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Abstract

We present a method that improves subcellular localization prediction for proteins1

based on their sequence by leveraging structure prediction and Graph Neural2

Networks. We demonstrate that Language Models, trained on protein sequences,3

and Graph Neural Nets, trained on protein’s 3D structures, are both efficient4

approaches. They both learn meaningful, yet different representations of proteins;5

hence, ensembling them outperforms the reigning state of the art method.6

1 Introduction7

The elucidation of protein function is a fundamental challenge in biology. A significant aspect of8

protein function is the determination of its cellular localization. Many processes, such as disease9

mechanisms, drug performance, regulation of metabolic processes, and signaling cascades all depend10

on the protein’s localization, hence significant experimental efforts are dedicated to this end. Never-11

theless, the exponential growth in the availability of proteomics information from newly sequenced12

organisms and metagenomes creates a huge gap in the experimental elucidation of protein sub-cellular13

localization for gene and genome annotation. This creates a need to predict protein localization using14

sequence data.15

Frequently, the location of a protein in the cell is determined by a "localization signal" – a short16

segment of the protein that is recognized by receptors located in the target cellular compartment.17

For example, proteins that include a nuclear localization signal (NLS) are recognized by nuclear18

receptors and, once synthesized, will be shuttled into the nucleus. Similarly, proteins that include a19

signal peptide will be exported to the extracellular space. Many computational methods are thus based20

on the identification of short motifs in the protein sequence that determine its cellular localization.21

Still, many proteins are shuttled to their target compartments using chaperones or other mechanisms,22

leading to inaccurate prediction by motif-based approaches. More recent predictive models utilize23

the entire sequence of a protein to predict its localization using protein sequence language models24

such as ESM [1]. The prediction power of these methods was shown to be higher than motif-based25

approaches [2]. The recent advance in protein structure prediction [3][4] enables another avenue of26

development: utilizing protein structure for the prediction of protein localization.27

In this paper, we propose a Graph Neural Network (GNN) that utilizes protein structure information28

for protein sub-cellular localization prediction. We ensemble this model with a transformer-based29

language model that takes the protein sequence into account. We demonstrate that this combined30

method yields higher prediction performances than previous methods.31
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2 Background work32

2.1 Language Model Representation33

Meta AI’s Evolutionary Scale Modeling (ESM) [1] is an unsupervised transformer protein language34

model. In this paper, we employ ESM-1b, in which the model is trained to predict amino acids from35

the surrounding sequence context, as the core model to extract abstract features from the protein36

sequences. Although a competing model – Hugging Face’s ProtT5XL [5] – is available, we focused37

on ESM-1b for its better ability to scale 1.38

2.2 Subcellular localization39

Alongside their cellular localization dataset, the authors of Deeploc 2 [2] published a successful40

Language Model (LM)-based classifier. It feeds the ESM-1b representation to a multi-class clas-41

sifier involving an attention-pooling layer and a multi-layer perception (MLP). Its performance is42

summarized in Table 1.43

3 Method44

In recent years, the use Language Models for protein representation has proven to be surprisingly45

successful for downstream prediction models; accordingly, their use has become increasingly preva-46

lent in the field [1] [6] [5] [7]. Often, LMs are trained in a self-supervised fashion on hundreds of47

millions of proteins before being fine-tuned or used as backbone models for downstream tasks [8].48

In parallel, the proteomics community underwent a major breakthrough with the inventions of very49

successful in-silico protein folders [3] [4]. The goal of our research is to combine those two new50

sources of information to outperform models that only utilize one such source.51

3.1 Data52

In this paper we are benchmarking our method on the subcellular localization task made possible53

by the Deeploc 2 [2] dataset. This dataset is comprised of a train/validation set of 24,674 protein54

sequences mapped to 10 localization classes (e.g. Cytoplasm, Nucleus, etc.), and a test set from a55

different source – the Human Protein Atlas (HPA)[9] – of 1,532 proteins associated with 8 localization56

classes 2.57

For each protein entry, we retrieved the AlphaFold model from the AlphaFold Protein Structure58

Database [10] in the form of an atom coordinates file (PDB format). For each structure, we generated59

a graph representation based on the amino-acid adjacency matrix, inspired by the LM-GVP method60

