is
to learn a set of basis functions {g1, . . . , gk} parameterized by θ and these basis functions represent
the task functions with varying coefficients b. In our implementation, each task function fℓ is defined
by fixing one set of hidden parameters: gravity, mass, damping, density, friction.

The training procedure iteratively minimizes a loss function comprising two components: a re-
construction loss and a regularization term. For each task function fℓ, we compute coefficients
bℓ = [bℓ1, . . . , b

ℓ
k]
T that best approximate the target function fℓ as:

bℓ =

 ⟨g1, g1⟩H · · · ⟨g1, gk⟩H
...

. . .
...

⟨gk, g1⟩H · · · ⟨gk, gk⟩H


−1  ⟨fℓ, g1⟩H...

⟨fℓ, gk⟩H

 ,
where ⟨·, ·⟩H denotes the inner product in the Hilbert space, estimated via Monte Carlo integration over
collected data points {(x1, fℓ(x1)), ((x2, fℓ(x2)), · · · , ((xN , fℓ(xN))}. The reconstructed function
is then f̂ℓ =

∑k
j=1 b

ℓ
jgj . The reconstruction loss is defined as:

L =
1

n

n∑
i=1

∥fi − f̂i∥2H,

which measures the average squared error between the true and approximated functions. To ensure
the basis functions remain well-conditioned, a regularization term is added to the loss function:

Lreg =

k∑
i=1

(
∥gi∥2H − 1

)2
,

which encourages the basis functions to have unit norm. For a learning rate α, the parameters θ are
updated via gradient descent: θ ← θ − α∇θ(L+ Lreg), until convergence.

Empirical Evaluation of the Representation. We investigate the function encoder’s representation
of varying underlying dynamics Tϕ. We evaluate two representations for handling hidden parameters

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 4: (a) Illustration of how function encoders obtain proxy representations of the underlying
hidden parameters using online samples. (b) A naive approach using transformer encoder to infer
hidden parameters from a sequence of online samples. MLP stands for multi-layer perceptron in the
Figure.

in our safe RL framework: Oracle representation, where the hidden parameter ϕ (a scaling factor
for environmental dynamics such as density and damping) is directly provided to the policy by
concatenating it with the state input, and Function Encoder (FE) representation, which uses a function
encoder f̂FE to infer the underlying dynamics Tϕ, with coefficients of pretrained basis functions
serving as the representation. These representations are tested to assess the function encoder’s ability
to adapt to varying dynamics in Safety Gymnasium tasks. Regarding training hyperparameters, we
employed three number of basis functions for the function encoder, trained over 1000 epochs on
a dataset of 1000 episodes. Batch size was set to 256. Figure 3 show that the function encoder’s
representation is often comparable to the oracle representation and, in some cases, outperforms it.
The function encoder leverages neural basis functions to represent the space of varying dynamics
{Tϕ}ϕ∈Φ. For instance, just as the R2 plane is spanned by linear combinations of basis vectors (0, 1)
and (1, 0), the dynamics space is captured by neural basis functions, making their coefficients highly
informative. This representation often transitions smoothly, as shown in (Ingebrand et al., 2024b),
promoting policy effective adaptation to dynamic changes. Consequently, our function encoder’s
representation frequently matches or surpasses oracle representation performance.

I SHIELDING WITH ALTERNATIVE DYNAMICS PREDICTORS.

In this section, we present ablation studies on different dynamics predictors by replacing the function
encoder with alternative prediction models. We consider three predictors: a naive transformer-based
dynamics model, a probabilistic ensemble model (PEM), and a multilayer perceptron (MLP). Since
PEM and MLP are not designed to infer hidden environment parameters ϕ from context alone, we
provide them with the true ϕ as additional input. Following prior baselines that assume access to the
environment parameter ϕ, we refer to these models as Oracle-PEM and Oracle-MLP.

As another baseline described in Figure 4, we use a transformer encoder to process the
current episode’s trajectory

τn = (s0, a0, s1, a1, . . . , sn)

and extract a latent representation bϕ = Enc (τn) as a proxy for the hidden parameters ϕ. For
a fair comparison to function encoder, the transformer encoder is given 100 samples to infer bϕ,
which is then concatenated to the state st and fed into the predictor to generate ŝt = (st, bϕ). All
dynamics predictor are designed to hold a comparable parameter numbers (270k-280k). All dynamics
predictors are trained on 1, 000 in-distribution episodes and evaluated on 200 out-of-distribution test
episodes, which are not used during training.

