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Abstract

Perineuronal nets are extracellular matrix structures that enmesh specific neurons,
and their disruption has been linked to glioma progression and epilepsy. Yet
most studies analyze pathology images, gene expression, or clinical variables in
isolation, limiting our understanding of how perineuronal net changes connect to
disease. We present a joint multimodal framework that learns aligned embeddings
from three inputs: pathology images, RNA expression, and clinical covariates,
using a contrastive objective with cross-modality reconstruction and pathway-
informed regularization. The approach supports missing modalities via modality
dropout and gated fusion at inference, and provides interpretability through pathway
enrichment analyses and attention maps that highlight morphology consistent
with perineuronal net biology. On a small, patient-level multimodal cohort, the
method outperforms early/intermediate/late fusion and unimodal baselines and
yields transparent gene—morphology associations, suggesting a practical route to
integrating limited multimodal data for perineuronal net pathology.

1 Introduction

Perineuronal nets (PNNs)[8} [14} 5] are specialized extracellular matrix (ECM) structures that enwrap
neuronal somata and proximal dendrites, supporting synaptic stabilization and constraining plasticity.
Composed of a hyaluronan backbone, chondroitin sulfate proteoglycans (e.g., aggrecan, brevican),
link proteins (HAPLN family), and tenascin-R, PNNs stabilize perisomatic synapses. In glioma,
PNN degradation has been associated with tumor invasion and seizure susceptibility[13], suggesting
potential clinical utility.

However, prevailing assessments rely on subjective histopathology and seldom connect morphology
to underlying molecular programs. Recent unimodal advances[25, 1] can reduce manual effort but
are not designed to integrate complementary signals that jointly characterize PNN remodeling. By
nature, PNN pathology is multimodal: immunofluorescence (IF) images capture mesoscale ECM
and perisomatic changes|[29]; transcriptomics reflects pathway shifts in matrix assembly, proteo-
glycan turnover, and synaptic stabilization; and clinical variables encode disease stage, treatment
exposure, and seizure phenotype[26, [17, |23]. Considering any single view in isolation obscures
gene—morphology associations and hampers clinical interpretability.

We propose a PNN-centric multimodal learning framework that jointly learns from IF images, RNA
expression, and clinical covariates. The model aligns patient-level embeddings across modalities via
a contrastive objective with pathway-informed regularization, while preserving modality-specific
signals through unimodal reconstruction. To make gene—morphology associations explicit, we
further include cross-modality reconstruction (e.g., image—RNA), which supports interpretability
and hypothesis generation.
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‘We summarize our contributions as follows:

* We develop a PNN-centric multimodal framework that aligns patient-level IF images, transcrip-
tomic, and clinical data via contrastive learning, jointly optimized with unimodal and cross-modality
reconstruction objectives.

* We leverage cross-modality reconstruction together with attention/saliency readouts to analyze
gene—morphology associations in a unified embedding space, while preserving modality-specific
signals.

* Evaluated on a class-imbalanced glioma cohort under a full-modality setting, the framework learns
a shared representation that co-clusters patients with concordant molecular—-morphological—clinical
profiles and improves over early-, intermediate-, and late-fusion as well as attention-based baselines
on seizure prediction.

2 Related Work

Multimodal Learning in Healthcare and Pathology Large-scale vision—language models trained
on paired medical images and reports have improved diagnostic performance and data efficiency
[16,18.4]. Beyond text-image pairing, multimodal fusion of images with structured clinical variables
improves risk prediction in diverse settings, such as pulmonary embolism [6]], while specialized
architectures integrate heterogeneous EHR signals (notes, labs, vitals) [24, 21]. In computational
pathology, curated knowledge can guide pretraining and adaptation [31]. Contrastive objectives are
effective for medical representation learning from paired or unpaired data 30, 28]].

Histology—Genomics Integration A line of work studies joint modeling of histology and genomics
for cancer diagnosis and prognosis, including fusion frameworks and co-attention designs that couple
slide-level features with molecular readouts [[10, 9, [I1]. These methods motivate learning shared
representations that preserve modality-specific signals while enabling cross-modal alignment—an
idea we adapt to immunofluorescence (IF) images (tissue-level fluorescence microscopy of PNN
markers), transcriptomics, and clinical variables in the context of perineuronal net pathology.

