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ABSTRACT

The integration of long-context capabilities with visual understanding unlocks
unprecedented potential for Vision Language Models (VLMs). However, the
quadratic attention complexity during the pre-filling phase remains a signifi-
cant obstacle to real-world deployment. To overcome this limitation, we intro-
duce MMInference (Multi-modality Million tokens Inference), a dynamic sparse
attention method that accelerates the pre-filling stage for long-context multi-
modal inputs. First, our analysis reveals that the temporal and spatial local-
ity of video input leads to a unique sparse pattern, the Grid pattern. Simulta-
neously, VLMs exhibit markedly different sparse distributions across different
modalities. We introduce a permutation-based method to leverage the unique
Grid pattern and handle modality boundary issues. By offline search the op-
timal sparse patterns for each head, MMInference constructs the sparse distri-
bution dynamically based on the input. We also provide optimized GPU ker-
nels for efficient sparse computations. Notably, MMInference integrates seam-
lessly into existing VLM pipelines without any model modifications or fine-
tuning. Experiments on multi-modal benchmarks—including Video QA, Cap-
tioning, Vision-NIAH, and Mixed-Modality-NIAH—with state-of-the-art long-
context VLMs (LongVila, Llava-Video, VideoChat-Flash, Qwen2.5-VL) show
that MMInference accelerates the pre-filling stage by up to 8.3× at 1M tokens
while maintaining accuracy.

1 INTRODUCTION

Block-sparse Tensor Core
 (e.g. WGMMA)

Tile-wise
(Dense Compute)

Permutation
(Sparse Load)

Dynamic Sparse Attention

Sparse Pattern

Estimation
(e.g. O(n), O(n^2))

A-
Shape VS Grid Block-

Sparse

Last 
Q

Pooling/
Compress

Antidia
gonal 

Dynamic Sparse Index

Column
/Row Grid (back)

slash Block

In kernel

Figure 1: Dynamic sparse attention pipelines
leverage sparse loading with dense computa-
tion (Zheng et al., 2023) to enable hardware-
efficient acceleration.

Scaling the context size of Vision Language Mod-
els (VLMs) allows them to handle extended tem-
poral information from long video and text in-
puts, which is crucial for various applications in-
cluding robotics Black et al. (2024); Prasad et al.
(2024); Cheang et al. (2024), autonomous driving
Hu et al. (2023); Wang et al. (2024b); Gao et al.
(2024), and healthcare Liu et al. (2024b). In addi-
tion, Zhang et al. (2024b) and Chen et al. (2025)
show that scaling the context size of VLMs can
improve the resolution in the temporal dimension
and lead to better performance in video under-
standing tasks.

However, due to the quadratic complexity of at-
tention, processing long multi-modal inputs (i.e.,
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(a) VLMs’ attention incurs heavy
cost.
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(b) VLMs’ attention is sparse.
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Figure 2: (a) Latency breakdown of the pre-filling stage, with 256 tokens per frame. (b) How
much element in attention needs to be computed to achieve 95% recall in a 128k context. (c) Low
attention recall when reusing the top-k indices from a different request. Visualizations are based on
LongVILA-7B-1M Chen et al. (2025) with a single A100.

the pre-fill stage) can take minutes prior to auto-
regressive decoding. As shown in Fig. 2a, this leads to significant Time-to-First-Token latency,
which hinders the wide adoption of long-context VLMs in real-world applications. Previous work
Child et al. (2019); Liu et al. (2022; 2024a); Yuan et al. (2025); Lu et al. (2025) reveals that attention
matrices are typically sparse, prompting the development of sparse attention methods such as Sparse
Transformer Child et al. (2019), Swin Transformer Liu et al. (2021), and StreamingLLM Xiao et al.
(2024). More recently, MInference Jiang et al. (2024) proposes to use dynamic sparse attention
that estimates the sparse index online, and leverages optimized GPU kernels for end-to-end accel-
eration. However, these methods fail to exploit the unique sparse patterns in long-context VLMs,
and struggle with mixed or interleaved modalities, limiting their applicability without compromising
performance.

Unlike long-text contexts, video and image inputs in VLMs exhibit spatiotemporal locality, forming
grid-like attention patterns with evenly spaced vertical and horizontal lines (Fig. 3a). In mixed-
modality inputs, clear modality boundaries emerge: attention across modalities diverges signifi-
cantly from intra-modality attention (Fig. 3b). These factors pose unique challenges for exploiting
sparsity to accelerate the pre-fill stage.

In this paper, we present MMInference, a permutation-based dynamic sparse attention method
that significantly reduces attention FLOPs, accelerating the pre-fill stage of long-context VLMs.
First, MMInference identifies the grid heads and leverages a row- and column-wise permutation to
gather the sparse grid for efficient hardware computation. Next, we detect Query-boundary and 2D-
boundary patterns to address inter-modality boundary issues, and apply a modality-wise permutation
to isolate intra-modality regions. This results in a consecutive sparse index within each modal-
ity, permitting efficient hardware implementation of sparse computing. Finally, a Modality-Aware
Sparse Attention Search Algorithm is devised to fine-tune both inter- and intra-modality patterns
offline, to optimize performance with minimal overhead.

We conduct extensive experiments using four state-of-the-art long-context VLMs, Llava-Video
Zhang et al. (2024b), LongVila Chen et al. (2025), VideoChat-Flash Li et al. (2025a) and Qwen2.5-
VL Bai et al. (2025), across diverse video understanding tasks such as video captioning Maaz et al.
(2024), video question answering Yu et al. (2019); Xiao et al. (2021); Mangalam et al. (2023); Fu
et al. (2024), and video information retrieval Zhang et al. (2024a). Additionally, we propose the
Mixed-Modality Needle in a Hackathon task to assess multi-modal input performance. Our method
effectively addresses modality boundaries, significantly accelerates the prefilling stage, and main-
tains high accuracy. With a 1M-length context, it achieves speedups of up to 8.3× and 1.7× over
FlashAttention-2 and MInference, respectively.

2 ATTENTION HEADS IN VLMS

The sparsity of the attention operation in pre-trained text-only LLMs, particularly in long-context
scenarios, has been extensively studied Wu et al. (2025); Ribar et al. (2024); Jiang et al. (2024); Li

2



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

et al. (2024), showing that only 3% of attention weights are activated while achieving a recall rate
of 96.8%. Similarly, VLMs also demonstrate notable dynamic sparsity in long-context scenarios.
This section examines the shared and distinct properties of text-only and multi-modal LLMs in
long-context scenarios, focusing on attention sparsity, sparse patterns, and modality boundaries.
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Figure 3: Visualization of pre- vs. post-permutation sparsity attention patterns in VLMs.