[11]. The dihedral angle between amino-acids is used as a node feature in the model to capture61

the geometrical relationships between the adjacent amino acids. We introduced two novel node62

attributes to the LM-GVP graph: (1) positional encoding (PE): Adjacency matrices do not encode63

protein’s primary sequence, therefore (a) will have low chances of recognizing primary-sequence64

motifs, and (b) will be less sensitive to the distinction between short and long range amino acid65

interactions, known to have different contributions to protein folding, structure and function [12],66

and (2) AlphaFold’s Local Distance Difference Test (pLDDT): pLDDT is a metric of AlphaFold’s67

confidence for atom coordinate assignment. It has been observed that regions of the protein structure68

that have a higher pLDDT are generally associated to "less rigid" parts of the structure [13]. We69

hypothesized that pLDDT increases the predictive power for many downstream tasks, such as cellular70

localization.71

3.2 Baseline72

In order to compare the performance of our contribution, we have trained different simple NN73

architectures (CNNs, MLPs, shallow models) on the ESM representation. We kept the best performing74

model: a 3 layers convolutional neural network.75

1ProtT5XL has 3B parameters and ESM-1b has 650M parameters. ProtT5XL was shown to be marginally
better than ESM-1b for localization prediction. [2]

22 of the training classes are not present in the test set. Furthermore, we also removed 2 supplementary
classes from the test results since they were not significantly represented with less than 7 occurrences.

2



3.3 Model Architecture76

Figure 1: First (a.), a protein sequence is passed to an LM, which outputs a protein representation. In
parallel (b.) a PDB structure is processed to generate a graph where nodes represent amino acids and
edges are drawn between adjacent amino acids. This graph is used as an input for a GNN (with GVP
layers [14]) which outputs a graph representation. Finally (c.), both LM and Graph representations
are ensembled through a novel architecture that yields the class probabilities.

Similar architectures, like LM-GVP and DeepFRI are using LM representation at the node/amino77

acid-level. Whilst this makes intuitive sense, we realized that it leads to scalability issues. Given that78

the average protein length is 556.90 for the dataset, using one LM representations per amino acid79

can quickly exceed the average memory of single GPU or lead to excessive training times. Instead,80

we are working with a fixed-size representation vector per protein, using the mean to aggregate the81

representations like suggested by the ESM team.82

Our first hypothesis is that the representations from LM and GVP are complementary. Therefore, our83

first approach was to train two separate classifiers and to ensemble them by computing the mean of84

the output probabilities. The resulting F1-score were 0.55 for the LM model, 0.46 for the GVP model85

and 0.58 for the ensemble. Whilst this ensembling approach already outperformed each classifier86

separately, we realized that we could improve performance if we trained both classifiers together with87

a differentiable mean. We believe that this method allows the GVP layers to "learn away" from what88

the LM already represents. After experimenting with various architectures to combine GVP and LM89

representations, we found the best performing to be a dense-residual type head (Figure 1.c).90

4 Results91

Model Precision Recall F1-score
1. GVP alone 0.34 0.69 0.46
2. LM baseline 0.67 0.47 0.55
3. LM attention pooling (Deeploc 2) - - 0.57
4. Proposed architecture (Figure 1) 0.50 0.72 0.59
5. Ensemble of 2. and 4. 0.59 0.60 0.60

Table 1: Summary of the classification metrics (micro average) on the HPA test set for different
approaches. (1) GVP alone as a classifier (Figure 1.b), (2) LM baseline model (3 layers CNN),
(3) Architecture proposed by Deeploc 2, (4) Our dense-residual ensembling (Figure 1), (5) A
supplementary (non-differentiable) ensemble by the mean of 2. and 4. slightly outperforms 4. alone.

Similar to other researchers[15], we observed that LM-powered models clearly outperform GVP92

alone. However, our proposed ensembling architecture outperforms the best LM and structure-aware93

approaches respectively. Note that the proposed architecture (4) using representations at the protein94

level outperforms the competing model (3) that use representations at the amino acid level; thus95

provides both faster training and better performance.96
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Model Cytoplasm Nucleus Cell memb. Mitochondrion Endo. ret. Golgi
LM baseline 0.53 0.66 0.33 0.62 0.13 0.19
Ours 0.56 0.75 0.43 0.51 0.20 0.31

Table 2: Micro F1-score per class for both LM baseline and our proposed ensembling architecture
(Figure 1) on the HPA test set.

