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ABSTRACT

The integration of long-context capabilities with visual understanding opens up
new possibilities for Vision Language Models (VLMs). However, the quadratic
attention complexity during the pre-filling stage remains a major bottleneck, re-
stricting wide deployment in real-world applications. To address this, we propose
MAPSparse (Modali- ty-Aware Permutation Sparse Attention), a dynamic sparse
attention method that accelerates the pre-filling stage for long-context multi-modal
inputs. First, our analysis reveals that the temporal and spatial locality of video
input leads to a unique sparse patterns, the Grid pattern. Simultaneously, VLMs
exhibit markedly different sparse distributions across different modalities. We
introduce a permutation-based method to leverage the unique Grid pattern and
handle modality boundaries issue. By offline searching the optimal sparse pat-
terns for each head, MAPSparse constructs the sparse distribution dynamically
based on the input. We also provide optimized GPU kernels for efficient sparse
computations. Notably, MAPSparse integrates seamlessly into existing VLM
pipelines without any model modifications or fine-tuning. Experiments on multi-
modal benchmarks—including Video QA, Captioning, Vision-NIAH, and Mix
Modality-NIAH—with state-of-the-art long-context VLMs (LongVila and Llava-
Video) show that MAPSparse accelerates the pre-filling stage by up to 8.3× at 1M
tokens while maintaining competitive performance.

1 INTRODUCTION

Scaling the context size of Vision Language Models (VLMs) allows them to handle extended tempo-
ral information from long video and text inputs, which is crucial for various applications including
robotics (Black et al., 2024; Prasad et al., 2024; Cheang et al., 2024), autonomous driving (Hu et al.,
2023; Wang et al., 2023; Gao et al., 2024), and healthcare (Liu et al., 2024). In addition, Zhang
et al. (2024b) and Xue et al. (2024) shows that scaling the context size of VLMs can improve the
resolution in the temporal dimension and leads to better performance in video understanding tasks.

However, due to the quadratic complexity of attention, the processing of the long multi-modal in-
puts (i.e., the pre-fill stage) can take minutes before the auto-regressive decoding. As shown in
Fig. 1a, this leads to significant Time-to-First-Token latency, which hinders the wide adoption of
long-context VLMs in real-world applications. Previous work (Child et al., 2019; Liu et al., 2022;
Deng et al., 2024) reveals that attention matrices are typically sparse, prompting the development
of sparse attention methods such as Sparse Transformer (Child et al., 2019), Swin Transformer (Liu
et al., 2021), and StreamingLLM(Xiao et al., 2024). More recently, MInference (Jiang et al., 2024)
propose to use dynamic sparse attention that estimate the sparse index online, and leverage optimized
GPU kernels for end-to-end acceleration. However, these methods fail to exploit the unique sparse
patterns in long-context VLMs, and they struggle with mixed or interleaved modalities—limiting
their direct application without compromising performance.

Unlike long-text contexts, video and image inputs in VLMs exhibit spatiotemporal locality, form-
ing grid-like attention patterns of evenly spaced vertical and horizontal lines (Fig. 2a). In mixed-
modality inputs, clear modality boundaries emerge: attention between different modalities diverges
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Figure 1: (a) Latency breakdown of the pre-filling stage, with 256 tokens per frame. (b) How
much element in attention needs to be computed to achieve 95% recall in a 128k context. (c) Low
attention recall when reusing the top-k indices from a different request. Visualizations are based on
LongVILA-7B-1M (Xue et al., 2024) with a single A100.

significantly from intra-modality attention (Fig. 2b). These factors pose unique challenges for ex-
ploiting sparsity to accelerate the pre-fill stage.

In this paper, we present MAPSparse, a permutation-based dynamic sparse attention approach that
significantly reduces attention FLOPs, accelerating the pre-fill stage of long-context VLMs. First,
MAPSparse identifies the grid heads and leverages a row- and column-wise permutation to gather
the sparse grid for efficient hardware computing. Next, we detect Query-boundary and 2D-boundary
patterns to address inter-modality boundaries, and apply modality-wise permutation to gather intra-
modality regions. This results in a consecutive sparse index within each modality, permitting ef-
ficient hardware implementation of sparse computing. Finally, a Modality-Aware Sparse Attention
Search Algorithm is devised to fine-tune both inter- and intra-modality patterns offline, optimizing
performance with minimal overhead.

We conduct extensive experiments using two state-of-the-art long-context VLMs, Llava-Video
(Zhang et al., 2024b) and LongVila (Xue et al., 2024), across diverse video understanding tasks
such as video captioning (Maaz et al., 2024), video question answering (Yu et al., 2019; Xiao et al.,
2021; Mangalam et al., 2023; Fu et al., 2024), and video information retrieval (Zhang et al., 2024a).
Additionally, we propose the Mixed-Modality Needle in a Hackathon task to assess multi-modal
input performance. Our method effectively addresses modality boundaries, significantly accelerates
the prefilling stage, and maintains high accuracy. With a 1M-length context, it achieves speedups of
up to 8.3× and 1.7× over FlashAttention-2 and MInference, respectively.

2 ATTENTION HEADS IN VLMS

The sparsity of the attention operation in pre-trained text-only LLMs, particularly in long-context
scenarios, has been extensively studied (Wu et al., 2024; Ribar et al., 2024; Jiang et al., 2024; Li
et al., 2024b), with only 3% of attention weights being activated while achieving a recall rate of
96.8%. Similarly, VLMs also demonstrate notable dynamic sparsity in long-context scenarios. This
section examines the shared and distinct properties of text-only LLMs and multi-modal LLMs in
long-context scenarios, focusing on attention sparsity, sparse patterns, and modality boundaries.