2.1 MULTI-MODALITY ATTENTION IS DYNAMICALLY SPARSE

As illustrated in Fig. 2a, for a 128k × 128k attention matrix in VLMs, retaining only the top 5.78%
of attention weights on average suffices to recall 95% of total attention, indicating that each token
attends only to a limited subset of tokens, even in long sequences. However, VLMs exhibit lower
sparsity than text-only LLMs, where only 1.79% of weights achieve a 95% recall rate. Notably, the
bottom layers in VLMs (e.g., the first four layers in LongVila) show reduced sparsity. Yet, due to
variability across attention heads, 52.3% of heads in VLMs require less than 2% of attention to be
recalled. This highlights substantial computational redundancy in VLMs, especially in long-context
scenarios.

Similarly to LLMs, while the sparse nature of attention matrices remains consistent across inputs,
the specific distributions of sparse attention are highly dynamic. As shown in Fig. 2c, reusing top-k
indices for 95% attention recall (derived from Fig. 2b) across different contexts leads to a significant
drop in performance.

2.2 THE GRID HEAD IN VLMS

In long-context language modeling, efficient attention mechanisms like sliding window atten-
tion Jiang et al. (2023) and StreamingLLM Xiao et al. (2024) exploit the locality property of text
sequences. However, multi-modal inputs introduce unique geometric structures that redefine local-
ity. As shown in Child et al. (2019), image patches exhibit locality along both vertical and horizontal
directions, forming local window and slash-like patterns. Similarly, video inputs maintain locality
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across temporal and spatial dimensions, with frame-based sampling yielding more regular and pre-
dictable patterns.

We observe that certain VLM attention heads exhibit a grid pattern. While the grid’s stride and
starting position vary with context, the horizontal and vertical lines are evenly spaced and often
symmetrical—a distinct behavior compared to text-only LLMs Jiang et al. (2024); Lai et al. (2025).
Fig. 3a visualizes a grid head, demonstrating how local tokens in temporal and spatial dimensions are
evenly distributed within the attention map, with attention focused primarily on these local tokens.

Λ-shape head vertical-slash head grid head

Approximate
by last q

Permutation

Inter-modality Attention Pattern

Intra-modality Attention Pattern

No-Boundary head K-Boundary head Q-Boundary head 2D-Boundary head

Figure 4: The framework of MMInference, encompassing both inter- and intra-modality sparse
attention patterns.

2.3 MODALITY BOUNDARIES IN MULTI-MODAL INPUT

The input format of VLMs differs significantly from text-only LLMs. A dedicated vision encoder
generates visual representations, which are processed alongside text embeddings by the LLM. De-
spite pretraining on large-scale datasets, the interactions and processing patterns between modalities
vary considerably, leading to distinct modality boundaries in attention Tu et al. (2025), as illustrated
in Fig. 3b and 3c.

Specifically, we observe two key characteristics: 1) Intra-modality consistency: Attention within
each modality follows a consistent pattern. For instance, the vision region in Fig. 3b exhibits a clear
slash pattern, where critical elements are effectively clustered. 2) Modality-separated continuity:
Patterns within a modality can be interrupted by boundaries from other modalities. As shown in
Fig. 3b, vision slashes are segmented by the boundary introduced by the language region.

We categorize the modality boundary patterns of VLMs into four distinct types: No-Boundary,
K-Boundary, Q-Boundary, and 2D-Boundary, as illustrated in Figs. 3 and 4. 1) No Boundary and
K-Boundary exhibit either no clear modality boundary or a boundary only along the key dimension,
as shown in Fig. 6. Since continuity is maintained along the query dimension, these heads can be
efficiently handled using intra-modality sparse patterns. 2) Q-Boundary refers to attention modality
boundaries across the query dimension. For example, in Fig. 3b, sparse patterns like Text-to-Video
and Video-to-Video appear interconnected, forming a trapezoidal structure, while a clear bound-
ary separates Visual-to-Text and Text-to-Visual attention. 3) 2D-Boundary occurs when modality
boundaries are present in both query and key dimensions. As shown in Fig. 3c, the 2D modal-
ity boundary segments attention weights into distinct blocks. Additionally, our analysis of Audio
LMs Chu et al. (2024) and end-to-end multimodal LMs Xu et al. (2025a); Li et al. (2025b) reveals
that the cross-modality boundary phenomenon persists across these architectures. These bound-
aries pose unique challenges and hinder direct application of existing sparse attention methods to
multi-modal inputs.
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2.4 SPARSE DISTRIBUTIONS CONTINUITY ACROSS BOUNDARIES

Although sparsity patterns in VLMs are often discontinuous across modalities due to modality
boundaries, we find that sparsity distributions can remain continuous across these boundaries and
extrapolate to other regions of the same modality. For example, in Fig. 3b, the slash lines main-
tain the same relative position across different areas of the vision modality. In a more complex
case, Fig. 3c shows interleaved vision and text modalities forming a mixed structure. However, by
spatially aggregating regions of the same modality, we observe that sparsity patterns can extend be-
yond local regions and often exhibit global extrapolation potential. The upper-left region in Fig. 3c
exemplifies this, where the grid pattern, initially separated by textual boundaries, becomes consec-
utive after spatial clustering in both row and column dimensions. To validate this observation, we
conducted a quantitative attention recall experiment on mixed-modality inputs, as detailed in §E.2.

3 MMINFERENCE Algorithm 1 Grid Head

Input: Q,K,V ∈ RS×dh , stride space sg ∈
ϕg

# Approximate stride and phase (last_q = 64)
Â← softmax

(
Q[−last_q:]K

⊤/
√
d+mcasual

)
# Online search grid stride and phase
br,← 0
for i← 1 to |ϕg| do

if max(view(Â, sg,i)) > br then
sg ← sg,i, pg ← argmax(view(Â, sg,i))

br ← max(view(Â, sg,i))
end if

end for
# Permute Q, K, V tensors
Q,K,V ←
permute (Q) ,permute (K) , permute (V )

# Dynamic block sparse attention w/ FlashAtten-
tion (only the last and rightmost block)
A← softmax

(
sparse(QK

⊤
, sg, pg)/

√
d
)

# Sparse mixed scores and values
y ← sparse(AV , sg, pg)
return y

Following the analysis in §2, we propose MMIn-
ference to accelerate the pre-filling stage of long-
context VLMs as shown in Fig. 4. The frame-
work consists of three modules, covering both
inter- and intra-modality sparse patterns: 1) the
novel Grid sparse attention, together with the
A-shape and Vertical-Slash patterns Jiang et al.
(2024) forms the intra-modality attention; 2) Q-
Boundary and 2D-Boundary mix-modality pat-
terns; 3) Modality-aware sparse attention search
algorithm. We first perform offline pattern search
to identify different patterns for each attention
head. Then we use online dynamic sparse ap-
proximation to build the sparse index, and finally
we perform dynamic sparse computation using
optimized GPU kernels.

