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ABSTRACT

Designing an unsupervised image denoising approach in practical applications is
a challenging task due to the complicated data acquisition process. In the real-
world case, the noise distribution is so complex that the simplified additive white
Gaussian (AWGN) assumption rarely holds, which significantly deteriorates the
Gaussian denoisers’ performance. To address this problem, we apply a deep neu-
ral network that maps the noisy image into a latent space in which the AWGN
assumption holds, and thus any existing Gaussian denoiser is applicable. More
specifically, the proposed neural network consists of the encoder-decoder struc-
ture and approximates the likelihood term in the Bayesian framework. Together
with a Gaussian denoiser, the neural network can be trained with the input image
itself and does not require any pre-training in other datasets. Extensive exper-
iments on real-world noisy image datasets have shown that the combination of
neural networks and Gaussian denoisers improves the performance of the original
Gaussian denoisers by a large margin. In particular, the neural network+BM3D
method significantly outperforms other unsupervised denoising approaches and is
competitive with supervised networks such as DnCNN, FFDNet, and CBDNet.

1 INTRODUCTION

Noise always exists during the process of image acquisition and its removing is important for image
recovery and vision tasks, e.g., segmentation and recognition. Specifically, the noisy image y is
modeled as y = x+ n, where x denotes the clean image, n denotes the corrupted noise and image
denoising aims at recovering x from y. Over the past two decades, this problem has been extensively
explored and many works have been proposed.

Among these works, one typical kind of model assumes that the image is corrupted by additive
white Gaussian noise (AWGN), i.e., n ∼ N (0, σ2I) where N (0, 1) is the standard Gaussian
distribution. Representative Gaussian denoising approaches include block matching and 3D fil-
tering (BM3D) (Dabov et al., 2007b), non-local mean method (NLM) (Buades et al., 2005), K-
SVD (Aharon et al., 2006) and weighted nuclear norm minimization (WNNM) (Gu et al., 2014),
which perform well on AWGN noise removal. However, the AWGN assumption seldom holds in
practical applications as the noise is accumulated during the whole imaging process. For example,
in typical CCD or CMOS cameras, the noise depends on the underlying context (daytime or night-
time, static or dynamic, indoor or outdoor, etc.) and the camera settings (shutter speed, ISO, white
balance, etc.). In Figure 1, two real noisy images captured by Samsung Galaxy S6 Edge and Google
Pixel smartphones are chosen from Smartphone Image Denoising Dataset (SIDD) (Abdelhamed
et al., 2018) and three 40×40 patches are chosen for illustration of noisy distribution. It is clear that
real noise distribution is content dependent and noise in each patch has different statistical proper-
ties which can be non-Gaussian. Due to the violation of the AWGN assumption, the performance of
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Figure 1: Two real noisy images. (a) Clean images. (b) Noisy Images. (c) Noisy distribution in
red, green and yellow patches. (d) BM3D results (PSNR: 26.55 (top) and 29.41 (bottom)). (e)
NN+BM3D (PSNR: 27.53 (top) and 30.05 (bottom)).

the Gaussian denoiser deteriorates significantly (Figure 1 (d)). Thus, it is crucial to characterize the
noise distribution and adapt the noise models to the denoiser in real-world image denoising.

In recent years, deep learning based methods have achieved remarkable performance with careful ar-
chitecture design, good training strategies, a large number of noisy and clean image pairs. However,
there are two main drawbacks of these approaches from the perspective of practical applications.
One is the high dependency on the quality and the size of the training dataset. Collecting such im-
age pairs is time-consuming and requires much of human efforts, especially when the labeling needs
deep domain knowledge such as medical or seismic images. The very recent deep learning methods
including Noise2Noise (N2N) (Lehtinen et al., 2018), Noise2Void (N2V) (Krull et al., 2019a) and
Noise2Self (N2S) (Batson & Royer, 2019) have relaxed the dataset requirement and can be trained
on organized/un-organized noisy and noisy image pairs. Nevertheless, to guarantee the performance,
these networks need to be pre-trained with a large number of images to cover sufficiently many local
patterns, and thus they are not cost-effective. Therefore, to reduce the dependency of the training
set, single-image based image denoising approaches deserved to be studied and have both practical
and scientific value. It is worth mentioning that a recent unsupervised learning work (Ulyanov et al.,
2018) uses a deep image prior to the general image recovery problem but its denoising results are
inferior to some typical Gaussian denoisers, e.g., BM3D. The other drawback is the generalization
ability of a trained network. When the noisy distribution is complicated and not contained in the
training set, the results of the deep learning method can be deteriorated significantly, even worse
than non-learning based methods. To alleviate this problem, some recent works are proposed by
further consideration of noise estimation in the network design, e.g., Guo et al. (2019); Yue et al.
(2019); Zhang et al. (2017). Despite their good performance in blind Gaussian denoising (Guo et al.,
2019; Zhang et al., 2017) and real-world denoising problem (Yue et al., 2019), a large number of
noisy and clean image pairs are needed and the generalization problem remains when the imaging
system is complicated. Very recently, a single image based method has been proposed in (Quan
et al., 2020) by developing a novel dropout technique for image denoising. Thus, unsupervised deep
learning approaches with accurate noise models are important for solving real-world image denois-
ing problems, yet current solutions are unsatisfactory. Such approach deserves to be studied and is a
challenging problem as it needs a good combination of traditional methods and deep learning based
methods such that the benefits of both methods are fully explored.

1.1 THE SUMMARY OF IDEAS AND CONTRIBUTIONS

Motivated by the above analysis, the goal of this paper is to propose an unsupervised deep learning
method that boosts the performance of existing Gaussian denoisers when solving real-world image
denoising problems. The basic idea is to find a latent image z associated with the input noisy
image y such that z|x satisfies the AWGN assumption, and thus we can obtain the clean image x
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Figure 2: The workflow of our method. Middle arrows indicate the alternating optimization between
network training and Gaussian denoising in latent space.

from z by any existing Gaussian denoiser. To find the appropriate latent representation, we propose
a neural network (NN) based approach that builds up the mapping between the noisy image y and
latent image z with an encoder-decoder structure. By applying the Gaussian denoiser in the latent
space, we alternatively update the NN and the denoised image which does not need the other training
samples. Figure 2 illustrates the workflow of the proposed approach.

