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Abstract—Ship target detection is crucial for ensuring
maritime safety. To tackle the issues of limited recognition
accuracy and inadequate generalization in existing detection
models, this thesis presents an enhanced model: YOLOvSs-Mask,
which incorporates an Improved Convolutional Layer based on
Stochastic Masked Kernels. This novel approach aims to boost
both recognition accuracy and the model's ability to generalize
across various scenes. We introduce the concept of the Stochastic
Masked Kernel and develop the Masked SPPF (Masked Spatial
Pyramid Pooling) module to improve the model's detection
performance and robustness, particularly for small and densely
packed targets. Additionally, we incorporate the SE (Squeeze-
and-Excitation) attention mechanism to further refine
recognition accuracy while keeping the model lightweight.
Experimental results show that YOLOvSs-Mask achieves a
1.26% improvement in mAP and a 5.71% increase in mAP0.5-
0.95 compared to the original YOLOVSs. This demonstrates the
model's significant potential for real-world ship target detection
applications.
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L. INTRODUCTION

The growing global trade has increasingly highlighted the
importance of the shipping industry[1]. With the rising number
of ships and the evolving shipping scenarios, ship target
detection has become crucial for maritime traffic management
and shipping safety. In complex shipping environments—such
as ports with high traffic volumes and narrow waterways—
traditional target detection algorithms often struggle with
limited generalization and accuracy. Therefore, developing a
ship target detection method that excels in accuracy,
generalization, and robustness is of significant importance.

Target detection algorithms are typically divided into two
main categories: two-stage algorithms and one-stage
algorithms. However, traditional two-stage algorithms, such as
Faster R-CNNJ[2] and the R-CNNJ3] series, face challenges
including high computational resource demands, diverse ship
sizes and shapes, and limited feature extraction generalization.
To address these issues, one-stage algorithms like YOLO[4]
and SSD[5] have gained prominence and application in ship
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target detection. One-stage algorithms offer several advantages:
they are typically more efficient in inference as they directly
predict target locations and classes without complex candidate
region extraction; they can be optimized through end-to-end
training, facilitating adaptation to ships of various sizes and
shapes; and some one-stage algorithms, such as YOLOVS,
enhance detection in complex backgrounds by employing
techniques like SPPF to integrate multi-scale feature
information.

Many scholars have proposed numerous algorithms
before and after. Liu et al.[6] proposed an augmented CNN to
improve the capability for detecting ships in different weather
conditions. Li et al.[7] suggested an enhanced Faster R-CNN
model, which delivers strong performance on the SSDD
dataset. Lei et al.[8] introduced the SRSDD dataset for high-
resolution SAR rotating ship detection, which includes
information on both ship categories and ship angles. Qi et
al.[9]employs a scene narrowing technique to integrate the
target area localization network with the Faster R-CNN
convolutional neural network into a multi-layered narrowing
network. This approach reduces the target detection search
scale and enhances the computational speed of Faster R-CNN.
Dong et al.[10] proved that the YOLOVS algorithm is effective
in target detection. Yue et al.[11] designed a feature extraction
network suitable for SAR ship target detection by combining
VGGNet with dilated convolution. Zheng[12] replaced the
YOLOv4 backbone network with MobileNetV1 in distance
measurement to enhance detection speed during the
recognition phase. Zhang[13] introduced CA-Ghost and
C3Ghost for feature extraction in the backbone and neck layers,
respectively, to enhance detection performance while
optimizing the model. Zhang et al.[14] replaced DarkNet53
with DarkNet19 in YOLOV3, resulting in improved speed.T.
Li et al.[15] proposes a BLIoU method based on the Broad
Learning System , which significantly enhances target tracking
performance through Intersection over Union network-based
scale and drift correction, while featuring short training time
and strong portability.T. Li et al.[16] proposed a method that
integrates Siamese networks with the Broad Learning System,
enhancing the accuracy and adaptability of target tracking by



rapidly learning target features online. However, relatively few
studies have been conducted on complex environments and
overlapping targets in ship target detection tasks, and there are
cases of missed or false detection. Therefore, enhancing the
robustness and generalization of target detection models in
ship target detection remains a challenging issue that warrants
further research.