3.1 GRID HEAD IN MULTI-MODALITY

To better leverage the inductive bias in visual
modalities (e.g., images, videos) and the vertical
and horizontal structures in attention patterns, we
propose a permutation-based dynamic sparse attention for grid head, as shown in Algo. 1.

Specifically, we first perform an online search to determine the stride and phase of grid pattern.
Since only a view operation is applied to the approximate attention matrix Â, the actual latency
overhead remains minimal. Next, we use the identified grid stride and phase to permute the Q,
K, and V tensors to compute sparse attention efficiently (see Fig. 3d). In our implementation,
instead of explicitly permuting Q, K, and V , we optimize computational efficiency by dynamically
loading and writing these tensors within the kernel, minimizing the overhead associated with tensor
transpositions. In addition to Grid sparse attention, we also employ A-shape and Vertical-Slash
attention for intra-modality operation, see Appendix C.3 for more details.

3.2 HYBRID MODALITY SPARSE ATTENTION

As analyzed in §2 and illustrated in Fig. 3, modality boundaries exist in multi-modal LLMs. We
classify these boundaries into four patterns: No-Boundary, K-Boundary, Q-Boundary, and 2D-
Boundary. As the sparse index is continuous along the query dimension for both the No-Boundary
and K-Boundary heads, we can directly apply the three intra-modality attention globally. However,
for Q-Boundary and 2D-Boundary, MMInference uses a permutation-based approach to efficiently
handle these modality boundaries.
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Q-Boundary Head As shown in Fig.3b, Fig.3e, and §2.4, the Q-Boundary pattern shows a clear
separation across modality, but the sparse distribution remains continuous within each modality.
Building on this insight, we propose a row-wise permutation (Algorithm 2) that groups tokens of
the same modality by permuting Q, and then applies offline-optimized sparse attention (A-shape,
Vertical-Slash, and Grid Head) for intra-modality processing. Note that we leverage the final seg-
ment of each modality’s queries to dynamically approximate the sparse indices and extrapolate to
the entire modality. This method enables flexibility in handling fragmented multi-modality inputs.
Additionally, instead of explicitly permuting tensors, our implementation performs dynamic loading
and writing inside the kernel for optimized efficiency.

Algorithm 2 Q-Boundary Head

Input: Q,K,V ∈ RS×dh , modality type in-
dex im, modality type set m ∈ ϕm

# Permute Q tensors based on modality
Q← permute (Q, im)

# Looping over the modalities in query dimension
y ← 0
for i← 1 to |ϕm| do

# Intra-modality sparse attention for each modal-
ity w/ FlashAttention
Ami ← softmax

(
sparse(QmiK

⊤, imi)/
√
d
)

ymi ← sparse(AmiV )

# Update the modality output to the final output
y ← ymi ∪ y

end for
return y

Algorithm 3 2D-Boundary Head

Input: Q,K,V ∈ RS×dh , modality type in-
dex im, modality type set m ∈ ϕm

# Permute Q, K, V tensors based on modality
Q← permute (Q, im) ,K ← permute (K, im)

V ← permute (V , im)

# Looping over the modalities in pairs
y ← 0
for i← 1 to |ϕm| do

for j ← 1 to |ϕm| do
# Dynamic sparse attention for each modality
pair w/ FlashAttention
mmi,mj ← buildmask(imi, imj)
Ami,mj ← softmax(

sparse(QmiK
⊤
mj , imi, imj)/

√
d+mmi,mj)

ymi,mj ← sparse(Ami,mjV mj)

# Update the modality output to the final output

y ← ymi,mj ∪ y
end for

end for
return y

2D-Boundary Head Beyond Query-Boundary, there are attention heads that exhibit modality
boundaries in both query and key dimensions, as shown in Fig. 3c. Given a query token, attention to
key tokens from different modalities varies significantly, and queries from different modalities focus
on keys in highly diverse patterns. To address 2D modality boundaries, we design a 2D permuta-
tion approach that groups Q, K, and V according to their modalities. This allows us to leverage
intra-modality continuity to handle each part of 2D boundary pattern separately and efficiently. We
further illustrate this approach in Fig. 3f and it detailed in Algorithm 3. Specifically, we perform
permutation on both row- and column-wise for Q, K, and V , and then iteratively traverse each
modality pair to compute dynamic

sparse attention. The 2D-Boundary requires constructing an attention mask and searching for sparse
patterns in cross-modality regions. For example, in Fig. 3f, we build modality boundary indices for
Vision-to-Text (bottom-left) and Text-to-Vision (upper-right) attention. This mask index construc-
tion is implemented in Triton Tillet et al. (2019).

3.3 MODALITY-AWARE SPARSE ATTENTION SEARCH ALGORITHM

Due to modality boundaries in VLMs, we propose a modality-aware sparse attention pattern search
algorithm (see Algorithm 4). The process unfolds in three steps: 1) intra-modality search within
each modality following Jiang et al. (2024), 2) cross-modality search across all modality pairs, and
3) inter-modality search informed by the results of the first two steps.
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Table 1: Performance (%) of different models and different methods on video understanding tasks
evaluated at frames from 110 to 256.

Model FLOPs VideoDC ActNet-QA EgoSchema Next-QA PerceptionTest VideoMME Avg.
test test test mc val w/o sub. w/ sub.

