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Abstract. Phishing websites are a common cyber fraud strategy used to deceive users into disclosing
personal or sensitive information by impersonating legitimate websites. Such attacks often have long
identification times and are accompanied by high costs. These types of attacks have been a cyberthreat
for a long time, but are occurring more frequently, becoming more sophisticated and accessible with the
introduction of generative AI tools. Although previous research has achieved great success in detecting
phishing websites, most of the earlier techniques are becoming obsolete with the latest advances in the
phishing scene, as the pages are increasing in quality. This paper introduces a GNN-based approach
to detecting phishing pages by identifying irregularities in their HTML source code, such as poor
semantics, the presence of malicious code, or the use of phishing kits. An HTML-reduction algorithm
is introduced to a) reduce structural noise and b) lower the computational costs. Using a simple node
feature extraction process and a reduction algorithm yields a computationally efficient model, achieving
95.57% F1. The HTML DOM tree-based approach was validated additionally by a) an in-depth dataset
analysis, showing a clear difference in benign and phishing source code, and b) traditional machine
learning models (Random Forest and XGBoost) achieving up to 96.00% F1 using manually extracted
graph features.

Keywords: Phishing detection · GNN.

1 Introduction

Phishing attacks remain a serious cyberthreat for both individuals and enterprises and are performed using
a wide variety of techniques [4]. One of the most common strategies is phishing websites, aiming to deceive
users into disclosing sensitive information, often impersonating legitimate websites. This technique has been
posing a threat for a long time and is becoming more frequent than ever. APWG [6] reports having detected
1,003,924 unique phishing websites in the first quarter of 2025, being the most since Q4 in 2023. Phishing
attacks can leave a huge impact on organisations; IBM [27] reports an average annual cost of 4.8M USD and
an average identification time of 192 days for 2025.

Attackers are leveraging generative AI tools to increase website quality and significantly lower develop-
ment times. Begou et al. [12] report an average time of 4 minutes for the generation of a phishing website using
ChatGPT. The process outputs a high-quality phishing page with high similarity to the original webpage
and requires little technical skill.

Phishing website detection has been extensively researched [48] before but is more relevant than ever,
with an increasing amount of phishing pages having higher quality and a shorter development time. Current
detection methods are divided into three categories by [33]:

Signature-based methods [49,31,66] rely on identifying common elements or patterns in phishing
pages. Pages are compared against predefined signatures based on known phishing websites, phishing kits,
or the certificate of the website. These techniques can be effective for widely used phishing attacks but
lack protection against new and evolving strategies. These methods require the maintenance of a reference
database.
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Machine learning-based methods [50,10,51,3] often leverage ML to extract features from the websites
to determine their authenticity, removing the need for a reference database. These features are manually
selected based on the URL or content of the website. They offer better adaptability against the evolving
phishing attacks.

Deep learning-based methods [36,55,24,5,54,30] use automatic extraction of relevant features from the
data. These techniques can eliminate the need for manual feature engineering and improve the discriminability
of classes by mapping features into a higher-level latent space.

With phishing pages becoming more sophisticated, some of these previous detection methods have become
vulnerable. Varshney et al. [56] advise against overly relying on domain or certificate features, as most of
the recent phishing is deployed over HTTPS. Techniques based on low-quality visual similarity or textual
features become weaker as visual similarity and text quality increase using generative AI tools. With current
technical trends, these tools will only improve and therefore also weaponise phishing attacks even more.

This work proposes a phishing detection technique that does not rely on visual, text, or domain features.
We show how machine learning (ML) models and graph neural networks (GNNs) can leverage features
extracted from the tree-structured source code to detect phishing attacks. GNNs are a class of neural networks
designed to operate on graph-structured data. They employ a message-passing mechanism to iteratively
aggregate and transform information from neighboring nodes, effectively capturing the complex structure of
the graph.