We first report next state prediction performance on evaluation OOD dataset across all dy-
namics predictors. We then compare the naive transformer combined with Shield and Shield + SRO
against the function encoder combined with the same shielding mechanisms. Note that SRO alone
does not use dynamics prediction at deployment.

Figure 5 shows that the function encoder’s next-state prediction accuracy closely matches

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

0 50 100

Epoch

0.01

0.02

0.03

0.04

0.05

E
va

lu
at

io
n

lo
ss

Point Goal

0 50 100

Epoch

0.01

0.02

0.03

0.04

0.05
Point Button

0 50 100

Epoch

0.01

0.02

0.03

0.04

0.05
Point Push

0 50 100

Epoch

0.01

0.02

0.03

0.04

0.05
Point Circle

0 50 100

Epoch

0.01

0.02

0.03

0.04

0.05

E
va

lu
at

io
n

lo
ss

Car Goal

0 50 100

Epoch

0.01

0.02

0.03

0.04

0.05
Car Button

0 50 100

Epoch

0.01

0.02

0.03

0.04

0.05
Car Push

0 50 100

Epoch

0.01

0.02

0.03

0.04

0.05
Car Circle

Function Encoder Transformer Oracle-PEM Oracle-MLP

Figure 5: Ablation study evaluating the performance of various dynamics predictors in forecasting the
next state. The y-axis denotes the average per-sample ℓ1-norm error between the true and predicted
next states on the test dataset.

that of Oracle-PEM and Oracle-MLP. This observation is consistent with prior findings Ingebrand
et al. (2024b;a), which also report that function-encoder-based models can approximate the
performance of oracle-informed predictors.
Instead of inferring the hidden parameters ϕ through neural basis functions, the Transformer
encodes the observation sequence τ = (s0, a0, s1, . . . , sn) and projects the final embedding into
a low-dimensional parameter estimate bϕ. Since the true hidden parameters ϕ’s dimension in
safe-navigation domain is 4 (damping, mass, inertia, friction), we evaluate projection dimensions of
3, 6, 9, and 12.
Figure 6 shows an interesting pattern. For the function encoder, increasing the number of basis
functions shows early-epoch convergence because the representation has higher capacity, but all
configurations eventually converge to similar accuracy, which aligns with the supervised nature of
the objective and dataset limitations. In contrast, the Transformer-based encoder does not exhibit
a consistent relationship between projection dimension and prediction quality, and its overall
performance is less stable.

Finally, Figure 7 shows that the function encoder consistently yields superior performance,
achieving higher rewards and fewer constraint violations. This improvement originates from the
combination of (i) a more stable and expressive learned representation and (ii) higher next-state
prediction accuracy, both of which enhance shielding framework.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

0 50 100

Epoch

0.01

0.02

0.03

0.04

0.05

E
va

lu
at

io
n

lo
ss

Point Goal

0 50 100

Epoch

0.01

0.02

0.03

0.04

0.05
Point Button

0 50 100

Epoch

0.01

0.02

0.03

0.04

0.05
Point Push

0 50 100

Epoch

0.01

0.02

0.03

0.04

0.05
Point Circle

0 50 100

Epoch

0.01

0.02

0.03

0.04

0.05

E
va

lu
at

io
n

lo
ss

Car Goal

0 50 100

Epoch

0.01

0.02

0.03

0.04

0.05
Car Button

0 50 100

Epoch

0.01

0.02

0.03

0.04

0.05
Car Push

0 50 100

Epoch

0.01

0.02

0.03

0.04

0.05
Car Circle

FE: Dim 3 FE: Dim 6 FE: Dim 9 FE: Dim 12

0 50 100

Epoch

0.01

0.02

0.03

0.04

0.05

E
va

lu
at

io
n

lo
ss

Point Goal

0 50 100

Epoch

0.01

0.02

0.03

0.04

0.05
Point Button

0 50 100

Epoch

0.01

0.02

0.03

0.04

0.05
Point Push

0 50 100

Epoch

0.01

0.02

0.03

0.04

0.05
Point Circle

0 50 100

Epoch

0.01

0.02

0.03

0.04

0.05

E
va

lu
at

io
n

lo
ss

Car Goal

0 50 100

Epoch

0.01

0.02

0.03

0.04

0.05
Car Button

0 50 100

Epoch

0.01

0.02

0.03

0.04

0.05
Car Push

0 50 100

Epoch

0.01

0.02

0.03

0.04

0.05
Car Circle

TF: Dim 3 TF: Dim 6 TF: Dim 9 TF: Dim 12

Figure 6: We evaluate how the dimension of the inferred representation bϕ, which is a proxy to hidden
parameters ϕ. We vary the dimension across {3, 6, 9, 12}, motivated by the ground-truth hidden
parameter dimension of 4 (capturing variations in damping, mass, inertia, and friction). The plot
reports the average per-sample ℓ1 prediction error between the true and predicted next states on the
test set.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