2.1 MULTI-MODALITY ATTENTION IS DYNAMICALLY SPARSE

As illustrated in Fig. 1a, for a 128k × 128k attention matrix in VLMs, retaining only the top 5.78%
of attention weights on average suffices to recall 95% of total attention, indicating that each token
attends to a limited subset despite long sequences. However, VLMs exhibit lower sparsity than text-
only LLMs, where only 1.79% of weights achieve a 95% recall rate. Notably, the bottom layers in
VLMs (e.g., the first four layers in LongVila) show reduced sparsity. Yet, due to variability across
attention heads, 52.3% of heads in VLMs require less than 2% of attention to be recalled. This
highlights substantial computational redundancy in VLMs, especially in long-context scenarios.

On the other hand, similar to LLMs, while the sparse nature of attention matrices remains consistent
across inputs, the specific distributions of sparse attention are highly dynamic. As shown in Fig. 1c,
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reusing the top-k indices for 95% attention recall (derived from Fig. 1b) in a different context leads
to a significant drop in performance.

2.2 THE GRID HEAD IN VLMS
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1 frame language
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Figure 2: Visualization of pre- vs. post-permutation sparsity attention patterns in VLMs.
In long-context language modeling, efficient attention mechanisms like sliding window atten-
tion (Jiang et al., 2023) and StreamingLLM (Xiao et al., 2024) exploit the locality property of
text sequences. However, multi-modal inputs introduce unique geometric structures that redefine
locality. As shown in Child et al. (2019), image patches exhibit locality along both vertical and hor-
izontal directions, forming local window and slash-like patterns. Similarly, video inputs maintain
locality across temporal and spatial dimensions, with frame-based sampling yielding more regular
and predictable patterns.

We observe that certain VLM attention heads exhibit a grid pattern. While the grid’s stride and
starting position vary with context, the horizontal and vertical lines are evenly spaced and often
symmetrical—a distinct behavior compared to text-only LLMs (Jiang et al., 2024). Fig. 2a visu-
alizes a grid head, demonstrating how local tokens in temporal and spatial dimensions are evenly
distributed within the attention map, with focus primarily on these local tokens.

2.3 MODALITY BOUNDARIES IN MULTI-MODAL INPUT

The input format of VLMs differs significantly from text-only LLMs. A dedicated vision encoder
generates visual representations, which are processed alongside text embeddings by the LLM. De-
spite pretraining on large-scale datasets, the interaction and processing patterns between modalities
vary considerably, leading to distinct modality boundaries in attention (Tu et al., 2024), as illustrated
in Fig. 2b and 2c.

Specifically, we observe two key characteristics: 1) Intra-modality consistency: Attention within
each modality follows a consistent pattern. For instance, the vision region in Fig. 2b exhibits a clear
slash pattern, where critical elements are effectively clustered. 2) Modality-separated continuity:
Patterns within a modality can be interrupted by boundaries from other modalities. In Fig. 2b,
vision slashes are segmented by the boundary introduced by the language region.

We categorize the modality boundary patterns of VLMs into four distinct types: No-Boundary,
K-Boundary, Q-Boundary, and 2D-Boundary, as illustrated in Figs. 2 and 3. 1) No Boundary and
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Figure 3: The framework of MAPSparse, including inter- and intra-modality sparse.

K-Boundary exhibit either no clear modality boundary or a boundary only along the key dimension,
as shown in Fig. 8. Since continuity is maintained along the query dimension, these heads can be
efficiently handled using intra-modality sparse patterns. 2) Q-Boundary refers to attention modality
boundaries across the query dimension. For example, in Fig. 2b, sparse patterns like Text-to-Video
and Video-to-Video appear interconnected, forming a trapezoidal structure, while a clear bound-
ary separates Visual-to-Text and Text-to-Visual attention. 3) 2D-Boundary occurs when modality
boundaries are present in both query and key dimensions. As shown in Fig. 2c, the 2D modal-
ity boundary segments attention weights into distinct blocks. Additionally, our analysis of Audio
LMs (Chu et al., 2024) and multimodal LMs (Li et al., 2025) reveals that the cross-modality bound-
ary phenomenon persists across these architectures. These boundaries pose unique challenges and
hinder the direct application of existing sparse attention approaches to multi-modal inputs.

2.4 SPARSE DISTRIBUTIONS CONTINUITY ACROSS BOUNDARIES

Although sparsity patterns in VLMs are often discontinuous across modalities due to modality
boundaries, we find that sparsity distributions can remain continuous across these boundaries and
extrapolate to other regions of the same modality. For example, in Fig. 2b, the slash lines maintain
the same relative position across different areas of the vision modality. In a more complex case,
Fig. 2c shows interleaved vision and text modalities forming a mixed structure. However, by spa-
tially aggregating regions of the same modality, we observe that sparsity distributions can extend
beyond local areas and often exhibit global extrapolation potential. The upper-left region in Fig. 2c
exemplifies this, where the grid pattern, initially separated by textual boundaries, becomes consec-
utive after spatial clustering in both row and column dimensions. To validate this observation, we
conducted a quantitative attention recall experiment on mixed-modality inputs, as detailed in §4.6.