When a phishing page is created, malicious code is either generated by the AI tools used or manually
injected by the malicious party. As a result, the HTML source code will always contain traces of phish-
ing websites, unlike the earlier-mentioned features that can be imitated to almost perfection. Source code
analysis can detect phishing pages based on the following indicators [33]: poor semantics of HTML code,
code with malicious intent (e.g., hidden fields, deceptive redirects), use of phishing kits, or common patterns
across phishing pages. A thorough analysis of the used dataset showed a difference in used HTML elements,
attributes, and website size, motivating our code-based approach.

Finally, to achieve a fast detection and training time, we limit the computational costs by using only sim-
ple node features, and we introduce an HTML-reduction algorithm. For each website, a graph is constructed
based on the HTML tree structure, with node features based on the tag name, attributes, and presence of
text for each node in the tree. To reduce the size of the graphs, similar nodes and structurally insignificant
nodes are pruned from the graph.

Main contributions:

With the proposed method, we make the following main contributions: a) A graph construction algorithm
converting the source code of a website into a graph representation fit for machine learning, using lightweight
and scalable node features; b) A GraphSAGE model leveraging the semantics of the HTML, avoiding reliance
on textual, visual, or domain-level features; c) A HTML reduction algorithm to reduce the size of the graphs
by pruning redundant and structurally insignificant nodes, resulting in a 16.25% saving in GPU training
cost.

2 Related Work

In recent years, GNN-enabled approaches have shown promising results, achieving up to 99.86% accuracy by
Wang et al. [62] on their custom dataset. They are used for their ability to model the complex relationships
of websites. A great part of the web is inherently structured as graphs. By leveraging GNNs, these inherent
structures can be maintained while capturing relevant information for phishing detection. These can be
divided into three categories:

URL-based methods construct graphs using the URLs of websites or those linked to by them. Phishing
websites are identified solely by URL-based features, without consideration of the content of the pages. In
[61], a graph is created from websites with edges representing similarity scores and using message passing
to infer the labels of unknown websites. Despite being proven to be effective with a 94.90% F1 score — a
measure that balances precision and recall — on their custom dataset, based on data from PhishTank [44], it
lacks zero-day protection and requires the maintenance of a dataset after training. PhishGNN [13] constructs
graphs based on the extracted URLs from a website, being the child nodes, and uses message passing to



Towards Efficient GNN-Based Phishing Detection from HTML Source Code 3

infer the label of the website, the root node. They report an accuracy of 99.70% on their custom dataset,
constructed using URLs from PhishTank [44] and OpenPhish [40]. However, the method could be bypassed
by adding a large number of benign URLs to a phishing website.

Content-based methods use the content of the pages, the source code, or a screenshot of the website
to create graphs. In [41], the tree structure of HTML is leveraged to create a graph for each website using an
RNN to extract local features and a GNN to model the HTML semantics. The method was validated on a
benign dominant dataset with examples collected from PhishTank [44], OpenPhish [40], and TrancoTop1M
[45], accomplishing 86.34% F1 despite achieving 95.50% accuracy.

In [62], a single text graph is constructed for all websites in the dataset, using phrase nodes, to better
capture the syntactic and semantic meaning of source code and document nodes. This technique attained
99.86% F1 but is limited to a transductive setting, whereas real-world application typically involve an
inductive setting. The method was validated on a dataset comprising samples from the 2017 China Network
Security Technology Challenge [39], Malware Domain List [38], Chinaz [19] and VirusTotal [58]. Instead
of the source code, Lindamulage et al. [37] generated graphs based on screenshots of the websites; nodes
are local image patches, and edges connect neighboring patches. They report an accuracy of 97.4% on the
VisualPhish dataset [2].

Hybrid methods make use of both the URLs and content of the websites, typically by creating an
ensemble model. Ariyadasa et al. [8] introduced PhishDet, consisting of two components, HTMLDet and
URLDet, reporting an F1 of 96.42% on the dataset [7]. HTMLDet is a GCN model with graphs maintaining
the inherent HTML structure and node embeddings being generated using a doc2vec applied to the HTML
elements and their attributes. URLDet is an LRCN model with vectorized URLs as input. HTMLDet and
URLDet individually scored F1 of 89.71% and 94.77% on the dataset [7].