Our thesis introduces a Stochastic Masked Kernel model
based on YOLOVSs, referred to as YOLOv5s-Mask. The
proposed model involves modifying the convolution layer to
incorporate a Stochastic Masked Kernel, built upon SPPF, to
enhance robustness and generalization capability while
reducing false detections. Additionally, the SE attention
mechanism is incorporated before the SPPF to enhance the
accuracy. Comparative tests were conducted on four models:
the original YOLOvVS5s, YOLOvS5s-Atrous, YOLOvVS5s-SE, and
YOLOv5s-Mask (our model). The results indicate that our
model achieved the best performance, with improvements of
1.09% in precision, 2.46% in recall, 1.26% in mAPO.5, and
5.71% in mAP0.5-0.95. The new model effectively enhances
precision and recall, addresses issues related to generalization
and robustness, and performs well in complex shipping
environments.

Section 2 details the methodology for the Masked SPPF
and the incorporation of the SE attention mechanism. Section 3
highlights the benefits of the proposed model in terms of
precision, recall, and generalization through comparative
experiments. Section 4 outlines potential research directions,
including improved mask generation design and development
of more practical models.

II. METHODOLOGY

A.  YOLOvS5s algorithm

YOLOv5s[17] is part of the YOLOVS series. The
strength of the YOLOVSs structure is its integration of a
compact model size with efficient feature extraction
capabilities, which is suitable for real-time object detection
application scenarios that require fast processing speed and
high accuracy, so this paper is based on the YOLOv5s model
for optimization.

Fig. 1 Network structure of YOLOVSs

B.  Masked SPPF

Spatial Pyramid Pooling (SPP) was first introduced by
He et al.[18] in 2014 to address the issue of fixed-size input
requirements imposed by fully connected layers when dealing

with variable-size inputs in convolutional neural networks.
The core concept of SPP is to apply pooling operations at
multiple scales on a fixed-size feature map, enabling multi-
scale representation of objects within the input image or
feature map. SPP achieves this by partitioning the feature map
into grids of different sizes and applying pooling kernels of
different dimensions to each grid. This approach captures
feature information at different scales without necessitating
changes to the network structure. Additionally, the feature
vectors produced by SPP have a fixed size, making them
suitable for subsequent fully connected layers or classifiers,
regardless of the variations in input size.
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Fig. 2 Network structure of SPP

Spatial Pyramid Pooling with Feature Fusion (SPPF) is
an advanced version of SPP. Unlike its predecessor, SPPF
introduces a feature fusion mechanism that enhances the
network’s capacity to represent multi-scale objects by
integrating feature information across various scales and
pooling layers. This fusion process helps to mitigate
information loss and improves the model’s stability and
generalization in complex scenes. As a result, SPPF achieves
higher precision and accuracy in object detection and image
recognition tasks. It is particularly effective for handling
images with significant scale variations or complex
backgrounds.
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Fig. 3 Network structure of SPPF

The benefits of incorporating random masked
convolutions into SPPF are as follows:

1) Feature Enhancement: Masked convolutions increase
feature diversity, while SPPF extracts multi-scale features.

The combination of the two can provide a more

comprehensive  representation of the target, thereby
improving detection accuracy.
2) Generalization  Capability ~ Improvement:  The

randomness of masked convolutions helps reduce overfitting,
and SPPF enhances the model's adaptability to different
target sizes and proportions. Together, they improve the
model's  generalization — performance  across  various
environments and conditions.

3) Efficiency and Complexity Balance: By rationally
designing the network structure and combining the two, it is
possible to ensure model performance while minimizing



computational complexity and improving computational
efficiency.