Llava-Video-7B # Frames: 110; Total # tokens: 20,240

Full Attention 100% 3.66 59.6 57.0 81.2 66.1 64.7 71.0 57.6
SF-fixed 4.8% 3.26 57.3 53.3 79.8 62.9 59.9 67.1 54.8
SF-strided 41.4% 3.45 58.5 56.1 80.6 64.4 61.4 68.5 56.1
A-shape 48.2% 3.56 56.0 51.6 79.8 65.7 54.4 65.6 53.8
Tri-shape 49.0% 3.58 59.3 54.5 80.3 66.1 63.6 70.1 56.7
VisionZip 35.2% 1.35 42.1 40.5 69.5 41.4 44.9 62.1 43.1
MInference 78.8% 3.64 59.6 57.0 80.6 66.1 64.6 71.0 57.5
Ours 47.3% 3.58 59.8 57.1 80.1 66.2 64.5 71.8 57.6

LongVILA-7B # Frames: 256; Total # tokens: 65,800

Full Attention 100% 2.76 59.5 61.9 80.7 58.1 60.1 65.1 55.5
SF-fixed 2.2% 1.99 51.3 59.6 76.5 55.5 57.1 63.0 52.1
SF-strided 26.6% 2.58 56.0 61.4 76.7 55.5 53.6 59.2 52.2
A-shape 29.1% 2.75 56.6 60.9 75.0 55.3 49.1 59.6 51.3
Tri-shape 29.3% 2.63 58.1 62.0 77.8 56.2 59.3 63.3 54.2
VisionZip OOM
MInference 47.0% 2.77 59.7 62.2 79.1 57.8 60.0 65.2 55.2
Ours 31.8% 2.84 60.2 62.2 79.4 57.8 60.0 65.5 55.4

Qwen2.5-VL-7B-Instruct # Frames: 256; Total # tokens: 33,950

Full Attention 100% 3.71 58.3 64.3 85.4 68.7 64.7 71.3 59.5
Ours 41.3% 3.75 58.0 63.9 84.9 68.9 65.1 70.9 59.4

4 EXPERIMENTS

In this section, we address two key questions: (i) How effective MMInference is? We evaluate our
method on three general long-video tasks: long-video understanding, Video Needle in a Haystack,
and Video-Text Needle in a Haystack. These benchmarks cover long-video captioning, open-ended
QA, multiple-choice QA, mixed-modality tasks, and retrieval tasks, providing a comprehensive as-
sessment of MMInference’s effectiveness across diverse long-video scenarios. (ii) How efficient
MMInference is? We analyze end-to-end latency and its breakdown to thoroughly evaluate the
efficiency of MMInference.

4.1 DATASET AND BASELINES

Implementation Details Our experiments are conducted on two state-of-the-art long-video
VLMs: Llava-Video Zhang et al. (2024b) and LongVILA Chen et al. (2025). We follow the MInfer-
ence experimental setup, configuring the corresponding search space while adopting optimal con-
figurations from prior work for other methods. We adjust the local window sizes of A-shape and
tri-shape patterns to align FLOPs with our method. For MInference, we adopt its optimal con-
figuration, which results with FLOPs approximately twice as high as our method’s in VLMs. Our
implementation leverages Triton Tillet et al. (2019), FlashAttention Dao (2024), and dynamic sparse
compiler PIT Zheng et al. (2023). For the Vertical-Slash and Grid Head patterns, we set lastq = 64.
Latency experiments are performed on a single NVIDIA A100 using bfloat16, with greedy decoding
to ensure stable results. Additional implementation details are provided in Appendix C.

Dataset Our evaluation uses the official metrics and scripts provided by these tasks. Additionally,
we introduce a Mixed-Modality Needle in a Haystack (MM-NIAH) task to assess VLMs’ retrieval
capabilities on mixed-modality inputs. Dataset details are provided in Appendix D.

(i) Video Understanding Tasks: These include ActNet-QA Yu et al. (2019), EgoSchema Mangalam
et al. (2023), Next-QA Xiao et al. (2021), PerceptionTest Patraucean et al. (2024), VideoDC Lab
(2024), and VideoMME Fu et al. (2024). These benchmarks span five categories, covering tasks
such as captioning and video question answering. Input lengths range from 110 frames (e.g., 20k)
to 256 frames (e.g., 66k) in Llava-Video Zhang et al. (2024b) and LongVILA Chen et al. (2025).
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(a) MMInference in V-NIAH
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(b) FullAttention in V-NIAH
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(c) MMInference in MM-NIAH
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Figure 5: V-NIAH Zhang et al. (2024a) and MM-NIAH results using LongVila-Qwen2-7B-1M Chen
et al. (2025).

(ii) Video Needle in a Haystack (V-NIAH) Zhang et al. (2024a): A long-video retrieval task testing
VLMs’ performance with tokens of up to 6k frames (e.g., 1.1M tokens), where inserted images are
placed at various positions.

(iii) Mixed-Modality Needle in a Haystack (MM-NIAH): To evaluate VLMs in mixed-modality
scenarios, we construct a mix-modality version of NIAH. Specifically, 25% of the input consists of
text segments inserted at the document level across different frames in long-video inputs, forming a
mix-modality haystack. All other settings align with V-NIAH, including the multi-choice VQA task
with randomly inserted images. This benchmark tests input lengths of up to 4.5k frames (e.g., 1.1M
tokens).

Baselines We include five training-free sparse attention approaches, one visual token compres-
sion method, and also incorporate FlashAttention-2 Dao (2024) as a baseline. 1) SparseTransformer
(Fixed) Child et al. (2019): Retains attention within each segment and allows all tokens to attend to
the segment’s initial tokens. 2) SparseTransformer (Strided) Child et al. (2019): Employs local win-
dows with dilated attention. 3) A-Shape Xiao et al. (2024): Preserves only the sink token with local
attention. 4) Tri-Shape LI et al. (2025); Acharya et al. (2024): Extends A-Shape by enabling full
attention for all tokens to the last window’s queries. 5) Vertical-Slash Pattern Jiang et al. (2024): Fo-
cuses on specific tokens (vertical lines) and tokens at fixed intervals (slash lines). 6) VisionZip Yang
et al. (2024): A visual token compression method that reduces the number of visual tokens per frame
by evaluating tokens based on their attention scores and discarding less important ones. Full details
on implementation, hyperparameters, and illustrations for our baselines can be found in Appendix
C.

4.2 LONG VIDEO UNDERSTANDING

Table 1 presents the performance of different methods on video understanding tasks. The results
show that: 1) Our method and MInference closely approximate full attention across all tasks while
requiring only half the FLOPs of MInference. 2) Static sparse patterns, such as A-shape and Tri-
shape, perform reasonably well on most tasks but experience a notable performance drop in multi-
choice VQA tasks like EgoSchema. Additionally, the slight increase in query full attention in Tri-
shape effectively improves performance. 3) Among SF patterns, the slash pattern better preserves
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performance. Even when using SF-fixed with only 2%-5% of FLOPs, it still maintains strong per-
formance on most tasks.