Yoon et al. [65] also use an ensemble model, where a transformer combines both character-and word-
level models processing the website URL and a GCN model using the HTML. Even though it accomplishes
97.09% F1 with data collected from Common Crawl [20] and Phishtank [44], it might not be appropriate for
real-time use cases due to its high computational needs.

Shakir et al. [52] deploy a hybrid approach, using a GNN for feature selection, where graphs are con-
structed from pairwise distances between features, with the features found most important used to train
an SVM model for the final prediction. Their approach achieved an accuracy of 93.52% and 93.78% F1,
validated on data collected from OpenPhish [40], PhishTank [44], and other public blacklists, but relies on
manually selected features. In [53], a graph per website is created using the HTML source code; domain
information is injected by linking its embedding to the root node. Using a GAT model, they obtained up
to 91% accuracy using datasets from KnowPhish [34] and Phishpedia [36]. Kavya et al. [29] introduced a
Multimodal and Temporal Graph Fusion Framework that leverages textual, visual, and structural features
of webpages while ensuring scalability and privacy by incorporating a series of techniques: GNNs, temporal
modeling, and contrastive learning. They report achieving accuracy up to 98% and F1 up to 97%, using
samples from OpenPhish [40], PhishTank [44], and the dataset from URLNet [32]. Remya et al. [46] combine
the text, URL, and metadata of the website using an ensemble model consisting of a GNN, LightGBM, and
BERT, reporting an accuracy and F1 of 97.3%, using the public dataset “Phishing Website URLs” sourced
from Kaggle [1].

Our proposed method employs a GNN to model the HTML semantics, leveraging the tree structure of
the HTML source code to construct the input graphs, similar to prior works [41,8]. However, we introduce
a simpler node feature extraction process: Ouyang et al. employ an RNN to extract local features, and
Ariyadasa et al. use a domain-specific doc2vec. In contrast, our approach does not rely on a deep learning
model and does not require a learning algorithm.

3 Methodology

The HTML source code of each website is used to generate graphs fit for machine learning by leveraging the
tree structure of HTML. A reduction algorithm is introduced to reduce the size of the graphs and remove
structural noise to enhance the model’s ability to learn relevant features and lower the computational costs.
The effectiveness of the graph generation process is validated by traditional machine learning techniques
before introducing the GraphSAGE model.
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3.1 Graph Construction from HTML

For each website, a graph fit for machine learning is constructed based on the HTML source code. HTML [63]
is structured as a tree, which is a special type of graph. This structure is directly used to construct the graphs;
the key part is the encoding of the information of the DOM elements, consisting of a tag name, attributes,
and optional text content. Maintaining the semantics of HTML source code is crucial, as its violation can be
a clear indicator of phishing pages. Phishing pages often disregard the rules of semantic HTML, prioritising
website appearance over underlying code quality. The tag name, attributes, and text content are vectorised
into a node feature vector of dimension R1×299, capturing key information while minimising computational
cost.

– Tag name: The name is one-hot encoded into an R1×125 vector, as there are currently 125 tag names
[60]. Each vector contains zeros at all indexes, except at the one corresponding to the tag name of the
node.

– Attributes: Attributes occur in key-value-pairs, with 173 possible standard keys [59]. The key data-*
introduces an unlimited amount of variation of custom attribute keys in the source code; therefore, they
are all grouped together under one umbrella attribute. The keys are encoded to a vector of dimension
R1×173. A 1 at an index indicates the presence of an attribute; in the case of multiple occurrences of the
same attribute, the value at that index is increased by 1 for each appearance. Absent attributes have a
zero at the corresponding index. Attribute values are not taken into account.

– Text: As a feature the presence/absence of text is recorded into a vector R1×1. By not considering the
actual text content, the node vector can be kept minimal while still capturing semantic information, as
in semantically correct HTML, text should only appear in leaf nodes.

The final feature vector for the node is the concatenation of the three mentioned vectors. Figure 1 displays
the process for an example snippet of HTML.