The Stochastic Masked Kernel is implemented by setting
the mask prob parameter to 0.1. This involves creating a
stochastic binary mask matrix that matches the dimensions of
the convolution kernel. This binary mask is then applied to the
convolution kernel within the SPPF. The feature maps are
subsequently convolved with the modified kernel. Specifically,
Stochastic Masked Kernel is introduced into the convolution
process after the feature map has been processed by the SPPF
maximum pooling layer. By randomly altering portions of the
convolution kernel, the model's sensitivity and robustness to
small and dense targets are improved.
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Fig. 4 Schematic of Stochastic Masked Kernel
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Adding the Stochastic Masked Kernel to the SPPF
architecture offers several advantages. By randomly
generating masks, the shape and position of the convolution
kernel can be changed. This variability enhances the model's
sensitivity to dense targets, thereby enhancing accuracy. The
introduction of randomness increases the model's versatility,
enabling it to behave differently each time it is trained or
evaluated. This is particularly beneficial for handling complex
scenarios, noisy interferences, or datasets with variations,
thereby boosting the model’s robustness. Additionally, the
Stochastic Masked Kernel acts as a regularization technique,
reducing the risk of overfitting. By introducing randomness
during training, the model's generalization ability is enhanced.
While SPPF already incorporates multiscale feature fusion,
the Stochastic Masked Kernel further refines multiscale
feature representation. The use of masks introduces variations
in feature representations across different locations and scales,
which helps capture a broader range of semantic information.
C. SE Attention Mechanism

The SE (Squeeze-and-Excitation) Attention
Mechanism[19] is a channel attention module that consists of
two primary phases: Squeeze and Excitation. It is commonly
used in visual modeling to enhance feature representations.
The SE module operates in a plug-and-play manner, allowing
it to be seamlessly integrated into existing architectures. It
enhances the input feature maps at the channel level while
preserving the original size of the input feature maps in the
final output.
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Fig. 5 SE Block structure

SE Block structure is depicted in Fig. 2, firstly,
X e R is mapped to the feature map U e R”*"*C by the
convolution operation £, In this process, the set of
convolution kernels is denoted by ¥ =[v,,v,,..,vc] , and the

output can be represented asU = [u;,us....,u.] , then:

o
u,=v,*X = Zv; *x°
- (2)

The * is convolution operation.

HxW 12 C s
u, €R v, =|_vc,vc,...vc J X:[xl,x2,,,,,xc J vy is a two-

E > >
dimensional convolution kernel, meaning that one channel of
veinteracts with the matching channel of X.

Squeeze phase: to consider the information from each
channel in the output feature map, it compresses the global
spatial elements into a channel descriptor Z. by means of
global average pooling. It is usually done to Minimize
computation and parameters. The formula for this is:

1 H W
z, = F, (u(.): TxW ;;uc(i,j)
3)
Excitation Phase: It uses a gating mechanism with
Sigmoid activation to fully capture channel dependencies.
This mechanism learns the importance weights of each
channel using a small feed-forward neural network, typically
a fully connected network. The formula for this is:

s=F, (zW)=0(g(zW))=c(W,0(Wz)) @
e Cc
where 0 is the ReLU function,w, e R*  ,W, eR"

Scale phase: finally, the learned weights are multiplied
with the feature map and used to weight the channels with
higher importance. This process allows the network to
adaptively Concentrate on key features during the learning
process, thus improving the overall performance. The SE
Block's final output is achieved by rescaling U with s:

x_c = F;ca/e (uc ’Sc ) = Scuc (5)

In this model, the SE module is inserted into the
convolutional layer preceding the SPPF layer. This integration
allows the importance weights of each feature map channel to
be learned by the model, enabling the network to focus more
on features that are crucial for object classification and
bounding box prediction. As a result, the information in the
feature maps is utilized more efficiently, improving precision
and stability in target detection. Notably, in the compact



YOLOv5s model, the SE module significantly boosts
performance with minimal additional computational cost.

