Under review as a conference paper at ICLR 2024

GOOD BETTER BEST: SELF-MOTIVATED IMITATION
LEARNING FOR NOISY DEMONSTRATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Imitation Learning (IL) aims to discover a policy by minimizing the discrepancy
between the agent’s behavior and expert demonstrations. However, IL is suscep-
tible to limitations imposed by noisy demonstrations from non-expert behaviors,
presenting a significant challenge due to the lack of supplementary information
to assess their expertise. In this paper, we introduce Self-Motivated Imitation
LEarning (SMILE), a method capable of progressively filtering out demonstrations
collected by policies deemed inferior to the current policy, eliminating the need for
additional information. We utilize the forward and reverse processes of Diffusion
Models to emulate the shift in demonstration expertise from low to high and vice
versa, thereby extracting the noise information that diffuses expertise. Then, the
noise information is leveraged to predict the diffusion steps between the current
policy and demonstrators, which we theoretically demonstrate its equivalence to
their expertise gap. We further explain in detail how the predicted diffusion steps
are applied to filter out noisy demonstrations in a self-motivated manner and pro-
vide its theoretical grounds. Through empirical evaluations on MuJoCo tasks, we
demonstrate that our method is proficient in learning the expert policy amidst noisy
demonstrations, and effectively filters out demonstrations with expertise inferior to
the current policy.

1 INTRODUCTION

As a special case of sequential decision-making paradigm, Imitation Learning (Hussein et al., 2017)
differs from conventional Reinforcement Learning (RL) (Sutton & Bartol 2018)) by aiming to learn
policies purely from offline demonstrations without relying on explicit reward signals. IL algorithms
operate under the assumption that demonstrations are all drawn from expert/clean policies, hereinafter
also referred to as the optimal behavior policies , and training agents by imitating them is a promising
way to compensate for the unavailability of the reward function. The general goal of IL algorithms is
to train an agent to generate actions that match the expert’s behavior. For instance, Behavior Cloning
(BC) (Bain & Sammut, [1995)) aims to maximize the log-likelihood that the policy generates expert
trajectories. Generative Adversarial Imitation Learning (GAIL) (Ho & Ermonl |2016)) proposes to
utilize Generative Adversarial Nets (GAN) (Goodfellow et al.,|2014) to minimize the Jensen-Shannon
(JS) divergence between the agent and the expert through a discriminator that distinguishes expert
trajectories from generated trajectories.

Unfortunately, it is easier for non-expert demonstrators to obtain corrupt actions under the same state
as the expert, which is mainly caused by reasons like, in many real-world tasks, operating errors
made by the low expertise. This will consequentially result in non-expert/noisy demonstrations. In
the presence of those demonstrations, the agent may be misguided as it cannot distinguish right from
wrong, leading to compromised robustness and limited applicability. To address the issue, some
approaches have introduced additional annotations, like human preference or reward signal, to indicate
the expertise of the demonstrations (Brown et al., 2019; [Tangkaratt et al., |2020b). By including a
supervised auxiliary task of predicting the annotation, the agent can differentiate the expertise of
demonstrations. However, annotations that conform to human intuition may not necessarily reflect
the actual expertise of demonstrations, and in practice, such annotations may even be absent. Thus,
methodologies that rely on additional annotations are susceptible to the availability and accuracy
of annotations. It is preferable for the agent to automatically infer the expertise of demonstrations
without requiring additional guidance.

Under review as a conference paper at ICLR 2024

To address the aforementioned issue, we propose Self-Motivated Imitation LEarning (SMILE).
Inspired by how a human learns in a self-motivated manner, we view the agent as a beginner who
can initially absorb knowledge effortlessly. As the agent becomes more experienced, it instinctively
prioritizes acquiring more profound knowledge over revisiting previously learned concepts. This
self-motivated framework aligns with the principles of Self-Paced Learning (SPL) (Kumar et al.,
2010), encouraging models to choose samples that are more valuable for learning at each iteration.

Our proposed SMILE extends this idea by automatically identifying and filtering out demonstrations
inferior to the agent, enabling the agent to keep on imitating better demonstrations for improved
robustness. To accomplish this, we introduce a Policy-wise Diffusion framework, which models
a Markov chain of diffusion steps. The forward diffusion process entails the gradual addition of
random noise or perturbations to a policy to deteriorate its expertise. In theory, the more a policy is
diffused, the worse its expertise will be. Therefore, by constructing a conditioned Q-function that
considers both the noise information and the diffusion steps, we can quantify the distance between
any two policies along the Markov chain and further justify its rationality, enabling the agent to
exclude the samples from the dataset which are produced from a policy inferior to the current policy.
The reverse process of our Policy-wise Diffusion framework is used to generate the action given a
specific state. However, the long-step generation of the original diffusion model is known to incur
considerable time costs for decision-making. To address this issue, we have modified the reverse
process by training a policy that generates actions in a single step to approximate the outcome of the
original multi-step reverse process, thereby enabling the efficient application of SMILE in sequential
decision-making scenarios. Consequently, the entire policy learning process is accomplished in a
self-motivated manner.

Our experimental results on MuJoCo tasks (Todorov et al.,2012) demonstrate that SMILE is robust
against noisy demonstrations without the need for additional auxiliary information. Moreover, SMILE
outperforms and exhibits greater interpretability than other unsupervised methods. Interestingly,
SMILE achieves results comparable to methods that rely on reward signal for several tasks.

Contributions Our contributions can be summarized as follows:

* We propose a Policy-wise Diffusion framework that simulates the gradual degradation of
demonstration expertise through the forward process, thus enabling the agent to discern the
source that corrupts the expertise of demonstrations for self-motivated learning.

* We design a metric to evaluate the superiority of one policy over another by predicting its
diffusion steps and provide its theoretical underpinnings. This metric offers a solution that
selects more valuable demonstrations without relying on additional annotation.

* We adapt the denoising process of the diffusion model to mitigate the long-step generative
cost, thereby enabling the learned policy to be more practical for real-world applications.

2 PRELIMINARY

Notations We formulate a standard Markov Decision Process (MDP) as a tuple M =
(S, A, T,po,r,v,m), where S represents state space, A is the action space, T : S x A x S — [0, 1]
is the dynamic model, pg : S — [0, 1] represents the distribution of the initial state sp, 7 : S x. A — R
gives reward for a pair of state s ~ S and actiona ~ A, and 7 : S x A — [0, 1] is the policy
that selects an action at a state. The overall objective for a policy is to maximize the expectation of
the cumulative discounted return R for 7 = {(s,a), }_,, which is a trajectory of length N. R is

defined as: R(7) = ZnNzl Y1 (8n, Q).

Definition 2.1. Given two policies 7; and 75, their expertise are comparable to establish a partial-
order relationship between the expectations they collected, denoted as:

T X Mo & E.,—Nﬂ—l [R(T)] = IETNTrg [R(T)] (M

2.1 IMITATION LEARNING

Since the reward function is crucial to learning a value function in RL, its absence makes RL-based
methods inoperable. In comparison, IL is a type of algorithm that enables an agent to learn an expert

Under review as a conference paper at ICLR 2024

policy without the need for ground-truth reward feedback. Based on the assumption that expert
demonstrations contain the necessary information to guide a policy toward optimality, IL forces the
agent’s trajectories to match the expert demonstrations, which is formed as:

L(r) = min D(p" (s, a)||p" (s, a)),)

where p™ denotes the state-action density of the learned policy 7 and p” denotes that of the expert’s
policy. Classic IL algorithms, such as BC (Bain & Sammut, [1995)), use Mean Square Error (MSE)
or Maximum likelihood estimation (MLE) as the discrepancy function D to train the agent. Be-
sides, GAIL (Ho & Ermon, 2016) proposes to minimize the JS divergence of p™ and pE through
a discriminator that can distinguish the agent from the expert, leading to an equivalence to Inverse
Reinforcement Learning (Abbeel & Ng|, [2004) which learns a pseudo-reward function that gives a
high reward to the expert and a low reward to the agent. Recently, Diffusion BC (Pearce et al., [2023)
leverages the Diffusion Model (Sohl-Dickstein et al., |2015) to learn the transformation from the
expert action distribution to a standard Gaussian distribution and then generate actions by denoising,
which shows superiority in fitting the expert distribution. Unfortunately, this method assumes that
demonstrations are all drawn from expert policies, which is not robust against noisy demonstrations.

