Improving Robustness of AlphaZero Algorithms
to Test-Time Environment Changes

Isidoro Tamassia®?* and Wendelin Bohmer!

! Department of Intelligent Systems, TU Delft, The Netherlands
2 Department of Computer Science, KU Leuven, Belgium
isidoro.tamassia@kuleuven.be, j.w.bohmer@tudelft.nl

Abstract. The AlphaZero framework provides a standard way of com-
bining Monte Carlo planning with prior knowledge provided by a pre-
viously trained policy-value neural network. AlphaZero usually assumes
that the environment on which the neural network was trained will not
change at test time, which constrains its applicability. In this paper,
we analyze the problem of deploying AlphaZero agents in potentially
changed test environments and demonstrate how the combination of
simple modifications to the standard framework can significantly boost
performance, even in settings with a low planning budget available. The
code is publicly available on GitHuHﬂ

Keywords: AlphaZero - Monte Carlo Tree Search - Model-based Rein-
forcement Learning.

1 Introduction

Imagine you are sitting on the passenger seat of your brand-new self-driving
car. Your car is equipped with a navigator, used to dynamically plan the most
convenient path to your destination; of course, exploring every possible path
is unfeasible. To guide its planning, the car runs a neural network under the
hood, capable of directing the path search with a standard AlphaZero (AZ)
[20] procedure, using the navigator as the planning model. This neural network
was accurately trained on high-fidelity traffic simulations a few years ago, but
over time, the topology of your neighborhood changed and does not fully reflect
the original city environment anymore, which the neural network expects. One
day, you encounter an unexpected road closure on your most convenient path
to the destination; the car starts computing an alternative best path, but the
neural network is just too overfitted on the original topology. As a result, the car
realizes that it has to steer when it is too late, leading you to crash into a wall.
Fortunately, your car is equipped with a nice airbag, but repairing the damage
will cost a good portion of your yearly salary.

* Work carried out while affiliated with TU Delft.

3 https://github.com/TheEmotional Programmer/az-generalization

https://github.com/TheEmotionalProgrammer/az-generalization

2 I. Tamassia and W. Bohmer

The situation just described highlights the potentially problematic applica-
tion of modern model-based reinforcement learning algorithms, such as Alp-
haZero, when the test environments the agent is deployed to can differ from
training, which invalidates the neural network predictions. On one hand, com-
pletely disregarding the network in favor of an unbiased Monte Carlo Tree Search
(MCTS) [5I8] would discard a large amount of useful information that practically
makes it feasible to plan on the go in complex environments. On the other hand,
planning with imperfect estimators could lead to dangerous situations where
the online search cannot account quickly enough for the wrong prior beliefs of
the neural network. Therefore, finding a way to make these algorithms robust
to deployment-time variations is fundamental for their application outside of
controlled, simulated settings.

In this paper, we analyze the problem of planning with learned estimators in
a partially modified test environment, with a particular focus on the AlphaZero
framework. In doing so, we underline potential weaknesses and inefficiencies of
the original algorithm, review existing MCTS techniques that allow for better
use of the available planning budget, and propose to combine some of them in a
novel algorithm called Extra-Deep Planning (EDP).

The EDP algorithm allows the agent to build increasingly deep trees during
planning, which manage to more quickly adjust the wrong predictions of the
neural network and therefore switch the agent’s focus to paths that are optimal
at test time. Moreover, we develop a simple set of grid-world experiments that
demonstrate EDP’s superior performance compared to standard AZ and allow
for a comprehensive analysis of the contribution of each algorithm’s component
to such improvements. We find that while the individual components yield only
modest benefits on their own, their combination makes the agent act nearly
optimally in navigation tasks even with a low planning budget.

2 Background

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a branch of machine learning concerned with
how agents take actions in an environment to maximize cumulative reward. It
formalizes learning from interaction through feedback in the form of rewards
or penalties. The standard framework for RL is the Markov Decision Process
(MDP) [3], defined as a tuple:

<S7 P A7 Pa R7 ’7)7

where S is the set of states, p the initial state distribution, A the set of actions,
P(s'|s, a) the transition probability, R(s, a, s’) the reward function, and v € (0, 1]
the discount factor.

The objective in RL is to find a policy 7 that maximizes the expected return,
defined as the cumulative discounted reward:

e ‘ S0=S5, atNﬂ'(St)
VTF(S) =K E Yre | ser1~P(st,ar) N
t=0 rt=R(8¢t,at,5t+1)

Making AlphaZero Robust to Environment Changes 3

with associated action-value function, also known as one of the Bellman equa-
tions [2]:

Qw(S, a’) =E [R(Sv a, 5/) + FYVTF(S/) | s~ P(Sv a)] .

In deterministic environments, both the transition and reward functions sim-
plify to deterministic mappings s;y1 = f(st,a¢), ¢ = R(s¢, ar, f(st,at)). These
assumptions apply throughout this paper unless stated otherwise.

RL methods are typically grouped into two categories:

— Model-free methods: These learn directly from experience without ac-
cess to the transition model. They include Value-based methods, such as
Q-learning [23] and Deep Q-Networks [12], and Policy-based methods, such
as REINFORCE |[24] and Actor-Critic algorithms [9].

— Model-based methods: These incorporate or learn a model of the environ-

ment to simulate and evaluate future trajectories. Notable examples include
MCTS [58], AlphaZero [20], and MuZero [17].