(a) HTML Code (b) Graph Visualization

Fig. 1: Graph generation process from HTML code to graph-based tensor representation.

Table 1: Overview of all counted HTML elements and attributes.

Elements a, div, li, span, p, td, img, br, ul, i, tr, strong, svg, h3, h2, b, sup, style, form, input,
textarea, select, option, button, label

Attributes class, href, id, data-*, title, style, rel, type, value, src, name, alt, content, target,
onclick, required, http-equiv, method, action, autocomplete, placeholder
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3.2 Baselines: Random Forest and XGBoost

As a baseline, machine learning models – Random Forest [14] and XGBoost [17] – were chosen because they
have proven to be strong learners while being significantly less complex than deep learning-based approaches.
Features were manually extracted from the generated graphs, resulting in a tabular dataset with graph feature
vectors of dimension R1×53. The selected features are divided into two categories:

– Structural features3: node count, degree, closeness, betweenness, diameter, spectral radius.
– Content features: normalised tag and attribute counts. For each graph, a selection of HTML elements

and attributes was counted and normalised. This selection consists of the most frequently occurring tag
names, attributes, and manually chosen entries. Table 1 shows the full list of tracked items.

3.3 GraphSAGE

A GraphSAGE [25] model is used to capture the local patterns and eliminate manual graph-feature engi-
neering, it’s chosen for its ability to generalise to unseen data and its scalability.

Each convolutional layer is followed by a GraphNorm [15], ReLU activation, and dropout layer, forming a
basic block of the network. These blocks are connected in residual fashion to preserve information flow when
going deeper and introduce flexibility. Graph representations are obtained using attentional aggregation [35],
aggregating all node embeddings into a single graph embedding. The gate network learns scores for each
node, allowing them to contribute differently to the final embedding, modelling the varying importance of
HTML elements. For instance, a <form> element on a potential phishing website may be more insightful
than a <p> element. The gate network consists of a linear layer followed by a ReLU activation, dropout, and
a final linear layer. The graph representation is passed through a dropout layer before being passed through
the classification head: a linear, ReLu, dropout, and final linear layer producing a single logit. The final
binary prediction is obtained by applying a sigmoid function to the logit and comparing the output against
a set threshold.

(a) Width-wise: HTML
before

(b) Width-wise: Graph
before

(c) Width-wise: HTML
after

(d) Width-wise: Graph
after

(e) Depth-wise: HTML
before

(f) Depth-wise: Graph
before

(g) Depth-wise: HTML
after

(h) Depth-wise: Graph
after

Fig. 2: Graph reduction: depth-wise vs width-wise.

3 The structural features are inspired on [28]
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3.4 Graph Reduction

A reduction algorithm is introduced to simplify the graphs. The graphs can be pruned in two ways:

– Width-wise: Similar leaf nodes are removed. Leaf nodes are deemed similar when representing the same
HTML element and having a high cosine similarity, calculated on the attribute vectors. A threshold of
0.7 was used.

– Depth-wise: Nodes that add depth to the DOM tree while contributing little semantic information are
pruned. A node is classified as meaningless depth if it satisfies all the following conditions:
• It is a <div> or <span> element;
• It contains fewer than 4 attributes;
• It has only a single non-text child node.

To minimise information loss, the node feature vector is extended with two values, width-and depth-reduction-
factor, to keep track of pruned nodes, resulting in a vector of dimension R1×301. Figure 2 shows an example
for both width- and depth-wise reduction.

[64] and [18] defined the time complexity of the GraphSAGE training algorithm as:

O(rK · n · d2) (1)

where n = number of nodes, K = number of GNN layers, r = number of neighbors sampled per node and
d = dimension of node hidden features (assumed constant for simplicity).

Theorem 1. Let T (n) be the training cost of the GraphSAGE algorithm given by T (n) = O(rK · n · d2),
If the number of nodes per graph is reduced by a factor R (0 < R < 1), then the training cost is reduced
proportionally by the same factor, i.e., T ′(n) = O((1−R) · rK · n · d2).