Also, this idea can be formulated under the classical maximum a posterior (MAP) framework which
consists of a likelihood term and a prior term. Building a proper likelihood term requires an accurate
estimation of the noise distribution. Although the accurate noise distribution is difficult to get, an
evidence lower bound (ELBO) can be analytically derived for approximating the likelihood from
below using variational auto-encoder (VAE) (Kingma & Welling, 2013). This ELBO term gives the
loss function for the encoder and decoder networks that are maps between noisy image and latent
image. From the above derivation, we arrive at a model

min
x,F,G

f(x,y,F ,G) +R(x), (1)

where x is the clean image, y is the input noisy image, F ,G are decoder and encoder maps param-
eterized by NNs, f is the loss from ELBO and R(x) is the regularization term. Model (1) can be
minimized by the alternative direction method of multiplier (ADMM) which alternatively updates
networks and the clean image estimation x. Using Plug-and-Play technique (Venkatakrishnan et al.,
2013), updating x can be replaced by any Gaussian denoiser. Thus, by fully exploiting the benefits
of deep neural networks and classic denoising schemes, the real-world image denoising can be im-
proved by a large margin as shown in Figure 1(e). More importantly, training the proposed networks
only uses the noisy image itself and does not need any pre-training. In summary, we list our main
contributions as follows.

• We propose an effective approach that combines the deep learning method with traditional
methods for unsupervised image denoising. Thanks to the great expressive power of deep
neural networks, the complex noise distribution is mapped into a latent space in which the
AWGN assumption tends to hold, and thus better results are obtained by applying existing
Gaussian denoiser for latent images.

• Instead of a heuristic loss design, the proposed NN approximates the likelihood in the clas-
sic Bayesian framework, which gives clear interpretations of each loss term. Meanwhile,
compared to many existing deep learning methods, our model is only trained on a single
image, which significantly reduces the burden of data collection.

• Extensive numerical experiments on real-world noisy image datasets have shown that the
NN boosts the performance of the existing denoisers including NLM, BM3D and DnCNN.
In particular, the results of NN+BM3D are competitive with some supervised deep learning
approaches such as DnCNN+, FFDNet+, CBDNet.
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2 RELATED WORK

There are numerous works in image denoising. Here, we review the works related to the non-
learning and learning approaches for real-world image denoising.

2.1 NON-LEARNING BASED APPROACHES

Non-learning approaches are mainly based on the MAP framework that contains a data fidelity and
a regularization term. Many works have been proposed to improve the regularize term, e.g., spar-
sity based methods (Rudin et al., 1992; Perona & Malik, 1990), low rank prior (Dong et al., 2012b;
Gu et al., 2014) and non-local methods (Buades et al., 2005; Dabov et al., 2007a). Among these
methods, BM3D (Dabov et al., 2007a) is one of the top methods. There are several other works
related to the construction of data fidelity by modeling the complex noise distribution, e.g., Lebrun
et al. (2015a); Nam et al. (2016); Xu et al. (2017); Zhu et al. (2016). The correlated Gaussian dis-
tribution (Lebrun et al., 2015a) and Mixture of Gaussian (Zhu et al., 2016; Nam et al., 2016) are
used to approximate the unknown noise distribution. In Xu et al. (2017), different noise statistics
are estimated in different channels without the consideration of the content dependent noise. Re-
cently, Amini et al. (2020) proposed a Gaussianization method for gray scale OCT images. However,
this method is not applicable for real-world image denoising tasks as natural images are colorful and
the noise distribution is much more complicated than that in OCT images. Overall, due to the com-
plexity of real-world noise, the performance of these approaches is unsatisfactory and needs to be
improved.

2.2 LEARNING BASED APPROACHES

The learning based approaches can be classified into two groups: single-image based methods and
dataset based methods. Typical single-image based approaches are sparse coding methods Aharon
et al. (2006); Bao et al. (2015); Xu et al. (2018b). In Xu et al. (2018b), the noise in each channel is
estimated and followed by a weighted sparse coding scheme. In recent years, as the appearance of
real image denoising datasets including CC (Nam et al., 2016), PolyU (Xu et al., 2018a), DND (Plotz
& Roth, 2017) and SIDD (Abdelhamed et al., 2018), deep neural networks including Guo et al.
(2019); Yu et al. (2019); Zhang et al. (2017); Zhou et al. (2019); Yue et al. (2019) have shown
promising results on these datasets. However, these networks require many noisy/clean training pairs
which limit their practical applications especially when the labeling work needs domain experts.
Recently, the deep learning approaches (Krull et al., 2019a;b; Batson & Royer, 2019; Laine et al.,
2019; Lehtinen et al., 2018) are proposed and trained with organized or unorganized noisy image
pairs. To guarantee a satisfactory performance, these methods still need many training pairs such
that sufficiently many local patterns are covered. Compared to the above deep learning approaches,
our method is a single image based method which does not need training samples or pre-training
from other datasets.

3 OUR METHODOLOGY

This section starts with the derivation of our model and is followed by the detailed optimization
techniques that incorporate any existing Gaussian denoiser.