Model-free methods are generally simpler and avoid the problems of model bias
and error, but require direct interaction with the environment during learning.
Model-based methods, on the other hand, tend to be more sample-efficient at
the cost of greater computational complexity during runtime.

Given the particular relevance of AlphaZero in the context of this paper, we

devote the next to explaining its fundamentals.

.
BACKUP
SELECT N
\
SELECT BACKUP
@)
\

EXPAND 4 BACKUP

r(s,a) +yve(s') —

Fig. 1. A single iteration of AZ planning, from left to right: the agent selects a path
using a selection policy (e.g., PUCT) until reaching a not-fully-expanded node,
expands it through a sampled action, and estimates the value of the newly created
node using the value network. Its value is then backpropagated through the path until
reaching the root, updating the mean value estimates along the path. This procedure
is repeated for B iterations, where B is the planning budget.

4 I. Tamassia and W. Bohmer

2.2 The AlphaZero Framework

AlphaZero (AZ) [20] extends standard Monte Carlo Tree Search planning (MCTS)
[BU8] by incorporating a policy-value neural network fy : S — A xR parametrized
by 6. which takes a state s as an input and outputs a policy distribution
m € A:=[0,1]M ||z = 1 and a value v € R. For notation convenience, we
will indicate the value-head output given input s as vg(s) and the corresponding
policy-head output as 7y (s).

The AZ planning procedure is visualized in where each node in
the planning tree represents a unique sequence of actions starting from the root
nodd? and the root node corresponds to the current state in the environment.

To grow a planning tree, the AZ agent iteratively traverses a path of the tree
built so far according to a selection policy. Once it reaches a node that is not
fully expanded, an action is sampled among the non-expanded ones to create a
new node, and the value of the corresponding state is estimated using the value
network. Finally, the value is backed up through the path to update the parents’
value estimates. This procedure can be repeated for a fixed number of times B,
usually called the planning budget.

The most common selection policy used to traverse the tree is based on
the PUCT formula [I5] that assigns a score to selecting action a from node x
containing state s as:

PUCT(a|z) = Q(z Wa) + C m(al|r) HL(QC)

where:

— xWa is the node we enter by selecting action a from node z.

— Q(v Wa) is the current mean value estimate of the node z W a.

— mp(alx) = mg(a|s) and mp(x) = mp(s) for state s corresponding to node x.
— N(z) is the total visitation count of node x.

— C is an exploration hyperparameter.

The mean value estimate Q(z) is computed as the average value of each planning
trajectory that has passed through = so far, resulting in the following recursive
formulation:

= (¥

Q) = r(x) +~

() N(m&Ja)—era
N(z)”;1 NG v

Intuitively, PUCT balances exploitation of actions with high estimated value
and exploration of actions favored by the policy network but visited less often.

Note that the formula (1] originates from the common UCT formula [8] used
in standard MCTS, which is in turn based on the Upper Confidence Bound

4 Directly defining nodes as states would be restrictive and could cause issues in
stochastic or cyclic environments.

Making AlphaZero Robust to Environment Changes 5

algorithm (UCB) for multi-armed bandits [I]. In UCT, the exploration term is
not guided by any prior policy:

UCT(alz) = Q(zwa) +C W

(2)
Once the planning tree is constructed, the agent needs to choose an action to
undertake in the real environment. This is done according to an evaluation policy
which is usually based on the visitation counts at the root x(after planning:

N(zoWa)

N (alxg) = N(wo) (3)

This can be turned into a deterministic policy by simply taking its argmax.

Training In principle, it would be possible to deploy an agent in an environment
using AZ planning given any policy and value neural network(s) trained on the
same environment, regardless of the way training was performed (e.g., by using
a PPO [18] agent). However, AZ also provides a standard way of training the
network by following a self-play loop alternating between data collection, network
updates, and periodic evaluation. Since knowing the details of the AZ training
process is not necessary for understanding this paper, we now briefly summarize
the process and provide more details in the appendix .

In the data collection phase, the agent interacts with the environment using
the evaluation policy meya) derived from planning (typically meval = 7). At each
state, the mentioned planning procedure provides both an improved policy dis-
tribution 7; and a value estimate, and the resulting sequences of states, actions,
rewards, and policies are stored in a replay buffer.

During the network update phase, minibatches from the replay buffer are used
to optimize the policy-value network fy. The loss combines a value loss, aligning
predictions with n-step return targets [22], and a policy loss encouraging the
network to match the improved search policies obtained from planning [19].

Finally, in the evaluation phase, the agent’s performance is periodically as-
sessed using a deterministic version of the evaluation policy.

3 Methodology

The occurrence of local changes to the test environment implies that the available
g and vy will not be fully accurate. However, given an arbitrarily high planning
budget, AZ planning would eventually account for these errors. The problem
is, therefore, how to effectively exploit the available budget by leveraging the
information provided by the neural network without overcommitting to it.

In the remainder of this section, we will assume a deterministic and fully
observable environment. Moreover, we will assume that the environment can
change at test time compared to the training setting, but does not change further
during deployment, i.e., the test environment is stationary.