Fig. 6 Improved YOLOvVS5s network structure

III. EXPERIMENT AND RESULTS

A.  Data sets

The Seaships dataset is used, an open dataset specifically
designed for ship detection and recognition. It includes a
substantial number of ship targets captured in aerial or
satellite imagery, with ships appearing in various sizes,
orientations, and lighting conditions over water bodies such as
oceans and harbors. The dataset comprises 7,000 images, with
80% allocated for training the model and 20% reserved for
validation to assess detection performance.
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Fig. 7 Data distribution for the seaships dataset

B.  Evaluation metrics and experiments

The mAP is selected as the evaluation metrics AP and

mAP are calculated by formula 6 and formula 7.

AP:ﬁﬂm

> AR
N

(6)

mAP =
(7

N represents the total count of categories, precision rate
P and recall rate R are calculated from formula 8 and formula
9.

TP
P =1 rp
+
(3)
TP
R=1pirn
+
)
TABLE 1. RESULTS OF ABLATION EXPERIMENTS
Mould P R mAP0.5 mAP0.5-0.95
YOLOvS5s 98.03% 96.03% 97.73% 75.88%
YOLOv5s-Atrous 97.56% 96.40% 98.69% 76.49%
YOLOv5s-SE 98.11% 96.78% 98.70% 76.52%
YOLOv5s-Mask 99.12% 98.49% 98.99% 81.59%

As shown in TABLE 1., the proposed model enhances
precision by 1.09%, recall by 2.46%, mAPO0.5 by 1.26%, and
mAP0.5-0.95 by 5.71% in contrast to the conventional
YOLOvV5s. The mAP0.5-0.95 metric is widely used in target
detection as it comprehensively assesses a model's accuracy
and generalization across various Intersection over Union
(IoU) thresholds. This makes it a valuable tool for evaluating
and comparing algorithm performance. Although the new
model shows only marginal improvements in precision and
recall, it demonstrates superior generalization and robustness.

IV. CONCLUSION AND FOLLOW-UP

To address the limitations of insufficient generalization
and robustness in ship target detection models under complex
conditions, this paper proposes an enhanced YOLOvS5s model
incorporating Stochastic Masked Kernel and SE attention
mechanism. This improvement involves replacing the
standard convolution in the original SPPF with Stochastic
Masked Kernel and inserting the SE attention mechanism
before this module. Results show that our model achieves a
1.09% increase in precision, a 2.46% increase in recall, a
1.26% increase in mAPO.5, and a 5.71% increase in mAPOQ.5-
0.95 on the Seaships dataset. Overall, the proposed model
exhibits excellent performance, delivering high precision
along with improved generalization and robustness in
complex shipping environments.The model proposed in this
paper provides robust technical support for enhancing the
efficiency of marine traffic safety supervision in busy and
ever-changing port and waterway environments.




Future work will focus on enhancing model
predictability, accuracy, and -efficiency, including further
optimization of the stochastic mask generator and exploration
of more effective stochastic mask generation techniques.
Additionally, expanding and refining the ship target detection
dataset will be pursued to boost the model's ability to
generalize and its effectiveness in practical applications.

ACKNOWLEDGMENT

This work was supported in part by the National Natural
Science Foundation of China (grant nos. 52131101 and
51939001), the Liao Ning Revitalization Talents Program
(grant no. XLYC1807046), and the Science and Technology
Fund for Distinguished Young Scholars of Dalian (grant no.
2021RJO08).

REFERENCES

[11 Jiang Junhao and Zuo Yi, “Prediction of Ship Trajectory in Nearby Port
Waters Based on Attention Mechanism Model[J],” Sustainability.
vol.15, no.9, (7435), 2023.