3.1 THE MODEL FORMULATION

Let y ∈ RN be the noisy image whereN = Height×Width×3. The classic MAP framework aims
at maximizing the posterior distribution p(x|y) formulated as the following optimization problem:

max
x

ln p(x|y) ∝ max
x

ln p(y|x) + ln p(x) = max
x

ln p(y|x)− λR(x). (2)

The term p(x) is the prior which represents the internal statistics of natural images. One common
choice is p(x) ∝ exp(−λR(x)) where R(x) is a regularization function. The term p(y|x) is the
likelihood that models the uncertainty of the observed image, i.e., y−x ∼ p(n) where p(n) denotes
the noise distribution. In practice, the noise distribution is complex and it is only possible to find an
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approximation. Following the VAE approach (Kingma & Welling, 2013), the likelihood p(y|x) has
a lower bound, i.e.,

ln p(y|x) = ln

∫
p(y, z|x)dz = ln

∫
q(z|y)p(y, z|x)

q(z|y)
dz ≥

∫
q(z|y) ln p(y, z|x)

q(z|y)
dz

= Eq(z|y) ln p(y|z,x)−KL(q(z|y)||p(z|x)) := ELBO,

where z is the latent image, q is the distribution of the latent image z conditioned on the noisy
image y, KL denotes the Kullback–Leibler (KL) divergence and the ELBO stands for the evidence
lower bound. In practice, we can construct a tractable ELBO with high expressive power, which
motivates the usage of NNs.

The proposed NN consists of an encoder net G and a decoder net F that construct the mappings
between the noisy image y and the latent image z. Suppose the latent image z is the Gaussian
corruption of the clean image x with strength σ, i.e., z|x ∼ N (x, σ2I) whereN (0, I) is the standard
Gaussian distribution. By choosing p(y|z,x) and q(z|y) properly, the next proposition gives a
closed form of the ELBO.

Proposition 1 Suppose z|x ∼ N (x, σ2I). Choosing y|z,x ∼ N (F(z), I) and q(z|y) =
N (G(y), I) where F ,G are decoder and encoder respectively, the ELBO is equal to

−1

2
Eε||F(G(y) + ε)− y||2 − 1

2σ2
||G(y)− x||2 + c, (3)

where ε ∼ N (0, I) and c is a constant depends on the image size.

The proof is given in appendix A.1. Let F and G be parameterized by θ1 and θ2 respectively, we
replace the likelihood in (2) by (3) which derives our model:

E(x, θ1, θ2) =
1

2
Eε||Fθ1(Gθ2(y) + ε)− y||2 + 1

2σ2
||Gθ2(y)− x||2 + λR(x). (4)

There is an expectation term in (4), which can be estimated by the Monte Carlo method. Following
the standard sampling approach in VAE (Kingma & Welling, 2013), we resample ε every time before
backpropagation in our experiments.

Remark 1 In our model, the basic assumption is that the latent image z is a white Gaussian per-
turbations of clean image x, i.e. z|x ∼ N (x, σ2I). Since z = Gθ2(y), the second term in (4) can
be seen as the transformed data fidelity. Moreover, the combination of those three terms can prevent
the encoder from degenerating into zero mapping or identity mapping.

3.2 MODEL OPTIMIZATION

Since the loss function (4) is non-convex and the regularizationR(x) can be complicated, we intro-
duce an auxiliary variable p and apply the ADMM scheme for solving (4). Concretely, define

f(x, θ1, θ2) =
1

2
Eε||Fθ1(Gθ2(y) + ε)− y||2 + 1

2σ2
||Gθ2(y)− x||2,

the loss function (4) is rewritten as

min
x,θ1,θ2

f(x, θ1, θ2) +R(p), s.t. p− x = 0. (5)

The augmented Lagrangian function of (5) is

Lρ(x, θ1, θ2,p) = f(x, θ1, θ2) +R(p) +
ρ

2
‖x− p+ q/ρ‖2 − ρ

2
‖q/ρ‖2,

where q is the dual variable and ρ > 0 is a chosen constant. ADMM consists of the following
iterates:

(xk+1, θk+1
1 , θk+1

2 ) = arg min
x,θ1,θ2

Lρ(x, θ1, θ2,pk,qk), (6)

pk+1 = argmin
p
Lρ(xk+1, θk+1

1 , θk+1
2 ,p,qk), (7)

qk+1 = qk + ρ(xk+1 − pk+1).
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Subproblem (6) is solved by alternating minimization, i.e., update the clean image estimation x and
the network parameters θ1 and θ2 alternatively. More specifically, the networks F and G are updated
by back propagation method with fixed x. Then, θ1 and θ2 are fixed, x is updated by solving the
minimization:

min
x

1

2σ2
||x− Gθ2(y)||2 +

ρ

2
‖x− p+ q/ρ‖2. (8)

The least square problem (8) has a closed form solution. Besides, subproblem (7) is equivalent to

min
p
R(p) + ρ

2
||p− xk+1 − qk/ρ||2.

Then pk+1 = ProxρR(x
k+1 + qk/ρ) where the proximal mapping is defined as ProxρR(z) =

argminxR(z)+ ρ
2‖z−x‖2. Motivated by this observation, the Plug-and-Play method (Venkatakr-

ishnan et al., 2013) is proposed by generalizing this proximal mapping to any existing denoising
scheme, i.e. pk+1 = T (xk+1 + qk/ρ). In our method, we choose the T as any existing Gaus-
sian denoiser, e.g., NLM (Buades et al., 2005), BM3D (Dabov et al., 2007a). Overall, the detailed
algorithm is given in Algorithm 1 where X denotes the Gaussian denoiser.

Remark 2 We initialized randomly for network parameters θ1 and θ2 without the usage of a pre-
trained model. In our method, p is initialized to y, and q is initialized to 0 so that x is a linear
combination of y and the latent space image at the early stage of this algorithm. Therefore, x is not
far from y in the beginning, which will lead to a correct convergence for our algorithm.

Algorithm 1 The Denoising Algorithm NN+X.
Input: Noisy image y, ρ, σ, η;
Output: Denoised image x;

Initial x0 = y, p0 = y, q0 = 0, and network parameters θ1, θ2.
for k = 0, 1, 2, 3, ...,M do

for i = 0, 1, 2, 3, ...,m do
Sample the ε from standard Gaussian distribution in (6).
Update θk,i+1

1 , θk,i+1
2 by using backpropagation (BP) algorithm for (6).