6 I. Tamassia and W. Bohmer

3.1 The Exploration-Exploitation Trade-off

As described in the C parameter regulates how greedy we want to
be during planning. Intuitively, we might think that changes to the environment

require more exploration (higher C'). However, this exploration is also guided
by the neural network in AZ, since we are using PUCT . We could therefore
switch back to using standard UCT with a uniform exploration to avoid being
fooled by the policy network, but the resulting planning tree still depends on
the learned value function and additionally exhibits a high branching factor that
prevents the agent from looking far into the future. Moreover, checking a certain
path a small number of times does not allow the agent to properly update the
corresponding estimates. To better visualize this, one could imagine an agent
bumping into a closed door that was open during training. Repeatedly bumping
into the door would slowly decrease the value in front of it due to discounting,
even if bumping does not yield a negative reward. But it would take a lot of tries
to see a significant difference, as wrongly estimated values can only be reduced
by discounting. If we can plan for enough time, it might therefore be better to
let the agent be greedy w.r.t. its estimates (C' = 0) so that the resulting deeper
tree can identify the changes faster and plan around them.

3.2 Tree Recycling

Although being greedy during planning can help us better realize that some-
thing is off in the environment, we are still strongly constrained by the available
planning budget. In standard AZ implementations, the planning tree is initial-
ized from scratch after every step in the real environment. There are some key
reasons why this is a common practice in the literature:

— Model inaccuracy: If our transition model is inaccurate, we might accu-
mulate planning errors and end up modeling highly inaccurate transitions.

— Memory and time constraints: Building an incrementally deeper tree
requires recursively traversing and backing up from much longer trajectories,
which might be undesirable if there are specific time constraints. It also
requires more memory to maintain the increasing number of nodesﬂ

While we acknowledge these limitations, we still believe that allowing our agent
to reuse part of the previous planning tree can significantly reduce the amount of
planning budget needed to properly plan in modified environments, particularly
for the much deeper planning trees built by a greedy selection policy. Moreover,
specific memory and/or recursion limits could simply be addressed by setting
a maximum number of consecutive tree reuses, after which we can drop the
previously constructed tree and start planning from scratch.

5 For sufficient tree exploration the average memory complexity of tree recycling is
bounded. If the recycled subtree has complexity O(B/|.A]) for a planning budget B,
then after n steps in the environment the memory complexity of the recycled tree will

be O(B;) = O(B+ 1y Bi 1) = O(B X[), that is, lim O(By) = O(Bih).

Making AlphaZero Robust to Environment Changes 7

t= St = Sy t=1 s =8 t=2 s =89

Fig. 2. Example of the tree re-usage mechanism. The green node in each tree corre-
sponds to the current state s; in the real environment at step ¢. After step 1, we can
reuse the right subtree of the previous root node as the corresponding child is the only
one whose state is s1 (the current state in the real environment). The left subtree is
discarded (red-crossed nodes in the figure). After step 2, we could reuse both children
of the previous root, but we choose the left one as the corresponding subtree is deeper.

One way of reusing the previous tree is to check whose child of the previous
root node holds the same state as in the real environment (if any) and resume
planning from there. Note that there might be multiple children of the root that
correspond to the current state, and in that case, we should then decide which
subtree we want to retain. Since our main goal is building increasingly deep
trees, we can choose the child whose corresponding subtree is the deepest, where
the depth of a node’s subtree is defined recursively as the "height" of the node:

height(z) =1+ max height(x’)
x’ Echildren(x)

The recursion stops at leaf nodes whose height is set to 0 by definition. The tree

re-usage mechanism is exemplified in

3.3 Blocking Loops

Another source of inefficiency of AZ planning that can be particularly detrimen-
tal when changes happen is the fact that we might explore the same path over
and over because the (in the test environment) incorrectly estimated value for

8 I. Tamassia and W. Bohmer

e e @)‘

Fig. 3. Example of loop blocking mechanism. During traversal, we prune the edges of
the tree leading to states that had already been visited along the path.

an action is comparatively high, entering a planning loop. Formally, we define a
loop as the repetition of the same state along a single path from root to leaf.
Moerland et al. [I3] tested the possibility of blocking the loops in MCTS
planning by setting the variance of a repeating state along a planning path to
zero. In standard AZ planning, there is no such concept as the "variance" of a
nodeﬂ We instead propose to block loops by directly pruning the parent action
from the search tree and making it not selectable from then on, as illustrated in
To check whether a state is a loop, it is sufficient to compare it with
every state above it, for example, during the back-up phase or by maintaining a
set of the visited states during traversal'|
In a deterministic environment, blocking the loops should be enough to avoid
exploring over and over redundant paths that make us waste planning budget.
For example, an agent in front of a newly introduced obstacle might spend a lot
of planning time stuck before understanding that it should change direction.
While checking for exact state loops only applies to discrete state spaces,
it is possible to extend this to continuous state spaces by checking that the
norm between the states s and s’ that we compare is below a threshold 7, i.e.
IIs—=s'll2 <n, n € R for any pair of nodes s, s’ along the planning path. Setting
1 = 0 corresponds to only blocking exact loops as we do in the discrete case.
To summarize, our modifications to standard AZ are the following;:

— Greedy planning by setting C' = 0.
— Reusing the previous planning tree at each step as described in
tion 3.2

— Blocking planning loops as described in

5 In theory, a variance of zero would correspond to an infinitely visited node.

" Checking whether a newly created (leaf) node already exists along the correspond-
ing root-to-leaf path costs O(h) operations where h is the height of the tree, i.e.
O(log| 4 N) for roughly balanced trees with branching |A| > 1 and N total nodes,
and up to O(N) in the worst case when the tree is not balanced. However, by main-
taining a path hash set, we get expected O(1) per node using O(h) memory.