PNNs and Glioma-Related Epileptogenesis PNNs are specialized ECM structures implicated
in synaptic stabilization and plasticity regulation. Imaging and mapping studies have quantified
PNN organization (e.g., WFA-positive meshes and PV colocalization) [25] 23], while molecular
analyses linked gene signatures to seizure phenotypes in glioma [19,20]. MRI-based prediction of
glioma-associated epilepsy has also been explored [27]]. Our work complements these by aligning IF
images with pathway-informed transcriptomic signals and clinical covariates to surface interpretable
gene—morphology associations in PNN pathology.

3 Proposed Method: Multimodal Joint Training

In this section, we formalize the PNN-detection task and present a multimodal joint training frame-
work that enhances predictive interpretability. An overview of the architecture is shown in Fig.[I]

3.1 Experiment Setup

We aim to address multimodal representation learning for clinical outcome prediction in PNN
detection in this work. Formally, we denote the dataset as D = {(I;, R;, C;, Y;)} ., where each
sample d; € D corresponds to a single patient; ROI-level features are aggregated per patient to prevent
leakage across folds. Specifically, I; € R¥*WX3 represents an immunofluorescence (IF) image
(or tile aggregate), R; € RS denotes bulk/spatial RNA sequencing data with G genes, C; indicates
structured clinical covariates, and Y; € {0, 1} denotes the binary seizure label. Our objective is to
learn a unified embedding space that effectively integrates these heterogeneous modalities, thereby
enabling a comprehensive cross-modal understanding and improving predictive performance for
clinical outcomes.

3.2 Joint Training Framework

Given the heterogeneity of input modalities, we employ self-supervised objectives to train modality-
specific encoders, combining reconstruction losses with cross-modal reconstruction and a contrastive
objective applied to the bottleneck representations. Throughout, we refer to the d-dimensional encoder
outputs z; = fr(I), zr = fr(R), and z¢c = fc(C) as the bottleneck embeddings (shared latent
representations in R?%) used by downstream reconstruction, cross-modality projection, and contrastive
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Figure 1: Overview of the multimodal joint training framework for PNN-centric glioma analysis. This
framework encodes immunofluorescence (IF) images, RNA profiles (bulk/spatial; not single-cell), and clinical
data via modality-specific encoders, jointly trained with unimodal reconstruction (Green), cross-modality
reconstruction (Blue), and a contrastive objective (Red). The resulting embeddings support seizure prediction
and interpretable gene—morphology analyses.

objectives. This design ensures that each embedding retains modality-dependent characteristics while
remaining well-aligned within a shared latent space to support cross-modal integration.

3.2.1 Reconstruction Learning Strategy

To capture information across different modalities, each input is first compressed into a latent
representation by its corresponding encoder and then reconstructed back into its original space
through a dedicated decoder. We adopt distinct encoding strategies tailored to each data modality:

* Image Encoder. We use a ResNet-50[15] architecture (with the final classification layer
removed) to encode histopathology images. This encoder extracts high-level visual features
and projects each image into a latent representation vector.

* RNA Encoder. We use a VAE-based encoder (scVI-style latent model[22]) adapted to
bulk/spatial RNA profiles for dimensionality reduction. An MLP gy ,, maps the latent to the
shared embedding:

Zr = go,(sCVI(R)) € RY.

* Clinical Encoder. Categorical clinical variables are encoded using learnable embedding
layers. For the k-th clinical variable, an encoder Ency, produces its representation, which is
then aggregated with importance weighting:

Zc = Zwk ~Enck(0k),
k

where wy, denotes the learnable importance weight associated with the k-th clinical variable.

Each modality-specific decoder (Dec;, Decp, Decc, ) subsequently reconstructs the original input

from its latent embedding, producing outputs I, R, and C. Clinical reconstruction uses a shared
clinical decoder with per-variable lightweight heads Dec¢, that are shared across all patients; we
keep the per-variable notation for clarity. The joint reconstruction objective is formulated as: Lyecon =
MSE(I,I) + MSE(R,R) + 3 & CrossEntropy(Cy,, Cy). This strategy yields informative, modality-
specific embeddings. Given the inherent correlations across modalities, we further introduce Cross-
Modality Reconstruction objectives to induce semantically meaningful cross-modal mappings.
Specifically, we employ modality-to-modality projection networks to ensure dimensional consistency
and to align representations within a shared high-dimensional space. For example, we use MLPs to
project representations into the space of a target modality:

zir =MLPy, . (2z1), 2zZr—1=MLPy,  (zr)

where MLPy, . and MLPy,, ., denote the projection networks from image to RNA space and from
RNA to image space, respectively. Analogous to Liecon, the cross-modal reconstruction loss is defined
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as:

Leross = MSE(Decg(z7—r), R)+MSE(Dec;(zr— 1), +Z CrossEntropy(Decc, (z1¢), Ck) -
k

This joint paradigm promotes coherent representations across heterogeneous modalities, facilitating
integration in a shared embedding space.