Update xk,i+1 =
(

1
σ2Gθk,i+1

2
(y) + ρpk − qk

)
/
(
ρ+ 1

σ2

)
.

end for
Set xk+1 = xk,m, θk+1

1 = θk,m1 , θk+1
2 = θk,m2 .

Update pk+1 by Gaussian Denoiser algorithm X to xk+1 + qk/ρ.
Update qk+1 = qk + ηρ(xk+1 − pk+1).

end for
return x = xN .

4 EXPERIMENTS

We evaluate the performance of our method on real noisy images in this section. All experiments
are evaluated in the sRGB space.

4.1 IMPLEMENTATION DETAILS

Both encoder network G and decoder network F are chosen as two standard 10 layers U-Nets (Ron-
neberger et al., 2015) implemented in Pytorch using Nvidia 1080TI or Nvidia 2080TI GPUs. ADAM
algorithm (Kingma & Ba, 2014) is adopted to optimize the network parameters and the learning rate
is set as 0.01. The number of epoch in network training is set as 500 and the parameters ρ, σ and η in
ADMM are set as 1, 5 and 0.5 respectively. The noise level is estimated from Donoho & Johnstone
(1994); Chen et al. (2015a). For an image with size 512 × 512 × 3, our method needs about 15
minutes with a single Nvidia 2080TI GPU.

4.2 EXPERIMENTS ON REAL-WORLD NOISE

We combine the NN with three existing Gaussian denoiser methods, including two traditional
methods (Non-local Mean (NLM) (Buades et al., 2005) and Block Matching and 3D Filtering
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Table 1: Averaged PSNR and SSIM on CC, PolyU and FMDD.
CC PolyU FMDD

PSNR SSIM PSNR SSIM PSNR SSIM
NLM 33.47 0.8463 35.80 0.9063 30.81 0.8051

VST+NLM 36.05 0.9285 37.56 0.9545 31.34 0.7633
NN+NLM 37.31 0.9522 37.87 0.9606 31.96 0.8213

BM3D 35.19 0.8580 37.40 0.9526 29.70 0.7516
VST+BM3D 36.44 0.9396 38.15 0.9638 32.71 0.7922
NN+BM3D 38.26 0.9606 38.74 0.9681 33.91 0.8872

DnCNN 33.86 0.8635 36.08 0.9161 30.64 0.7514
VST+DnCNN 33.20 0.8452 35.66 0.9066 32.19 0.7728
NN+DnCNN 35.02 0.9069 36.67 0.9435 32.41 0.7798

Noisy (29.86/0.7874) NLM (29.92/0.7900) BM3D (30.04/0.7925) DnCNN (30.17/0.7967)

Clean NN+NLM (33.49/0.8979) NN+BM3D (34.33/0.9190) NN+DnCNN (31.02/0.8356)

Figure 3: Visual results and PNSR/SSIM of image from CC.

(BM3D) (Dabov et al., 2007b)) and one pre-trained deep learning method (DnCNN) (Zhang et al.,
2017) from its official project website. We choose two nature real-world noisy image datasets named
as CC (Nam et al., 2016), PolyU (Xu et al., 2018a), and one real fluorescence microscopy dataset
named FMDD (Zhang et al., 2019) for testing the performance of our method in terms of PSNR
and SSIM. Besides, the Variance Stabilizing Transform (VST) method (Makitalo & Foi, 2012), a
traditional noisy transformation method, is chosen for comparison. We employ the noise estimation
method (Foi et al., 2008) to estimate the Poisson-Gaussian noise parameters for the VST method in
FMDD. In CC and PolyU, we evaluate different Poisson noise parameters (peak value, range from
10 to 10000) and select the best for whole datasets. There are 15 and 100 images in CC (Nam et al.,
2016) and PolyU (Xu et al., 2018a) datasets with the same cropped regions in their original papers.
In FMDD, we evaluate the performance on the mixed test set with raw images which is the same
setting as in Zhang et al. (2019).

Denoising results. The denoising results are evaluated using PSNR and SSIM, with built-in func-
tions in Python skimage package. The results are listed in Table 1 from which we have the following
observations: (a) Our model improves the performance of both three Gaussian denoiser by a large
margin on both two datasets. On average, the PSNR/SSIM values are increased by 2.35/0.0588,
2.87/0.0844 and 1.173/0.0331 for NLM, BM3D and DnCNN respectively, see Figure 3 for one
visual example from CC. (b) Comparing with the VST method, the existing Gaussian Denoisers
benefit more from the proposed method.

5 DISCUSSION

Validation of AWGN assumption of latent images. Let x,y, z be clean, noisy and latent images.
Denote n1 = y − x and n2 = z − x are the noise in image space and latent space respectively.
We visualize the distribution of n1 and n2 in Figure 4 using two images in Figure 1. It is obvious
that the noise distribution in latent space is more similar to a white Gaussian than in image space.
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(a) (b) (c) (d) (e)

Figure 4: (a) Noisy images with three selected patches. (b) Noisy distribution in image space. (c)
Noisy distribution after VST transformation. (d-e) Noisy distribution in latent space by NN+NLM
and NN+BM3D respectively.

Table 2: Comparison with supervised/unsupervised methods on CC.

Metric Supervised methods Unsupervised methods NN+BM3DDnCNN+ FFDNet+ CBDNet N2N NAC DIP?
PSNR 35.40 37.63 36.44 35.32 36.59 37.72 38.26
SSIM 0.9115 0.9555 0.9460 0.9160 0.9502 0.9531 0.9606

Moreover, define ai = Mean(ni) and σ2
i = Var(ni) for i = 1, 2 where Mean,Var are the mean

and variance operators respectively. To quantify the distance of between ni, i = 1, 2 and white
Gaussian distribution, we calculate the KL divergence between ni and N (ai, σ

2
i I) on CC dataset.

In image space, the KL divergence is 0.4701, while in latent space the KL divergence reduces to
0.3821, 0.2868 and 0.3636 for NN+NLM, NN+BM3D and NN+DnCNN respectively. We note the
noise distribution in latent space is closer to the Gaussian distribution than its in image space.