Proof. By the definition of T (n), replacing n by (1 − R) · n yields T ′(n) = O(rK · (1 − R) · n · d2) =
O((1−R) · rK · n · d2). Hence, the cost decreases by a factor R.

Corollary 1. In the absence of neighborhood sampling (r = n), the training cost is reduced with factor
(1−R)1+K . i.e., the savings grow exponentially with the number of layers K.

Figure 3 demonstrates the practical impact of Theorem 1.

Fig. 3: Relative training cost T ′(n)/T (n) as a function of graph size reduction factor R for K = 3 layers,
d = 128, and r = 10. The dashed curve shows the case without neighborhood sampling (r = n), where the
reduction grows exponentially with K. The solid line shows the proportional case with sampling.

The graph reduction algorithms are directly integrated into the graph generation algorithm, increasing
its time complexity from O(n) to O(n · (m+ de)) (appendix B), with m the average node degree and de the
depth of the DOM tree. However, the reduction still results in significant computational savings because:
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– The graphs are only generated once, whereas the training algorithm is executed many times.
– Even for a single training epoch, it holds that R · rK ·d2 ≫ m+de, assuming typical values for r, K, and

d. The used dataset has an average degree of 1.95 and depth of 13.41, assuming a small embedding size
of 32 and knowing rK ≥ 1: 0.2152 · 322 · rK ≫ 15.36, meaning the reduction yields a great performance
boost.

A detailed description of the used reduction algorithms can be found in appendix B.

4 Experimental setting

The traditional machine learning models were trained on multiple subsets of the dataset with and without
the reduction algorithm to showcase the effectiveness of the graph generation and reduction process. Different
GraphSAGE models where trained to demonstrates the trade-off between complexity and performance, and
the training cost savings by using the reduction algorithm.

All code was implemented in Python, including the used figures, using the following libraries: XGBoost
[16], Scikit-learn [43], Pytorch [42], PyTorch Geometric [23] , Matplotlib [26], SciPy [57], igraph [21] and
Beautiful Soup [47].

4.1 Dataset

The publicly available dataset [7] was used. The dataset was chosen for two main reasons: a) as it’s used by a
similar approach, HTMLDet [8], it enables fair comparison, and b) it contains both the URL and the HTML
content of the website, removing the need to crawl the URLs. Benign examples were constructed based on
Google keyword searches and another publicly available dataset [11]. The phishing websites originate from
PhishTank [44], OpenPhish [40] and PhishRepo [9], collected between December 2020 and October 2021.
Table 2 shows the distribution of the dataset after removing duplicate and invalid examples.

Table 2: Distribution of used dataset.
Class Count Fraction

Phishing 29,995 37.57%
Benign 49,852 62.43%

Overall 79,847 100%

As the tag names and attributes are primarily used for constructing the graphs, their distributions within
the dataset were studied and some key observations can be made:

– Phishing pages contain more form-related elements and attributes.
– Phishing pages used attributes like required or autocomplete to entice website visitors into disclosing

personal information.
– The attribute http-equiv appears more frequently on phishing websites, as it is often abused for malicious

purposes.
– Phishing pages are significantly smaller than the benign websites.

Figures showing the most occurring HTML tag and attribute in the dataset and the size distributions of the
graphs can be found in appendix A.

During the experiments, the dataset was split into a train and test set with a ratio of 4:1. The test set
is exclusively used to evaluate the performance of the models. When training the GraphSAGE model, the
train set was further split into training data and validation data with a ratio of 4:1, where the validation
data is used for model selection.
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4.2 Baselines: Random Forest and XGBoost

The models were trained on three subsets of the features: structural features, content features, and all
features, both with and without applying the reduction algorithm. In all cases, a grid search was performed
to find the optimal hyperparameters and the best threshold. The results can be found in table 3.

Without applying the reduction algorithm, using solely content features yielded the best results. However,
these implicitly contain structural information as:

– Element counts are divided by the number of nodes in the graph.
– Attribute counts are divided by the total number of attributes on the website.