0 1 2

14

15

16

17

R
et

u
rn

Point-Goal

0 1 2

7

8

9

10

11
Point-Button

0.00 0.25 0.50 0.75

0.15

0.20

0.25

0.30

0.35

Point-Push

1 2

27.0

27.5

28.0

28.5

Point-Circle

0 1 2

Cost Rate (%)

14

15

16

R
et

u
rn

Car-Goal

0 1 2

Cost Rate (%)

4.8

5.0

5.2

5.4

5.6

5.8

Car-Button

0.00 0.25 0.50 0.75

Cost Rate (%)

0.00

0.05

0.10

0.15

0.20
Car-Push

1 2

Cost Rate (%)

10.50

10.75

11.00

11.25

11.50

Car-Circle

FE + Shield (ours)

FE + SRO + Shield (ours)

TF + Shield

TF + SRO + Shield

(a) Training performance and convergence speed

0 2 4

0

1

2

3

4

R
et

u
rn

Point-Goal

0 1 2
−12.5

−10.0

−7.5

−5.0

−2.5

0.0

Point-Button

0 1 2

−8

−6

−4

−2

Point-Push

0 10

4

6

8

10

12

Point-Circle

0 2 4

Cost Rate (%)

−2

−1

0

1

2

R
et

u
rn

Car-Goal

0 2 4

Cost Rate (%)

−0.5

0.0

0.5

1.0

Car-Button

0 1 2

Cost Rate (%)

−3

−2

−1

Car-Push

0 10

Cost Rate (%)

2.2

2.4

2.6

2.8

Car-Circle

FE + Shield (ours)

FE + SRO + Shield (ours)

TF + Shield

TF + SRO + Shield

(b) OOD generalization performance

Figure 7: Comparison of our function encoder (FE) representation to a naive Transformer-based (TF)
representation when both are used with the proposed shielding framework (all other hyperparameters
and conditions remain the same). (a) In-distribution training (return vs. cost rate). (b) Out-of-
distribution (OOD) evaluation (return vs. cost rate). In both settings, our method attains higher
returns and fewer constraint violations. This improvement arises from the combination of a more
informative latent representation and higher next-state prediction accuracy, both of which strengthen
the effectiveness of the shielding mechanism.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

0.0 0.5 1.0
Cost Rate (%)

750

800

850

900

950

1000

1050

R
et

ur
n

Training Evaluation

0 1 2 3
Cost Rate (%)

50

0

50

100

150

200

250

OOD Evaluation

RCPO Shield SRO Shield + SRO

Figure 9: (Left) Return vs. cost rate during the last 20 training epochs, showing the reward–safety
tradeoff achieved by each method. (Right) Out-of-distribution (OOD) evaluation performance under
shifted hidden parameters.

J ADDITIONAL EXPERIMENTS: SAFE VELOCITY CONTROL IN HALFCHEETAH

Figure 8: HalfCheetah-Velocity environ-
ment.

In this section, we evaluate whether our mechanism gen-
eralizes to different robot morphologies and task type
by conducting shielding experiments in the HalfCheetah-
Velocity task. We follow the safetyconstrained velocity
environment from Safety Gymnasium (Ji et al., 2023), but
strengthen the safety requirement by tightening the veloc-
ity limit from 3.0 to 2.0. As in our earlier settings, the hid-
den environment parameters vary each episode. To induce
richer dynamics variability, we modify the HalfCheetah de-
fault parameters, including friction, body segment lengths,
and gear ratios with total 14 different hidden parameters:

{friction, torso_length, bthigh_length, · · · , foot_gear},
and resample them at the beginning of each episode.
During training, each parameter is scaled uniformly within
[0.7, 1.3]. For out-of-distribution (OOD) evaluation, we use the disjoint ranges [0.4, 0.7] ∪ [1.3, 1.6].