Comparison with supervised/unsupervised methods. Three blind image denoising networks in-
cluding DnCNN+(Zhang et al., 2017), FFDNet+ (Zhang et al., 2018), CBDNet (Guo et al., 2019)
and three unsupervised approaches including Noise2Noise (N2N) (Lehtinen et al., 2018), Deep Im-
age Prior (DIP?) (Ulyanov et al., 2018) (3000 iterations for 5 times average) and Noise-As-Clean
(NAC) (Xu et al., 2019) are chosen for comparison on CC datasets. FFDNet+ is a multi-scale exten-
sion of FFDNet (Zhang et al., 2018) and DnCNN+ is a color version of DnCNN and fine tuned with
the FFDNet+ results1. The denoising results are listed in Table 2. It is shown that NN+BM3D is
better than deep neural networks trained on a dataset and other unsupervised deep learning methods.

The capacity of decoder. The proposed model (4) has a trivial global minimum when assuming
(a) the decoder is a constant mapping, i.e. F(z) = y for all z; (b) G(y) = x = 0. We test the
capacity of the decoder used in our model by fitting the map between the constant image and the
noisy image, and the training loss versus iteration is reported in Figure 5 (a). Moreover, the average
training loss on PolyU dataset is 294.56, which shows that our decoder is not large enough and the
trivial minimum does not exist, see more explanation in appendix A.2.

Training stability. Four classic images including Kodim03 (red), Kodim02 (green), Lena (blue) and
Peppers (yellow) with noise level σ = 30 are used for testing the training stability of our method.
The PSNR value versus iteration number is reported in Figure 5 (b) and it shows that the PSNR
keeps increasing and is stable after a certain number of iterations.

Latent space evolution. One image in the introduction from SIDD dataset is used to show the latent
image evolution in our method. In particular, we evaluate NN+BM3D for 20 iterations and show

1The results of DnCNN+, FFDNet+ and CBDNet are from (Hou et al., 2019) and the results of N2N and
NAC are from (Xu et al., 2019).
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Figure 5: (a) is the training losses of our decoder using constant input for five images from PolyU.
(b) show PSNR value versus the number of iterations in NN+BM3D. (c), (d) and (e) are results for
different hyperparameters ρ, σ and η respectively.
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Figure 6: Evaluation of the latent representation in Algorithm 1 with NN+BM3D.

8 latent images and their patch noise distribution evolution in Figure 6. It is shown that the noise
distribution gradually changes from non-Gaussian to Gaussian.

Hyperparameter sensitivity. The sensitivity of hyperparameters are given in Figure 5 (c), (d) and
(e), where we change one of ρ, σ and η each time and fix the others as ρ = 1, σ = 5 and η = 0.5. It
can be observed that our method is not sensitive to different hyperparameters.

6 CONCLUSION

In this paper, we propose a NN based method that maps the complex noisy distribution in real-world
images into a latent space in which the AWGN assumption holds. Combined with any existing Gaus-
sian denoising approaches, it improves the denoising results by a large margin. More importantly,
this method does not require any training sample except the input noisy image itself. Extensive
results validate the rationale of the proposed network training scheme and show the advantages of
our method compared with existing representative approaches including learning and non-learning
based methods.
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A PROOF OF PROPOSITIONS 1

We show the derivation of Proposition 1 and give one theoretical explanation of the capacity of
decoder.

A.1 PROPOSITION 1

The ELBO in Proposition 1 is defined as Eq(z|y) ln p(y|z,x) − KL(q(z|y)||p(z|x)). Since z|x ∼
N (x, σ2I), y|z,x ∼ N (F(z), I) and q(z|y) = N (G(y), I). Assume the image size of x ism×n×1
for gray scale image, then the KL divergence of two Gaussian distribution is

KL(q(z|y)||p(z|x)) = Eq(z|y) ln q(z|y)− ln p(z|x)

=
mn

2
lnσ2 +

1

2
Eq(z|y)

(
−||z− G(y)||2 + 1

σ2
||z− x||2

)
=
mn

2
lnσ2 − mn

2
+

1

2σ2
Eq(z|y)||z− x||2

=
mn

2
lnσ2 − mn

2
+

1

2σ2
Eq(z|y)||z− G(y) + G(y)− x||2

=
mn

2
lnσ2 − mn

2
+

1

2σ2

(
mn+ ||G(y)− x||2

)
=
mn

2

(
lnσ2 − 1 +

1

σ2

)
+

1

σ2
||G(y)− x||2.

Using the reparameterization in (Kingma & Welling, 2013), z|y = G(y)+ ε where ε ∼ N (0, I), the
expectation term is

Eq(z|y) ln p(y|z,x) = −
mn

2
ln 2π − 1

2
Eq(z|y)||F(z)− y||2

= −mn
2

ln 2π − 1

2
Eε||F(G(y) + ε)− y||2

Then the ELBO = Eq(z|y) ln p(y|z,x)−KL(q(z|y)||p(z|x)) is

−1

2
Eε||F(G(y) + ε)− y||2 − 1

2σ2
||G(y)− x||2 − mn

2

(
ln 2π + lnσ2 − 1 +

1

σ2

)
,

and for RGB images the constant term becomes− 3mn
2

(
ln 2π + lnσ2 − 1 + 1

σ2

)
, thus Proposition 1

holds.

A.2 THE CAPACITY OF DECODER

Here we give an explanation regarding to capacity of decoder in the following proposition.

Proposition 2 Suppose x ∈ Rm×n×c is a constant image, i.e.

xi,j,k = xi′,j′,k, ∀i, i′ ∈ {1, 2, ...,m}, j, j′ ∈ {1, 2, ..., n}, k ∈ {1, 2, ..., c},

and F is a deep neural network that composted with convolution layers (with reflect/replicate
padding), down-sampling layers (with max/average pooling), and up-sampling layer (with bilin-
ear/nearest point interpolation) then F(x) is constant.