2.2 DIFFUSION MODEL

Diffusion Model (DM) (Sohl-Dickstein et al., [2015) is a kind of generative model that generates
samples by gradually transforming a pure noise (e.g., standard Gaussian noise) into a simple data
distribution. It is generally divided into two opposite processes. For the forward process of DM,
it perturbs a data point 2o ~ g(x) by a certain Markovian Diffusion Kernel according to the prior
simple distribution. For instance, the Gaussian Diffusion Kernel is defined as:

T

q(z1.7|m0) 1= HQ($t|$t—1), q(xe|zi—1) = N(xe51/1 = Brxi—1, Be), 3)

t=1

where x; represents the ¢-step perturbed data and 3; comes from a time-dependent variance schedule
which could either be learnable or fixed as constant (Ho et al., [2020; [Nichol & Dhariwal, [2021)).
When T is large enough, iterating this kernel would ultimately diffuse the data into the standard
Gaussian distribution, i.e., zp ~ N(0,I).

For the reverse process, it aims at recovering samples step by step, starting with a pure noise from
the simple distribution in the forward process, which is also called the denoising process. Likewise,
take the standard Gaussian distribution as an example:

T
po(zo:r) = p(ar) [[po(we1lze), polweilz:) = N(2o1; po(ae, 1), So(r,1)), @)

t=1

where 119 and Yy are the mean and the variance of the denoising model with 6 as their parameter.
Finally, the generative model is summarized in the form pg(zo) = [pe(xo.7)dx1.r and it practically
generates data by iterating the denoiser pg(x¢—_1|x¢).

DM is expected to generate data subject to g(z) after sufficient training. In detail, the original
training objective is to minimize the negative log-likelihood of pg(z):

min Eq[—log pe(xo)]- (5)

With the trained generative model py, diffusion models in every timestep of the reverse process could
make a noisy sample less noisy until it is denoised to a clean sample from ¢(z). However, the
generative quality is critically dependent on the timestep 7. DM generally demands a large 7" to
ensure the high quality of generated data. This time-quality dilemma remains a pain in DM.

Some research has incorporated DM into sequential decision-making problems (Janner et al.||2022;
Wang et al.| 2022} |Pearce et al., |2023)). However, they simply leverage it as a generator of actions
rather than exploring the appropriate approach of diffusion and generation in the sequential decision-
making paradigm. In addition, they all train their generators to fit expert distribution or use the reward
signal to assist, which indicates that their models are prone to fail under noisy demonstrations.

Under review as a conference paper at ICLR 2024

3 SELF-MOTIVATED IMITATION LEARNING

This section explains the proposed approach, Self-Motivated Imitation LEarning (SMILE), which
jointly performs the filtering of noisy demonstrations and the learning of the expert policy. Section[3.1]
first presents a Policy-wise Diffusion framework to capture the information that triggers the deteriora-
tion of the expertise of policies. Section [3.2]then explains the modifications we made to improve the
efficiency of the generative process of DM. Finally, Section |3.3|describes our self-motivated strategy
for filtering out noisy demonstrations.

3.1 POLICY-WISE DIFFUSION

DM proposes the gradual diffusion of a sample until it finally conforms to a simple distribution, such
as standard Gaussian. While this has been found effective in certain tasks, such as image and text
generation, it is intuitively inconsistent with our goal to gradually reduce the expertise of policies.

Given the complexity of sources leading to demonstrator expertise corruption, we draw inspi-
ration from existing work such as ILEED (Beliaev et al.l 2022) and VILD (Tangkaratt et al.,
2020b). We propose to model policies with low expertise, which lead to corrupt actions, as dis-
torted versions of high-expertise policies. This aligns with how corrupt actions are collected in
real-world tasks. Let C denote the corruption operator, it can be represented as 7!°%(a!°%|s) =
[whiah (ghigh|s)C(ato® |a™i9") da”9h. We incorporate this into the Denoising Diffusion Probabilis-
tic Model (DDPM) (Ho et al., 2020) to gradually diminish the expertise of policies.

Diffusion Process As discussed above, the purpose of the diffusion process is to gradually execute
the corruption operator to perturb policies. Specifically, Gaussion is adapted as the corruption operator
C to simulate the decline in expertise conditioned on the fixed state s, represented as:

Wt(at|5):/'ﬁtil(at—l‘s)Q(at‘at—h5) dai—1, q(aglai—1,s) = N(as;ar—1, BI), (6)

where [is a constant schedule. Theoretically, the larger step ¢ a policy is diffused, the less expertise
of 7¢ will be. For efficient training, we generate noisy policies using a closed form of Eq. @ given as:

' (ar)s) = / (aols)g(arlao,) dao, g(arla, s) == N(as; ag, o21),)

where o, = /S r_, B2

Proposition 3.1. After Policy-wise Diffusion, it is more probable that w* is non-expert compared to
7wt where t' < t.

Training Since a policy could be diffused to its corresponding less-expertise versions, we would
like to capture the noise information that triggers the expertise deterioration at every step. Following
DDPM (Ho et al.,2020), a neural network, €y, is trained to predict the noise:

L(G) = ES,(lo,tE[”e - 69(57 at, t)”g]v (8)

where € ~ N (0, I) represents the random noise applied in the reparameterization of Eq.[7|to obtain
a; = aqg + o€

With the learned noise approximator ey, it is allowed to 1) generate target actions along the reverse
process of DDPM and 2) automatically identify and screen out the demonstrations collected by
non-expert policies. We first discuss the generative process of SMILE and the essential modifications
to adapt it to the decision-making process.

3.2 ONE-STEP GENERATOR

In the sequential decision-making setting, agents generate an action directly based on the given state
s. However, the reverse process of DDPM results in the O(T") generation complexity that heavily
compromises the decision efficiency. To make our framework more practical, we have chosen to
sustain 7y (a|s) as the generator of SMILE to reduce the generation complexity to O(1).

Under review as a conference paper at ICLR 2024

Then, we encourage the policy 74 to directly predict the outcome of the reverse process of DDPM
by utilizing the forward process posterior q(z:—1|zt, Zo), which is the ground truth of denoiser
po(x¢—1|x¢) and conditioned on the generation target xo. In doing so, the one-step generator is able
to generate samples identical to those generated by the original multi-step generator. To wrap up
in a narrative way, in SMILE, the role of the noise approximator ¢y undergoes a transformation.
Its primary role shifts from serving as a denoiser for multi-step generation to guiding the one-step
generator 7. Thus, we adopt stop-gradient to prevent any disturbance to the original objective of ¢y.
The overall objective function can be summarized as follows:

L(¢) = E(s,ao)~D,a6~7r¢,t,e[DKL(Q(at—lIata 06)||p9(at—1\at))]~ ©

Therefore, we indirectly force a, generated by 74 to approach the ground-truth ag. In the implemen-
tation, the policy will be trained with Mean Square Error to narrow the distance between the means
of two distributions:

2
L(¢) = E(s,ao)wD,a6~ﬂ¢,t,e[||:u’t(at7 aé)) - /’Lt(atv ag — Ut60(57 A, t)) H]a (10)
where a; ~ q¢(a¢]ag,s). Note that a; is equiva-
lent to the samples obtained during the denoising Behavior Policy
process of DDPM. Figure [I] illustrates the train-
ing scheme of SMILE. This enables us to create a M @
-

one-step generator for SMILE, leading to the devel- Stop gradient-]

opment of a policy that can be efficiently applied in
the decision-making paradigm. & Back propagatior|
It is worth noting that Eq. [T0]is theoretically equiv- G-y
alent to Eq.[2]as they both aim at narrowing the gap a1, (als)

Agent

between the distributions of target and generated
data. Ideally, when demonstrations are all expert,
the imitator can learn the expert policy. To achieve
this, we further discuss how to filter out the noisy
demonstrations in a self-motivated manner.