3 MAPSPARSE

Following the analysis in §2, we propose MAPSparse to accelerate the pre-filling stage of long-
context VLMs as shown in Fig. 3. The framework consists of three modules, covering both inter-
and intra-modality sparse patterns: 1) the novel Grid sparse attention, together with A-shape and
Vertial-Slash pattern (Jiang et al., 2024) forms the intra-modality attention; 2) Q-Boundary and 2D-
Boundary mix-modality pattern; 3) Modality-aware sparse attention search algorithm. We first do
offline pattern search to identify different patterns for each attention head. Then we use online dy-
namic sparse approximation to build the sparse index, and finally we do dynamic sparse computation
using optimized GPU kernels.

3.1 GRID HEAD IN MULTI-MODALITY

4
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Algorithm 1 Grid Head

Input: Q,K,V ∈ RS×dh , stride space sg ∈
ϕg

# Approximate stride and phase (last q = 64)
Â← softmax

(
Q[−last q:]K

⊤/
√
d+mcasual

)
# Online search grid stide and phase
br,← 0
for i← 1 to |ϕg| do

if max(view(Â, sg,i)) > br then
sg ← sg,i, pg ← argmax(view(Â, sg,i))

br ← max(view(Â, sg,i))
end if

end for
# Permute Q, K, V tensors
Q,K,V ← permute (Q) ,permute (K) , permute (V )

# Final dynamic sparse attention scores w/ FlashAt-
tention (only the last and rightmost block)
A← softmax

(
sparse(QK

⊤
, sg, pg)/

√
d
)

# Sparse mixed scores and values
y ← sparse(AV , sg, pg)
return y

To better leverage the inductive bias in visual
modalities (e.g., images, videos) and the ver-
tical and horizontal structures in attention, we
propose a permutation-based dynamic sparse
attention for grid head, as shown in Algo. 1.

Specifically, we first perform an online search
to determine the stride and phase of the grid
pattern. Since only a view operation is applied
to the approximate attention matrix Â, the ac-
tual latency overhead remains minimal. Next,
we use the identified grid stride and phase to
permute the Q, K, and V tensors and compute
sparse attention accordingly (see Fig. 2d). In
our implementation, instead of explicitly per-
muting Q, K, and V , we optimize compu-
tational efficiency by dynamically loading and
writing these tensors within the kernel, mini-
mizing the overhead of tensor transposition op-
erations. In addition to Grid sparse attention,
we also employ A-shape and Vertical-Slash at-
tention for intra-modality operations, see §C.3
for more details.

3.2 HYBRID MODALITY SPARSE ATTENTION

As analyzed in §2 and illustrated in Fig. 2, modality boundaries exist in multi-modal LLMs. We
classify these boundaries into four patterns: No-Boundary, K-Boundary, Q-Boundary, and 2D-
Boundary. As the sparse index is continuous along the query dimension for both the No-Boundary
and K-Boundary heads, we can directly apply the three intra-modality attention globally. How-
ever, for Q-Boundary and 2D-Boundary heads, MAPSparse uses a permutation-based approach to
efficiently handle these modality boundaries.

Q-Boundary Head As shown in Fig.2b, Fig.2e, and §2.4, the Q-Boundary pattern shows a clear
separation across modality, but the sparse distribution remains continues within each modality.

Algorithm 2 Q-Boundary Head

Input: Q,K,V ∈ RS×dh , modality type
index im, modality type set m ∈ ϕm

# Permute Q tensors based on modality
Q← permute (Q, im)

# Looping over the modalities in query dimen-
sion
y ← 0
for i← 1 to |ϕm| do

# Intra-modality sparse attention computa-
tion for each modality w/ FlashAttention
Ami ←
softmax

(
sparse(QmiK

⊤, imi)/
√
d
)

ymi ← sparse(AmiV )

# Update the modality output to the final out-
put
y ← ymi ∪ y

end for
return y

Algorithm 3 2D-Boundary Head

Input: Q,K,V ∈ RS×dh , modality type index
im, modality type set m ∈ ϕm

# Permute Q, K, V tensors based on modality
Q← permute (Q, im) ,K ← permute (K, im)

V ← permute (V , im)

# Looping over the modalities in pairs
y ← 0
for i← 1 to |ϕm| do

for j ← 1 to |ϕm| do
# Dynamic sparse attention computation for
each modality pair w/ FlashAttention
mmi,mj ← buildmask(imi, imj)
Ami,mj ← softmax(

sparse(QmiK
⊤
mj , imi, imj)/

√
d+mmi,mj)

ymi,mj ← sparse(Ami,mjV mj)

# Update the modality output to the final output
y ← ymi,mj ∪ y

end for
end for
return y
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Table 1: Performance (%) of different models and different methods on video understanding tasks
evaluated at frames from 110 to 256.

Model FLOPs VideoDC ActNet-QA EgoSchema Next-QA PerceptionTest VideoMME Avg.
test test test mc val wo/ sub. w/ sub.