3.2.2 Contrastive Learning Strategy

To promote alignment of representations across modalities, we also incorporate a contrastive learning
objective that enforces embeddings derived from the same patient to keep close in representation
space while ensuring separability across patients. Specifically, for each patient i, the modality-
specific embeddings (z%, z%,, zi) are treated as positive pairs, whereas embeddings from different
patients j # 4 serve as negatives. We apply the NT-Xent loss [12] to all modality pairs: Leontrast =
L r~+ Lrc+ Lc,1, where each pairwise contrastive loss is defined as

c B ZN: exp mm(zml, mg)/T)
mi,mz T
i=1 Zj 1 €Xp (s1m( ml,zmQ)/T)

with sim(+, -) denoting cosine similarity, 7 the temperature parameter, and N the batch size. Building
on the proposed contrastive and reconstruction strategies, the final training objective jointly optimizes
all three components:

Llotal = )\TCCOTI ‘CI‘CCOH + )\COI'lll”aSl Econtrast + ACI‘OSS LCFOSSa

where Arecons Acontrasts a0d Across balance the losses. We select (Arecon, Acontrasts Across) DY grid search
on training folds with early stopping and fix the chosen triplet across folds; the final values are
(0.5, 1.0, 0.5). This joint objective enables the model to capture biologically grounded cross-modal
correspondences, yielding a representation space in which patients with similar molecular profiles,
tissue morphology, and clinical features cluster coherently. Such alignment facilitates transparent and
clinically relevant interpretation across modalities, even under data-limited conditions.

4 Experiment Result
4.1 Dataset & Metric

Dataset. Our cohort comprises 12 glioma patients (4 low-grade glioma, LGG; 8 glioblastoma,
GBM), with 243 tissue microarray (TMA) regions of interest (ROIs). Each ROI includes paired
immunofluorescence images, RNA expression profiles (2,101 genes), and clinical metadata. Further
dataset details are provided in Appendix[A.1]

Metrics. We formulate the prediction of the seizure status as a binary classification problem, where
each sample ¢ is assigned a predicted score §; € [0, 1]. To prevent data leakage, we perform patient-
wise K -fold cross-validation, ensuring that all ROIs from the same patient are assigned to the same
fold. We report the average Accuracy, Precision, Recall, F1, and AUC (area under the receiver
operating characteristic curve) across folds.

4.2 Evaluation

‘We compare our approach against five standard modality-fusion paradigms:, Early Fusion[10} [11],
Late Fusion[7], Intermediate Fusion[10], Attention-based Fusion[9]], and Cross-modal Transformer[9].
Detailed descriptions of each method are provided in Appendix [A.2]For fair comparison, we use the
same modality-specific encoders and apply the background removal method to minimize the impact
of background noise. The results are presented in Table

Naive fusion baselines (feature concatenation or weighted averaging) underperform because they
ignore cross-modal heterogeneity and differences in scale and structure. Attention-based fusion
partially mitigates this by modeling interactions, yet it still lacks explicit patient-level alignment
and does not preserve modality-specific signal, yielding limited gains in data-limited settings. In
contrast, our pathway-aware contrastive training with cross-modal reconstruction simultaneously
enforces cross-modal alignment and preserves modality-specific representations. This leads to
consistently superior performance across all evaluation metrics, thereby validating the effectiveness
of our proposed approach.
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Table 1: Performance comparison of fusion methods under identical encoders, splits, and preprocessing. Our
joint contrastive training attains the best overall performance.

Accuracy Precision Recall F1-Score AUC

Early Fusion(Concat) 0.713 0.736 0.698 0.716 0.784
Late Fusion(Weighted Average) 0.738 0.754 0.721 0.737 0.802
Intermediate Fusion 0.759 0.772 0.745 0.762 0.821
Attention-based Fusion 0.782 0.798 0.769 0.785 0.845
Cross-Modal Transformer 0.796 0.811 0.783 0.798 0.856
Joint Training (Ours) 0.824 0.841 0.812 0.826 0.887