To simplify notations, we denote convolution layers as C, down-sampling layers as D, and up-
sampling layer as U , then we only need to show for constant input x ∈ Rm×n×c, C(x), D(x) and
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U(x) are constants. Assume C(x) = x̃ ∈ Rm′×n′×c′ , we need to show x̃i,j,k = x̃i′,j′,k. From the
dimension of x̃, there are c′ convolution kernels denote as Ki ∈ Rpi×qi×c, i = 1, 2, ..., c′, then

x̃i,j,k =
∑
l1,l2,l3

Kkl1,l2,l3xi− pk−1

2 +l1,j−
qk−1

2 +l2,l3

=
∑
l1,l2,l3

Kkl1,l2,l3xi′− pk−1

2 +l1,j′−
qk−1

2 +l2,l3

= x̃i′,j′,k,

so C(x) is constant. For down-sampling layer, since D(x)i,j,k = max{xi,j,k|∀i, j ∈ R} for max
pooling and D(x)i,j,k = 1

|R|
∑
i,j∈R xi,j,k for average pooling, whereR denote support of pooling

kernel. Since x is constant, then it is clear from above expression that P (x) is constant. Finally,
for up-sampling layer, since we assume bilinear/nearest point interpolation, then U(x)i,j,k depends
on the convex combination of {xi,j,k|∀i, j ∈ S}, where S denote the corresponding up-sampling
region of U(x)i,j,k. So if x is constant then the convex combination of S is constant, then we have
U(x) is constant. Thus proposition 2 holds.

The above proposition shows that the latent image can not be a constant image and thus the regular-
ization takes effects. Besides, the minimization problem is a non-convex problem which depends on
the initialization. In our experiments, we initialize x to be the input noisy image y and it empirically
converges to a reasonable good denoised image.

Table 3: Average PSNR/SSIM of denoised results on Set9 and BSD 68.
Datasets Methods σ = 25 σ = 50 σ = 75 σ = 100

BSD68

NLM 25.40/0.6281 21.27/0.4120 19.39/0.3092 18.52/0.2597
NN+NLM 27.19/0.7493 23.68/0.5663 21.48/0.4734 19.65/0.4329

BM3D 28.33/0.8029 24.86/0.6698 22.63/0.5808 20.77/0.5167
NN+BM3D 28.32/0.8040 24.91/0.6776 22.75/0.5896 20.90/0.5241

Set9

NLM 30.11/0.7876 25.98/0.6615 22.59/0.5620 20.35/0.4930
NN+NLM 30.27/0.7930 26.29/0.6761 22.77/0.5728 20.45/0.4959

BM3D 31.47/0.8406 27.85/0.7551 24.64/0.6834 21.96/0.6198
NN+BM3D 31.48/0.8415 27.98/0.7618 24.79/0.6937 22.06/0.6285

B EXPERIMENTS ON SYNTHETIC NOISE

Additive white Gaussian noise. Even though our method is designed for the real-world image
denoising, we evaluate the performance of this method on synthetic noises. We test two different
Gaussian denoising methods, NLM and BM3D. Two datasets are used, one is the Set 9 (Ulyanov
et al., 2018) with 9 classic color images and the other is BSD 68 (Krull et al., 2019a) with 68 gray-
scale images. We test four noisy levels: σ = 25, 50, 75, 100, and all noisy images are quantized into
8-bits for simulating the common JPG images. The results are given in Table 3 we find even though
the noise distribution is Gaussian, two denoising methods can benefit from our approach more or
less.

Poisson noise. For noise distribution which is significantly different from Gaussian, we test the
synthetic Poisson noise on CBSD 68 dataset with 68 color images by combining our method with
VST transformation. The results are given in Table 4, all noisy images are quantized into 8-bits.
We find that even though VST is a reliable transformation for the pure Poisson noise case, the
neural networks are still helpful for improving the VST method. For DnCNN, we find it sensitive
to Poisson noise, for Peak value equals to 5, the result of VST+DnCNN is 17.23/0.3767 and our
method (NN+VST+DnCNN) improves 0.60/0.0629 for it on average.

Table 4: Average PSNR/SSIM of Poisson denoising results on CBSD 68.
Peak Value 5 7 9 20

VST+BM3D 23.85/0.6792 24.86/0.7201 25.66/0.7490 27.99/0.8252
NN+VST+BM3D 24.07/0.6951 25.06/0.7340 25.82/0.7610 28.01/0.8313
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Table 5: Averaged PSNR/SSIM on CC, PolyU, DND, SIDD.
Datasets Methods

CC

WNNM NCSR TNRD DnCNN BM3D
35.77/0.9381 33.46/0.8591 36.61/0.9463 33.86/0.8635 35.19/0.8580
MCWNNM TWSC NC NI NN+BM3D
37.71/0.9542 37.81/0.9586 36.43/0.9364 35.49/0.9126 38.26/0.9606

PolyU

WNNM NCSR TNRD DnCNN BM3D
36.59/0.9247 36.40/0.9290 38.17/0.9640 36.08/0.9161 37.40/0.9526
MCWNNM TWSC NC NI NN+BM3D
38.51/0.9671 38.60/0.9685 36.92/0.9449 37.77/0.9570 38.74/0.9681

