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Abstract

Perineuronal nets are extracellular matrix structures that enmesh specific neurons,1

and their disruption has been linked to glioma progression and epilepsy. Yet2

most studies analyze pathology images, gene expression, or clinical variables in3

isolation, limiting our understanding of how perineuronal net changes connect to4

disease. We present a joint multimodal framework that learns aligned embeddings5

from three inputs: pathology images, RNA expression, and clinical covariates,6

using a contrastive objective with cross-modality reconstruction and pathway-7

informed regularization. The approach supports missing modalities via modality8

dropout and gated fusion at inference, and provides interpretability through pathway9

enrichment analyses and attention maps that highlight morphology consistent10

with perineuronal net biology. On a small, patient-level multimodal cohort, the11

method outperforms early/intermediate/late fusion and unimodal baselines and12

yields transparent gene–morphology associations, suggesting a practical route to13

integrating limited multimodal data for perineuronal net pathology.14

1 Introduction15

Perineuronal nets (PNNs)[8, 14, 5] are specialized extracellular matrix (ECM) structures that enwrap16

neuronal somata and proximal dendrites, supporting synaptic stabilization and constraining plasticity.17

Composed of a hyaluronan backbone, chondroitin sulfate proteoglycans (e.g., aggrecan, brevican),18

link proteins (HAPLN family), and tenascin-R, PNNs stabilize perisomatic synapses. In glioma,19

PNN degradation has been associated with tumor invasion and seizure susceptibility[13], suggesting20

potential clinical utility.21

However, prevailing assessments rely on subjective histopathology and seldom connect morphology22

to underlying molecular programs. Recent unimodal advances[25, 1] can reduce manual effort but23

are not designed to integrate complementary signals that jointly characterize PNN remodeling. By24

nature, PNN pathology is multimodal: immunofluorescence (IF) images capture mesoscale ECM25

and perisomatic changes[29]; transcriptomics reflects pathway shifts in matrix assembly, proteo-26

glycan turnover, and synaptic stabilization; and clinical variables encode disease stage, treatment27

exposure, and seizure phenotype[26, 17, 23]. Considering any single view in isolation obscures28

gene–morphology associations and hampers clinical interpretability.29

We propose a PNN-centric multimodal learning framework that jointly learns from IF images, RNA30

expression, and clinical covariates. The model aligns patient-level embeddings across modalities via31

a contrastive objective with pathway-informed regularization, while preserving modality-specific32

signals through unimodal reconstruction. To make gene–morphology associations explicit, we33

further include cross-modality reconstruction (e.g., image→RNA), which supports interpretability34

and hypothesis generation.35
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We summarize our contributions as follows:36

• We develop a PNN-centric multimodal framework that aligns patient-level IF images, transcrip-37

tomic, and clinical data via contrastive learning, jointly optimized with unimodal and cross-modality38

reconstruction objectives.39

• We leverage cross-modality reconstruction together with attention/saliency readouts to analyze40

gene–morphology associations in a unified embedding space, while preserving modality-specific41

signals.42

• Evaluated on a class-imbalanced glioma cohort under a full-modality setting, the framework learns43

a shared representation that co-clusters patients with concordant molecular–morphological–clinical44

profiles and improves over early-, intermediate-, and late-fusion as well as attention-based baselines45

on seizure prediction.46

2 Related Work47

Multimodal Learning in Healthcare and Pathology Large-scale vision–language models trained48

on paired medical images and reports have improved diagnostic performance and data efficiency49

[16, 18, 4]. Beyond text–image pairing, multimodal fusion of images with structured clinical variables50

improves risk prediction in diverse settings, such as pulmonary embolism [6], while specialized51

architectures integrate heterogeneous EHR signals (notes, labs, vitals) [24, 21]. In computational52

pathology, curated knowledge can guide pretraining and adaptation [31]. Contrastive objectives are53

effective for medical representation learning from paired or unpaired data [30, 28].54