4.3 VIDEO NEEDLE IN A HAYSTACK

Fig. 5a, 5b, and 13 show the performance of different models on V-NIAH, revealing notable dif-
ferences in handling long-context video retrieval as the number of processed frames increases: 1)
Our method achieves results nearly identical to full attention. 2) A-shape struggles with mid-context
information even at 300 frames, while Tri-shape maintains full performance until 3.9k frames (i.g.
700K tokens) before a sharp decline. 3) SF-fixed degrades at 2.1k frames (i.g. 350K tokens), while
SF-strided surpasses Tri-shape, holding performance until 4.5k frames (i.g. 825K tokens). 4) MIn-
ference preserves VLM retrieval well, with only slight degradation beyond 4.8K frames.

4.4 MIXED-MODALITY NEEDLE IN A HAYSTACK

Beyond V-NIAH, we introduce a mixed-modality NIAH test to evaluate the performance of different
sparse methods on video-text inputs, in Fig. 5c, 5d, and 14. Mixed-modality inputs lead to more
pronounced performance degradation across all methods. However, by incorporating inter-modality
sparse patterns, our method maintains performance close to full attention, especially when compared
to MInference and ours w/o inter-modality. Notably, Tri-shape and MInference show significant
drops at 1.8k frames (i.g. 440K tokens) and 2.7k frames (i.g. 660K tokens).

5 RELATED WORK

Long-Context Vision Language Models Recent VLMs have extended their context length to
support long multi-modal inputs Zhang et al. (2024a); Chen et al. (2025); Wang et al. (2024c);
Team et al. (2024), enabling applications such as long-video understanding Fu et al. (2024); Xiao
et al. (2021); Wang et al. (2024a); Bai et al. (2025), multi-modal retrieval Zhang et al. (2024a), and
multi-modal chain-of-thought reasoning Qwen (2024). For instance, Zhang et al. (2024a) transfer
long-context capabilities from base LLMs to vision tasks, Chen et al. (2025) introduce multi-modal
sequence parallelism to accelerate video fine-tuning, and Zhang et al. (2024b) emphasize the role of
data calibration and synthetic data in boosting VLM performance.

Efficiency Optimization for VLMs While long-context VLMs achieve high accuracy, their high
inference cost limits practical use in long-video scenarios. A common strategy is vision token com-
pression—reducing video feature resolution by dropping or merging less important visual tokens
Bolya et al. (2023); Chen et al. (2024); Shen et al. (2024); He et al. (2024); Tu et al. (2025);
Weng et al. (2024); Wen et al. (2024). RNN-Transformer hybrids are also used Wang et al.
(2024c) to balance efficiency and context length. However, these methods often assume inputs
are long videos paired with short text, focusing solely on visual token optimization, while over-
looking mixed-modality inputs critical for multi-turn interactions Huang et al. (2024). Recently, Xu
et al. (2025b) applied dynamic sparse attention to long-context VLMs, but their approach ignores
modality-specific inductive biases and is limited to single-modality video tasks.

6 CONCLUSION

We propose MMInference, a modality-aware permutation sparse attention method that accelerates
long-context VLMs. It features permutation-based grid sparse attention, Q-boundary/2D-boundary
patterns for mixed-modality boundaries, and a Modality-Aware Sparse Attention Search Algorithm.
Our optimized GPU kernels enable end-to-end acceleration. Experiments on video understanding
tasks, V-NIAH and MM-NIAH using Llava-Video and LongVila demonstrate that MMInference
preserves full-attention performance while achieving up to 8.3× speedup at 1M tokens.
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A MODALITY-AWARE SPARSE ATTENTION SEARCH ALGORITHM

In Algorithm 4, we detail the procedure for selecting the optimal sparse attention pattern for each
attention head under a constrained FLOPs budget. The algorithm jointly determines the best pattern
and its configuration (e.g., stride size in grid attention, number of vertical/slash lines in VS pattern)
to maximize accuracy. We first construct a kernel-aware search space, where all candidate patterns
have comparable real-world FLOPs based on GPU kernel measurements—rather than theoretical
estimates—to ensure practical efficiency.

We then evaluate each candidate using a reference example and select the configuration that max-
imizes attention recall, using the actual attention output as the objective. This recall-based scoring
incorporates the V matrix and builds on FlashAttention Dao (2024), enabling end-to-end pattern
selection with minimal memory overhead and improved performance.

Algorithm 4 Modality-aware Sparse Attention Pattern
Search

Input: Q,K,V ∈ RS×dh , inter-modality search space
ρinter, intra-modality search space ρintra, modality type
set m ∈ ϕm, optimized sparse pattern P

# Intra-modality sparse attention pattern search
for i← 1 to |ϕm| do

pmi ← KernelAwareSearch (Q,K,V ,mi)
P← P ∪ pmi

end for
# Cross-modality sparse attention pattern search
for i← 1 to |ϕm| do

for j ← 1 to |ϕm| do
pmi,mj ← KernelAwareSearch (Q,K,V ,mi,mj)
P← P ∪ pmi,mj

end for
end for
# Inter-modality sparse attention pattern search
for i← 1 to |ρinter| do

pi ← argmin (|sparse(Q,K,V , i)−
attention(Q,K,V )|
P← P ∪ pi

end for
return P

(a) K-Boundary pattern. (b) No-Boundary pattern.

Figure 6: Additional inter-modality sparse pattern.
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(a) A-shape (b) SF-fixed (c) SF-strided

(d) Tri-shape (e) Vertical-Slash (MInfer-
ence)

Figure 7: The baselines of sparse attention in our experiments.

B PATTERN ANALYSIS

B.1 ADDITIONAL MIX-MODALITY PATTERN

In §2, we explain how the grid pattern naturally arises from the geometric structure of vision in-
puts. Fig. 6 further illustrates two additional patterns in the mixed-modality search space: the K-
Boundary and No-Boundary patterns. Notably, both patterns incur no additional cost compared to
pure intra-modality attention, as their sparse indices can be computed across all rows without extra
computation.