DND

WNNM NCSR TNRD DnCNN BM3D
34.67/0.8646 34.05/0.8351 33.65/0.8306 32.4296/0.79 34.51/0.8507
MCWNNM TWSC NC NI NN+BM3D

37.379/0.9294 37.96/0.9416 35.434/0.8841 35.1125/0.8778 37.10/0.9441

SIDD

WNNM NCSR TNRD DnCNN BM3D
25.78/0.809 – 24.73/0.643 23.66/0.583 25.65/0.685
MCWNNM TWSC NC NI NN+BM3D

– – – – 33.18/0.895

C EXPERIMENTS ON REAL WORLD NOISE

In this section, We compare the performance of NN+BM3D with other denoising method on
four real-world noisy image datasets named as CC (Nam et al., 2016), PolyU (Xu et al., 2018a),
DND (Plotz & Roth, 2017) and SIDD (Abdelhamed et al., 2018). we make a comprehensive
comparison study of our method with many existing representative image denoising methods, in-
cluding Weighted Nuclear Norm Minimization (WNNM) (Gu et al., 2014), Nonlocally Central-
ized Sparse Representation (NCSR) (Dong et al., 2012a), Trainable Nonlinear Reactive Diffusion
(TNRD) (Chen et al., 2015b), DnCNN (Zhang et al., 2017), Multi-channel Weighted Nuclear Norm
Minimization (MCWNNM) (Xu et al., 2017), Trilateral Weighted Sparse Coding (TWSC) (Xu et al.,
2018b), ”Noise Clinic” (NC) method (Lebrun et al., 2015a) and a commercial software Neat Image
(NI) (ABSoft, 2017). See Table 5 for the averaged PSNR/SSIM results. The results of comparison
methods in CC and PolyU datasets are from (Xu et al., 2018a) and their results of DND and SIDD
datasets are from their official project website.

Table 6: Comparison with supervised methods.
Datasets DnCNN+ FFDNet+ CBDNet NN+BM3D

DND 37.90/0.943 37.61/0.9415 38.05/0.9421 37.10/0.9441
SIDD – – 33.28/0.868 33.10/0.895

Table 7: Comparison with supervised/unsupervised methods on FMDD.

Metric Unsupervised Methods Supervised Method
VST+BM3D PURE-LET TWSC NN+BM3D DnCNN N2N

PSNR 32.71 31.95 31.64 33.91 34.88 35.40
SSIM 0.7922 0.7664 0.7787 0.8872 0.9063 0.9187

In addition, we compare the performance of NN+BM3D with Three top blind image denoising
networks including DnCNN+(Zhang et al., 2017), FFDNet+ (Zhang et al., 2018) and CBDNet (Guo
et al., 2019). According to the results in DND and SIDD benchmarks, the denoising results are listed
in Table 6. The symbol ”-” is used when the result of the corresponding method is not reported.

We also compare the performance of NN+BM3D with supervised/unsupervised methods in
FMDD dataset (Zhang et al., 2019). We compared with three unsupervised methods named as
VST+BM3D (Makitalo & Foi, 2012), PURE-LET (Luisier et al., 2010) and TWSC (Xu et al.,
2018b), two supervised methods DnCNN (Zhang et al., 2017) and N2N (Lehtinen et al., 2018)
which are retrained on the FMDD training set. The denoising results are listed in Table 7. Although
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Table 8: Averaged PSNR/SSIM of different architectures of encoder/decoder on CC dataset.
UNet D4 UNet D3 UNet D2

38.32/0.9609 37.89/0.9573 37.98/0.9581
UNet wo Skip D4 UNet wo Skip D3 UNet wo Skip D2

36.65/0.9499 37.37/0.9543 37.69/0.9555
R(C(64)-C(64)) R(C(32)-C(64)-C(32)) R(C(64)-C(128)-C(64))

38.34/0.9610 38.34/0.9609 38.35/0.9609

Table 9: Averaged PSNR/SSIM of NN+FFDNet on CC dataset.
Method DnCNN NN+DnCNN FFDNet FFDNet+ NN+FFDNet
PSNR 33.86 35.02 34.63 37.63 38.00
SSIM 0.8635 0.9069 0.8551 0.9555 0.9574

NN+BM3D is not as good as DnCNN and N2N which are specially refined in the dataset, it is better
than all unsupervised method in terms of PSNR and SSIM.

D ABLATION EXPERIMENTS

Different architectures of NN. Here we show the results of different choose of the architectures
of neural network. We evaluate our method with UNets of different downsample scales (denote
by D), with or without skip connection (denote by wo skip), and different CNNs, denote C(n) as
Convolution(n)-BatchNorm-ReLU, R(model)(x) = x + model(x). The results on CC dataset are
given in Table 8

NN+FFDNet. We replaced DnCNN with FFDNet, and the result on CC is given in Table 9, it is
shown that FFDNet benefits more significantly from our method and is better than the results of its
multi-scale version FFDNet+.

E VISUAL RESULTS ON REAL WORLD NOISE

We show visual results on real world noisy images in E.1 and real fluorescence microscopy images
in E.2. Moreover, ten real noisy images are captured by consumer cameras with ISO=3200 or 320,
similar to the CC dataset, we crop a 512 × 512 region in each image to evaluate the performance
NN+BM3D, see E.3.

E.1 VISUAL EXAMPLE OF CC, POLYU

We show visual results of ten noisy images from CC (Nam et al., 2016) and PolyU (Xu et al., 2018a)
datasets. BM3D (Dabov et al., 2007a), DnCNN (Zhang et al., 2017), NC (Lebrun et al., 2015b),
MCWNNM (Xu et al., 2017) and TWSC (Xu et al., 2018b) are evaluated for comparison. See CC’s
results in page 16, 17 and PolyU’s results in page 18, 19.

E.2 VISUAL EXAMPLE OF FMDD

Two images from FMDD Zhang et al. (2019) datasets are evaluated for visual comparisons. We
compared our approach with VST method (Makitalo & Foi, 2012), See page 20.