Making AlphaZero Robust to Environment Changes 9

TRAINING TEST

5

u

11

1

:H

)
TR

J

»

$

Fig. 4. Overview of the MAZE training and test configurations. The green square
represents the agent’s starting position, the blue squares represent obstacles, and the
yellow square represents the goal position. The agent is trained on the MAZE LR and
MAZE_ RL configurations and can be tested by moving the holes in the walls into
different positions, as shown in the figure.

Note that the action executed in the environment after planning is still chosen
according to the standard AZ tree evaluation policy .

The combination of AZ and the described additional features constitutes the
Extra-Deep Planning algorithm (EDP), and ablations are shown in

3.4 Experimental Setup

We can now detail the employed environment configurations and agents for our
evaluation.

Environment To validate the effect of environment changes on AZ’s perfor-
mance, we propose a simple set of MAZE grid-world environments where the test
configuration differs from the training configuration. These challenges are repre-
sented in As shown in the figure, all the configurations are 8 x 8 grids
where the agent always starts from the upper-left corner (0,0) (green location)
and needs to reach the bottom-right corner (7,7) (yellow location) by finding its
way beyond the obstacles (blue locations). From now on, we will use the writing
convention MAZE X — MAZE Y to indicate training on the MAZE X con-
figuration and testing on the MAZE Y configuration, where X and Y can be
LR (Left-Right), RL, LL, or RR depending on the position of the holes in the
two horizontal walls. The agent can move left, right, up, or down (no diagonal
move), and blue obstacles block movement so that the agent remains in the same
state without incurring any punishment.

10 I. Tamassia and W. Bohmer

Agents We evaluate the performance of our novel EDP algorithm against the
following baselines:

— Standard AlphaZero (AZ+PUCT): this is the baseline agent also used during
training, which relies on the PUCT formula for node selection.

— AlphaZero without prior policy (AZ+UCT): we counsider this an equally
relevant baseline because, depending on how much the test configuration
diverges from the training environment, avoiding reliance on the prior policy
might already lead to improved results.

Details on the performed tuning of the PUCT/UCT C parameter for the AZ
baselines and on how the neural networks were trained can be found in the
appendix (section A|and [section B| respectively).

4 Related Work

As previously discussed, AlphaZero has traditionally been applied to environ-
ments that do not change at test time, and the specific challenges analyzed in
this paper have received, to the best of our knowledge, limited attention in the
literature.

Min and Motani [I1] introduced Brick Tic-Tac-Toe, a new benchmark ex-
tending the classic Tic-Tac-Toe game, to evaluate AlphaZero in novel test con-
figurations. Their findings show that training on diverse configurations improves
test-time adaptation, but their setup differs from ours, as it involves a two-player
game, while we focus on single-agent environments. Moreover, they do not pro-
pose novel planning methods addressing the challenge.

Lan et al. [10] assess AlphaZero’s robustness to adversarial state perturba-
tions in Go, though their perturbation model is domain-specific and does not
involve changes to the algorithm itself.

Pettet et al. [I4] propose a novel MCTS-based algorithm addressing non-
stationary environments called Policy-Augmented MCTS (PA-MCTS), combin-
ing a previously learned Q-function with online MCTS estimates. Unlike our
approach and AlphaZero, which integrate prior knowledge within the planning
tree, PA-MCTS applies it externally and weights the online and prior knowledge
using a tunable hyperparameter.

5 Results

We employ the discounted return G, as the primary metric. In our case, the
reward function only returns a positive reward of 1 when reaching the goal;
thus, this can simply be defined as:

G ~t if goal is reached
710 otherwise

Making AlphaZero Robust to Environment Changes 11

—e— EDP (ours) —e— AZ+PUCT -o- AZ+UCT e Optimal
- MAZE_LR -» MAZE_LL MAZE_LR - MAZE_RR MAZE_LR -» MAZE_RL
Boa //
o
I
= e
802 =
et
c
©
% 0.0
8 16 32 64 128 8 16 32 64 128
MAZE_RL - MAZE_RR MAZE_RL » MAZE_LR

7
/
/
/
2
/

Mean Discounted Return

8 16 32 64 128 8 16 32 64 128 8 16 32 64 128
Planning Budget (log scale)

Fig.5. Results of the EDP planning algorithm (red line) on the MAZE grid-world
challenges, compared with standard AZ (blue lines). Straight and dashed lines are
reported for AZ+PUCT and AZ+UCT versions, respectively. The displayed metric is
the mean discounted return averaged across 10 x 10 training/evaluation seeds, and the
shaded area represents the standard error across training seeds. The label MAZE X
— MAZE _Y on top of each plot indicates training on the MAZE X configuration
and testing on MAZE Y.

where t is the number of steps it took the agent to reach the goal. The discount
factor v = 0.95 is kept identical to the corresponding value during training (see
. If the agent has not reached the goal after 100 steps, then the episode
is terminated with a reward of zero.

shows the mean discounted return averaged across 10 x 10 train-
ing/evaluation seeds (10 evaluation seeds for each of 10 training seeds) for all
the test configurations previously described and shown in In general, it
is easy to see how EDP consistently outperforms the baselines on all the config-
urations. Although removing the prior policy network improves the performance
of the baseline AZ in some of the experiments (e.g., MAZE LR — MAZE LL
and MAZE LR — MAZE_ RR), that remains vastly lower than EDP’s.