Llava-Video-7B # Frames: 110; Total # tokens: 20,240

Full Attention 100% 3.66 59.6 57.0 81.2 66.1 64.7 71.0 57.6
SF-fixed 4.8% 3.26 57.3 53.3 79.8 62.9 59.9 67.1 54.8
SF-strided 41.4% 3.45 58.5 56.1 80.6 64.4 61.4 68.5 56.1
A-shape 48.2% 3.56 56.0 51.6 79.8 65.7 54.4 65.6 53.8
Tri-shape 49.0% 3.58 59.3 54.5 80.3 66.1 63.6 70.1 56.7
VisionZip 35.2% 1.35 42.1 40.5 69.5 41.4 44.9 62.1 43.1
MInference 78.8% 3.64 59.6 57.0 80.6 66.1 64.6 71.0 57.5
Ours 47.3% 3.58 59.8 57.1 80.1 66.2 64.5 71.8 57.6

LongVILA-7B # Frames: 256; Total # tokens: 65,800

Full Attention 100% 2.76 59.5 61.9 80.7 58.1 60.1 65.1 55.5
SF-fixed 2.2% 1.99 51.3 59.6 76.5 55.5 57.1 63.0 52.1
SF-strided 26.6% 2.58 56.0 61.4 76.7 55.5 53.6 59.2 52.2
A-shape 29.1% 2.75 56.6 60.9 75.0 55.3 49.1 59.6 51.3
Tri-shape 29.3% 2.63 58.1 62.0 77.8 56.2 59.3 63.3 54.2
VisionZip OOM
MInference 47.0% 2.77 59.7 62.2 79.1 57.8 60.0 65.2 55.2
Ours 31.8% 2.84 60.2 62.2 79.4 57.8 60.0 65.5 55.4

Building on this insight, we propose a row-wise permutation (Algorithm 2) that groups tokens of
the same modality by permuting Q, and then applies offline-optimized sparse attention (A-shape,
Vertical-Slash, and Grid Head) for intra-modality processing. Noted that we leverage the final seg-
ment of each modality’s queries to dynamically approximate the sparse indices and extrapolate to
the entire modality. This method enables flexibility in handling fragmented multi-modality inputs.
Additionally, instead of explicitly permuting tensors, our implementation performs dynamic loading
and writing inside the kernel for optimized efficiency.

2D-Boundary Head Beyond Query-Boundary, there are attention heads that exhibits modality
boundaries in both query and key dimensions, as shown in Fig. 2c. Given a query token, its attention
to key tokens from different modalities vary significantly, and queries from different modalities focus
on keys in highly diverse patterns. To address 2D modality boundaries, we design a 2D permutation
approach, that groups Q, K, and V according to their modalities. This allows us to leverage intra-
modality continuity to handle each part of the the 2D boundary pattern separately and efficiently.
We further illustrate this approach in Fig. 2f and detailed in Algorithm 3. Specifically, we perform
permutation on both row- and column-wise for Q, K, and V , then iteratively traverse each modality
pair to compute dynamic sparse attention. This 2D-Boundary will require constructing an attention
mask and searching for sparse patterns in cross-modality regions. For example, in Fig. 2f, we
build modality boundary indices for Vision-to-Text (bottom-left) and Text-to-Vision (upper-right)
attention. This mask index construction is implemented in Triton (Tillet et al., 2019).

3.3 MODALITY-AWARE SPARSE ATTENTION SEARCH ALGORITHM

Due to modality boundaries in VLMs, we propose a modality-aware sparse attention pattern search
algorithm (see Algorithm 4). The process unfolds in three steps: 1) intra-modality search within
each modality following (Jiang et al., 2024), 2) cross-modality search across all modality pairs, and
3) inter-modality search informed by the results of the first two steps.

4 EXPERIMENTS

4.1 DATASET AND BASELINES

Implementation Details Our experiments are conducted on two state-of-the-art long-video
VLMs: Llava-Video (Zhang et al., 2024b) and LongVILA (Xue et al., 2024). We follow the MInfer-
ence experimental setup, configuring the corresponding search space while adopting optimal con-
figurations from prior work for other methods. We adjust the local window sizes of A-shape and
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(b) FullAttention in V-NIAH
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(c) MAPSparse in MM-NIAH
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Figure 4: V-NIAH (Zhang et al., 2024a) and MM-NIAH results using LongVila-Qwen2-7B-
1M (Xue et al., 2024).

tri-shape patterns to align FLOPs with our method. For MInference, we adopt its optimal config-
uration, which results in FLOPs approximately twice as high in VLMs compared to our method.
Our implementation leverages Triton (Tillet et al., 2019), FlashAttention (Dao, 2024), and dynamic
sparse compiler PIT (Zheng et al., 2023). For the Vertical-Slash and Grid Head patterns, we set
lastq = 64. Latency experiments are performed on a single NVIDIA A100 using bfloat16, with
greedy decoding to ensure stable results. Additional implementation details are provided in §C.

Dataset Our evaluation uses the official metrics and scripts provided by these tasks. Additionally,
we introduce a Mix Modality Needle in a Haystack (MM-NIAH) task to assess VLMs’ retrieval
capabilities on mixed-modality inputs. Dataset details are provided in §D.

(i) Video Understanding Tasks: This includes VideoDC (Lab, 2024), ActNet-QA (Yu et al., 2019),
EgoSchema (Mangalam et al., 2023), Next-QA (Xiao et al., 2021), PerceptionTest (Patraucean et al.,
2024), and VideoMME (Fu et al., 2024). These benchmarks span five categories, covering tasks such
as captioning and video question answering. Input lengths range from 110 frames (e.g., 20k) to 256
frames (e.g., 66k) in Llava-Video (Zhang et al., 2024b) and LongVILA (Xue et al., 2024).

(ii) Video Needle in a Haystack (V-NIAH) (Zhang et al., 2024a): A long-video retrieval task testing
VLMs’ performance with tokens of up to 6k frames (e.g., 1.1M tokens), where inserted images are
placed at various positions.