4.3 Interpretability Analysis

To assess the biological mechanisms driving our model’s predictions and establish the clinical rele-
vance of the learned representations, we conduct comprehensive interpretability analyses, including
cross-modal attention visualization, region-specificity assessment, and gene—morphology association
mapping. These analyses indicate that the model captures biologically meaningful patterns consistent
with established PNN biology and glioma pathophysiology. Full procedures and results are provided

in Appendix[A.4]
5 Conclusion

We presented a multimodal framework for PNN-centric glioma analysis that couples biologically
informed contrastive alignment with cross-modal and unimodal reconstruction, enabling joint predic-
tion over histopathology, RNA expression, and clinical metadata. On a 12-patient (GBM/LGG) cohort
with 243 ROIs and patient-level cross-validation, the proposed model consistently outperforms strong
fusion baselines, indicating that shared representation learning captures cross-modal dependencies
more effectively than post-hoc score fusion or attention alone. The learned embeddings also support
clinically meaningful interpretation by linking histomorphology to transcriptomic signatures.
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A Appendix

A.1 Dataset Detail

We present patient characteristics in Table[2} All analyses in the main paper use a 12-patient glioma
subset; counts elsewhere refer to regions of interest (ROIs). The cohort comprises 12 patients with a
mean age of 65.5 &+ 13.2 years and a balanced gender distribution. Seizures were observed in 58.3%
of patients, and the majority (66.7%) were diagnosed with glioblastoma.

Table 2: Patient demographics and clinical characteristics. The cohort comprises 12 patients with mixed
diagnoses, including 8 glioblastomas and 4 lower-grade gliomas.
Diagnosis: IDs GBM1-8 are GBM; IDs starting with O/A are LGG.

Patient ID Age Gender Brain Seizures ASM Survival
Region (months)
GBM1 75 F Temporal Yes Keppra 20.5
GBM2 81 F Frontal No None 35
GBM3 64 M Temporal Yes Keppra 43.0
GBM4 78 M Temporal No Keppra 10.0
GBM5 67 M Frontal No None 16.0
GBM6 73 M Frontoparietal Yes None 30.0
GBM7 84 F Frontoparietal Yes None 1.0
GBMS 62 M Temporal Yes None 8.0
03_1 42 F Frontal Yes Keppra -
02 47 F Frontal Yes Keppra -
A2 58 F Frontal No None -
032 55 F Frontal No None -

A.1.1 Comprehensive Tissue Microarray Design and Quality Control

Our study utilized two tissue microarrays employing NanoString GeoMx Digital Spatial Profiling
technology: TMA_1054 (whole transcriptome analysis, 190 initial ROIs) and TMA_1054B (whole
transcriptome + protein panel, 285 initial ROIs). Each ROI measured 250 ym in diameter and
underwent whole transcriptome analysis (WTA; 18,677 RNAs), with TMA_1054B additionally
incorporating an immune profiling assay (IPA; ~570 proteins). We implemented a six-step quality-
control pipeline that reduced the initial 475 ROISs to 449 high-quality regions (176 from TMA_1054,
273 from TMA_1054B), representing ~20% data reduction while preserving analytical integrity:
(1) morphology/staining QC; (2) RNA integrity and cellularity checks; (3) segment filtering (10%
threshold); (4) target filtering (10% threshold); (5) Q3 normalization; and (6) statistical-analysis
preparation. This process refined the transcriptomic dataset from 18,677 to 16,561 reliable targets.

A.1.2 Spatial Compartment Classification and Distribution

From the quality-controlled dataset, we focused on 243 ROIs from 12 glioma patients (GBM and
LGG) with complete clinical annotations. ROIs were classified into three spatial compartments based
on tumor infiltration: Brain (B, n=83, 34.2%; 0% tumor content), Intermediate (I, n=80, 32.9%;
< 50% infiltration), and Tumor (T, n=80, 32.9%; > 50% malignant cell content). The anatomical
distribution encompassed 156 frontal (64.2%), 62 temporal (25.5%), and 25 frontoparietal (10.3%)
regions. Seizure analysis identified 108 seizure-positive regions (44.4%) versus 135 seizure-negative
(55.6%).

A.1.3 Molecular Profiling and PNN Quantification

Each ROI underwent dual-modal analysis combining immunofluorescence imaging and spatial
transcriptomics. Immunofluorescence panels included perineuronal net markers (aggrecan staining),
nuclear markers (SYTO13), and cellular markers (PanCK for epithelial cells). PNN abundance
was quantified across spatial compartments, revealing progressive loss from Brain (highest) —
Intermediate — Tumor (lowest) regions; the PNN loss metric (Brain% — Tumor%) correlated with
seizure frequency across tumor subtypes. The transcriptomic component captured spatial gene-
expression patterns across the invasion spectrum, enabling identification of differentially expressed
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genes between compartments and seizure states. This multimodal dataset supports analysis of
gene—morphology relationships underlying PNN remodeling and glioma-associated epileptogenesis.