What makes these results particularly impressive is the performance differ-
ence between standard AZ and EDP on the "inverted" test configurations, i.e.,
MAZE LR — MAZE RL and MAZE RL — MAZE LR, where the original
optimal policy at training time is completely compromised. In both cases, AZ
performance does not seem to pick up even with a relatively large planning
budget, while EDP solves both configurations even with a small budget.

To better investigate why this happens and which of the components of
EDP make it that much more effective, we conduct an ablation study on these

12 I. Tamassia and W. Bohmer

—e— EDP (standard) —=— C=1 NO TREE REUSE NO BLOCK LOOPS - Optimal
MAZE_LR - MAZE_RL MAZE_RL -» MAZE_LR
0.5
0.35
£
2030 0.4
o
T 025
P 0.3
5 0.20
o
? 0.15 0.2
2o .
% 0.10 o
= 0.05 '
0.00 0.0
8 16 32 64 128 8 16 32 64 128
Planning Budget (log scale) Planning Budget (log scale)

Fig. 6. Ablation study of main EDP features of MAZE LR — MAZE RL and
MAZE RL — MAZE LR challenges. The displayed metric is the mean discounted
return averaged across 10 x 10 training/evaluation seeds, and the shaded area repre-
sents the standard error across training seeds. The red line represents the standard
EDP algorithm. The green line represents EDP with added UCT planning exploration,
i.e., C =1 instead of C' = 0. The cyan line represents EDP without reusing the previ-
ous planning tree at each step. The dark yellow line represents EDP without blocking
loops.

two test configurations; specifically, we test the standard EDP against three
modifications:

— C=1: we use a large UCT exploration bonus instead of zero.

— NO TREE REUSE: we remove the tree-reuse feature detailed in kubsec]
tion 3.2

— NO BLOCK LOOPS: we remove the loop blocking feature detailed in

The results of this ablation are reported in As one can see, all the
main features of EDP are important for its performance, as demonstrated by
the standard algorithm achieving the best results in both cases. However, the
performance drop given by removing them differs significantly among the ab-
lated features. Increasing the planning exploration (C=1) significantly affects
performance for low planning budgets but is less detrimental for high budgets.
Removing tree reuse damages performance even more, although its effect also re-
duces when the budget increases. Most importantly, not blocking the loops drops
the algorithm’s performance (close) to zero regardless of the planning budget for
both test configurations.

We further inspect the importance of blocking loops during planning by visu-
alizing how the visitation of the state space changes when including or removing
such a feature. shows the state visitation count distribution of an EDP
agent building an extremely large planning tree of 512 nodes starting from state

Making AlphaZero Robust to Environment Changes 13

0.12 016 | 097 | 516 |19.35 | 21.71 | 4.61

38.77 | 44.29
68.87 ELEI:-P90.49 (194,18 4.16 | 29.83 | 95.41 [160.36 |281.11 -yl 85.58 | 28.75
594.71 674.76 585.61 11.38 | 87.13 292.23|207.76| 77.73 | 30.22

. . 97.04 |278.84

14.79 | 88.79 |260.87 (173.52 |132.16| 84.50 | 49.71 | 2.21

9.09 | 39.28 | 72.52 | 75.66 | 88.38 | 92.99 (120.50113.11

(a) Planning without blocking loops. (b) Planning by blocking loops.

Fig. 7. Comparison of the state visitation counts of EDP planning with and without
blocking loops on the MAZE LR — MAZE RL test. The agent is positioned in (3,5)
(green border state) and builds a large planning tree of 512 nodes. The goal state (7,7)
is circled in gold. The displayed values are the average visit counts of each state across
10 x 10 training/evaluation seeds. Note that the displayed numbers are not equivalent
to the visitation counts for each node, since the tree can have several nodes containing
the same state along a single path.

(3,5) in the MAZE RL configuration. We chose such a high planning budget
because we want to see whether the agent not blocking loops will eventually be
able to get around the obstacle and solve the challenge, something that seemed
almost impossible with the budgets used in the ablation. This insight is con-
firmed in where we can see the agent not blocking the loops getting
stuck into planning towards the right corner, never managing to look beyond the
obstacle. Conversely, the agent blocking loops in manages to spread
its planning budget across the environment, see the goal state multiple times,
and mostly focus its budget towards it.

6 Conclusions

In this paper, we analyzed the performance of AlphaZero algorithms when de-
ployed in partially changed test environments and compared their performance
with our novel EDP algorithm, which combines different modifications to the
framework that improve the way we exploit the available planning budget.
Our experiments demonstrate how the standard framework particularly strug-
gles with the test configurations that significantly differ from training, i.e., the
MAZE LR — MAZE RL and MAZE RL — MAZE LR challenges, where
the optimal path that the agent should follow is inverted from training to test.
In contrast, EDP reaches optimal performance in all the tested configurations.

14 I. Tamassia and W. Bohmer

Our ablations confirm how all the novel components of the algorithm contribute
to the performance gain, with blocking the loops being particularly crucial.

An important extension to our work would be validating our approach on
larger and more complex environments. It would be particularly important to
do this in environments with continuous states, where the definition of a loop is
less obvious and we would need to properly tune the threshold 7. It would also
be interesting to experiment on non-stationary environments that keep changing
during test, where mechanisms like reusing the previous planning tree could be
less effective or even detrimental if we do not properly incorporate information
about the novel changes. This would address more realistic situations like traffic
jams, where the agent needs to quickly adapt to the behavior of the other cars.