Figure 1: One-step SMILE Generator

3.3 SELF-MOTIVATED FILTERING

As previously mentioned, as diffusion step ¢ increases, the expertise of the diffused policy ! decreases.
We can use the diffusion step ¢ as a measure of the expertise gap between ¢ and 7°. Assuming that
each demonstration in the dataset D is sampled by a specific behavior policy, we denote the current
policy as 74 and the behavior policy used to collect a demonstration 7; as o

This allows us to evaluate the expertise of 74 by estimating the number of diffusion steps it deviates
from the behavior policy 77+ that contributed a group of demonstrations in dataset D. In the
consequent learning, we can select better demonstrations from the dataset without any auxiliary
information by simply determining whether the current policy 7, outperforms the behavior policy
that produces these demonstrations. Therefore, the key to achieving such a self-motivated learning
paradigm is to determine the number of diffusion steps between any two policies.

Before presenting our theoretical conclusion, we first introduce the relationship between noise and
energy function. To be specific, we opt for using an expressive model, the Energy-Based Model
(EBM), to represent a multimodal action distribution (Haarnoja et al., 2018; Liu et al.| 20205 Song
et al.| [2020). For each state s and action a, we have:

m(als) oc exp(—E(s, a)), (11)

where E(s, a) is the energy function. We then have the following proposition.

Proposition 3.2. Given an action a; sampled from a diffused policy 7t and the noise €, we have the
gradient of E(s, a) satisfying:

e =—oyVlogm(a|s) = o VE(s, a). (12)

"'We assume that the dataset D consists of demonstrations of diverse expertise, i.e., D = {Ti}f-”il, and was
collected using K distinct behavioral policies, i.e., B = {ﬂ'ﬁ k }szl, where typically K < M.

Under review as a conference paper at ICLR 2024

With the trained noise approximator €y, the gradient of energy function can be estimated. Then,
we propose to compute the conditional energy function proposed by (Gao et al., [2020) with €y and
diffusion step ¢. This energy function is proportional to the recovery likelihood of denoising a noisy
sample to a clean sample. To align the RL convention, the Q-function is introduced to refer to the
negative energy function. Namely in form, p(7|7) x —E(w|7%) = Q(n|7). Using 7 to denote the
noisy policy, we obtain:

QG,t(ﬂfr) = an,aw[Qe,t(aW 3)]
= LBl @+ 02vQ(s, 2]

5 92
20}

13)

1
=~ 557Ellle ~ @~ ouca(s, 3,1
Eq.[13|indicates how likely 7 being denoised to 7 at diffusion step ¢. In our case, €y is related to
both @ and ¢. In implementation, to prevent the value of (Qg ; from being dominated by ﬁ we
rewrite Qg +(7|7) = —E[||a — (& — oveq(s, @, 1)) |?]. Considering a special case that 7 requires 0
steps denoising to itself, we set an extra oy = 0. Then we have the following propositions:

Proposition 3.3. For a “clean” policy ° and its corresponding noisy version 7t, where 0 < t, the
diffusion step t satisfies: t = arg max,, Qg (7%|7?).

Proposition 3.4. For a policy ©t and its corresponding “cleaner” version ¢, where ¢ < t, it is
satisfied that: 0 = arg max, Qg (7"|7).

Accordingly, we can leverage Qg ; induced by €q(s, a™, t) to filter out noisy demonstrations. Specif-
ically, during the training process, we compute ¢(7) = arg max, [7y ﬁ ZLT‘ Qo.rr(aP]a™s, 1)
for each demonstration 7. If ¢(7) is equal to zero, it indicates that w4 is of the same expertise
as, or even higher than, 78 for this demonstration 7. Based on this criterion, we filter out noisy
demonstrations from the dataset, facilitating the self-motivated learning for the policy m4. This

approach allows the policy to keep imitating better demonstrations until it eventually achieves best.
We filter dataset at certain frequency as policy training, the overall flow is shown in Algorithm [T}

4 EXPERIMENTS

This section evaluates the extent to which SMILE can achieve the following goals: (1) Learn an expert
policy from mixed demonstrations containing both expert and noisy demonstrations. (2) Filter out
noisy demonstrations in a self-motivated manner during policy training. (3) Infer a larger diffusion
step for expert demonstrations.

4.1 EXPERIMENTAL SETUP

Environments We evaluated SMILE and other baselines on various continuous-control tasks from
MuJoCo (Todorov et al.,|2012), such as HalfCheetah, Walker2d, and Hopper. These methods were
evaluated with the cumulative reward of trajectories collected by the agent during training, where the
reward was given by the ground truth reward functions predefined by the tasks.

Datasets Our model was trained with mixed demonstrations, which were generated with varying
levels of noise. Specifically, we first trained an expert policy for each task. The expert model was
then applied to collect training trajectories. To corrupt the expert’s original actions, we introduce
perturbations during the data collection with Gaussian noise at varying levels linearly increased from
0 to 1. We collected ten trajectories for each noise level, ultimately building a complete dataset
containing 100 demonstrations in total.

Baselines We compared our model against two classic IL algorithms, BC (Bain & Sammut, 1995)E]
and GAIL (Ho & Ermon, |2016)), as well as two other IL algorithms, RILCO (Tangkaratt et al.,2020a)
and ILEED (Beliaev et al., [2022). They are also geared toward addressing the noisy demonstration

>We chose MLE as the loss function of BC in our implementation.

Under review as a conference paper at ICLR 2024

problem without additional annotations. RILCO proposes to divide the dataset into two parts
and utilize Co-training (Blum & Mitchell, [1998)) to train a pair of classifiers to label suboptimal
demonstrations for each other. The label predicted is then used as the pseudo-reward to train the
downstream RL algorithm ACKTR (Wu et al.;[2017). ILEED optimizes a joint model that predicts the
overall optimal policy and simultaneously learns to identify the suboptimality of different policies. In
addition, we included COIL (Liu et al.,[2021) for comparison, which is based on the return signal and
proposes a curriculum strategy to select demonstrations nearest to the current policy according to the
log-likelihood and filter out demonstrations with low returns to keep demonstrations better than the
ones collected from the agent. To validate the effectiveness of our proposed self-motivated schema, we
have also developed a variant of SMILE, SMILE w/o filtering, by simply randomly selecting a batch
from the ENTIRE dataset for each iteration. To assess whether a policy reaches the optimal behavior
policy, we took the average return of the expert model as the measure, where the expert model was
pre-trained with SAC (Haarnoja et al.} 2018)) implemented in Stable Baselines3 (Raffin et al., 2019).
For all the algorithms in the experiments, we measured their learning efficiency according to the
accumulated transition samples they used during training.