We use 5 neural basis functions in the function encoder, resulting in a 5-dimensional repre-
sentation that serves as a proxy bϕ for the hidden parameters ϕ. As a baseline, RCPO is run
with oracle access to the true hidden parameters ϕ, whereas our method uses the same RCPO
implementation without oracle information and instead augment the state with the learned basis
coefficients bϕ as its parameter estimate. All models share the same RL hyperparameters. For
hyperparameters for shielding, we use 10 samples of actions, and a safety bonus α = 1.

Across both training and OOD settings, Figure 9 shows consistent improvements in safety
and overall performance. Our method achieves a favorable reward-cost Pareto frontier compared to
the oracle informed baseline, demonstrating that the learned representation and shielding mechanism
transfer effectively to more complex robot dynamics.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

K WHY NOT QC , BUT QSAFE?

To effectively guide the policy toward safe behavior, we propose a safety-regularized objective
enhanced with Qsafe. A natural alternative is to augment the reward value function QR with the
cost value function QC , which estimates the expected cost of violating safety constraints, forming
Qaug = QR − αQC . However, this formulation can be transformed into Lagrangian-based safe
RL methods, optimizing policies with QR − λQC , where λ is a Lagrangian multiplier dynamically
adjusted during training. In particular, the Lagrangian multiplier λ is updated using a learning rate lr.
A higher learning rate accelerates the increase of λ, assigning stronger penalties on the policy for
cost violations. λ is adjusted by QC × lr; larger QC or learning rate values lead to faster λ growth,
which increases the penalty term in the optimization objective (QR − λQC).

However, Primal-Dual methods such as PPOLag or RCPO are sensitive to the choice of lr, often
leading to unstable optimization or suboptimal safety-performance trade-offs as shown in Figures 10
and 11. This is because the value ofQC is highly environment-dependent, varying with the magnitude
of costs and the dynamics induced by hidden parameters. In contrast, our safety-regularized objective
Qsafe incorporates a normalized term, constrained to (−1, 0]. This normalization simplifies controlling
the safety bonus by ensuring it remains bounded.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

0 1 2

0

10

20

30

R
et

u
rn

Car-Goal

0 1 2

0

5

10

15

20

Car-Button

0 1 2

−2

−1

0

Car-Push

0 1 2

0

5

10

15

Car-Circle

0 1 2

Timesteps (×106)

0

2

4

6

8

10

C
os

t
R

at
e

(%
)

0 1 2

Timesteps (×106)

0

2

4

6

8

10

0 1 2

Timesteps (×106)

0

2

4

6

8

10

0 1 2

Timesteps (×106)

0

2

4

6

8

10

LR = 0.0035 LR = 0.035 LR = 0.35 LR = 3.5

0 1 2

0

10

20

R
et

u
rn

Point-Goal

0 1 2

0

10

20

30
Point-Button

0 1 2

−1.5

−1.0

−0.5

0.0

0.5

Point-Push

0 1 2

0

10

20

30

40

Point-Circle

0 1 2

Timesteps (×106)

0

2

4

6

8

10

C
os

t
R

at
e

(%
)

0 1 2

Timesteps (×106)

0

2

4

6

8

10

0 1 2

Timesteps (×106)

0

2

4

6

8

10

0 1 2

Timesteps (×106)

0

2

4

6

8

10

LR = 0.0035 LR = 0.035 LR = 0.35 LR = 3.5

Figure 10: Training curves for RCPO algorithm under varying Lagrangian learning rates. The plots
illustrate significant performance variations depending on the learning rate. For our main comparisons,
we selected a learning rate of 0.035, which achieves the best trade-off between reward maximization
and constraint satisfaction.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

0 1 2

0

10

20

30

R
et

u
rn

Car-Goal

0 1 2

0

5

10

15

20

Car-Button

0 1 2

−2.0

−1.5

−1.0

−0.5

0.0

0.5

Car-Push

0 1 2

0

5

10

15

Car-Circle

0 1 2

Timesteps (×106)

0

2

4

6

8

10

C
os

t
R

at
e

(%
)

0 1 2

Timesteps (×106)

0

2

4

6

8

10

0 1 2

Timesteps (×106)

0

2

4

6

8

10

0 1 2

Timesteps (×106)