Thus, in both cases, larger websites will have smaller normalised element counts. Structural features added
noise and reduced the model’s performance, as they capture global information but fail to detect small
malicious code pieces that are present in local information.

The performance on the structural features was notably improved by using the reduction algorithm,
suggesting structural noise decreased by pruning structurally insignificant and redundant nodes. However,
the models trained on the content features dropped in performance due to a loss of information. When
decreasing the noise introduced by the structural features, it improves the model, as all features performed
the best.

Table 3: Performance of Random Forest (RF) and XGBoost (XGB) on structural, content, and combined
features with and without the graph reduction algorithm.

Feature Type Model Not Reduced Reduced

Precision Recall F1 Acc Precision Recall F1 Acc

Structural RF 0.90 0.90 0.90 0.91 0.92 0.92 0.92 0.93
XGB 0.87 0.87 0.87 0.88 0.86 0.88 0.87 0.88

Content RF 0.96 0.95 0.96 0.96 0.90 0.90 0.90 0.91
XGB 0.95 0.95 0.95 0.95 0.90 0.91 0.90 0.91

All RF 0.96 0.95 0.95 0.96 0.93 0.93 0.93 0.93
XGB 0.95 0.95 0.95 0.95 0.90 0.92 0.91 0.91

4.3 GraphSAGE

As shown in appendix A, the dataset contains very large graphs with examples containing over 50,000 nodes.
As GNNs are computationally expensive, the reduction algorithm from section 3.4 is used to decrease the
size of graphs.

Table 4 shows the results of the reduction algorithm. The average nodes per graph decreased by 21.25%
and the coefficient of variation (CV) by 10.85%, making the graphs not only smaller but also more uniform
in size.

Table 4: Nodes statistics before and after reduction
Metric Mean Median Std. Dev. CV

No reduction 553.12 255 1427.81 2.58
Reduction 441.13 186 1013.66 2.30

Factor 21.25% 27.06% 29.00% 10.85%

The model was trained using no neighbourhood sampling, as the introduced reduction algorithm decreased
the training computational needs within reasonable bounds. It prevents further information loss and missing
crucial nodes in the HTML graphs; a lot of nodes will not be relevant.
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To increase generalisation of the model, graphs were injected with noise during training. Arbitrary HTML
elements with attributes are added to the graphs, as it won’t change the underlying goal of the website. A
phishing website with an extra text paragraph or one more form element is still a phishing website. Noise
was injected proportionally to the size of the graphs; the number of added nodes is for each graph equal to
0.2 x total number of nodes.

As optimizer Adam with learning rate 10−3 was used in combination with class weighted cross entropy
loss function, as the dataset is slightly imbalanced. It was found that the model tends to be overconfident;
to counteract this, label smoothing was implemented. The reduction features in the node feature vector were
normalised.

Graphs containing more than 50,000 or fewer than 10 nodes after reduction were dropped, leading to a
more uniform size distribution. This helped the model to learn more complex patterns rather than a size
difference in the webpages, as found in section 4.1. This subset contained 69,738 samples.

5 Results

Different versions of the model were trained, experimenting both with the depth and width of the network.
Figure 4 demonstrates the trade-off between the complexity of the model and its performance. Experiments
in figure 4a were executed with hidden dimension 128 and showed that smaller models achieved great results
but were outperformed by more complex models. It was found that the performance stopped increasing after
7 layers.

Figure 4b shows the performance of models with different hidden dimensions; a three-layer model was
used. It again shows that great results could be achieved with smaller models, but the best results were
obtained using larger hidden dimensions. The performance stopped increasing for hidden dimensions larger
than 256.

A seven-layer model with hidden dimension 128 was found to be the best model, achieving an F1 of 95.57%,
while three-layer models performed slightly worse with an F1 up to 95.02% but had significantly lower
computational costs. All results are found in table 5.