(iii) Mix Modality Needle in a Haystack (MM-NIAH): To evaluate VLMs in mixed-modality sce-
narios, we construct a mix-modality version of NIAH. Specifically, 25% of the input consists of
text segments inserted at the document level across different frames in long-video inputs, forming a
mix-modality haystack. All other settings align with V-NIAH, including the multi-choice VQA task
with randomly inserted images. This input lengths of benchmark up to 4.5k frames (e.g., 1.1M).

Baselines We include five training-free sparse attention approaches, one visual token compression
method, and also incorporate FlashAttention-2 (Dao, 2024) as a baseline. 1) Spars Transformer
(Fixed) (Child et al., 2019): Retains attention within each segment and allows all tokens to attend
to the segment’s initial tokens. 2) SparseTransformer (Strided) (Child et al., 2019): Employs local
windows with dilated attention. 3) A-Shape (Xiao et al., 2024): Preserves only the sink token
with local attention. 4) Tri-Shape (Li et al., 2024a; Acharya et al., 2024): Extends A-Shape by
enabling full attention for all tokens to the last window’s queries. 5) Vertical-Slash Pattern (Jiang
et al., 2024): Focuses on specific tokens (vertical lines) and tokens at fixed intervals (slash lines). 6)
VisionZip (Yang et al., 2024): A visual token compression method that reduces the number of visual

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review at ICLR 2025 Workshop on Foundation Models in the Wild.

(a) All Textual Context (b) Inserted Visual (c) More Visual Context (d) All Visual Context

Figure 5: Transition of sparse patterns from textual context to visual context. (a) The vertical-slash
pattern for all textual context. (b) Grid pattern appears when visual modality is appended. (c) Grid
pattern dominates.

tokens per frame by evaluating tokens based on their attention scores and discarding less important
ones. Full details on implementation, hyperparameters, and illustrations can be found in §C.

4.2 LONG VIDEO UNDERSTANDING

Table 1 presents the performance of different methods on video understanding tasks. The results
show that: 1) Our method and MInference closely approximate full attention across all tasks while
requiring only half the FLOPs of MInference. 2) Static sparse patterns, such as A-shape and Tri-
shape, perform reasonably well on most tasks but experience a notable performance drop in multi-
choice VQA tasks like EgoSchema. Additionally, the slight increase in query full attention in Tri-
shape effectively improves performance. 3) Among SF patterns, the slash pattern preserves more
performance. Even when using SF-fixed with only 2%-5% of FLOPs, it still maintains strong per-
formance on most tasks.

4.3 VIDEO NEEDLE IN A HAYSTACK

Fig. 4a, 4b, and 12 show the performance of different models on V-NIAH, revealing notable dif-
ferences in handling long-context video retrieval as the number of processed frames increases: 1)
Our method achieves results nearly identical to full attention. 2) A-shape struggles with mid-context
information even at 300 frames, while Tri-shape maintains full performance until 3.9k frames (i.g.
700K tokens) before a sharp decline. 3) SF-fixed degrades at 2.1k frames (i.g. 350K tokens), while
SF-strided surpasses Tri-shape, holding performance until 4.5k frames (i.g. 825K tokens). 4) MIn-
ference preserves VLM retrieval well, with only slight degradation beyond 4.8K frames.

4.4 MIX MODALITY NEEDLE IN A HAYSTACK

Beyond V-NIAH, we introduce a mixed-modality NIAH test to evaluate the performance of different
sparse methods on video-text inputs, in Fig. 4c, 4d, and 13. Mixed-modality inputs lead to more
pronounced performance degradation across all methods. However, by incorporating inter-modality
sparse patterns, our method maintains performance close to full attention, especially when compared
to MInference and ours w/o inter-modality. Notably, Tri-shape and MInference show significant
drops at 1.8k frames (i.g. 440K tokens) and 2.7k frames (i.g. 660K tokens).

4.5 LATENCY

300/120K 900/360K 1800/720K 2700/1M
Num. of Frames / Context Windows

1
3

10

18

25

La
te

nc
y(

m
in

)

8.3x

1.6x6x
1.5x

3.3x1.5x

FlashAttention-2
MInference
MAPSparse

Figure 6: End-to-End Latency.

Fig. 6 and 14 present end-to-end and kernel-level la-
tency across different context sizes. The grid pattern
significantly reduces the sparsity of the vertical-slash
pattern, achieving a 2–3× speedup even at 1M to-
kens. Additionally, the grid pattern achieves an end-
to-end speedup of 8.3× and a kernel-level speedup of 12×.
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4.6 ANALYSIS

Transition of Sparse Patterns Across Modalities Since LLMs and VLMs exhibit different sparse
patterns, we examine the interplay between the Grid and Vertical-Slash pattern. As shown in Fig. 5,
Llava-Video-7B primarily uses VS pattern for purely textual inputs. However, once a visual input
is appended, it transitions to a Grid pattern to capture the geometric structure of the visual content.
This shift occurs at the modality boundary, creating a more structured arrangement of vertical and
horizontal intervals. Such behavior highlights the need for distinct sparsity strategies in visual and
mixed-modality contexts, rather than simply reusing sparse patterns from LLMs for VLMs.

Figure 7: The sparse index does not ef-
fectively extrapolate from text to the vi-
sual modality. However, an index built
within the same modality can generalize
across modality boundaries.