0

2

4

6

8

10

LR = 0.0035 LR = 0.035 LR = 0.35 LR = 3.5

0 1 2

0

10

20

R
et

u
rn

Point-Goal

0 1 2

0

10

20

30
Point-Button

0 1 2

−1.5

−1.0

−0.5

0.0

0.5

Point-Push

0 1 2

0

10

20

30

40

Point-Circle

0 1 2

Timesteps (×106)

0

2

4

6

8

10

C
os

t
R

at
e

(%
)

0 1 2

Timesteps (×106)

0

2

4

6

8

10

0 1 2

Timesteps (×106)

0

2

4

6

8

10

0 1 2

Timesteps (×106)

0

2

4

6

8

10

LR = 0.0035 LR = 0.035 LR = 0.35 LR = 3.5

Figure 11: Training curves for PPOLag algorithm under varying Lagrangian learning rates. The
plots illustrate significant performance variations depending on the learning rate. For our main
comparisons, we selected a learning rate of 0.035, which achieves the best trade-off between reward
maximization and constraint satisfaction.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

0 1 2

0

10

20

30

40
R

et
u

rn

All Algorithms

0 1 2

0

10

20

30

40

PPOLag, RCPO

0 1 2

0

10

20

30

40

CPO, CUP

0 1 2

0

10

20

30

40

PPOSaute, RCPOSaute

0 1 2

Timesteps (×106)

0

20

40

60

C
os

t
R

at
e

(%
)

0 1 2

Timesteps (×106)

0

2

4

6

8

10

0 1 2

Timesteps (×106)

0

2

4

6

8

10

0 1 2

Timesteps (×106)

0

2

4

6

8

10

Point-Circle

Varying Parameters

Fixed Parameters

PPOLag

RCPO

CPO

CUP

PPOSaute

RCPOSaute

0 1 2

0.0

2.5

5.0

R
et

u
rn

All Algorithms

0 1 2

0

5

10

PPOLag, RCPO

0 1 2

0

5

10

CPO, CUP

0 1 2

0.0

2.5

5.0

7.5

10.0

12.5
PPOSaute, RCPOSaute

0 1 2

Timesteps (×106)

0

10

20

30

40

C
os

t
R

at
e

(%
)

0 1 2

Timesteps (×106)

0

2

4

6

8

10

0 1 2

Timesteps (×106)

0

2

4

6

8

10

0 1 2

Timesteps (×106)

0

2

4

6

8

10

Car-Circle

Varying Parameters

Fixed Parameters

PPOLag

RCPO

CPO

CUP

PPOSaute

RCPOSaute

Figure 12: Varying hidden parameters pose significant challenges for safe RL algorithms, even when
hidden parameter values are provided as input. The first column plot aggregates results across six
algorithms: vanilla Lagrangian methods (RCPO and PPO-Lag), trust region/projection methods (CPO
and CUP), and safety augmentation techniques (PPO-Saute and TRPO-Saute). Results with varying
hidden parameters are shown as solid lines, while those with fixed parameters are depicted as dotted
lines. Columns 1, 2, and 3 present comparative results across these algorithm groups.

L FIX PARAMETERS VS. VARYING HIDDEN PARAMETERS

We evaluate the algorithms under two distinct experimental settings to test performance difference
when environment dynamics shifts:

• Fixed Parameters: In this setting, each algorithm is trained and evaluated in an environment with
a single, constant set of parameters ϕ (gravity, damping, density, mass, friction) for the entire
duration of training.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

• Varying Hidden Parameters: In contrast, for this setting, the underlying physical parameters ϕ of
the environment such as gravity, damping, mass, inertia, and friction are randomized at the start of
each new episode. To demonstrate the challenge of adapting to varying hidden parameters, we
explicitly inform the algorithms of these changes via their input. For example, if gravity is halved
from 9.8 to 4.9, a factor of 0.5 is provided as input to the policy.

As demonstrated in Figure 12, we observe a noticeable degradation in the performance of all
algorithms under the varying parameter setting, despite being explicitly informed of the magnitude
of the changes. More precisely, for Point environment, the total aggregated return across training
differs significantly: 25.87 for fixed parameters versus 16.49 for varying parameters. Similarly, for
the cost, the values are 18.0 for fixed parameters and 38.41 for varying parameters, reflecting more
than double the total cost violations during training.

M COST FUNCTIONS

In this section, we present two cost functions used in our experiments. Each cost function conforms
to the form:

C(st, at, st+1) = I {ν(e(st+1), Et+1) ≤ 0} ,
as defined in Section 4.3, where:

• e : S → Rn1 extracts agent-centered safety features from the next state st+1,
• Et+1 ∈ Rn2 captures environment features (e.g., obstacle positions, safe region boundaries),
• ν : Rn1 × Rn2 → R is a Lipschitz continuous function, with ν > 0 indicating safety and ν ≤ 0

indicating a violation.