B.2 ADDITIONAL SPARSE ATTENTION PATTERN VISUALIZATION

We further analyze the sparse patterns in Qwen2.5-VL Wang et al. (2024a) with dynamic resolution
inputs and in VideoChat-Flash Li et al. (2025a) under visual token compression, across both video
benchmark and mixed-modality inputs, as shown in Fig.17 and Fig.18.

C EXPERIMENT DETAILS

C.1 VISION LANGUAGE MODELS

We use two state-of-the-art VLMs in our experiments: LongVILA Chen et al. (2025) and Llava-
Video Zhang et al. (2024b). Llava-Video supports varying numbers of frames (32, 64, 110) for
video understanding, and as reported, performance improves with more frames. Thus, we adopt the
110-frame variant for benchmarking. For LongVILA, we use the 256-frame version (LongVILA-
256Frame) with a 128K context length for video understanding benchmarks, and the 1M-token
version (LongVILA-1M), designed for retrieval tasks, for the V-NIAH evaluation.

C.2 BASELINES

We include five sparse attention baselines in our experiments: A-shape Xiao et al. (2024), SF-
fixed Child et al. (2019), SF-strided Child et al. (2019), Tri-shape LI et al. (2025), MInference Jiang
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Table 2: Hyperparameters detail of baselines.

Method Hyperparameters

A-shape Sink = 128,Local = 4096
SF-fixed Local = token_per_frame, vline_stride = token_per_frame
SF-strided Local = token_per_frame, vline_stride = token_per_frame
Tri-shape Sink = 128,Local = 4096,Bottom = 128
MInference Vertical_size ∈ {1000, 2000, 4000},Slash_size ∈ {1024, 2048, 4096, 6144}
VisionZip dominant = 54, contextual = 10

et al. (2024), and VisionZip Yang et al. (2024). Fig. 7 illustrates the attention patterns of these
baselines.

While VisionZip Yang et al. (2024) is primarily a visual token compression method—compressing
vision tokens using attention scores from the vision encoder before passing them to the LLM—it
is included for comparison as it reduces FLOPs in the pre-filling stage and offers insight into token
compression approaches.

C.3 A-SHAPE AND VERTICAL-SLASH

A-shape and Vertical-Slash are used for intra-modality attention, alongside our newly proposed Grid
pattern.

At inference time, we estimate the attention matrix online to dynamically determine the spatial
layout of sparse indices, conditioned on the assigned pattern and actual input. Sparse attention is
then computed using our optimized GPU kernels. Note that while the masks for Vertical-Slash
and Grid patterns are dynamically generated, A-shape uses a static mask, incurring no additional
overhead beyond sparse computation.

A-shape head. A-shape is a static sparse pattern that includes the first seven initial tokens along with
a local attention window.

Vertical-Slash head. Due to the continuity of vertical and slash lines, we matmul the last query
vector Q[−last_q:] and key vector K to produce the estimated attention matrix Â, which, in turn, is
used to determine the indices for the vertical iv and slash is lines. After obtaining the sparse indices
for the vertical and slash lines, we convert them into a sparse format ivs. Using these sparse indices,
we perform block-sparse calculations of the attention weights and attention output.

C.4 PERMUTATION FOR THE GRID PATTERN AND ACROSS MODALITY

We illustrate how the permutation is applied to the Grid pattern and the Q-boundary and 2D-
boundary patterns in Fig. 8 and Fig. 8.

(a) Before Permutation (b) Row-wise Permutation (c) Column-wise Permuta-
tion

Figure 8: Permutation for the Grid Pattern. (a) Before permutation. (b) Row-wise permutation. (c)
Column-wise permutation.
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(a) Mix-modality (b) Q-wise Permutation (c) K-wise Permutation

Figure 9: Permutation for mix-modality context. (a) Mix-modality. (b) Q-wise permutation. (c)
K-wise permutation.

Attention Type Parameters

Grid Attention

(frame_stride, True, False, False, 1024)
(frame_stride, False, True, False, 1024)
(frame_stride, False, False, True, 1024)
(frame_stride, True, True, False, 1024)
(frame_stride, False, True, True, 1024)
(frame_stride, True, True, True, 1024)
(stride, True, False, False, 1024)
(stride, False, True, False, 1024)
(stride, False, False, True, 1024)
(stride, True, True, False, 1024)
(stride, False, True, True, 1024)
(stride, True, True, True, 1024)

A-shape
(128, 1024)
(128, 2048)
(128, 4096)

Vertical-Slash

(1000, 1024)
(1000, 2048)
(2000, 2048)
(1000, 3096)
(2000, 3096)
(1000, 4096)
(2000, 4096)
(3500, 200)
(1000, 2500)

Table 3: The search space for each attention pattern: 1) Grid Attention: (stride, use hline, use vline,
use slash, max stride); 2) A-shape: (sink, local); 3) Vertical-Slash: (vertical size, slash size)

C.5 SEARCH SPACE

Following Jiang et al. (2024), we set the target FLOPs t to be the same as 1k global tokens and 4k
local window tokens in the A-shape pattern. Additionally, we use only one sample as our calibration
set from the egoschema task with no more than 25K tokens, which exhibits strong generalization
and stability across different lengths and domains. The search time is approximately 15 minutes
on a single A100. This pattern search is individually conducted for each model: Llava-Video-7B,
LongVila-256Frame, and LongVila-1M. The search space is shown in Table 3.
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D BENCHMARK DETAILS

We evaluate our method on several video understanding benchmarks that test different aspects of
video comprehension:

EgoSchema EgoSchema Mangalam et al. (2023) is a diagnostic benchmark for very long-form
video language understanding, structured as a multiple-choice question answering task. The bench-
mark requires models to answer questions about egocentric videos by selecting from given options
(labeled A through E). The evaluation can be performed either on the full set via submission to an
evaluation server, or on a released subset of 500 questions for direct scoring.

Video-MME Video-MME Fu et al. (2024) is a comprehensive multi-modal evaluation benchmark
that tests MLLMs across diverse video types and temporal dimensions. It spans 6 primary visual
domains with 30 subfields and includes videos ranging from 11 seconds to 1 hour in duration.
The benchmark comprises 900 videos totaling 254 hours, with 2,700 manually annotated question-
answer pairs. It evaluates models’ ability to process not just video frames but also integrated multi-
modal inputs like subtitles and audio.

NExT-QA NExT-QA Xiao et al. (2021) focuses on advancing video understanding from basic
description to explaining temporal actions. It features both multiple-choice and open-ended QA
tasks that target three key aspects: causal action reasoning, temporal action reasoning, and common
scene comprehension. The benchmark is specifically designed to evaluate models’ ability to reason
about actions beyond superficial scene descriptions.