4.2 COMPARISON RESULTS ON MUJOCO TASKS

— BC GAIL —— ILEED —— RILCO —— COIL —— SMILE w/o filtering

SMILE - —- expert

Hopper-v2 HalfCheetah-v2 Walker2d-v2

4000

3000 000

2000 3000

Returns
Returns
Returns

2000
1000
1000

1000 1000
o0 05 1o 20 o0 s 20 00 s 20
7

s 5 o 5 To
Transition Samples Transition Samples Transition Samples
Humanoid-v2 Ant-v2 Reacher-v2

6000
5000

5000
4000

4000
3000

3000
2000

Returns
Returns
Returns

2000 1000

1000

1000
o0 s o s 70 o0 5 o s 70
Transition Samples 7 Transition Samples

Figure 2: Results on MuJoCo tasks over 5 trials

Figure [2] provides a comparative view of the performance achieved by SMILE and the baseline
methods. It is clear that SMILE, given mixed demonstrations, is able to converge to the optimal
behavior policy with fewer fluctuations, outperforming other methods across most tasks.

As expected, BC and GAIL consistently demonstrated the lowest performance for most tasks since
they were not specially designed for noisy demonstrations. Although ILEED and COIL outperformed
BC and GAIL, they struggled to reach the expert policy. ILEED, which is trained to predict the
expert policy and the expertise of demonstrations in a joint optimization setup, is prone to get trapped
at local optimal solutions. In contrast, SMILE applies sequential optimization to different models.
Notably, the update of ¢4 is not dependent on 7y, thereby reducing the risk of local optima. COIL’s
inferior performance to our SMILE can be attributed to the inappropriate selection of demonstrations
for learning. Specifically, during training COIL, we observed that it kept on choosing near-expert
demonstrations, which increases the learning difficulty for the agent and contradicts the core concept
of curriculum learning, which advocates progression from easy to hard tasks.

It is important to note that RILCO relies on the assumption that expert samples constitute more than
half of all samples, ensuring a more accurate estimation of pseudo-labels. Thus, when this condition
is unsatisfied, such as in the HalfCheetah task, RILCO fails to learn the expert policy. Moreover,
we observed that although RILCO achieves expert policy on tasks that satisfy this assumption,
such as Humanoid, it exhibits large variance as the number of used transition samples increases.
Our conjecture is that this might be due to the misestimation of the classifier that predicts which

Under review as a conference paper at ICLR 2024

samples originate from noisy demonstrations because pseudo-labels provided by the dual classifier in
Co-training could be misleading, which will further cause the instability of pseudo-reward and the
approximation of the value function in the downstream RL algorithm. In contrast, SMILE exhibits a
relatively stable training process with low variance.

The significant performance disparity between SMILE and SMILE w/o filtering for most tasks
demonstrates the importance of our proposed self-motivated learning schema. It is worth noting
that SMILE w/o filtering also shows competitive performance for most tasks in comparison with
other baselines. This validates the excellent capability of DDPM to fit the policy distribution in the
sequential decision-making paradigm.

4.3 INTERPRETABILITY OF SELF-MOTIVATED LEARNING SCHEME

This section primarily illustrates how the self-motivated filtering module works during training by
examining the expertise of remaining demonstrations after filtering. We expect these demonstrations
to be of more expertise than those generated by the current policy. In our experiments, SMILE
activates the filtering module every 2500 iterations. To ensure the filtered dataset is not empty, we
set a threshold of a minimum of 10 demonstrations. Meeting this threshold deactivates the filtering
module.

Stage 0 Stage 1 Stage 2
Hopper-v2 Walker2d-v2

60
@
S 40 a0
p=]
E
Z 20 20

0 T T T T 0 T T T T T

[0,1000) [1000,2000) [2000,3000) [3000,4000) [0,1000) [1000,2000) [2000,3000) [3000.4000) [4000,5000)
Bins Bins
HalfCheetah-v2

w15
2
2 10
Z s

(-0,0) [0,1000) [1000,2000) [2000.3000) [3000,4000) [4000,5000) [5000,6000) [6000,7000)
Bins

Figure 3: Histogram of remaining demonstrations regarding their Returns at different training stages

Observation 1: Effectiveness of filtering noisy demonstrations Figure 3]illustrates the histogram
of demonstrations for Hopper, Walker, and HalfCheetah at three different stages during the entire
training process. Stage 0 denotes the initial stage of the training process before any filtering is con-
ducted. Stage 2 commences when the current policy achieves expert and continues until convergence.
Therefore, stage 1 encapsulates the period between stages 0 and 2. The x-axis represents the bins of
the Return for all demonstrations. The colored bars indicate the number of demonstrations at different
stages on the y-axis. We observe that noisy demonstrations predominate in the original dataset for
Hopper and Walker2d, as indicated by taller purple bars in bins with smaller Returns. In contrast, the
expertise in HalfCheetah is relatively balanced. Over the training period, noisy demonstrations are
largely eliminated, specifically in Walker2d and HalfCheetah, such that the remaining demonstrations
at stage 2 are almost exclusively from experts. The behavior of our proposed self-motivated filtering,
which is based on predicted diffusion steps, is consistent with filtering based on demonstration returns
as known by the oracle. This observation could explain the robustness of our model against noisy
demonstrations and its ability to learn the expert policy.

Table 1: Average diffusion steps predicted for every bin on HalfCheetah

Average Return(std) (-00,0] (0,1000] (1000,2000] (2000,3000] (3000,4000] (4000,5000] (5000,6000] (6000,7000]
2458.26(1+1537.13) 0.00 0.26 0.82 2.16 3.13 3.00 3.00 3.00
4354.33(£1395.95) N/A N/A N/A 0.66 2.00 2.69 225 2.52
5484.62(£1194.35) N/A N/A N/A N/A 1.38 223 2.16 2.05
6182.89(£108.83) N/A N/A N/A N/A 0.00 1.54 1.75 1.63

Under review as a conference paper at ICLR 2024

Observation 2: Alignment between diffusion steps and expertise gap To further elucidate the
interpretability of the self-motivated filtering module, which is based on predicted diffusion steps,
Table [T] presents the averaged predicted diffusion steps for demonstrations grouped in each return bin
in the HalfCheetah task as the current policy evolves. The leftmost column displays the average return
achieved by the current policy, along with its standard deviation over 10 evaluations. N/A means
that all demonstrations in the corresponding bin have been filtered out. The observation indicates that
demonstrations inferior to the agent are predicted with smaller diffusion steps than those superior
to the agent. This reflects that SMILE can identify the expertise gap between demonstrations and
current policy. Although the average predicted diffusion steps do not strictly increase along with the
bins of Returns ﬂ this inconsistency does not impact the selection of demonstrations for filtering, as
demonstrations with high returns are always preserved. Our conjecture is that the discrepancy may
arise from training errors stemming from the concurrent training of ¢y and the policy. As the agent is
trained to gradually approach the expert, we observe a decrease in the average predicted diffusion
steps corresponding to each bin. This suggests that the predicted diffusion steps effectively capture
the trend of the shrinking expertise gap relative to all remaining demonstrations. In conclusion, the
predicted diffusion steps effectively represent the expertise gap, which confirms the interpretability
of the filtering module of SMILE and assures the safe filtering out of noisy demonstrations.

5 RELATED WORK

In this section, we introduce several additional methods that are not employed as baselines due
to reasons such as the absence of annotations. These algorithms are also designed to address the
challenge of noisy demonstrations.

Partially labeling the data with the confidence score, which indicates the probability for one demon-
stration to be an expert, [C-GAIL (Wu et al., 2019) extends GAIL by first training a classifier to
estimate the likelihood of a demonstration originating from an expert. Meanwhile, VILD (Tangkaratt
et al., [2020b) predicts the expertise of demonstrations when the identity of corresponding demonstra-
tors is known. T-REX (Brown et al.| 2019), which is an Inverse Reinforcement Learning (IRL) (Ng
et al.,[2000; |Abbeel & Ngl 2004) algorithm, utilizes rankings of trajectories to train a pseudo-reward
function that gives higher reward for trajectories on the top of the ranking list. Although these methods
are capable of guiding agents in learning an expert policy, they heavily rely on additional information
that may be absent in practical scenarios. There are also IRL algorithms without annotations are
proposed, like DREX(Brown et al.,[2020) and SSRR(Chen et al.| 2021)), using noise to learn reward.