Histology–Genomics Integration A line of work studies joint modeling of histology and genomics55

for cancer diagnosis and prognosis, including fusion frameworks and co-attention designs that couple56

slide-level features with molecular readouts [10, 9, 11]. These methods motivate learning shared57

representations that preserve modality-specific signals while enabling cross-modal alignment—an58

idea we adapt to immunofluorescence (IF) images (tissue-level fluorescence microscopy of PNN59

markers), transcriptomics, and clinical variables in the context of perineuronal net pathology.60

PNNs and Glioma-Related Epileptogenesis PNNs are specialized ECM structures implicated61

in synaptic stabilization and plasticity regulation. Imaging and mapping studies have quantified62

PNN organization (e.g., WFA-positive meshes and PV colocalization) [25, 23], while molecular63

analyses linked gene signatures to seizure phenotypes in glioma [19, 20]. MRI-based prediction of64

glioma-associated epilepsy has also been explored [27]. Our work complements these by aligning IF65

images with pathway-informed transcriptomic signals and clinical covariates to surface interpretable66

gene–morphology associations in PNN pathology.67

3 Proposed Method: Multimodal Joint Training68

In this section, we formalize the PNN-detection task and present a multimodal joint training frame-69

work that enhances predictive interpretability. An overview of the architecture is shown in Fig. 1.70

3.1 Experiment Setup71

We aim to address multimodal representation learning for clinical outcome prediction in PNN72

detection in this work. Formally, we denote the dataset as D = {(Ii, Ri, Ci, Yi)}Ni=1 where each73

sample di ∈ D corresponds to a single patient; ROI-level features are aggregated per patient to prevent74

leakage across folds. Specifically, Ii ∈ RH×W×3 represents an immunofluorescence (IF) image75

(or tile aggregate), Ri ∈ RG denotes bulk/spatial RNA sequencing data with G genes, Ci indicates76

structured clinical covariates, and Yi ∈ {0, 1} denotes the binary seizure label. Our objective is to77

learn a unified embedding space that effectively integrates these heterogeneous modalities, thereby78

enabling a comprehensive cross-modal understanding and improving predictive performance for79

clinical outcomes.80

3.2 Joint Training Framework81

Given the heterogeneity of input modalities, we employ self-supervised objectives to train modality-82

specific encoders, combining reconstruction losses with cross-modal reconstruction and a contrastive83

objective applied to the bottleneck representations. Throughout, we refer to the d-dimensional encoder84

outputs zI = fI(I), zR = fR(R), and zC = fC(C) as the bottleneck embeddings (shared latent85

representations in Rd) used by downstream reconstruction, cross-modality projection, and contrastive86
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Figure 1: Overview of the multimodal joint training framework for PNN-centric glioma analysis. This
framework encodes immunofluorescence (IF) images, RNA profiles (bulk/spatial; not single-cell), and clinical
data via modality-specific encoders, jointly trained with unimodal reconstruction (Green), cross-modality
reconstruction (Blue), and a contrastive objective (Red). The resulting embeddings support seizure prediction
and interpretable gene–morphology analyses.

objectives. This design ensures that each embedding retains modality-dependent characteristics while87

remaining well-aligned within a shared latent space to support cross-modal integration.88

3.2.1 Reconstruction Learning Strategy89

To capture information across different modalities, each input is first compressed into a latent90

representation by its corresponding encoder and then reconstructed back into its original space91

through a dedicated decoder. We adopt distinct encoding strategies tailored to each data modality:92

• Image Encoder. We use a ResNet-50[15] architecture (with the final classification layer93

removed) to encode histopathology images. This encoder extracts high-level visual features94

and projects each image into a latent representation vector.95

• RNA Encoder. We use a VAE-based encoder (scVI-style latent model[22]) adapted to96

bulk/spatial RNA profiles for dimensionality reduction. An MLP gθR maps the latent to the97

shared embedding:98

zR = gθR(scVI(R)) ∈ Rd.