Task e(s) Et ν
(
e(s), E

)
Collision avoidance pos(s)∈R3 {Xi}Mi=1⊂R3 min

i
∥e(s)−Xi∥2 − dsafe

Safety-region compliance pos(s)∈R2 Ssafe⊂R2 dist
(
e(s),R2\Ssafe

)
− ε

Table 6: Examples of function ν for different safety tasks.

Collision Avoidance. Given the robot’s position pos(s) ∈ R3 and the set of obstacle positions
{Xi}Mi=1 ⊂ R3 encoded in the state s, we mark a transition unsafe whenever the robot comes closer
than a safety margin d > 0 to any obstacle:

Cd (s, a, s
′) = I

[
min
i
∥pos(s)−Xi∥ < d

]
Thus Cd = 1 whenever the robot violates the distance constraint, encouraging policies that keep a
safe distance to obstacles.

Safety Region Compliance To ensure the robot remains within a designated safety region, we
evaluate its position in the next state, pos(s′) = (x, y) ∈ R2, against a predefined safe region
safe_region ⊆ R2. A penalty is incurred if the position lies outside this region:

Cd(s, a, s
′) = I[pos(s′) /∈ safe_region].

This cost function assigns a value of 1 when the robot deviates from the safety region, indicating a
safety violation.

N AVERAGE COST MINIMIZATION AND COST VALUE FUNCTION

Our problem formulation targets minimizing the average cost per time step, distinct from the cumula-
tive discounted cost over an infinite horizon typically addressed by Lagrangian-based methods like
TRPO-Lag and PPO-Lag. The connection between cumulative discounted cost and average cost is
well-established (Puterman, 2014):

lim
γ→1−

(1− γ)V πC (s0, ϕ0) = ξπ(s0, ϕ0),

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Figure 13: Four out-of-distribution environments for evaluation.

where V πC (s0, ϕ0) denotes the value function for the cost under policy π starting from state s,

parameter ϕ, and ξπ(s, ϕ) = limH→∞
1
HEπ∗,Tϕ

[∑H−1
t=0 Cd(st, at, st+1) | s0 = s, ϕ

]
represents

the expected average cost for parameter ϕ.

O EXPERIMENTAL DETAILS

For out-of-distribution (OOD) evaluation, we modify Safety Gymnasium task environments: Goal,
Button, and Push, by adding two additional hazard locations to increase complexity. For Circle, we
keep the same layout since the wall already blokcs four sides.

To introduce varying hidden parameters, each episode independently samples gravity, damping,
mass, inertia, friction multipliers by randomly selecting one of two intervals, [0.15, 0.3] or [1.7, 2.5],
with equal probability and uniformly sampling a value from the chosen interval, ensuring diverse
environmental conditions. For Circle task, all settings remain the same except for damping, which is
sampled from [1.7, 2.5]. This adjustment addresses instability in MuJoCo simulator when combined
with Circle task, where agents are expected to learn circling behavior. Lower damping factors render
the simulator unstable, necessitating this range.

Training is conducted on an Ubuntu 22.04 server using a Slurm job scheduler, which dynamically
allocates computational resources. As resource allocations vary across runs, we do not report runtime
comparisons for training.

38

	Introduction
	Related Work

	Problem Formulation
	Background
	Approach
	Safety-Regularized Objective
	Inferring Hidden Parameters Online
	Adaptive Shielding Mechanism

	Experiments
	Experimental Setup
	Results Analysis

	Conclusion
	Proofs
	Theoretical Guarantees for Safety-Regularized TRPO and CPO
	Execution-Time Efficiency
	Pseudocode for the safety-regularized actor-critic objective.
	Connection to Control Theory
	Ablation Study on Safety Bonus and Sampling Size
	Adaptive Shielding and Safety-Regularized Objective with PPO-Lag
	Function Encoders and Its Representation
	Shielding with Alternative Dynamics Predictors.
	Additional Experiments: Safe Velocity Control in HalfCheetah
	Why Not QC, But Qsafe?
	Fix Parameters vs. Varying Hidden Parameters
	Cost Functions
	Average Cost Minimization and Cost Value Function
	Experimental Details