Finally, our approach assumes a deterministic and fully-observable environ-
ment. In order to make the algorithm applicable to more complex real-world
challenges, it would be important to extend the framework to deal with stochas-
tic and partially observable environments.

Acknowledgments. We acknowledge the use of computational resources of the Delft-
Blue supercomputer, provided by Delft High Performance Computing Centre
(https://www.tudelft.nl/dhpc). This work was partially funded by the Dutch Re-
search Council (NWO) project Reliable Out-of-Distribution Generalization in Deep
Reinforcement Learning with project number OCENW.M.21.234. This research has
also received funding from the KU Leuven Research Funds (C14,/24/092).

Disclosure of Interests. The authors have no competing interests to declare
that are relevant to the content of this article.

References

1. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed
bandit problem. Machine Learning 47, 235-256 (05 2002). https://doi.org/10.
1023/A:1013689704352

2. Bellman, R.: Dynamic Programming. Princeton University Press, Princeton, NJ
(1957)

3. Bellman, R.: A markovian decision process. Journal of Mathematics and Mechanics
6(5), 679-684 (1957)

4. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J.,
Zaremba, W.: Openai gym. https://arxiv.org/abs/1606.01540 (2016), arXiv
preprint arXiv:1606.01540

5. Coulom, R.: Efficient selectivity and backup operators in monte-carlo tree search.
vol. 4630 (05 2006). https://doi.org/10.1007/978-3-540-75538-8_7

6. Glorot, X., Bordes, A., Bengio, Y.: Deep sparse rectifier neural networks. In: Pro-
ceedings of the Fourteenth International Conference on Artificial Intelligence and
Statistics (AISTATS). pp. 315-323 (2011), http://proceedings.mlr.press/v15/
glorotlla/glorotlla.pdf

7. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization (2017), https:
//arxiv.org/abs/1412.6980

https://www.tudelft.nl/dhpc
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352
https://doi.org/10.1023/A:1013689704352
https://arxiv.org/abs/1606.01540
https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.1007/978-3-540-75538-8_7
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Making AlphaZero Robust to Environment Changes 15

Kocsis, L., Szepesvari, C.: Bandit based monte-carlo planning. In: Fiirnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) Machine Learning: ECML 2006. pp. 282-293.
Springer Berlin Heidelberg, Berlin, Heidelberg (2006)

Konda, V., Tsitsiklis, J.: Actor-critic algorithms. In: Solla, S., Leen, T.,
Miiller, K. (eds.) Advances in Neural Information Processing Systems. vol. 12.
MIT Press (1999), https://proceedings.neurips.cc/paper_files/paper/1999/
file/6449f44a102fde848669bdd9eb6b76fa-Paper . pdf

Lan, L.C., Zhang, H., Wu, T.R., Tsai, M.Y., Wu, I.C., Hsieh, C.J.: Are alphazero-
like agents robust to adversarial perturbations? (2022), https://arxiv.org/abs/
2211.03769

Min, J.T.C., Motani, M.: Brick tic-tac-toe: Exploring the generalizability of alp-
hazero to novel test environments (2022), https://arxiv.org/abs/2207.05991
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, 1., Wierstra, D.,
Riedmiller, M.: Playing atari with deep reinforcement learning (2013), https://
arxiv.org/abs/1312.5602

Moerland, T.M., Broekens, J., Plaat, A., Jonker, C.M.: Monte carlo tree search for
asymmetric trees (2018), https://arxiv.org/abs/1805.09218

Pettet, A., Zhang, Y., Luo, B., Wray, K., Baier, H., Laszka, A., Dubey, A.,
Mukhopadhyay, A.: Decision making in non-stationary environments with policy-
augmented search (2024), https://arxiv.org/abs/2401.03197

Rosin, C.: Multi-armed bandits with episode context. Annals of Mathematics
and Artificial Intelligence 61, 203-230 (09 2010). https://doi.org/10.1007/
s10472-011-9258-6

Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Nature 323(6088), 533-536 (1986). https://doi.org/10.
1038/323533a0

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S.,
Guez, A., Lockhart, E., Hassabis, D., Graepel, T., Lillicrap, T., Silver, D.: Master-
ing atari, go, chess and shogi by planning with a learned model. Nature 588(7839),
604-609 (Dec 2020). https://doi.org/10.1038/s41586-020-03051-4} http://
dx.doi.org/10.1038/s41586-020-03051-4

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms (2017), https://arxiv.org/abs/1707.06347

Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman,
S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T.P., Leach,
M., Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of go with
deep neural networks and tree search. Nature 529, 484-489 (2016), https://api.
semanticscholar.org/CorpusID: 515925

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot,
M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., Hassabis,
D.: Mastering chess and shogi by self-play with a general reinforcement learning
algorithm (2017), https://arxiv.org/abs/1712.01815

Towers, M., Terry, J.K., Kwiatkowski, A., Balis, J.U., de Cola, G., Deleu, T.,
ao, M.G., Kallinteris, A., KG, A., Krimmel, M., Perez-Vicente, R., Pierré, A.,
Schulhoff, S., Tai, J.J., Shen, A.T.J., Younis, O.G.: Gymnasium. https://zenodo.
org/record/8127025 (March 2023), zenodo