• Clinical Encoder. Categorical clinical variables are encoded using learnable embedding99

layers. For the k-th clinical variable, an encoder Enck produces its representation, which is100

then aggregated with importance weighting:101

zC =
∑
k

wk ·Enck(Ck),

where wk denotes the learnable importance weight associated with the k-th clinical variable.102

Each modality-specific decoder (DecI ,DecR,DecCk
) subsequently reconstructs the original input103

from its latent embedding, producing outputs Î , R̂, and Ĉ. Clinical reconstruction uses a shared104

clinical decoder with per-variable lightweight heads DecCk
that are shared across all patients; we105

keep the per-variable notation for clarity. The joint reconstruction objective is formulated as: Lrecon =106

MSE(Î , I) + MSE(R̂, R) +
∑

k CrossEntropy(Ĉk, Ck). This strategy yields informative, modality-107

specific embeddings. Given the inherent correlations across modalities, we further introduce Cross-108

Modality Reconstruction objectives to induce semantically meaningful cross-modal mappings.109

Specifically, we employ modality-to-modality projection networks to ensure dimensional consistency110

and to align representations within a shared high-dimensional space. For example, we use MLPs to111

project representations into the space of a target modality:112

zI→R = MLPθI→R
(zI), zR→I = MLPθR→I

(zR)

where MLPθI→R
and MLPθR→I

denote the projection networks from image to RNA space and from113

RNA to image space, respectively. Analogous to Lrecon, the cross-modal reconstruction loss is defined114
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as:115

Lcross = MSE(DecR(zI→R), R)+MSE(DecI(zR→I), I)+
∑
k

CrossEntropy(DecCk
(zI→C), Ck) .

This joint paradigm promotes coherent representations across heterogeneous modalities, facilitating116

integration in a shared embedding space.117

3.2.2 Contrastive Learning Strategy118

To promote alignment of representations across modalities, we also incorporate a contrastive learning119

objective that enforces embeddings derived from the same patient to keep close in representation120

space while ensuring separability across patients. Specifically, for each patient i, the modality-121

specific embeddings (ziI , z
i
R, z

i
C) are treated as positive pairs, whereas embeddings from different122

patients j ̸= i serve as negatives. We apply the NT-Xent loss [12] to all modality pairs: Lcontrast =123

LI,R + LR,C + LC,I , where each pairwise contrastive loss is defined as124

Lm1,m2
= − 1

N

N∑
i=1

log
exp

(
sim(zim1

, zim2
)/τ

)∑N
j=1 exp

(
sim(zim1

, zjm2)/τ
)

with sim(·, ·) denoting cosine similarity, τ the temperature parameter, and N the batch size. Building
on the proposed contrastive and reconstruction strategies, the final training objective jointly optimizes
all three components:

Ltotal = λrecon Lrecon + λcontrast Lcontrast + λcross Lcross,

where λrecon, λcontrast, and λcross balance the losses. We select (λrecon, λcontrast, λcross) by grid search125

on training folds with early stopping and fix the chosen triplet across folds; the final values are126

(0.5, 1.0, 0.5). This joint objective enables the model to capture biologically grounded cross-modal127

correspondences, yielding a representation space in which patients with similar molecular profiles,128

tissue morphology, and clinical features cluster coherently. Such alignment facilitates transparent and129

clinically relevant interpretation across modalities, even under data-limited conditions.130

4 Experiment Result131

4.1 Dataset & Metric132

Dataset. Our cohort comprises 12 glioma patients (4 low-grade glioma, LGG; 8 glioblastoma,133