To study the impact of the reduction algorithm, a GraphSAGE model with three layers with a hidden
dimension of 128 was trained with and without applying the reduction algorithm. For 10 epochs, the CPU
and GPU times were captured, found in Table 6. Because the number of graphs (batches) remains constant,
operations involving input/output and memory transfers remain largely unaffected by the size reduction.
Additionally, the input size of both models differ (299 vs 301), while in section 3.4, it was assumed to be
constant. As a result, there is a disparity between the theoretical saving of 40% according to Theorem 1 and
the found saving of 16.25% in GPU training usage. The savings will become more significant as the models
are scaled.

(a) Depth (b) Width

Fig. 4: Performance of different architectures.
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Table 5: Comparison of GraphSAGE models with different depths
and hidden sizes
Layers Hidden Size Precision Recall F1 Accuracy

3 128 0.9445 0.9515 0.9480 0.9630
3 256 0.9539 0.9465 0.9502 0.9649
7 128 0.9566 0.9548 0.9557 0.9687
7 256 0.9513 0.9471 0.9492 0.9641

Table 6: Training times: captured with
PyTorch Profiler on GPU Quadro RTX
4000

CPU GPU

No reduction 394.65s 252.53s
Reduction 389.57s 211.50s

Savings 1.29% 16.25%

6 Discussion & Future work

Ariyadasa et al. [8] used the same dataset [7] but selected a subset of 50,000 examples and made it balanced.
Our work used 69,738 examples with a small imbalance. While only using HTML, our model (95.57% F1)
achieves similar performance to PhishDet (96.42% F1) and significantly outperforms the similar HTMLDet
(89.71% F1) model.

To further increase the computational efficiency of the model, neighbourhood sampling could be intro-
duced. By considering a fixed number of neighbours for each node, the computational costs can be signifi-
cantly lowered [25]. This work focused on saving training cost by reducing GPU load, but the savings were
overshadowed by the constant overhead. CPU optimisation should be done to decrease overall training costs,
making the GPU savings more significant.

The used dataset is slightly outdated, with the oldest entries dating from 2020. The dataset was used
because of the lack of benchmark datasets and the costs of constructing a dataset. The proposed method
should be validated against a newer dataset, including the latest phishing trends. The recent phishing data
should also be used to validate the zero-day protection of the model, as this has not been done yet. The
model’s behaviour during adversarial attacks should also be tested.

A comparison of the proposed GNN model with similar prior works should be conducted to evaluate its
performance and robustness relative to existing methods. Furthermore, the impact of the reduction algorithm
on model performance should be investigated by performing the same experiments without the reduction
algorithm and by applying it to existing methods to compare the results.

7 Conclusion

This work introduced a simple yet effective algorithm for generating graphs fit for machine learning from
HTML source code. The HTML-based approach was validated by baseline models, achieving up to 96.00%
F1 and a GNN model attaining up to 95.57% F1. Raw HTML code introduced structural noise to those
models; it was found that a) not all nodes are as relevant, and b) local structure is more important than the
global structure.

An HTML reduction algorithm pruned both similar leaf nodes and nodes that added meaningless depth
to the tree. The reduction resulted in a) up to 16.25% savings in GPU training cost and b) better utilisation
of structural information by the models.

Random Forest and XGBoost were less complex and faster to train, but they require an additional
preprocessing step to create graph-level features. The GraphSAGE model eliminates this step by directly
leveraging the HTML structure. Therefore, it removes the need for manual feature engineering and captures
local structure more effectively. Moreover, the learned representations can be used for a range of downstream
tasks. Finally, the GraphSAGE model could be extended with continual learning methods [67,22] to stay up
to date with evolving phishing trends.
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A Appendix 1

This appendix contains the figures to motivate the claims in section 4.1. Figure 5 shows the most frequently
occurring HTML elements in the dataset, and figure 6 highlights the most used attributes. Figure 7 shows a
size comparison of the graphs generated from the websites in the dataset in terms of the number of nodes.

(a) Benign

(b) Phishing

Fig. 5: HTML tag distribution within the dataset
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(a) Benign

(b) Phishing

Fig. 6: HTM attribute distribution within the dataset
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(a) Benign

(b) Phishing

Fig. 7: Size distribution within the dataset
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B Appendix 2

This appendix showcases the used reduction and graph generation algorithms and discusses their time com-
plexity.