A.2 Baseline Methods

We compare against five standard fusion paradigms, instantiated on top of the same modality-specific
encoders to ensure fairness:

» Early Fusion (Concatenation)[10, [11]. L2-normalized embeddings from each modality are
concatenated and fed to an MLP classifier; this setting is widely adopted in histopathology + omics
pipelines.

* Late Fusion (Weighted Average)[7]. Independent per-modality predictors are trained; calibrated
probabilities (or logits) are combined via a validation-tuned weighted average.

* Intermediate Fusion[10]. To capture cross-modal interactions beyond concatenation, we fuse
features at a hidden layer with a tensor/bilinear-style head (Pathomic-Fusion—style).

* Attention-based Fusion[9]. A gating/co-attention module learns modality importances and
mixes features adaptively before classification (e.g., co-attention over WSI features and omics
embeddings).

* Cross-modal Transformer[9]. Directional cross-modal attention aligns and exchanges information
across modalities prior to prediction (MCAT-style co-attention).

A.3 Ablation Study on Multi-Modality Training

To demonstrate the necessity of incorporating all modalities for PNN detection, we compare unimodal
baselines against the proposed multimodal framework, as shown in Table 3]

Table 3: Performance comparison of unimodal and multimodal configurations. The proposed multimodal model
achieves the best overall performance across all metrics.

Accuracy  Precision Recall F1-Score AUC

Image Only (ResNet50) 0.752 0.778 0.734 0.755 0.821
RNA Only (scVI) 0.698 0.721 0.689 0.705 0.765
Clinical Only (XGBoost) 0.645 0.662 0.631 0.646 0.712
Multi-modal (Proposed) 0.824 0.841 0.812 0.826 0.887

The results show that the joint learning approach consistently outperforms single-modality models
across all evaluation metrics. This highlights the critical role of integrating histopathology images,
RNA profiles, and clinical data, where the complementary information from each modality enables
more accurate and robust detection than relying on any individual source alone.

A.4 Interpretability Analysis

Understanding the biological mechanisms underlying model’s predictions is crucial for clinical trans-
lation and scientific validation. We conducted comprehensive interpretability analyses to demonstrate
how our multimodal framework learns clinically meaningful cross-modal relationships and captures
known neurobiological patterns relevant to glioma-associated epilepsy.

A.4.1 Cross-Modal Attention Mechanisms

Our joint training framework learns interpretable attention patterns that reveal biologically meaning-
ful associations between histological features and molecular pathways. As summarized in Fig. 2}
PNN_density aligns most strongly with GABAergic signaling (High), Tumor_boundary with Pro-
liferation (High), Vessel_proximity with Inflammatory signaling (Medium), and Cell_density with
Metabolic pathways (Low). These patterns are consistent with PNN-mediated inhibitory regula-
tion and invasion-associated proliferative signaling in glioma. Importantly, Fig. | shows attention
weights—not regional expression levels or brain-region comparisons.
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Figure 2: Attention-weight matrix linking histomorphological features (PNN_density, Ves-
sel_proximity, Cell_density, Tumor_boundary) to pathway categories (GABAergic, Inflammatory,
Metabolic, Proliferation). Bar length encodes normalized attention weight; qualitative labels (High-
/Medium/Low) annotate association strength. Colors are for visual grouping only and do not denote
brain regions or target expression. No brain-region information is depicted in this figure.

A.4.2 Regional Specificity and Modality Contributions

To assess anatomical specificity, we analyzed model performance and modality contributions across
different brain regions (Figure [3). Performance remained remarkably consistent across frontal,
temporal, and frontoparietal regions (accuracy range: 78-82%), validating the robustness of our
approach across diverse anatomical contexts. However, modality importance varied significantly by
region, reflecting known neuroanatomical differences. Image features dominated predictions in frontal
regions (0.75 contribution), likely reflecting the distinct cytoarchitectural patterns in the prefrontal
cortex. Conversely, RNA expression became increasingly important in temporal (0.65 contribution)
and frontoparietal areas (0.58 contribution), consistent with the higher molecular heterogeneity and
epileptogenic potential in these regions.

Brain Region-Specific Model Interpretation

How different modalities contribute to predictions across brain regions.