GBM), with 243 tissue microarray (TMA) regions of interest (ROIs). Each ROI includes paired134

immunofluorescence images, RNA expression profiles (2,101 genes), and clinical metadata. Further135

dataset details are provided in Appendix A.1.136

Metrics. We formulate the prediction of the seizure status as a binary classification problem, where137

each sample i is assigned a predicted score ŷi ∈ [0, 1]. To prevent data leakage, we perform patient-138

wise K-fold cross-validation, ensuring that all ROIs from the same patient are assigned to the same139

fold. We report the average Accuracy, Precision, Recall, F1, and AUC (area under the receiver140

operating characteristic curve) across folds.141

4.2 Evaluation142

We compare our approach against five standard modality-fusion paradigms:, Early Fusion[10, 11],143

Late Fusion[7], Intermediate Fusion[10], Attention-based Fusion[9], and Cross-modal Transformer[9].144

Detailed descriptions of each method are provided in Appendix A.2.For fair comparison, we use the145

same modality-specific encoders and apply the background removal method to minimize the impact146

of background noise. The results are presented in Table 1147

Naive fusion baselines (feature concatenation or weighted averaging) underperform because they148

ignore cross-modal heterogeneity and differences in scale and structure. Attention-based fusion149

partially mitigates this by modeling interactions, yet it still lacks explicit patient-level alignment150

and does not preserve modality-specific signal, yielding limited gains in data-limited settings. In151

contrast, our pathway-aware contrastive training with cross-modal reconstruction simultaneously152

enforces cross-modal alignment and preserves modality-specific representations. This leads to153

consistently superior performance across all evaluation metrics, thereby validating the effectiveness154

of our proposed approach.155
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Table 1: Performance comparison of fusion methods under identical encoders, splits, and preprocessing. Our
joint contrastive training attains the best overall performance.

Accuracy Precision Recall F1-Score AUC
Early Fusion(Concat) 0.713 0.736 0.698 0.716 0.784
Late Fusion(Weighted Average) 0.738 0.754 0.721 0.737 0.802
Intermediate Fusion 0.759 0.772 0.745 0.762 0.821
Attention-based Fusion 0.782 0.798 0.769 0.785 0.845
Cross-Modal Transformer 0.796 0.811 0.783 0.798 0.856

Joint Training (Ours) 0.824 0.841 0.812 0.826 0.887

4.3 Interpretability Analysis156

To assess the biological mechanisms driving our model’s predictions and establish the clinical rele-157

vance of the learned representations, we conduct comprehensive interpretability analyses, including158

cross-modal attention visualization, region-specificity assessment, and gene–morphology association159

mapping. These analyses indicate that the model captures biologically meaningful patterns consistent160

with established PNN biology and glioma pathophysiology. Full procedures and results are provided161

in Appendix A.4.162

5 Conclusion163

We presented a multimodal framework for PNN-centric glioma analysis that couples biologically164

informed contrastive alignment with cross-modal and unimodal reconstruction, enabling joint predic-165

tion over histopathology, RNA expression, and clinical metadata. On a 12-patient (GBM/LGG) cohort166

with 243 ROIs and patient-level cross-validation, the proposed model consistently outperforms strong167

fusion baselines, indicating that shared representation learning captures cross-modal dependencies168

more effectively than post-hoc score fusion or attention alone. The learned embeddings also support169

clinically meaningful interpretation by linking histomorphology to transcriptomic signatures.170
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A Appendix274

A.1 Dataset Detail275

We present patient characteristics in Table 2. All analyses in the main paper use a 12-patient glioma276

subset; counts elsewhere refer to regions of interest (ROIs). The cohort comprises 12 patients with a277

mean age of 65.5± 13.2 years and a balanced gender distribution. Seizures were observed in 58.3%278

of patients, and the majority (66.7%) were diagnosed with glioblastoma.

Table 2: Patient demographics and clinical characteristics. The cohort comprises 12 patients with mixed
diagnoses, including 8 glioblastomas and 4 lower-grade gliomas.
Diagnosis: IDs GBM1–8 are GBM; IDs starting with O/A are LGG.