Sparse Index Across Modalities In Fig. 7, the sparse
index achieves high recall for textual regions but fails to
generalize to visual ones. To address this, we construct
a sparse index from the visual modality and evaluate it
on separate visual segments, each separated by modal-
ity boundaries. Remarkably, this approach extrapolates
effectively across all visual segments, even when inter-
spersed with textual boundaries. As shown in Fig. 7, the
sparse index achieves high recall in the textual but fails
to generalize to the visual. To address this, we construct
a sparse index using the visual modality and evaluate it
across distinct regions of the visual modality, separated
by modality boundaries. Remarkably, this approach suc-
cessfully extrapolates to all visual regions even when in-
terrupted by text-induced boundaries.

5 RELATED WORK

Long-Context Vision Language Models Recent VLMs have extended their context length to
handle long multi-modal inputs (Zhang et al., 2024a; Xue et al., 2024; Wang et al., 2024b; Reid
et al., 2024), enabling applications like long-video understanding (Fu et al., 2024; Xiao et al., 2021;
Wang et al., 2024a), multi-modal information retrieval (Zhang et al., 2024a), and multi-modal chain-
of-thought (Qwen, 2024). For example, Zhang et al. (2024a) leverage base LLMs’ inherent long-
context capacity for visual transfer learning, and Xue et al. (2024) propose multi-modal sequence
parallelism to accelerate video fine-tuning. Zhang et al. (2024b) further highlight the importance of
data calibration and synthetic data for improving VLM performance.

Efficiency Optimization for VLMs Despite their strong accuracy, long-context VLMs face high
inference costs, limiting their deployment in long-video tasks. A common strategy is vision token
compression—reducing video feature resolution by dropping or merging less important visual tokens
(Bolya et al., 2023; Chen et al., 2024; Shen et al., 2024; He et al., 2024; Tu et al., 2024; Weng et al.,
2024; Wen et al., 2024). RNN-Transformer hybrids have also been explored (Wang et al., 2024b) to
balance efficiency and context length. However, these methods often assume inputs are long videos
plus short text, focusing only on visual token optimization and overlooking mixed-modality inputs
critical for multi-turn interactions (Huang et al., 2024).

6 CONCLUSION

We propose MAPSparse, a modality-aware permutation sparse attention method that accelerates
long-context VLMs. It features permutation-based grid sparse attention, Q-boundary/2D-boundary
patterns for mixed-modality boundaries, and a Modality-Aware Sparse Attention Search Algorithm.
Our optimized GPU kernels enable end-to-end acceleration. Experiments on video understanding
tasks, V-NIAH and MM-NIAH using Llava-Video and LongVila demonstrate that MAPSparse pre-
serves full-attention performance while achieving up to 8.3× speedup at 1M tokens.
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A MODALITY-AWARE SPARSE ATTENTION SEARCH ALGORITHM

Algorithm 4 Modality-aware Sparse Attention
Pattern Search

Input: Q,K,V ∈ RS×dh , inter-modality
search space ρinter, intra-modality search space
ρintra, modality type set m ∈ ϕm, optimized
sparse pattern P

# Intra-modality sparse attention pattern search
for i← 1 to |ϕm| do

pmi ← KernelAwareSearch (Q,K,V ,mi)
P← P ∪ pmi

end for
# Cross-modality sparse attention pattern search
for i← 1 to |ϕm| do

for j ← 1 to |ϕm| do
pmi,mj ←
KernelAwareSearch (Q,K,V ,mi,mj)
P← P ∪ pmi,mj

end for
end for
# Inter-modality sparse attention pattern search
for i← 1 to |ρinter| do

pi ← argmin (|sparse(Q,K,V , i)−
attention(Q,K,V )|
P← P ∪ pi

end for
return P

In Algorithm 4, we show how we search for the
optimal sparse attention pattern for each atten-
tion heads. To achieve the best accuracy with
limited FLOPs budget, we determine which
sparse pattern will be used for each attention
head, and the optimal setting for the pattern in
real calculation (e.g., the stride size of the grid
attention, the number of vertical/slash lines in
VS pattern). In Algorithm 4, we first create the
search space based on a target FLOPs for each
pattern, ensuring all potential candidates (i.e.,
different patterns with different settings) have
similar computational cost. Kernel-aware here
indicates the computational cost reflects the real
FLOPs in GPU kernels, instead of conceptual
estimations, which is crucial to achieve the op-
timal acceleration. Next, we go through the
search space with a reference example to decide
the optimal pattern and setting. Specifically, we
use recall of the attention output as the objective
criterion when searching for the best pattern.
This approach leverages FlashAttention (Dao,
2024) to reduce GPU memory overhead and in-
corporates the information from the V matrix,
enabling end-to-end selection of the best pat-
tern, which further enhances performance.
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B PATTERN ANALYSIS

(a) K-Boundary pattern. (b) No-Boundary pattern.

Figure 8: Additional inter-modality sparse pattern.

In §2, we explain how the grid pattern emerges thanks to the unique geometric of the vision inputs.
In Figure 8, we further visualize the K-Boundary pattern and No-Boundary pattern, which are ad-
ditional in the mix-modality search space. Note that both K-Boundary and No-Boundary patterns
takes no extra steps than pure intra-modality attention, as the sparse index in these two boundary
patterns can be extracted across all rows.