Vanseijen, H., Sutton, R.: A deeper look at planning as learning from replay. In:
Proceedings of the 32nd International Conference on Machine Learning. Proceed-
ings of Machine Learning Research, vol. 37, pp. 2314-2322. PMLR (2015)

https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://arxiv.org/abs/2211.03769
https://arxiv.org/abs/2211.03769
https://arxiv.org/abs/2207.05991
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1805.09218
https://arxiv.org/abs/2401.03197
https://doi.org/10.1007/s10472-011-9258-6
https://doi.org/10.1007/s10472-011-9258-6
https://doi.org/10.1007/s10472-011-9258-6
https://doi.org/10.1007/s10472-011-9258-6
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/s41586-020-03051-4
https://doi.org/10.1038/s41586-020-03051-4
http://dx.doi.org/10.1038/s41586-020-03051-4
http://dx.doi.org/10.1038/s41586-020-03051-4
https://arxiv.org/abs/1707.06347
https://api.semanticscholar.org/CorpusID:515925
https://api.semanticscholar.org/CorpusID:515925
https://arxiv.org/abs/1712.01815
https://zenodo.org/record/8127025
https://zenodo.org/record/8127025

16 I. Tamassia and W. Bohmer

23. Watkins, C.J.C.H., Dayan, P.: Q-learning. Machine Learning 8(3), 279-292 (1992).
https://doi.org/10.1007/BF00992698, https://doi.org/10.1007/BF00992698

24. Williams, R.J.: Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine Learning 8(3), 229-256 (1992). https://doi.org/
10.1007/BF00992696, https://doi.org/10.1007/BF00992696

A Influence of the C Exploration Parameter

The standard AZ planning only requires choosing the C hyperparameter of
PUCT/UCT at deployment, since the neural network is no longer updated. Note
that the value for C' chosen during training does not necessarily represent the
optimal choice at deployment. A higher value might be more useful during train-
ing, where exploration is strictly necessary, while a lower value at deployment
can be a better choice if the prior estimates are reliable. As this is not necessar-
ily true in our case due to the changed test configurations, we want to tune the
parameter to compare our EDP algorithm to the best performance of the AZ
baselines that we can achieve. We do this for both AZ+PUCT and AZ+UCT

baselines:

— The tuning of C' for AZ+PUCT and AZ+UCT on MAZE test configurations

with MAZE LR training is shown in
— The tuning of C for AZ+PUCT and AZ+UCT on MAZE test configurations

with MAZE RL training is shown in

—e— c=0.0 —e— c=0.1 c=0.5 c=1.0 c=2.0 —e— ¢=100.0 e Optimal
PUCT - MAZE_LR - MAZE_LL PUCT - MAZE_LR - MAZE_RR PUCT - MAZE_LR - MAZE_RL
0.4
v /—/
- o ————e——
0.0
8 16 32 64 8 16 32 64 8 16 32 64
UCT - MAZE_LR - MAZE_LL UCT - MAZE_LR - MAZE_RR UCT - MAZE_LR - MAZE_RL

o
IS

Mean Discounted Return Mean Discounted Return

0.2 3
= —_y
— ————
.‘.__/.’/4 .\0\.\.
0.0
8 16 32 64 8 16 32 64 8 16 32 64

Planning Budget (log scale)

Fig. 8. Influence of the C' parameter on AZ baselines in MAZE test configurations with
MAZE_LR training. A darker line color indicates a lower value of C. The label POL
- MAZE X — MAZE Y on top of each plot indicates training on MAZE X and
testing on the MAZE Y with selection policy POL.

https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992698
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696
https://doi.org/10.1007/BF00992696

Making AlphaZero Robust to Environment Changes 17

—e— c=0.0 —e— c=0.1 c=0.5 c=1.0 c=2.0 —e— ¢c=100.0 Optimal
c PUCT - MAZE_RL - MAZE_LL PUCT - MAZE_RL - MAZE_RR PUCT - MAZE_RL -» MAZE_LR
3
@
* 04
o
3
c
3
go02
a
[a]
c
g 0.0
= 8 16 32 64 8 16 32 64 8 16 32 64
c UCT - MAZE_RL - MAZE_LL UCT - MAZE_RL -» MAZE_RR UCT - MAZE_RL -» MAZE_LR
3
@
g o4 /’l
3 | — = Z
) P P)
g o/ ¢
go0.2
a
[a]
c e o—* —— po——n >
© 0.0 —
= 8 16 32 64 8 16 32 64 8 16 32 64

Planning Budget (log scale)

Fig. 9. Influence of the C parameter on AZ baselines in MAZE test configurations with
MAZE_RL training. A darker line color indicates a lower value of C. The label POL
- MAZE X — MAZE Y on top of each plot indicates training on MAZE X and
testing on MAZE Y with selection policy POL.

We can see how varying C' influences the performance by a considerable margin,
with the best results achieved with low values of the parameter (0, 0.1). This
confirms our belief that being greedy can be surprisingly convenient when the

test environment changes, as conjectured in [subsection 3.1

B Training Details and Hyperparameters

In this section, we detail our AZ training setting, which we used to obtain the
trained policy-value neural network necessary for deploying both the baseline AZ
agent and the novel EDP agent. The utilized hyperparameters are reported in
Moreover, all the necessary source code for performing training, as well
as our pre-trained weights, are publicly available at the associated [repository.