1 shows the depth-wise reduction algorithm having time complexity O(d) with d = depth of the HTML
tree. 2 shows the width-wise reduction algorithm having time complexity O(m · (1+ 2a)) with m =degree of
a node and a = number of attributes of a node, which can be simplified to O(m) as 1 ≫ 2a, having found an
average of 0.00031 attributes per node within the used dataset. Finally, 3 showcases the used graph genera-
tion algorithm with the reduction algorithm integrated, having a simplified time complexity O(n · (m+ d)).
7 displays an overview of all algorithms and their simplified time complexities.

Table 7: Simplified Time Complexities of Prepro-
cessing and Graph Construction Algorithms
Algorithm Time Complexity

ReduceHtmlDepth O(d)
ReduceHtmlWidth O(m)
GenerateGraph (no reduction) O(n)
GenerateGraph (with reduction) O(n · (m+ d))

n: total number nodes, m: node degree, d: depth
of the HTML tree.

Algorithm 1 Reduce HTML Depth
1: function ReduceHtmlDepth(parent, counter = 0)
2: if MeaninglessDepth(parent) then
3: Unwrap(child)
4: return ReduceHtmlDepth(parent, counter + 1) ▷ Counter keeps tracked of pruned nodes
5: else
6: return (parent, counter)
7: end if
8: end function
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Algorithm 2 Reduce HTML Width
1: function ReduceHtmlWidth(parent)

Phase 1: Collect leaf nodes
2: leafNodes ← empty list
3: countMap ← empty map
4: for all child in children of parent do
5: countMap[child] ← 0
6: if IsHardSkippable(child) then
7: Decompose(child)
8: continue
9: end if

10: if IsLeaf(child) then
11: Append child to leafNodes
12: end if
13: end for

Phase 2: Remove similar leaf nodes
14: ptr ← 0
15: while ptr < length(leafNodes) − 1 do
16: if leafNodes[ptr].tag = leafNodes[ptr+1].tag then
17: node1 ← TokenizeAttributes(leafNodes[ptr].attrs)
18: node2 ← TokenizeAttributes(leafNodes[ptr+1].attrs)
19: if CosineSimilarity(node1, node2) > 0.7 then
20: countMap[leafNodes[ptr]] ← countMap[leafNodes[ptr]] + 1
21: Decompose(leafNodes[ptr+1])
22: Remove leafNodes[ptr+1] from list
23: else
24: ptr ← ptr + 1
25: end if
26: else
27: ptr ← ptr + 1
28: end if
29: end while
30: return (parent, countMap)
31: end function
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Algorithm 3 Graph Construction with Optional Reductions
1: function GenerateGraph(parent, nodeFeatures, edgeSrc, edgeDst, parentId, depth = 0)
2: nodeId ← parentId

Phase 1: width reduction
3: if reduction is enabled then
4: parent, widthMap ← ReduceHtmlWidth(parent)
5: end if
6: for all child in children of parent do

Phase 2: feature vector generation
7: tagVec ← EncodeTag(child.tag)
8: attrVec ← EncodeAttributes(child.attrs)
9: hasText ← 1 if child contains text else 0

10: if reduction is enabled then
11: feature ← tagVec + attrVec + hasText + depth + widthMap[child]
12: else
13: feature ← tagVec + attrVec + hasText
14: end if
15: Append feature to nodeFeatures
16: nodeId ← nodeId + 1
17: Add edge from parentId to nodeId

Phase 3: depth reduction
18: if reduction is enabled then
19: child, newDepth ← ReduceHtmlDepth(child)
20: else
21: newDepth ← 0
22: end if
23: nodeId, nodeFeatures, edgeSrc, edgeDst ← GenerateGraph(child, nodeFeatures, edgeSrc, edgeDst,

nodeId, newDepth)
24: end for
25: return nodeId, nodeFeatures, edgeSrc, edgeDst
26: end function
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