C EXPERIMENT DETAILS

C.1 VISION LANGUAGE MODELS

We use two SOTA VLMs in our experiments: LongVILA (Xue et al., 2024) and Llava-Video (Zhang
et al., 2024b). Specifically, Llava-Video use varies frames for video understanding tasks as including
32, 64, 110 frames. And as reported in their paper, Llava-Video always performs better with more
frames. Therefore, we use the 110-frame variant of Llava-Video for the benchmarking. As for
LongVILA, the authors released two variants, where the LongVILA-256Frame is a VLMs with
128K context length, and LongVILA-1M which is tailored for information retrieval tasks such as
V-NIAH tasks. Therefore, the LongVILA-256Frame and LongVILA-1M are used respectively for
the video understanding benchmarks and the V-NIAH test.

C.2 BASELINES

We include five sparse attention baselines in our experiments, including A-shape (Xiao et al., 2024),
SF-fixed (Child et al., 2019), SF-strided (Child et al., 2019), Tri-shape (Li et al., 2024a), MInference
(Jiang et al., 2024), and VisionZip (Yang et al., 2024). In Figure 9, we further visualize the patterns
in these sparse attention baselines.

Note that VisionZip (Yang et al., 2024) is a visual token compression method, which directly uses
the attention score in the vision tower to compress the visual tokens before feeding into the follow-
up LLM. Although it is not tailored for pre-filling acceleration, it is included in our experiments as
it does provide reduced FLOPs in the pre-filling stage and also provides a good comparison against
token compression line of research.

C.3 A-SHAPE AND VERTICAL-SLASH

A-shape and Vertical-Slash are used for intra-modality attention, together with the novel Grid pat-
tern.

During the inference stage, we will perform an online estimation on the attention matrix to dynam-
ically determine the spatial distribution our sparse indices, based on the assigned patterns and the
exact input. After that, we conduct the sparse attention computations with our optimized GPU ker-
nels. Noted that the sparse mask for vertical-slash and grid attention are dynamic, but the sparse

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review at ICLR 2025 Workshop on Foundation Models in the Wild.

(a) A-shape (b) SF-fixed (c) SF-strided

(d) Tri-shape (e) Vertical-Slash (MInfer-
ence)

Figure 9: The baselines of sparse attention in our experiments.

Table 2: Hyperparameters detail of baselines.

Method Hyperparameters

A-shape Sink = 128,Local = 4096
SF-fixed Local = token per frame, vline stride = token per frame
SF-strided Local = token per frame, vline stride = token per frame
Tri-shape Sink = 128,Local = 4096,Bottom = 128
MInference Vertical size ∈ {1000, 2000, 4000},Slash size ∈ {1024, 2048, 4096, 6144}
VisionZip dominant = 54, contextual = 10

mask for A-shape is static, so there is no overhead in building the dynamic masks, and only sparse
calculation is required.

A-shape head. A-shape is a static sparse pattern, we simply include the first seven initial tokens plus
a local window.

Vertical-Slash head. Due to the continuity of vertical and slash lines, we matmul the last query
vector Q[−last q:] and key vector K to produce the estimated attention matrix Â, which, in turn, is
used to determine the indices for the vertical iv and slash is lines. After obtaining the sparse indices
for the vertical and slash lines, we convert them into a sparse format ivs. Using these sparse indices,
we perform block-sparse calculations of the attention weights and attention output.

C.4 PERMUTATION FOR THE GRID PATTERN AND ACROSS MODALITY

We illustrate how the permutation is applied to the Grid pattern and the Q-boundary and 2D-
boundary patterns in Figure 10 and Figure 10.

C.5 SEARCH SPACE

Following (Jiang et al., 2024), we set the target FLOPs t to be the same as 1k global tokens and 4k
local window tokens in the A-shape pattern. Additionally, we use only one sample as our calibration
set from the egoschema task with no more than 25K tokens, which exhibits strong generalization
and stability across different lengths and domains. The search time is approximately 15 minutes

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review at ICLR 2025 Workshop on Foundation Models in the Wild.

(a) Before Permutation (b) Row-wise Permutation (c) Column-wise Permuta-
tion

Figure 10: Permutation for the Grid Pattern. (a) Before permutation. (b) Row-wise permutation. (c)
Column-wise permutation.

(a) Mix-modality (b) Q-wise Permutation (c) K-wise Permutation

Figure 11: Permutation for mix-modality context. (a) Mix-modality. (b) Q-wise permutation. (c)
K-wise permutation.

on a single A100. This pattern search is individually conducted for each model: Llava-Video-7B,
LongVila-256Frame, and LongVila-1M. The search space is shown in Table 3.

D BENCHMARK DETAILS

We evaluate our method on several video understanding benchmarks that test different aspects of
video comprehension:

EgoSchema EgoSchema (Mangalam et al., 2023) is a diagnostic benchmark for very long-form
video language understanding, structured as a multiple-choice question answering task. The bench-
mark requires models to answer questions about egocentric videos by selecting from given options
(labeled A through E). The evaluation can be performed either on the full set via submission to an
evaluation server, or on a released subset of 500 questions for direct scoring.

Video-MME Video-MME (Fu et al., 2024) is a comprehensive multi-modal evaluation benchmark
that tests MLLMs across diverse video types and temporal dimensions. It spans 6 primary visual
domains with 30 subfields and includes videos ranging from 11 seconds to 1 hour in duration.
The benchmark comprises 900 videos totaling 254 hours, with 2,700 manually annotated question-
answer pairs. It evaluates models’ ability to process not just video frames but also integrated multi-
modal inputs like subtitles and audio.