The NN training is carried out by alternating three phases, with a full cycle
constituting one of multiple iterations.

In the sampling phase, the agent collects sample_size episodes by planning
and acting in the environment using its current estimators vy and my. Actions
are drawn from the (stochastic) evaluation policy Teval, and Dirichlet noise is
added to the root’s prior policy logits to increase exploration. Episodes end at
terminal states or after max_ep_len steps. No parameter updates occur; episodes
are stored in a replay buffer of size buffer_size. Each trajectory T is stored as
a tuple of sequences:

T = ({st}izo {aeiZ0 {re =0 {m }1Z0) (4)

https://github.com/TheEmotionalProgrammer/az-generalization

18 I. Tamassia and W. Bohmer

Category Parameter MAZE LRMAZE RL
Environment max_ep_len 200 200
disc_factor 0.95 0.95
iterations 100 150
Training learning_epochs 4 4
sample_size 6 6
buffer_size 90 90
batch_size 22 22
learning_rate 0.001 0.001
optimizer Adam Adam
eval_period 10 10
Loss value_weight 0.7 0.7
policy_weight 0.3 0.3
n_steps 2 2
hidden_size 64 64
Neural Network|hidden_num 2 2
activation ReLU ReLU
. planning_budget 64 64
Planning c 05 05
dir_eps 0.4 0.4
dir_alpha 2.5 2.5

Table 1. Training parameters employed for the MAZE LR and MAZE _RL grid-world

environments.

where [is the final timestep of the trajectory and m; = meyai(s¢)-

During learning, we run learning_epochs epochs. At each epoch, we sam-
ple batch_size episodes uniformly from the buffer to compute value and policy
losses (details in [subsection B.I). The optimizer (Adam [7]) updates the net-
work parameters according to the chosen learning_rate.

In the evaluation phase (run periodically, every eval_period iterations),
the policy is tested deterministically (argmax actions) without Dirichlet noise or
parameter updates. We run evaluation episodes up to length max_ep_len and
report average discounted and undiscounted returns. Training may be stopped
early if performance is already near-optimal.

B.1 Loss Computation

The AlphaZero loss is computed over a minibatch of m trajectories B = (Ty, ..., Tin)
sampled from the replay buffer as:

L,,(B)=aLy(B)+ B8 Lp(B)

where a, 8 are weighting hyperparameters (value_weight and policy_weight
in , Ly is the value loss and Lp is the policy loss.

The value loss Ly is defined as the mean squared error between the predicted
state values and the n-step targets, averaged over all the m trajectories in the

Making AlphaZero Robust to Environment Changes 19

minibatch:

Ly (B) = 3~ V(T ls) = ya T

where:

— vg(T}[s]) is the vector of predicted values for each state s; in T}, such that:
vo(T;[s])[t] = vo(s:)

— yn(Tj) is the vector of n-step value targets for the same states, computed
as:

n—1
yn(T5)[t] = Z Yirpri 9" Vo (Stan) - (1 — term(Ty, ¢ + n))
i=0

where term(7Tj,t+n) is an indicator function for whether the episode termi-
nates before t+n. In the n_steps parameter specifies the n used in
the bootstrapped n-step value loss, while disc_factor corresponds to the
discount factor ~.

The policy loss Lp is the average cross-entropy between the policy distribu-
tions predicted by the neural network and the target distributions collected via
AZ planning:

Lo(B) = s 3 3 3 —ml@)log mo(alse)

cA

<.
Il
—
~
<$
<
Il
—
-
Il
o
IS

B.2 State Embeddings

The grid-world environments described in were built as custom
adaptations of the FrozenLake Gym environment, ensuring compatibility with

the standard Gym/Gymnasium API [4] [21]. In Gym, observations are given as
a discrete index d, which can be mapped to 2D coordinates as:

d
(z,y) = ({ J ,d mod ncols>
ncols

where ncols denotes the grid width (equal to the height in our square configura-
tions). This 2D coordinate vector is used as input to the neural network.

B.3 Neural Network Architecture

Since the input state representations are simple vectors in our GridWorld envi-
ronment, we adopt a standard Multi-Layer Perceptron (MLP) architecture [16].
The network features two output heads: one for the value and one for the policy,

20 I. Tamassia and W. Bohmer

{7

\
L E
! |
! |
[|
! |
Y = o X | oo H X ‘)[sonw\x}ﬂ'—)

!]

\

M o i e e e G e

obs EMBEDDER

g

Fig. 10. MLP architecture with a variable number of hidden layers H. The X' block
represents a sum and the o block an activation function (e.g., ReLU). The network
outputs a value v through the value head and a probability distribution 7 through the
policy head.

with the latter passed through a softmax. A visualization of the architecture is
shown in

The number of hidden layers H corresponds to the hidden_num parameter,
while hidden_size defines the neurons per layer. The activation function is
always ReLU [6] in our experiments.

B.4 Planning Parameters

The planning_budget defines how many node expansions AZ can perform dur-
ing planning before selecting an action in the real environment, while ¢ corre-
sponds to the selected C' exploration parameter of the selection policy.

To further increase exploration during training, Dirichlet noise 1 ~ Dir(«) is
added to the prior policy at the root node zq as:

g (alro) = (1 — €)mo(alzo) + €,

where € is a mixing parameter. The employed values for these parameters are
reported in as dir_alpha and dir_eps.

	Improving Robustness of AlphaZero Algorithms to Test-Time Environment Changes