Patient ID Age Gender Brain
Region

Seizures ASM Survival
(months)

GBM1 75 F Temporal Yes Keppra 20.5
GBM2 81 F Frontal No None 3.5
GBM3 64 M Temporal Yes Keppra 43.0
GBM4 78 M Temporal No Keppra 10.0
GBM5 67 M Frontal No None 16.0
GBM6 73 M Frontoparietal Yes None 30.0
GBM7 84 F Frontoparietal Yes None 1.0
GBM8 62 M Temporal Yes None 8.0
O3_1 42 F Frontal Yes Keppra –
O2 47 F Frontal Yes Keppra –
A2 58 F Frontal No None –
O3_2 55 F Frontal No None –

279

A.1.1 Comprehensive Tissue Microarray Design and Quality Control280

Our study utilized two tissue microarrays employing NanoString GeoMx Digital Spatial Profiling281

technology: TMA_1054 (whole transcriptome analysis, 190 initial ROIs) and TMA_1054B (whole282

transcriptome + protein panel, 285 initial ROIs). Each ROI measured 250 µm in diameter and283

underwent whole transcriptome analysis (WTA; 18,677 RNAs), with TMA_1054B additionally284

incorporating an immune profiling assay (IPA; ∼570 proteins). We implemented a six-step quality-285

control pipeline that reduced the initial 475 ROIs to 449 high-quality regions (176 from TMA_1054,286

273 from TMA_1054B), representing ∼20% data reduction while preserving analytical integrity:287

(1) morphology/staining QC; (2) RNA integrity and cellularity checks; (3) segment filtering (10%288

threshold); (4) target filtering (10% threshold); (5) Q3 normalization; and (6) statistical-analysis289

preparation. This process refined the transcriptomic dataset from 18,677 to 16,561 reliable targets.290

A.1.2 Spatial Compartment Classification and Distribution291

From the quality-controlled dataset, we focused on 243 ROIs from 12 glioma patients (GBM and292

LGG) with complete clinical annotations. ROIs were classified into three spatial compartments based293

on tumor infiltration: Brain (B, n=83, 34.2%; 0% tumor content), Intermediate (I, n=80, 32.9%;294

< 50% infiltration), and Tumor (T, n=80, 32.9%; > 50% malignant cell content). The anatomical295

distribution encompassed 156 frontal (64.2%), 62 temporal (25.5%), and 25 frontoparietal (10.3%)296

regions. Seizure analysis identified 108 seizure-positive regions (44.4%) versus 135 seizure-negative297

(55.6%).298

A.1.3 Molecular Profiling and PNN Quantification299

Each ROI underwent dual-modal analysis combining immunofluorescence imaging and spatial300

transcriptomics. Immunofluorescence panels included perineuronal net markers (aggrecan staining),301

nuclear markers (SYTO13), and cellular markers (PanCK for epithelial cells). PNN abundance302

was quantified across spatial compartments, revealing progressive loss from Brain (highest) →303

Intermediate → Tumor (lowest) regions; the PNN loss metric (Brain% − Tumor%) correlated with304

seizure frequency across tumor subtypes. The transcriptomic component captured spatial gene-305

expression patterns across the invasion spectrum, enabling identification of differentially expressed306
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genes between compartments and seizure states. This multimodal dataset supports analysis of307

gene–morphology relationships underlying PNN remodeling and glioma-associated epileptogenesis.308

A.2 Baseline Methods309

We compare against five standard fusion paradigms, instantiated on top of the same modality-specific310

encoders to ensure fairness:311

• Early Fusion (Concatenation)[10, 11]. L2-normalized embeddings from each modality are312

concatenated and fed to an MLP classifier; this setting is widely adopted in histopathology + omics313

pipelines.314

• Late Fusion (Weighted Average)[7]. Independent per-modality predictors are trained; calibrated315

probabilities (or logits) are combined via a validation-tuned weighted average.316

• Intermediate Fusion[10]. To capture cross-modal interactions beyond concatenation, we fuse317

features at a hidden layer with a tensor/bilinear-style head (Pathomic-Fusion–style).318

• Attention-based Fusion[9]. A gating/co-attention module learns modality importances and319

mixes features adaptively before classification (e.g., co-attention over WSI features and omics320

embeddings).321

• Cross-modal Transformer[9]. Directional cross-modal attention aligns and exchanges information322

across modalities prior to prediction (MCAT-style co-attention).323

A.3 Ablation Study on Multi-Modality Training324

To demonstrate the necessity of incorporating all modalities for PNN detection, we compare unimodal325

baselines against the proposed multimodal framework, as shown in Table 3.