NExT-QA NExT-QA (Xiao et al., 2021) focuses on advancing video understanding from basic
description to explaining temporal actions. It features both multiple-choice and open-ended QA
tasks that target three key aspects: causal action reasoning, temporal action reasoning, and common
scene comprehension. The benchmark is specifically designed to evaluate models’ ability to reason
about actions beyond superficial scene descriptions.
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Attention Type Parameters

Grid Attention

(frame stride, True, False, False, 1024)
(frame stride, False, True, False, 1024)
(frame stride, False, False, True, 1024)
(frame stride, True, True, False, 1024)
(frame stride, False, True, True, 1024)
(frame stride, True, True, True, 1024)
(stride, True, False, False, 1024)
(stride, False, True, False, 1024)
(stride, False, False, True, 1024)
(stride, True, True, False, 1024)
(stride, False, True, True, 1024)
(stride, True, True, True, 1024)

A-shape
(128, 1024)
(128, 2048)
(128, 4096)

Vertical-Slash

(1000, 1024)
(1000, 2048)
(2000, 2048)
(1000, 3096)
(2000, 3096)
(1000, 4096)
(2000, 4096)
(3500, 200)
(1000, 2500)

Table 3: The search space for each attention pattern: 1) Grid Attention: (stride, use hline, use vline,
use slash, max stride); 2) A-shape: (sink, local); 3) Vertical-Slash: (vertical size, slash size)

Perception Test The Perception Test (Patraucean et al., 2023) perce evaluates perception and rea-
soning skills across video, audio, and text modalities. It contains 11.6k real-world videos with an
average length of 23 seconds, featuring perceptually interesting situations. The benchmark tests
four key skills (Memory, Abstraction, Physics, Semantics) and various types of reasoning (descrip-
tive, explanatory, predictive, counterfactual). Videos are densely annotated with six types of labels:
multiple-choice QA, grounded video QA, object tracks, point tracks, temporal action segments, and
sound segments.

ActivityNet-QA ActivityNet-QA (Yu et al., 2019) is a large-scale VideoQA dataset consisting of
58,000 QA pairs on 5,800 complex web videos derived from the ActivityNet dataset. The benchmark
is fully annotated and designed to test models’ understanding of complex web videos through ques-
tion answering. Unlike automatically generated datasets, ActivityNet-QA features human-annotated
questions and answers, making it particularly valuable for evaluating real-world video understanding
capabilities.

Video Detail Description (VideoDC) VideoDC (Lab, 2024) focuses on comprehensive video un-
derstanding through detailed descriptions. The benchmark consists of question-answer pairs gen-
erated with GPT-3.5, where questions prompt for detailed descriptions focusing on main subjects,
their actions, and background scenes. The evaluation assesses the quality and completeness of video
descriptions generated by models.

E ADDITIONAL EXPERIMENTS RESULTS

E.1 ADDITIONAL VIDEO NEEDLE IN A HAYSTACK RESULTS

we further present the results of the Video Needle In A Haystack task with our baselines. The results
of our method and full atttenton is shown in Figure 4.
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(a) A-shape
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(b) Tri-shape

30
0

60
0

90
0

1.2
K
1.5

K
1.8

K
2.1

K
2.4

K
2.7

K
3.0

K
3.3

K
3.6

K
3.9

K
4.2

K
4.5

K
4.8

K
5.1

K
5.4

K
5.7

K
6.0

K

Num. of Frames

0

20

40

60

80

100

De
pt

h 
Pe

rc
en

t(%
)

LongVILA-1M w/ SF-fixed in VNIAH Recall 59.3%

0.0

0.2

0.4

0.6

0.8

1.0

Sc
or

e

(c) SF-fixed
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(d) SF-strided
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Figure 12: Video Needle In A Haystack (Zhang et al., 2024a) results using LongVila-Qwen2-7B-
1M (Xue et al., 2024).

E.2 ADDITIONAL MIX MODALITY NEEDLE IN A HAYSTACK RESULTS

We further present the results of the Mix Modality Needle In A Haystack task with our baselines
and the inter-modality variant of our method. The results of full atttenton and MAPSparse is shown
in Figure 4.

E.3 LATENCY BREAKDOWN

E.4 VS PATTERN VS. GRID PATTERN

Both VS pattern and Grid pattern achieve strong performance on video understanding and V-NIAH
tasks. However, due to the grid attention pattern observed in VLMs, the overlap between blocks
covered by diagonal lines in the VS pattern is minimal, reducing sparsity within the kernel. This
explains why VS pattern exhibits significantly higher latency compared to Grid pattern. Addition-
ally, leveraging permutation-based optimization effectively reduces the number of blocks involved
in kernel computation, thereby lowering latency while maintaining comparable performance.
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(c) MInference
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(d) MAPSparse w/ Inter-modality

Figure 13: Mix Modality Needle In A Haystack results using LongVila-Qwen2-7B-1M (Xue et al.,
2024).

2000

4000

16K 32K 64K 128K 256K 512K 1M
Context Windows

0

20

40

60

80

La
te

nc
y(

m
s)

A-shape Tri-shape Vertical-Slash FlashAttention-2 Grid

Figure 14: The latency breakdown of a single attention kernel for four sparse attention patterns and
FlashAttention (Dao, 2024) across different context windows in a single A100, including the index
time for dynamic sparse approximation and building dynamic sparsity. At 1M tokens, the latency
for Grid is 358ms.
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