[2] S. Ren, K. He, R. Girshick and J. Sun, “Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks[J],” IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol.39, no.6,
(1137-1149), 1 June 2017.

[3] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik, “Rich
Feature Hierarchies for Accurate Object Detection and Semantic
Segmentation[C],” Proceedings of the IEEE conference on computer
vision and pattern recognition.(580-587), 2014.

[4] J. Redmon, S. Divvala, R. Girshick and A. Farhadi, “You Only Look
Once: Unified, Real-Time Object Detection[C],” Proceedings of the
IEEE conference on computer vision and pattern recognition.2016.

[5] Liu Wei et al, “SSD: Single Shot MultiBox Detector[C],” Computer
Vision--ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11--14, 2016, Proceedings, Part I 14. (21-37),
2016.

[6] Liu Ryan Wen, Yuan Weiqiao, Chen Xinqiang and Lu Yuxul, “An
enhanced CNN-enabled Learning Method for Promoting Ship Detection
in Maritime Surveillance System[J],” Ocean Engineering. Vol.235,
(109435), 2021.

[7] Li Jianwei, Qu Changwen and Shao Jiaqi, “Ship Detection in SAR
Images Based on An Improved Faster R-CNN[C],” 2017 SAR in Big
Data Era: Models, Methods and Applications (BIGSARDATA). (1-6).
2017.

[8] Lei Songlin, Lu Dongdong, Qiu Xiaolan and Ding Chibiao, “SRSDD-
v1.0: A High-resolution SAR Rotation Ship Detection Dataset[J]”,
Remote Sensing,” vol. 13, no. 24, (5104), Dec. 2021.

[9] Qi Liang et al, “Ship Target Detection Algorithm Based on Improved
Faster R-CNN[J],” Electronics. vol. 8, no. 9, (959), 2019.

[10] Dong Xudong et al, “A Lightweight Vehicles Detection Network Model
Based on YOLOVS5[J],” Engineering Applications of Artificial
Intelligence. vol. 113, (104914), 2022.

[11] YUE Bang-zheng et al, “A SAR Ship Detection Method Based on
Improved Faster R-CNN[J],” Computer and Modernization. No. 9, (90),
2019.

[12] Zheng Yuanzhou et al, “Recognition and Depth Estimation of Ships
Based on Binocular Stereo Vision[J],” Journal of Marine Science and
Journal of Marine Science and Engineering. vol. 10, no. 8, (1153), 2022.

[13] Zhang Mengyao et al, “Light-SDNet: A Lightweight CNN Architecture
for Ship Detection[J],” IEEE Access. vol. 10,(86647-86662), 2022.

[14] Zhang, Tianwen et al, “High-speed Ship Detection in SAR Images by
Improved YOLOV3[C],” 2019 16th International Computer Conference
on Wavelet Active Media Technology and Information Processing.
(149-152), 2019.

[15]

[16]

[17]

(18]

[19]

Zhang Dan et al, “An Improvement Method of Target Tracking Based
on Broad Learning Systems with Scale and Drift Correction[J],” IEEE
Transactions on Cognitive and Developmental Systems, 2023.

Zhang Dan et al, “Target Tracking Method of Siamese Networks Based
on Broad Learning System[J],” CAAI Transactions on Intelligence
Technology, vol.8, no.3, (1043-1057), 2023.

Zhu Xingkui et al, “TPH-YOLOVS5: Improved YOLOvVS Based on
Transformer Prediction Head for Object Detection on Drone-captured
Scenarios[C],” Proceedings of the IEEE/CVF international conference
on computer vision.(2778-2788), 2021.

He Kaiming et al, “Spatial Pyramid Pooling in Deep Convolutional
Networks for Visual Recognition[J]," IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 37, no. 9, (1904-1916), 1 Sept.
2015.

Hu J et al, “Squeeze-and-Excitation Networks[C],” Proceedings of the
IEEE conference on computer vision and pattern recognition. (7132-
7141),2018.