6 DISCUSSION

Limitations and Future Work There remains some possible modifications of SMILE in the future.
For example, it is currently only applicable in continuous action spaces. The challenge arises from
our form of diffusion being based on Gaussian noise, which, when added, can inadvertently diffuse a
poor action to a better one in a finite action space. Therefore, future work will investigate different
forms of diffusion to identify the most appropriate and meaningful approach to degrade the expertise
of demonstrations in both continuous and discrete action spaces. Moreover, we acknowledge the
underutilization of order relations. Although SMILE can distinguish higher-expertise demonstrations
from all saved demonstrations, we have yet to determine an effective method for leveraging the
relationship between mediocre, good yet non-expert, and expert demonstrations. Furthermore, we
will explore integrating state feature extraction methods to improve the applications of SMILE.

Conclusion Traditional IL methods are not robust in learning against noisy demonstrations, often
relying on additional annotation or lacking interpretability. This paper introduces a self-motivated IL-
based method, SMILE, which can automatically identify noisy demonstrations without any additional
information through Policy-wise Diffusion. Furthermore, we adapt both the diffusion and generative
processes of DDPM to accommodate sequential decision problems. Empirical results validate the
effectiveness of SMILE and demonstrate its interpretability, showing that SMILE is a robust and
comprehensible solution to the problem of noisy demonstrations.

3For instance, the predicted diffusion steps of demonstrations in the (5000, 6000] bin sometimes exceed
those in the (6000, 7000] bin.

Under review as a conference paper at ICLR 2024

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Michael Bain and Claude Sammut. A framework for behavioural cloning. In Machine Intelligence
15, pp. 103-129, 1995.

Mark Beliaev, Andy Shih, Stefano Ermon, Dorsa Sadigh, and Ramtin Pedarsani. Imitation learning
by estimating expertise of demonstrators. In International Conference on Machine Learning, pp.
1732-1748. PMLR, 2022.

Avrim Blum and Tom Mitchell. Combining labeled and unlabeled data with co-training. In Proceed-
ings of the eleventh annual conference on Computational learning theory, pp. 92—100, 1998.

Daniel Brown, Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. Extrapolating beyond sub-
optimal demonstrations via inverse reinforcement learning from observations. In International
conference on machine learning, pp. 783-792. PMLR, 2019.

Daniel S Brown, Wonjoon Goo, and Scott Niekum. Better-than-demonstrator imitation learning
via automatically-ranked demonstrations. In Conference on robot learning, pp. 330-359. PMLR,
2020.

Letian Chen, Rohan Paleja, and Matthew Gombolay. Learning from suboptimal demonstration via
self-supervised reward regression. In Conference on robot learning, pp. 1262—-1277. PMLR, 2021.

Bradley Efron. Tweedie’s formula and selection bias. Journal of the American Statistical Association,
106(496):1602-1614, 2011.

Ruiqi Gao, Yang Song, Ben Poole, Ying Nian Wu, and Diederik P Kingma. Learning energy-based
models by diffusion recovery likelihood. arXiv preprint arXiv:2012.08125, 2020.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International conference
on machine learning, pp. 1861-1870. PMLR, 2018.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. Advances in neural
information processing systems, 29, 2016.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840-6851, 2020.

Ahmed Hussein, Mohamed Medhat Gaber, Eyad Elyan, and Chrisina Jayne. Imitation learning: A
survey of learning methods. ACM Computing Surveys (CSUR), 50(2):1-35, 2017.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

M Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable models.
Advances in neural information processing systems, 23, 2010.

Minghuan Liu, Tairan He, Minkai Xu, and Weinan Zhang. Energy-based imitation learning. arXiv
preprint arXiv:2004.09395, 2020.

Minghuan Liu, Hanye Zhao, Zhengyu Yang, Jian Shen, Weinan Zhang, Li Zhao, and Tie-Yan Liu.
Curriculum offline imitating learning. Advances in Neural Information Processing Systems, 34,
2021.

Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In Icml,
volume 1, pp. 2, 2000.

10

Under review as a conference paper at ICLR 2024

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International Conference on Machine Learning, pp. 8162—-8171. PMLR, 2021.

Tim Pearce, Tabish Rashid, Anssi Kanervisto, Dave Bignell, Mingfei Sun, Raluca Georgescu,
Sergio Valcarcel Macua, Shan Zheng Tan, Ida Momennejad, Katja Hofmann, et al. Imitating
human behaviour with diffusion models. arXiv preprint arXiv:2301.10677, 2023.

Antonin Raffin, Ashley Hill, Maximilian Ernestus, Adam Gleave, Anssi Kanervisto, and Noah
Dormann. Stable baselines3, 2019.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International Conference on Machine Learning,
pp. 2256-2265. PMLR, 2015.

Yang Song, Sahaj Garg, Jiaxin Shi, and Stefano Ermon. Sliced score matching: A scalable approach
to density and score estimation. In Uncertainty in Artificial Intelligence, pp. 574-584. PMLR,
2020.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Voot Tangkaratt, Nontawat Charoenphakdee, and Masashi Sugiyama. Robust imitation learning from
noisy demonstrations. arXiv preprint arXiv:2010.10181, 2020a.

Voot Tangkaratt, Bo Han, Mohammad Emtiyaz Khan, and Masashi Sugiyama. Variational imitation
learning with diverse-quality demonstrations. In International Conference on Machine Learning,
pp. 9407-9417. PMLR, 2020b.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026-5033.
IEEE, 2012.

Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive policy
class for offline reinforcement learning. arXiv preprint arXiv:2208.06193, 2022.

Yueh-Hua Wu, Nontawat Charoenphakdee, Han Bao, Voot Tangkaratt, and Masashi Sugiyama. Imita-
tion learning from imperfect demonstration. In International Conference on Machine Learning, pp.
6818-6827. PMLR, 2019.

Yuhuai Wu, Elman Mansimov, Roger B Grosse, Shun Liao, and Jimmy Ba. Scalable trust-region
method for deep reinforcement learning using kronecker-factored approximation. Advances in
neural information processing systems, 30, 2017.

11

Under review as a conference paper at ICLR 2024

A APPENDIX
The Appendix provides supplementary information, including proofs and additional experiments.

A.1 PROOFS

A.1.1 DERIVATION OF EQ.[7]

Proof. We first illustrate how we get the closed form of Policy-wise Diffusion. By reparameterizing
the original diffusion kernel in Eq.[6] we demonstrate the actions from timestep ¢ to 0 according to
the chain-style derivation:

a; = a1 + Br—1€—1
= a2+ Bi—o€—2 + Br_160—1

:a0+50€0+/8161 +"'+ﬂt—1€t—1 (14)

merge standard Gaussians

= ao + /B3 + B2+ . B2y €

= ag + 0€

With the notation that o, = 4/ 2221 /3%, it is obvious that a; could be represented by the reparam-

eterization of samples subject to a Gaussian with mean ag: a; ~ N (ao, UfI). Therefore, we can
rewrite the forward kernel of Policy-wise Diffusion as q(a¢|ao, s) = N(ag, o*1)

A.1.2 DERIVATION OF EQ.[13]

Proof. Given the detailed form of Eq.

r(als) = AL) (15)
where Z is the partition function and Q(s,a) = —E(s, a).

Then, we can derive the conditional EBM of x given its noisy version that @ = a + o€ as:

ala, s :M
aleld-o) = =2l

a Py 5.
_ (27T0't)2 t (16)

where we absorb all the terms that are irrelevant to a as Z.