We observe that in every class (except Mitochondrion), our proposed architecture outperforms the97

LM baseline.98

In order to show the impact of adding positional encoding as a node feature, we performed an ablation99

experiment. We trained with and without PE for 60 epochs. Without PE, the test F1-score reached100

0.548, with PE it reached 0.5693. This validates the hypothesis previously formulated: helping the101

model extract patterns at specific positions increased the classification performance.102

5 Discussion103

• Given that for mitochondrion, the LM baseline outperforms the proposed architecture,104

we propose the following explanation. Shuttling proteins into mitochondria is unique:105

Mitochondrial entry requires a protein to bind to a chaperone while it is in an unfolded106

form. Upon entry to this organelle, the protein will adopt a folded state. [16]. Hence, we107

could explain the lower accuracy of GVM by the known dependence on sequence rather108

than structure features for mitochondrial localization.109

• We observe that the prediction of nuclear localization by our ensembling method outperforms110

DeepLoc’s prediction. As mentioned above, Nuclear localization is frequently mediated111

by an NLS. However, other routes for nuclear entry exist: a protein without an NLS may112

interact with other proteins that include an NLS, or other chaperones that mediate entry.113

These cases are notably more challenging to predict, as they are not mediated directly by114

a conserved sequence motif such as the NLS. To demonstrate the benefit of incorporating115

structure information for localization prediction, we focused on cases in which the LM116

baseline on its own fails in nuclear prediction, but our ensembling method succeeds. We117

further distilled the list of these cases to include only the cases where DeepLoc provided118

inaccurate prediction. None of these proteins included an NLS (According to SwissProt119

annotation [17]), and some were literature-documented cases of proteins that enter the120

nucleus via a non-NLS routes, like General transcription factor IIH subunit 1 (UniProt121

accession P32780), which is a component of RNA polymerase II. This protein interacts with122

other proteins to form a complex before entering the nucleus. The complex nuclear entry is123

then mediated by an NLS motif of other components of the complex [18]. This stands as a124

promising finding in favor of using structure-aware protein representations.125

6 Conclusion126

In this research, we successfully combined signals from protein structures with Language Model127

representations to outperform the state of the art of Subcellular localization prediction. The principle128

takeaways are the following: predicted structures appear not to be the sole answer to better protein129

representations; however, once combined with LM representations and fed into a specific model130

architecture, such as the one we propose, the quality of representations improves.131

Contrasting competing models, we focused on making a scalable/lightweight architecture allowing132

faster training for more downstream tasks on consumer GPUs, in an effort to democratize structure-133

aware protein representations models, whilst increasing the model performance.134

3Furthermore, we observed a better performance during the whole duration of training.
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[15] Vladimir Gligorijević, P. Douglas Renfrew, Tomasz Kosciolek, Julia Koehler Leman, Daniel195

Berenberg, Tommi Vatanen, Chris Chandler, Bryn C. Taylor, Ian M. Fisk, Hera Vlamakis,196

Ramnik J. Xavier, Rob Knight, Kyunghyun Cho, and Richard Bonneau. Structure-based protein197

function prediction using graph convolutional networks. Nature Communications, 12(1), May198

2021.199

[16] Diana Stojanovski, Maria Bohnert, Nikolaus Pfanner, and Martin van der Laan. Mechanisms of200

protein sorting in mitochondria. Cold Spring Harb. Perspect. Biol., 4(10):a011320–a011320,201

October 2012.202

[17] The UniProt Consortium. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids203

Research, 49(D1):D480–D489, 11 2020.204

[18] Luciano Di Croce. Regulating the shuttling of eukaryotic rna polymerase ii. Molecular and205

Cellular Biology, 31(19):3918–3920, 2011.206

6


	Introduction
	Background work
	Language Model Representation
	Subcellular localization

	Method
	Data
	Baseline
	Model Architecture

	Results
	Discussion
	Conclusion