Table 3: Performance comparison of unimodal and multimodal configurations. The proposed multimodal model
achieves the best overall performance across all metrics.

Accuracy Precision Recall F1-Score AUC
Image Only (ResNet50) 0.752 0.778 0.734 0.755 0.821
RNA Only (scVI) 0.698 0.721 0.689 0.705 0.765
Clinical Only (XGBoost) 0.645 0.662 0.631 0.646 0.712

Multi-modal (Proposed) 0.824 0.841 0.812 0.826 0.887

326

The results show that the joint learning approach consistently outperforms single-modality models327

across all evaluation metrics. This highlights the critical role of integrating histopathology images,328

RNA profiles, and clinical data, where the complementary information from each modality enables329

more accurate and robust detection than relying on any individual source alone.330

A.4 Interpretability Analysis331

Understanding the biological mechanisms underlying model’s predictions is crucial for clinical trans-332

lation and scientific validation. We conducted comprehensive interpretability analyses to demonstrate333

how our multimodal framework learns clinically meaningful cross-modal relationships and captures334

known neurobiological patterns relevant to glioma-associated epilepsy.335

A.4.1 Cross-Modal Attention Mechanisms336

Our joint training framework learns interpretable attention patterns that reveal biologically meaning-337

ful associations between histological features and molecular pathways. As summarized in Fig. 2,338

PNN_density aligns most strongly with GABAergic signaling (High), Tumor_boundary with Pro-339

liferation (High), Vessel_proximity with Inflammatory signaling (Medium), and Cell_density with340

Metabolic pathways (Low). These patterns are consistent with PNN-mediated inhibitory regula-341

tion and invasion-associated proliferative signaling in glioma. Importantly, Fig. 2 shows attention342

weights—not regional expression levels or brain-region comparisons.343
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Figure 2: Attention-weight matrix linking histomorphological features (PNN_density, Ves-
sel_proximity, Cell_density, Tumor_boundary) to pathway categories (GABAergic, Inflammatory,
Metabolic, Proliferation). Bar length encodes normalized attention weight; qualitative labels (High-
/Medium/Low) annotate association strength. Colors are for visual grouping only and do not denote
brain regions or target expression. No brain-region information is depicted in this figure.

A.4.2 Regional Specificity and Modality Contributions344

To assess anatomical specificity, we analyzed model performance and modality contributions across345

different brain regions (Figure 3). Performance remained remarkably consistent across frontal,346

temporal, and frontoparietal regions (accuracy range: 78-82%), validating the robustness of our347

approach across diverse anatomical contexts. However, modality importance varied significantly by348

region, reflecting known neuroanatomical differences. Image features dominated predictions in frontal349

regions (0.75 contribution), likely reflecting the distinct cytoarchitectural patterns in the prefrontal350

cortex. Conversely, RNA expression became increasingly important in temporal (0.65 contribution)351

and frontoparietal areas (0.58 contribution), consistent with the higher molecular heterogeneity and352

epileptogenic potential in these regions.353

Figure 3: Brain region-specific model interpretation showing (left) performance consistency across
anatomical regions and (right) differential modality contributions. While prediction accuracy remains
stable (78-82%), the relative importance of histological versus molecular features varies systematically
across frontal, temporal, and frontoparietal regions, reflecting known neuroanatomical and functional
differences.