E.3 VISUAL EXAMPLES OF REAL IMAGE

Ten real noisy images are evaluated for visual comparisons. The results of three traditional methods
(BM3D (Dabov et al., 2007a), MCWNNM (Xu et al., 2017) and NC (Lebrun et al., 2015b)) and three
deep learning methods (VDN (Yue et al., 2019), DnCNN (Zhang et al., 2017) and FFDNet (Zhang
et al., 2018)) are shown here. See Figure 10 in page 21, 22, 23.
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(a) Noisy (b) BM3D (c) DnCNN (d) NC
34.93/0.8406 37.18/0.9113 35.73/0.8588 39.29/0.9536

(e) Ground Truth (f) MCWNNM (g) TWSC (h) NN+BM3D
41.15/0.9774 41.05/0.9831 42.63/0.9858

(a) Noisy (b) BM3D (c) DnCNN (d) NC
33.28/0.8996 34.60/0.9324 33.95/0.9112 35.57/0.9479

(e) Ground Truth (f) MCWNNM (g) TWSC (h) NN+BM3D
34.98/0.9469 35.34/0.9547 35.80/0.9555

(a) Noisy (b) BM3D (c) DnCNN (d) NC
33.88/0.8943 35.38/0.9360 34.21/0.9013 35.60/0.9399

(e) Ground Truth (f) MCWNNM (g) TWSC (h) NN+BM3D
35.37/0.9328 35.90/0.9328 37.32/0.9590

16



Published as a conference paper at ICLR 2021

(a) Noisy (b) BM3D (c) DnCNN (d) NC
34.81/0.8492 36.63/0.9065 35.39/0.8683 38.17/0.9360

(e) Ground Truth (f) MCWNNM (g) TWSC (h) NN+BM3D
38.30/0.9394 38.77/0.9418 39.28/0.9515

(a) Noisy (b) BM3D (c) DnCNN (d) NC
33.83/0.9175 35.170.9520 34.11/0.9223 35.57/0.9497

(e) Ground Truth (f) MCWNNM (g) TWSC (h) NN+BM3D
34.91/0.9475 35.13/0.9433 37.02/0.9679

Figure 7: Visual results and PNSR/SSIM of five noisy images from CC.
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(a) Noisy (b) BM3D (c) DnCNN (d) NC
36.79/0.9165 37.68/0.9442 36.83/0.9199 37.70/0.9373

(e) Ground Truth (f) MCWNNM (g) TWSC (h) NN+BM3D
38.42/0.9534 37.82/0.9269 38.95/0.9590

(a) Noisy (b) BM3D (c) DnCNN (d) NC
36.42/0.9198 37.39/0.9422 36.58/0.9227 37.34/0.9405

(e) Ground Truth (f) MCWNNM (g) TWSC (h) NN+BM3D
37.94/0.9501 37.47/0.9340 38.31/0.9538

(a) Noisy (b) BM3D (c) DnCNN (d) NC
36.88/0.9240 37.87/0.9474 37.06/0.9279 36.88/0.9240

(e) Ground Truth (f) MCWNNM (g) TWSC (h) NN+BM3D
38.43/0.9552 37.37/0.9273 38.80/0.9582

18



Published as a conference paper at ICLR 2021

(a) Noisy (b) BM3D (c) DnCNN (d) NC
34.60/0.8739 36.34/0.9325 35.08/0.8823 36.46/0.9349

(e) Ground Truth (f) MCWNNM (g) TWSC (h) NN+BM3D
36.39/0.9453 37.45/0.9730 38.08/0.9734

(a) Noisy (b) BM3D (c) DnCNN (d) NC
35.27/0.9125 36.30/0.9309 35.55/0.9151 35.72/0.9021

(e) Ground Truth (f) MCWNNM (g) TWSC (h) NN+BM3D
36.54/0.9365 35.09/0.8760 37.02/0.9382

Figure 8: Visual results and PNSR/SSIM of five noisy images from PolyU.
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(a) Noisy (b) NLM (c) BM3D (d) DnCNN
23.89/0.3413 31.53/0.7465 24.38/0.3659 24.33/0.3624

(e) VST+NLM (f) VST+BM3D (g) VST+DnCNN
23.92/0.3429 24.76/0.3859 24.56/0.3759

(h) Clean (i) NN+NLM (j) NN+BM3D (k) NN+DnCNN
32.04/0.7628 32.73/0.8062 24.85/0.3849

(a) Noisy (b) NLM (c) BM3D (d) DnCNN
25.62/0.3634 35.01/0.9128 25.97/0.3858 25.72/0.3699

(e) VST+NLM (f) VST+BM3D (g) VST+DnCNN
25.45/0.3635 26.36/0.4096 25.73/0.3700

(h) Clean (i) NN+NLM (j) NN+BM3D (k) NN+DnCNN
36.01/0.9186 32.87/0.8407 26.15/0.3901

Figure 9: Visual results and PNSR/SSIM of two noisy images from FMDD.
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(a) Noisy (b) BM3D (c) MCWNNM (d) NC

(e) VDN (f) DnCNN (g) FFDNet (h) NN+BM3D

(a) Noisy (b) BM3D (c) MCWNNM (d) NC

(e) VDN (f) DnCNN (g) FFDNet (h) NN+BM3D

(a) Noisy (b) BM3D (c) MCWNNM (d) NC

(e) VDN (f) DnCNN (g) FFDNet (h) NN+BM3D

(a) Noisy (b) BM3D (c) MCWNNM (d) NC

(e) VDN (f) DnCNN (g) FFDNet (h) NN+BM3D
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(a) Noisy (b) BM3D (c) MCWNNM (d) NC

(e) VDN (f) DnCNN (g) FFDNet (h) NN+BM3D

(a) Noisy (b) BM3D (c) MCWNNM (d) NC

(e) VDN (f) DnCNN (g) FFDNet (h) NN+BM3D

(a) Noisy (b) BM3D (c) MCWNNM (d) NC

(e) VDN (f) DnCNN (g) FFDNet (h) NN+BM3D

(a) Noisy (b) BM3D (c) MCWNNM (d) NC

(e) VDN (f) DnCNN (g) FFDNet (h) NN+BM3D
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(a) Noisy (b) BM3D (c) MCWNNM (d) NC

(e) VDN (f) DnCNN (g) FFDNet (h) NN+BM3D

(a) Noisy (b) BM3D (c) MCWNNM (d) NC

(e) VDN (f) DnCNN (g) FFDNet (h) NN+BM3D

Figure 10: Visual results for real-world image denoising.
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