Therefore, the conditioned energy function can be described as:

7)

207

12

Under review as a conference paper at ICLR 2024

A.1.3 PROOF OF PROPOSITION[3.1]

Expert Policy For the expert policy 7., (a*|s) , we diffuse it by g(a|a*, s) at every simulation
time step during the interaction according to Eq. [/} Suppose any action that deviates a™* less than «,
which corresponds to the interval [a* — «, a* + «, is expert, we can then present the probability that
the diffused policy 7 is non-expert. We first introduce the situation that 7 is expert:

Peap(7T)= Ez [Peap(@)]
=Ezlp(ja — a*| < a)]

1 a"4a a—a®)2
:E~[7/ e 5 da)

\/ﬂg a*—a
1 [V _(a=a’y2 (& —a¥)
Y A)
vl V2o (18)

1 /\/%0 2
e Y dy]
VT

— Bel = en () 7, |

)]

(0%
V2o

where er f(x) is the Gaussian Error Function whose range is from -1 to 1, and it is positively related
to . Therefore, we can then present py,,,, (7) as :

= Ezlerf(

pn(m(ﬁ'): 1 _pe’xp(ﬁ')
=1-E; [erf(i

V20

Obviously, as o grows from 0 to +oo, ﬁ will shrink from +o00 to 0, which results in that when o

is close to zero, Py, (7) is also near zero, otherwise when o is large enough, py,.,, (7) is close to 1.
Since the deviation is up to o, it indicates that the larger the noise level is, the worse a diffused policy
7 could be compared to the expert policy me., . According to this, it is proved that Policy-wise
Diffusion is able to degrade the expertise of expert policies by raising the deviation from 7.

) 9

Non-expert Policy For any action a generated by a non-expert policy 7 given a state s, whose
expertise is compromised, we analyze whether Policy-wise Diffusion can still decrease the expertise
of non-expert policy. Consistent with the main text, we view non-expert policies as the corrupt version
of expert policies. Furthermore, we diffuse non-expert 7 to a noisier policy 7. If pron (7) < Pron (7),
then it is proved that adding the noise also could corrupt the expertise of non-expert policies.

We illustrate this by first reparameterizing the diffusion of a and a, which leads to a = a™ + 01¢€;
and a = a 4 o9¢5. With this, we can further derive:

a=a-+ 092€9
:a*+0'161 + 0262 (20)

=a*+/o? +o3e

Based on this, we get a closed form of the distribution of @ ~ N'(a*,0? + 03). Therefore, the
diffusion of the policies are summarized as 7(als) = [megp(a*|s)N (a*,01)da* and 7(als) =
[Tewp(a*|s)N (a*, 07 4+ o3)da*. To wrap up, the deviation of m and 7 are oy and /o7 + o5
respectively. Further, as discussed above, the deviation and the probability of sampling a noisy
action are positively related. Because of \/0% + 03 > o1, we can easily come to the conclusion that
pnon,(ﬂ-) < Pnon (ﬁ-)

13

Under review as a conference paper at ICLR 2024

A.1.4 PROOF OF PROPOSITION[3.2]

Proof. We first prove the equivalence between the noise ¢ and the gradient of the forward kernel of
Policy-wise Diffusion ¢(a¢|ag, s). With the probability density function of Gaussian, we get:

_ Ja — ol .
Q(at|a07 S) - \/%0_ exp(_ 252) 2D
t t

Then, we take the log function for both the left- and right-hand sides:

a2
log g(arla.s) = € — 14— 2ol 22)
g%
where C' is a constant that has nothing to do with a;. Next, we can discover the gradient of a,:
2(at — ap)
Va, ! ,§) = ————
log q(azlag,) 207
S (23)
0%
€
=
It is obvious that ¢ = —0V,, log q(at|ag, s). Based on this, we further illustrate the relationship
between the gradient of ¢(a|ag, s) and 7(a¢|s):
Va,7(at]8)
Va, logm(as]s) = ————=
BTl) = s
f U%zQ(at|ao, s)(ao — ag)m(aols)dao
m(at|s) (24)
1
= = [aalan)(an - arydas
0%
1

= E(E%(aomt)[ao] —ay)

To approximate Eqs(ao‘at) [ag], we introduce Tweedie’s FormulaEfron| (2011). It indicates that for
a sample subject to Gaussian, x ~ A (u,), the approximation of its mean can be presented by
E[p|z] = x + £V log p(z). According to this, we can estimate ag by Tweedie’s Formula like the
following:

1
Va, log w(as|s) = ?(at + vaat log q(at]ag, s) — at) 25)
i

= vat log q(at|a07 S)

Therefore, we can discover that the gradient of 7(a;|s) equals the gradient of log ¢(at|ag,). More-
over, we can simply get that e = —0:V,, log q(at|ag,) = —0:V 4, log w(as|s). Besides, since we
model policy 7 as EBM, as mentioned in Eq.[TT] Proposition [3.2]can be proved.

A.1.5 PROOF OF PROPOSITION[3.3]

Proof. We will prove that only when ¢’ is the ground-truth diffusion step ¢, the value of Qg 4 (mo|7;)
will reach the upper bound.

14

Under review as a conference paper at ICLR 2024

Qo,v (o) = E[Qo,+ (aolat, 5)]

~Elllao — (ar — oveg(s,ar,t"))||'

= —E[||ao — (ar — or€a(s, as, t) + oreg(s, az, t) — at/EQ(s,at,t’))||2]

—E[||ap — (a; — oseg(s,as,t)) + (opea(s, ar, t') — oreg(s,ar, t)) ||?] (26)

T, T>
E[Qe.¢(aolat, s)] — 2E[Ty * Ty] — E[T5]
= Qq.+(mo|m¢) — 2E[T * To] — E[T3]

When ¢ is sufficiently trained, the term 7% will be infinitely close to O for ag — a; + or€q(s, ar, t) =
oeg(s, ag,t) — o€, where e is the ground-truth of eg(s, as, t). Hence, Qg (mo|m) and Qg v (mo|m)
will be infinitely close to 0 and —E[T%], respectively.

While for 75, it is easy to say that :

nd= 0,when t' =t o7

> 0, otherwise

Then, we can find that:
=0,when t =t

, ’ 28
Qo (molme) { <0, otherwise (28)

Therefore, it can be proved that t = arg max, Qg ¢ (7°|7").
[]

A.1.6 PROOF OF PROPOSITION [3.4]

Proof. From what is declared above, we can further discover that for a pair of policies (7%, 7t), the
numerical value of Qg ¢ (7°|7?) will decrease as ¢’ going far away from ¢.

According to Eq.[26] when ¢ is sufficiently trained, we have:
Qo0 (70 7") = Qo+(7°|7") — E[||oweo(s, ar, t') — area(s, ar, t)||?]. (29)

We then examine the last term on the right-hand side. Let ¢’ = ¢t — k, where 0 < k < t, g will
denoise a; for t — k steps to a cleaner action ay, which leads to:
E[||oseq(s, ar, t') — aveq(s, az, t)]?]
= E[[[(ar — ar) — (a¢ — ao)||*] (30)
= E[llao — ax|*).
Along the same path, when ¢ = ¢t — s, where k& < s < t, we have E[||owveq(s,ar, t’) —
oreo(s, ar, 1)) = E[[|ao — as|’]-

Since k < s, it means that a; is deviated more from ao, and it is easy to tell that E[||ag — ax|?] <
E[||ag — as||?]. Therefore, Qg +—x(7°|7") > Qg +—s(7°|7"). Meanwhile, it is prone to validate its
dual conclusion that Qg 141 (7°|7") > Qg 145(7°|7"). To wrap up, the farther ¢’ is away from ¢, the
less the value of (Qp ++ will be.