Perception Test The Perception Test Patraucean et al. (2023) perce evaluates perception and rea-
soning skills across video, audio, and text modalities. It contains 11.6k real-world videos with an
average length of 23 seconds, featuring perceptually interesting situations. The benchmark tests
four key skills (Memory, Abstraction, Physics, Semantics) and various types of reasoning (descrip-
tive, explanatory, predictive, counterfactual). Videos are densely annotated with six types of labels:
multiple-choice QA, grounded video QA, object tracks, point tracks, temporal action segments, and
sound segments.

ActivityNet-QA ActivityNet-QA Yu et al. (2019) is a large-scale VideoQA dataset consisting of
58,000 QA pairs on 5,800 complex web videos derived from the ActivityNet dataset. The benchmark
is fully annotated and designed to test models’ understanding of complex web videos through ques-
tion answering. Unlike automatically generated datasets, ActivityNet-QA features human-annotated
questions and answers, making it particularly valuable for evaluating real-world video understanding
capabilities.

Video Detail Description (VideoDC) VideoDC Lab (2024) focuses on comprehensive video un-
derstanding through detailed descriptions. The benchmark consists of question-answer pairs gen-
erated with GPT-3.5, where questions prompt for detailed descriptions focusing on main subjects,
their actions, and background scenes. The evaluation assesses the quality and completeness of video
descriptions generated by models.

E ADDITIONAL EXPERIMENTS RESULTS

E.1 LATENCY

Fig. 10 and 16 present end-to-end and kernel-level latency across different context sizes. The grid
pattern significantly outperforms the vertical-slash pattern in sparsity, achieving a 2–3× speedup
even at 1M tokens. Additionally, the grid pattern achieves an end-to-end speedup of 8.3× and a
kernel-level speedup of 12×.

E.2 ANALYSIS

Transition of Sparse Patterns Across Modalities Since LLMs and VLMs exhibit different sparse
patterns, we examine the interplay between the Grid and Vertical-Slash pattern. As shown in Fig. 11,
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Figure 10: End-to-End Latency.

(a) All Textual Context (b) Visual Context In-
serted

(c) More Visual Context (d) All Visual Context

Figure 11: Transition of sparse patterns from textual context to visual context. (a) The vertical-slash
pattern for all textual context. (b) Grid pattern appears when visual modality is appended. (c) Grid
pattern dominates.

Llava-Video-7B primarily uses Vertical-Slash pattern for purely textual inputs. However, once a
visual input is appended, it transitions to a Grid pattern to capture the geometric structure of the
visual content. This shift occurs at the modality boundary, creating a more structured arrangement
of vertical and horizontal intervals. Such behavior highlights the need for distinct sparsity strategies
in visual and mixed-modality contexts, rather than simply reusing sparse patterns from LLMs for
VLMs.
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Figure 12: The sparse index does not effectively extrapolate from text to the visual modality. How-
ever, an index built within the same modality can generalize across modality boundaries.

Sparse Index Across Modalities In Fig. 12, the sparse index achieves high recall for textual re-
gions but fails to generalize to visual ones. To address this, we construct a sparse index from the
visual modality and evaluate it on separate visual segments, each separated by modality bound-
aries. Remarkably, this approach extrapolates effectively across all visual segments, even when
interspersed with textual boundaries. As shown in Fig. 12, the sparse index achieves high recall in
the textual but fails to generalize to the visual. To address this, we construct a sparse index using the
visual modality and evaluate it across distinct regions of the visual modality, separated by modality
boundaries. Remarkably, this approach successfully extrapolates to all visual regions even when
interrupted by text-induced boundaries.

Integrate with token compression methods As shown in Table 4, our method integrates seam-
lessly with token compression techniques, enabling near-lossless performance while supporting
longer or higher-resolution video inputs. Specifically, VideoChat-Flash reduces tokens per frame
from 196 to 16 at the ViT stage, while our method further applies sparse attention in the LLM
decoder. Results demonstrate strong performance retention across benchmarks.
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Table 4: Performance (%) on video understanding tasks based on VideoChat-Flash Li et al. (2025a)
at frames 512 with 8k tokens.

Model VideoDC ActNet-QA EgoSchema Next-QA PerceptionTest VideoMME Avg.
test test test mc val w/o sub. w/ sub.

VideoChat-Flash 3.21 53.6 57.0 81.2 69.1 63.2 70.5 56.8
w/ MMInference 3.19 54.3 57.3 79.8 69.1 63.0 70.2 56.7

E.3 ADDITIONAL VIDEO NEEDLE IN A HAYSTACK RESULTS

we further present the results of the Video Needle In A Haystack task with our baselines. The results
of our method and full atttenton is shown in Fig. 5.
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Figure 13: Video Needle In A Haystack Zhang et al. (2024a) results using LongVila-Qwen2-7B-
1M Chen et al. (2025).

E.4 ADDITIONAL MIXED-MODALITY NEEDLE IN A HAYSTACK RESULTS

We further present the results of the Mixed-Modality Needle In A Haystack task with our baselines
and the inter-modality variant of our method. The results of full atttenton and MMInference are
shown in Fig. 5.
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Figure 14: Mixed-Modality Needle In A Haystack results using LongVila-Qwen2-7B-1M Chen
et al. (2025).

E.5 LATENCY BREAKDOWN

As shown in Fig. 16, we present the micro-benchmark results of various sparse attention methods
across different context lengths.

E.6 VS PATTERN VS. GRID PATTERN

Both VS pattern and Grid pattern achieve strong performance on video understanding and V-NIAH
tasks. However, due to the grid attention pattern observed in VLMs, the overlap between blocks
covered by diagonal lines in the VS pattern is minimal, reducing sparsity within the kernel. This
explains why VS pattern exhibits significantly higher latency compared to Grid pattern. Addition-
ally, leveraging permutation-based optimization effectively reduces the number of blocks involved
in kernel computation, thereby lowering latency while maintaining comparable performance.
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Figure 15: Permutation-based implementation of 2D/3D sliding window attention Hassani et al.
(2023) enables efficient sparse attention optimization for DiT architectures.
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Figure 16: The latency breakdown of a single attention kernel for four sparse attention patterns and
FlashAttention Dao (2024) across different context windows in a single A100, including the index
time for dynamic sparse approximation and building dynamic sparsity. At 1M tokens, the latency
for Grid is 358ms.