A.4.3 Molecular Signatures and Gene Expression Patterns354

Our model also yields pathway-level interpretability via cross-modal attention. As summarized in355

Fig. 4, PNN_density aligns most strongly with GABAergic pathways (High), Tumor_boundary with356

Proliferation (High), Vessel_proximity with Inflammatory signaling (Medium), and Cell_density357
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with Metabolic pathways (Low). These bars visualize normalized attention weights—not regional358

expression levels or brain-region comparisons.359

Figure 4: Attention-weight matrix linking histomorphological features (PNN_density, Ves-
sel_proximity, Cell_density, Tumor_boundary) to pathway categories (GABAergic, Inflammatory,
Metabolic, Proliferation). Bar length encodes normalized attention weight; qualitative labels (High-
/Medium/Low) annotate association strength. Colors are for visual grouping only and do not denote
brain regions or target expression.

A.4.4 Statistical Validation of Multimodal Superiority360

To rigorously establish the statistical significance of our multimodal approach, we conducted paired361

t-tests comparing our joint training method against unimodal baselines (Table 4). All comparisons362

yielded highly significant improvements with large effect sizes (Cohen’s d > 0.8), demonstrating363

that the performance gains are both statistically robust and clinically meaningful. The largest effect364

size (d = 1.58) was observed against clinical-only models, highlighting the critical importance of365

integrating molecular and histological data for accurate seizure prediction.

Table 4: Statistical significance testing of multimodal approach superiority. Paired t-tests demonstrate significant
improvements over unimodal baselines with large effect sizes, confirming the robust advantage of integrating
multiple data modalities.

Comparison Test Statistic P-value Effect Size
(Cohen’s d)

Multi-modal vs Image Only t = 3.84 0.0012∗∗ 0.87
Multi-modal vs RNA Only t = 4.21 0.0003∗∗∗ 1.12
Multi-modal vs Clinical Only t = 5.73 < 0.0001∗∗∗ 1.58
∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

366

These comprehensive interpretability analyses demonstrate that our multimodal framework not only367

achieves superior predictive performance but also learns biologically meaningful representations that368

align with established neuroscientific knowledge, supporting its potential for clinical translation and369

mechanistic discovery in glioma-associated epilepsy.370

A.5 Limitations and Future Work371

Cohort scope and clinical missingness. This study is constrained by a modest, single-site cohort372

and missingness in select clinical variables (e.g., MGMT). In addition, ROI-to-patient aggregation373

may understate intrapatient heterogeneity. These constraints limit statistical power and external374

validity and may bias subgroup analyses.375

Missing-modality robustness. A key limitation of the current framework is that training and376

inference assume all three modalities (immunofluorescence images, RNA profiles, and clinical data)377

are present. We do not evaluate robustness when one or more modalities are absent or corrupted,378

a scenario that frequently arises in real-world clinical workflows. Prior multimodal models (e.g.,379

MultiModN [3], HealNet [2]) are explicitly designed to operate under missing-modality regimes, but380

this paper does not yet address that setting.381

Future work. We will (i) introduce modality-dropout and feature-imputation strategies during382

training; (ii) add modality-conditional heads and gating to enable graceful degradation at inference;383

and (iii) benchmark against missing-modality–tolerant baselines (e.g., MultiModN, HealNet) under384
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systematically ablated inputs. In parallel, we are expanding the cohort (additional GBM/LGG385

cases and ROIs), increasing institutional diversity for external validation, and extending endpoints386

beyond binary seizure status (e.g., time-to-seizure and treatment response). Future iterations will also387

incorporate pathway-level priors and spatial transcriptomics, and evaluate uncertainty calibration and388

subgroup fairness to support clinical translation.389

Data availability. At this time, we do not plan to publicly release the dataset due to its limited390

size and incomplete annotations. As the cohort expands and curation is finalized, we will consider391

releasing a de-identified, well-documented subset (pending institutional approvals/IRB), together392

with code and model checkpoints to facilitate reproducibility.393
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