Then, we could say, Qg (7|7) reflects the negative distance between 7 and the policy which is
denoised ¢’ steps from 7. For Qg (7*|7¢), denoising any steps of 7¢ will only make it farther away
from 7*. Therefore, denoising 0 steps will make the largest value of Qg 4 (7*|7¢).

15

Under review as a conference paper at ICLR 2024

Algorithm 1 SMILE Pseudocode, PyTorch-like

ema_denoiser, denoiser: mlp
ema_policy, policy: mlp
denoiser_optimize_every: How many times the denoiser will be optimized in one step
policy_optimize_every: How many times the denoiser will be optimized in one step
update_ema_every: How many steps to perform ema
filter_dataset_every: How many steps to perform filter
def train(denoiser, policy, dataset, batch_size):
step = 0
while stepxbatch_size < 2e7:
sample states and actions from datasets for training
state, action = dataset.sample (batch_size)

ks

##4# optimize models
for 1 in range (denoiser_optimize_every):
denoise_loss = denoiser.denoise_loss(state, action)
(denoise_loss / (denoiser_optimize_every)) .backward ()
optimize (denoiser)
for 1 in range (policy_optimize_every) :
policy_loss = policy.agent_loss(state, action)
(policy_loss / (policy_optimize_every)) .backward()
optimize (policy)

step ema
if step % update_ema_every ==
step_ema (ema_denoiser, denoiser)

step_ema (ema_policy, policy)

##4 filter

if step % filter_dataset_every == :
filter_dataset (ema_denoiser,ema_policy,dataset)

step += 1

A.2 PSEUDOCODE

The pseudocode of the whole training framework and the filter module of SMILE are placed in
Algorithm|[T]and Algorithm [2]respectively.

Algorithmmprimarily outlines the synchronized training of €y and 74, and how the self-motivated
filtering module interleaves with the policy training process. Specifically, at each training iteration,
we first train the noise approximator €y according to Eq. |§| and then the 7, according to Eq.
Typically, eg undergoes more updates per iteration than 7 to prevent disruptions in policy learning
caused by errors from an incompletely trained noise approximator. Additionally, at certain training
iterations interval, the self-motivated module is activated to filter out demonstrations in the dataset
that exhibit less expertise compared to on-training policy 4. By integrating these modules described
earlier as this way, we construct the overall workflow of SMILE.

A.3 FURTHER RESULTS

This section provides some empirical observations about SMILE that cannot be placed in the main
text due to the limited space.

Hyperparameters In SMILE, we set the diffusion step at 10 and J as constants that linearly increase
from 0.05 to 0.6. This ensures a gradual rather than abrupt Policy-wise Diffusion, which is beneficial
for the denoiser to capture more fine-grained expertise information. In addition, we found that
pragmatically setting the filter threshold at 1, which means filtering out 7 when ¢(7) < 1, accelerates
the filtering of low-expertise demonstrations. It is noteworthy that the traditional generative process
of DDPM is dependent on a fully trained €. However, our model concurrently trains €g and 7y,
which could potentially corrupt policy training due to the fluctuating eg. To address this issue,
during the training of the one-step generator, we updated ¢y with 10 additional gradient steps in one
iteration compared to 74 to ensure that the agent is guided correctly and steadily. We also applied
the Exponential Moving Average (EMA) during the update of learnable parameters to improve the
stability. For each iteration, a batch of 128 state-action pairs (s, a) was sampled for training. The
learning rate of both two models was set to 1e — 3. Besides, we found that [1 — norm performs better
for the training of €y. For 74, we retained MSE as its training objective, as described in Section
It is necessary to emphasize that SMILE shares the same set of hyperparameters across all tasks.

16

Under review as a conference paper at ICLR 2024

Algorithm 2 Filtering of SMILE Pseudocode, PyTorch-like

def filter_demos (dataset, Q):

rrr

(s,a,t): corresponds to state, action, terminal respectively
max_demo_len: the longest number of a demonstration

P

start, demos, num_demos = 0, [], O

for (s,a,t) in dataset:
if t == True or i + 1 - start >= max_demo_len:
argmax_t = torch.argmax (torch.mean(Q[start:i + 1]))

if argmax_t > 0 :
demos += data[start:i + 1]
num_demos+=1

start = i + 1
return demos, num_demos

def filter_dataset (denoiser, policy, dataset):
P
compute_Q(states,a_policy,actions,t): return $Q_t (actions|a_policy)$
threshold: The least number of trajectories in the dataset
stop_filtering: an indicator whether keep filtering
states, actions = dataset.sample_all ()
a_policy = policy.sample_action(states)

Q = [[] for _ in range(denoiser.num_diffusion_steps)]
for t in range (denoiser.num_diffusion_steps):
Q[t] = denoiser.compute_Q(states, a_policy, actions, t)

update dataset
demos, num_demos = filter_demos (datasets, Q)
if num_trajs >= threshold:
update_dataset (dataset, demos)
else:

stop_filtering=True

Table 2: Comparison to Naive Self-Paced Learning

Hopper-v2 ‘Walker2d-v2 HalfCheetah-v2 Ant-v2 Humanoid-v2 Reacher-v2
naive SPL 280.38(£ 136.22) 322.55(+£ 174.38) 2750.84(558.91) -131.87(£ 147.55) 156.11(=£ 55.70) -128.09(£ 49.06)
SMILE 3523.80(% 14.91) 4417.73(% 63.06) 6009.01(% 105.21) 5252.06(% 145.96) 5661.81(% 273.83) -8.57(% 4.59)

A.3.1 COMPARISON TO NAIVE SELF-PACED LEARNING

It is worth highlighting the distinctiveness of SMILE in comparison with traditional SPL. As a
regression approach, the purpose of SPL selecting easier samples, which are measured as samples
inducing lower fitting loss, is to alleviate the local optima. In comparison, SMILE aims at sidestepping
noisy ones to improve robustness. Moreover, for noisy demonstrations, simply leveraging the measure
in SPL cannot guarantee an effective sample selection, as demonstrations with lower fitting loss do not
necessarily correspond to noisy demonstrations. Therefore, SMILE develops a novel self-motivated
filtering module to automatically discern the expertise of demonstrations based on diffusion steps,
keeping on imitating “better”” demonstrations and excluding “worse” ones during the training process.
In other words, SMILE brought a brand new view to self-paced learning, which is about how to
distinguish “easy” samples (less-expertise demonstrations) from the “hard” ones (more-expertise
demonstrations) in decision-making situation.

Note that SMILE achieves self-paced learning by modeling the transformation of policy expertise
using the Diffusion Model. This allows the model to infer the expertise of demonstrations based on
the diffusion steps and to exclude those of low expertise. This is fundamentally different from the
naive SPL approach, which recognizes easy samples according to the loss function. Therefore, we
further illustrate comparisons between SMILE and the naive SPL to emphasize the effectiveness of
our model.

First, let’s clarify the setting of the naive SPL. It considers samples with lower loss to be those the
agent has already learned, and they will be excluded if their loss falls below a certain threshold.

17

Under review as a conference paper at ICLR 2024

Once the dataset is emptied, the training will be stopped. To guarantee fairness, we evaluated the
performance of SMILE at the same number of iterations. As shown in Table 2] the strategy of naive
SPL is unable to distinguish noisy demonstrations, which results in poor performance. In contrast,
SMILE successfully excludes noisy demonstrations, thus achieving better performance.

A.3.2 COMPARISON TO NAIVE REVERSE PROCESS

In this part, we investigate whether our one-step generator improves decision-making efficiency and
demonstrate the comparison between the one-step generator and multi-step generation of a naive
reverse process.