Performance by Region Modality Contribution
1007] 17
754 0.75+
50+ 0.5+
25+ 0.25+
0 . 0- T T T
Frontal Temporal Frontoparietal Frontal Temporal Frontoparietal
M Accuracy (%) m Sensitivity (%) M Image Importance

Figure 3: Brain region-specific model interpretation showing (left) performance consistency across
anatomical regions and (right) differential modality contributions. While prediction accuracy remains
stable (78-82%), the relative importance of histological versus molecular features varies systematically
across frontal, temporal, and frontoparietal regions, reflecting known neuroanatomical and functional
differences.

A.4.3 Molecular Signatures and Gene Expression Patterns

Our model also yields pathway-level interpretability via cross-modal attention. As summarized in
Fig. ] PNN_density aligns most strongly with GABAergic pathways (High), Tumor_boundary with
Proliferation (High), Vessel_proximity with Inflammatory signaling (Medium), and Cell_density
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with Metabolic pathways (Low). These bars visualize normalized attention weights—rnot regional
expression levels or brain-region comparisons.
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Figure 4: Attention-weight matrix linking histomorphological features (PNN_density, Ves-
sel_proximity, Cell_density, Tumor_boundary) to pathway categories (GABAergic, Inflammatory,
Metabolic, Proliferation). Bar length encodes normalized attention weight; qualitative labels (High-
/Medium/Low) annotate association strength. Colors are for visual grouping only and do not denote
brain regions or target expression.

A.4.4 Statistical Validation of Multimodal Superiority

To rigorously establish the statistical significance of our multimodal approach, we conducted paired
t-tests comparing our joint training method against unimodal baselines (Table ). All comparisons
yielded highly significant improvements with large effect sizes (Cohen’s d > (0.8), demonstrating
that the performance gains are both statistically robust and clinically meaningful. The largest effect
size (d = 1.58) was observed against clinical-only models, highlighting the critical importance of
integrating molecular and histological data for accurate seizure prediction.

Table 4: Statistical significance testing of multimodal approach superiority. Paired t-tests demonstrate significant
improvements over unimodal baselines with large effect sizes, confirming the robust advantage of integrating
multiple data modalities.

Comparison Test Statistic P-value Effect Size
(Cohen’s d)
Multi-modal vs Image Only t=3.84 0.0012** 0.87
Multi-modal vs RNA Only t=4.21 0.0003*** 1.12
Multi-modal vs Clinical Only t=>5.73 < 0.0001*** 1.58

*p < 0.05, **p < 0.01, ***p < 0.001.

These comprehensive interpretability analyses demonstrate that our multimodal framework not only
achieves superior predictive performance but also learns biologically meaningful representations that
align with established neuroscientific knowledge, supporting its potential for clinical translation and
mechanistic discovery in glioma-associated epilepsy.

A.5 Limitations and Future Work

Cohort scope and clinical missingness. This study is constrained by a modest, single-site cohort
and missingness in select clinical variables (e.g., MGMT). In addition, ROI-to-patient aggregation
may understate intrapatient heterogeneity. These constraints limit statistical power and external
validity and may bias subgroup analyses.

Missing-modality robustness. A key limitation of the current framework is that training and
inference assume all three modalities (immunofluorescence images, RNA profiles, and clinical data)
are present. We do not evaluate robustness when one or more modalities are absent or corrupted,
a scenario that frequently arises in real-world clinical workflows. Prior multimodal models (e.g.,
MultiModN [3]], HealNet [2]) are explicitly designed to operate under missing-modality regimes, but
this paper does not yet address that setting.

Future work. We will (i) introduce modality-dropout and feature-imputation strategies during

training; (ii) add modality-conditional heads and gating to enable graceful degradation at inference;
and (iii) benchmark against missing-modality—tolerant baselines (e.g., MultiModN, HealNet) under
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systematically ablated inputs. In parallel, we are expanding the cohort (additional GBM/LGG
cases and ROIs), increasing institutional diversity for external validation, and extending endpoints
beyond binary seizure status (e.g., time-to-seizure and treatment response). Future iterations will also
incorporate pathway-level priors and spatial transcriptomics, and evaluate uncertainty calibration and
subgroup fairness to support clinical translation.

Data availability. At this time, we do not plan to publicly release the dataset due to its limited
size and incomplete annotations. As the cohort expands and curation is finalized, we will consider
releasing a de-identified, well-documented subset (pending institutional approvals/IRB), together
with code and model checkpoints to facilitate reproducibility.
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