Recently, many efficient DiT methods Hassani et al. (2023); Xi et al. (2025); Zhang et al. (2025);
Xu et al. (2025b) have adopted sparse attention to accelerate long video generation. We note that
these methods can also benefit from permutation-based transformations to achieve kernel-efficient
implementations. For example, the 2D/3D sliding window attention in NATTEN can be converted
into dense tensor core computation via permutation, as illustrated in Fig. 15. Similarly, the temporal
head in Sparse VideoGen Xi et al. (2025) and the anti-diagonal structure in xAttention Xu et al.
(2025b) can be restructured through permutation to enable sparse loading with dense computation,
significantly speeding up DiT inference, especially in long-context scenarios.

G KERNEL IMPLEMENTATION

As shown in Algorithms 5, 6, and 7, we provide implementation details of the FlashAttention-
based kernels. The Grid-shape kernel in Algorithm 5 integrates block-sparse FlashDecoding Qwen
(2023), which sparsifies the query loading, with block-sparse FlashAttention-2, which sparsifies the
key loading. The Q-Boundary kernel in Algorithm 6 introduces sparsity along the query dimension
using FlashAttention-2 Dao (2024), while the 2D-Boundary kernel in Algorithm 7 applies sparsity
along both the query and key dimensions.
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Algorithm 5 Grid-Shape Flash Attention
Input: Q,K,V ∈ RS×dh , block size B,
stride size σ, query start index sq , key start
index sk

Scale τ ←
√

1
dh

Initialize O ← (0)S×dh ∈ RS×dh

# Parallelized in GPU
# Sparse load in Q using FlashDecoding
for i← 1 to Nσ do

Load Qchip ← Q[i×B:(i+1)×B]×σ+sq ∈
RB×dh

Initialize Ochip ← (0)B×dh ∈ RB×dh

Initialize m← (− inf)B ∈ RB

Initialize l← (0)B ∈ RB

# Loop in K
for j ← 1 to M do

Load Kchip ←K[j×B:(j+1)×B] ∈ RB×dh

Load Vchip ← V [j×B:(j+1)×B] ∈ RB×dh

S ← τQchipK
T
chip

S ← mask(S)
mi

new ← max(mi, rowmax(S)) ∈ RB

S ← S −mi
new

P ← exp(S)
linew ← rowsum(S))
α← exp(mi −mi

new)
li ← αli + linew

Ochip ← αOchip + PVchip
end for
# Write outputs
Ochip ← diag(li)−1Ochip
Save Oi ← Ochip

end for

# Sparse load in K using FlashAttention
for i← 1 to N do

Load Qchip ← Q[i×B:(i+1)×B] ∈ RB×dh

Initialize Ochip ← (0)B×dh ∈ RB×dh

Initialize m← (− inf)B ∈ RB

Initialize l← (0)B ∈ RB

# Loop in K
for j ← 1 to Mσ do

Load Kchip ← K[j×B:(j+1)×B]×σ+σ×sk ∈
RB×dh

Load Vchip ← V [j×B:(j+1)×B]×σ+σ×sk ∈
RB×dh

S ← τQchipK
T
chip

S ← mask(S)
mi

new ← max(mi, rowmax(S)) ∈ RB

S ← S −mi
new

P ← exp(S)
linew ← rowsum(S))
α← exp(mi −mi

new)
li ← αli + linew

Ochip ← αOchip + PVchip
end for
# Write outputs
Ochip ← diag(li)−1Ochip
Save Oi ← Ochip

end for

23



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

Algorithm 6 Q-Boundary Flash Attention

Input: Q,K,V ∈ RS×dh , block size B,
modality index Im, sparse attention kernel
Opm

Scale τ ←
√

1
dh

Initialize O ← (0)S×dh ∈ RS×dh

# Loop modality and parallelized in GPU
for m ∈ {text, vision, ..., } do

for i← 1 to Nm do
Load index Ichip ← I

[i×B:(i+1)×B]
m ∈ RB

Load Qchip ← QIchip ∈ RB×dh

Initialize Ochip ← (0)B×dh ∈ RB×dh

Initialize m← (− inf)B ∈ RB

Initialize l← (0)B ∈ RB

# Loop in K using modality sparse attention

Ochip,m, l ←
Opm(Qchip,K,V ,Ochip,m, l)

# Write outputs w/ modality index
Ochip ← diag(li)−1Ochip

Save O
Ichip
i ← Ochip

end for
end for

Algorithm 7 2D-Boundary Flash Attention

Input: Q,K,V ∈ RS×dh , block size B,
modality index Im, sparse attention kernel
Opm

Scale τ ←
√

1
dh

Initialize O ← (0)S×dh ∈ RS×dh

# Loop modality and parallelized in GPU
for mq ∈ {text, vision, ..., } do

for i← 1 to Nm,q do
Load index Ichip,q ← I

[i×B:(i+1)×B]
m,q ∈ RB

Load Qchip ← QIchip,q ∈ RB×dh

Initialize Ochip ← (0)B×dh ∈ RB×dh

Initialize m← (− inf)B ∈ RB

Initialize l← (0)B ∈ RB

# Loop in K and modality
for mk ∈ {text, vision, ..., } do

for j ← 1 to Mm,k do
Load index Ichip,k ← I

[j×B:(j+1)×B]
m,k ∈

RB

Load Kchip ←KIchip,k ∈ RB×dh

Load Vchip ← V Ichip,k ∈ RB×dh

Ochip,m, l ←
Opm(Qchip,Kchip,Vchip,Ochip,m, l)

end for
end for
# Write outputs w/ modality index
Ochip ← diag(li)−1Ochip

Save O
Ichip,q
i ← Ochip

end for
end for
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(a) Qwen2.5-VL on EgoSchema

(b) VideoChat on EgoSchema

(c) Qwen2.5-VL on VideoMME

(d) VideoChat on VideoMME

Figure 17: Visualization of sparse attention patterns in Qwen2.5-VL with dynamic resolution input
and VideoChat-Flash with visual token compression across different benchmarks.

25



Published at ICLR 2025 Workshop on Foundation Models in the Wild.

(a) Qwen2.5-VL on Mix-modality

(b) VideoChat on Mix-modality

Figure 18: Visualization of sparse attention patterns in Qwen2.5-VL with dynamic resolution input
and VideoChat-Flash with visual token compression with mix-modality inputs.
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