Naive Reverse —— SMILE
Hopper-v2 HalfCheetah-v2 Walker2d-v2 Run Time
131.4s
e | 6000 AN
4000 DOASA WA ALIOADAS

@ 120
£ 4000 e
5 2000
3 2000
o~ 2000 100

0 0 0 80

00 05 0 5 70 00 05 0 s 70 00 05 0 s 70 659
. 1le7 1le7 7 08.95
Humanoid-v2 Ant-v2 Reacher-v2 w
6000
~——
/\/vw M MANCrAANT Sesuacsaaaas

12} \/\/—V\/V\V 4000 -20
g a0 a0
=
153 =
o2 2000 2000 40 20 156 16.7s 16.2s

o o 60

10

s s o0 05 s
Transition Samples

50 o
Transition Samples

0 ~
3 00 B 20 HalfCheetah Walker2d ~ Hopper

5 o s
Transition Samples

Figure 4: Learning Curve and Time Costs over 10 interactions

Time Costs We first illustrate the improved decision-making efficiency gained with the one-step
generator. We compare SMILE, which uses the one-step generator, to a naive reverse approach that
relies on multi-step generation, recursively denoising a sample using €y at each diffusion step. The
evaluation examines the time costs incurred across ten interactions for three tasks. To enable a fair
comparison despite varying interaction lengths, we scale the times to a consistent 1000 steps. As
shown in the rightmost histogram in Figure] the average time costs for the naive reverse are much
higher than for SMILE, indicating poor decision-making efficiency. Furthermore, for HalfCheetah
and Walker2d, the naive reverse’s time costs are approximately ten times higher than SMILE’s,
suggesting it requires exactly ten more steps per decision compared to SMILE.

Learning effect As all learning curves shown in Figure @ on most tasks like HalfCheetah and
Walker2d, the learning effect between naive reverse and SMILE has no obvious differences, which
illustrates that the one-step generator is able to improve the decision-making efficiency without
deteriorating the learning effect. However, when it comes to Humanoid and Reacher, it is obvious
that there is a great decline in the learning effect of the policy. It mainly owes to the fact that
the Policy-wise Diffusion will not diffuse a policy to a certain simple distribution like standard
Gaussian, which leads to the policy sampled as 77 may not match the true distribution of the diffused
policy, therefore causing the failure of the outcome of the naive reverse process. In comparison, the
traditional DM, like DDPM has a definite prior distribution in the forward diffusion process, so the
fitting of generated samples can be guaranteed.

A.3.3 OBSERVATIONS ON THE CONDITIONED Q-FUNCTION

In this part, we demonstrate empirical observations on conditioned Q-function to validate Proposi-
tion and Proposition Specifically, we compute average Qg ¢ (7°|7) for all demonstrations
in the dataset, which are viewed as samples collected by all behavior policies 77, i.e., the policy
that is not diffused 7°. Different levels of noisy demonstrations are sampled as ones collected by its
corresponding diffused policy 7 for evaluation. The x-axis in Figure represents different ¢’, and the
y-axis is the value of (g . The red point is the largest value induced among all ¢'.

As the first row shown in Figure [5| when ¢ = ¢, it induces the largest value of Qg , which
corresponds to the conclusion of Proposition[3.3] And the second row tells us that 0 makes the largest

18

Under review as a conference paper at ICLR 2024

~0.35 . ° “1277

4 4 6 8 10 [a 6 8 10 0 a 6 8 10

(@) Qo (7°|7°) (b) Qo (7°|7%) (©) Qo,p (7°|77)

-0.10
-015 .

-020

-035
~0.40

~045

a 6 8 10 [2 a 6 8 10 0 4 6 8 10

(d) Qo (7%|7°) () Qo (m°|7°)) Qo (x7|7°)

0

Figure 5: Observations on the value of conditioned Q-function for Hopper

value when 7 is inherently “cleaner” than 78, which validates Proposition Besides, we notice
that the value of conditioned Q-function decreases as ¢’ goes away from ¢, which is consistent with
our conclusion in the Proof[A.1.6

A.3.4 RESULTS ON THE EXPERIMENT SETUP OF CHECKPOINTS

In this part, we further evaluate SMILE and other methods with demonstrations collected by check-
points from different stages during the training of expert policy in order to validate the applicability
in practical imitation learning settings.

Fig[6]shows the performance of methods on several MuJoCo tasks. It is obvious that SMILE is still
able to learn the expert policy, which further illustrates that SMILE has the potential to capture the
unknown complex source that occurred in real-world tasks and resulted in corrupt actions. Besides, it
also outperforms other methods on most tasks, validating its effectiveness in more general settings.
However, other methods exhibit some performance deterioration on these tasks, suggesting they are
relatively vulnerable to noisy demonstrations.

— BC GAIL —— ILEED —— RILCO —— COIL —— SMILE w/o filtering —— SMILE — — - expert
Walker2d-v2 Ant-v2 Hopper-v2
awoe| L e e S000| T T o e e e, | | e e s e — e
4000 3000
» 3000 w3000 A v A T »
£ E o v E 20
2 2000 E o0 2
1000 o 1000
////\M/\ ~1000
3 13
1

-2000
0

s s
Transition Samples Transition Samples

Figure 6: Learning Curves on the checkpoints setup

A.3.5 PERFORMANCE OF SMILE AND RILCO FOR LESS PROPORTION OF EXPERT DATA

As discussed in Section[d.2] RILCO relies on the assumption that the expert date is more than half
among all data. And the unsatisfaction of this on several tasks influences its learning. Regarding this,
we also validated our conjecture of the RILCO’s underperformance by exploring the impact of expert
data proportion on the experimental outcomes of both SMILE and RILCO.

19

Under review as a conference paper at ICLR 2024

To do so, we conducted evaluations on SMILE and RILCO separately using a demonstration dataset
containing less than half of expert demonstrations (5% and 14%). As shown in Fig.|7} our experiments
revealed that as the proportion of expert demonstrations decreased, both algorithms exhibited a certain
degree of instability and decreased performance. In comparison, SMILE demonstrated relatively
better stability, reinforcing the reliability of our conjecture and illustrating better robustness compared

to RILCO.
—— RILCO SMILE
5% expert 14% expert
3000 Wﬂ 3000
w MW | W\) V
£ 2000 "J M E 2000
£ g
~ 1000 ~ 1000 3‘
h l)STransiltiuon Sanlns)les e h l)"ls"ransitiolno SalmplelsS e
Figure 7: Learning Curves on the different proportions of expert data
A.3.6 DETAILED EXPLANATION FOR ONE-STEP GENERATOR

Figure 8: Action ay will be diffused to a; according to g(a|ao, s), then py will be conducted to
denoise a; to a;—1. Simultaneously, one-step generator 7, will generate action ag, conditioned on s.
ay_ is sampled from ¢(a;_ |as, ajy) to compare with a;_, and back propagate the gradient to update
T4 stop gradient is needed for avoiding potential issues arising from both models being trained

Behavior Policy

P

O Stop gradient l
ﬁ
Back propagatiof
i @ ©
(o)

D
Ty (als
Agent o(als)

simultaneously.

20

	Introduction
	Preliminary
	Imitation Learning
	Diffusion Model

	Self-Motivated Imitation Learning
	Policy-wise Diffusion
	One-Step Generator
	Self-Motivated Filtering

	Experiments
	Experimental Setup
	Comparison Results on MuJoCo Tasks
	Interpretability of Self-Motivated Learning Scheme

	Related Work
	Discussion
	Appendix
	Proofs
	Derivation of Eq. 7
	Derivation of Eq. 13
	Proof of Proposition 3.1
	Proof of Proposition 3.2
	Proof of Proposition 3.3
	Proof of Proposition 3.4

	Pseudocode
	Further Results
	Comparison to Naive Self-Paced Learning
	Comparison to Naive Reverse Process
	Observations on the conditioned Q-function
	Results on the experiment setup of checkpoints
	Performance of SMILE and RILCO for less proportion of expert data
	Detailed Explanation for One-step Generator

