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Abstract

We consider the dynamic linear regression problem, where the predictor vector
may vary with time. This problem can be modeled as a linear dynamical sys-
tem, with non-constant observation operator, where the parameters that need to be
learned are the variance of both the process noise and the observation noise. While
variance estimation for dynamic regression is a natural problem, with a variety of
applications, existing approaches to this problem either lack guarantees altogether,
or only have asymptotic guarantees without explicit rates. In particular, existing
literature does not provide any clues to the following fundamental question: In
terms of data characteristics, what does the convergence rate depend on? In this
paper we study the global system operator – the operator that maps the noise vec-
tors to the output. We obtain estimates on its spectrum, and as a result derive the
first known variance estimators with finite sample complexity guarantees. The
proposed bounds depend on the shape of a certain spectrum related to the system
operator, and thus provide the first known explicit geometric parameter of the data
that can be used to bound estimation errors. In addition, the results hold for ar-
bitrary sub Gaussian distributions of noise terms. We evaluate the approach on
synthetic and real-world benchmarks.

1 Introduction

A dynamic linear regression (West and Harrison, 1997, Chapter 3), or non-stationary regression, is
a situation where we are given a sequence of scalar observations {Yt}t≤T ⊂ R, and observation
vectors {ut}t≤T ⊂ Rn such that Yt = ⟨Xt, ut⟩+ zt where Xt ∈ Rn is a regressor vector, and zt a
random noise term. In contrast to a standard linear regression, the vector Xt may change with time.
One common objective for this problem is at time T , to estimate the trajectory of Xt for t ≤ T ,
given the observation vectors and observations, {ut}t≤T , {Yt}t≤T , and possibly to forecast YT+1 if
uT+1 is also known.
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In this paper we model the problem as follows:

Xt+1 = Xt + ht (1)
Yt = ⟨Xt, ut⟩+ zt , (2)

where ⟨·, ·⟩ is the standard inner product on Rn, zt, the observation noise, are zero-mean sub Gaus-
sian random variables, with variance η2, and the process noise variables ht take values in Rn, such
that coordinates of ht are zero-mean sub Gaussian, independent, and have variance σ2. All ht and
zt variables are assumed to be mutually independent. The vectors ut are an arbitrary sequence in
Rn, and the observed, known, quantities at time T are {Yt}t≤T and {ut}t≤T .

The system (1)-(2) is a special case of a Linear Dynamical System (LDS). As is well known, when
the parameters σ, η are given, the mean-squared loss optimal forecast for YT+1 and estimate for
XT are obtained by the Kalman Filter (Anderson and Moore, 1979; Hamilton, 1994; Chui and
Chen, 2017). In this paper we are concerned with estimators for σ, η, and finite sample complexity
guarantees for these estimators.

Let us first make a few remarks about the particular system (1)-(2). First, as a natural model of time
varying regression, this system is useful in a considerable variety of applications. We refer to West
and Harrison (1997), Chapter 3, for numerous examples. In addition, an application to electricity
consumption time series as a function of the temperature is provided in the experiments section of
this paper. Second, one may regard the problem of estimating σ, η in (1)-(2) as a pure case of finding
the optimal learning rate for Xt. Indeed, the Kalman filter equations for (1)-(2), are given by (3)-(4)
below, where (3) describes the filtered covariance update and (4) the filtered state update. Here x̄t is
the estimated state, given the observations Y1, . . . , Yt, see West and Harrison (1997).

Ct+1 =
η2

⟨(Ct + σ2I)ut+1, ut+1⟩+ η2
(
Ct + σ2I

)
(3)

x̄t+1 = x̄t +
Ct+1

η2
ut+1 · (Yt+1 − ⟨x̄t, ut+1⟩) . (4)

In particular, following (4), the role of σ and η may be interpreted as regulating how much the
estimate of x̄t+1 is influenced, via the operator Ct+1

η2 , by the most recent observation and input
Yt+1, ut+1. Roughly speaking, higher values of σ or lower values of η would imply that the past
observations are given less weight, and result in an overfit of the forecast to the most recent observa-
tion. On the other hand, very low σ or high η would make the problem similar to the standard linear
regression, where all observations are given equal weight, and result in a lag of the forecast. See
Figure 3 in Supplementary Material Section A for an illustration.

Finally, it is worth mentioning that the system (1)-(2) is closely related to the study of online gradient
(OG) methods (Zinkevich, 2003; Hazan, 2016). In this field, assuming quadratic cost, one considers
the update

x̄t+1 = x̄t + α · ut+1 · (Yt+1 − ⟨x̄t, ut+1⟩) , (5)

where α is the learning rate, and studies the performance guarantees of the forecaster ⟨x̄t, ut+1⟩.
Compared to (4), the update (5) is simpler, and uses a scalar rate α instead of the input-dependent
operator rate Ct+1

/
η2 of the Kalman filter. However, due to the similarity, every domain of appli-

cability of the OG methods is also a natural candidate for the model (1)-(2) and vice-versa. As an
illustration, we compare the OG to Kalman filter based methods with learned σ,η in the experiments
section.

In this paper we introduce a new estimation algorithm for σ, η, termed STVE (Spectrum Threshold-
ing Variance Estimator), and prove finite sample complexity bounds for it. In particular, our bounds
are an explicit function of the parameters T and {ut}Tt=1 for any finite T , and indicate that the es-
timation error decays roughly as T− 1

2 , with high probability. To the best of our knowledge, these
are the first bounds of this kind. As we discuss in detail in Section 2, most existing estimation meth-
ods for LDSs, such as subspace identification (van Overschee and de Moor, 1996; Qin, 2006), or
improper learning (Anava et al., 2013; Hazan et al., 2017; Kozdoba et al., 2019), do not apply to the
system (1)-(2), due to non-stationarity. On the other hand, the methods that do apply to (1)-(2) either
lack guarantees, or have only asymptotic analysis which in addition relies strongly on Guassianity
of the noises.
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Moreover, our approach differs significantly from the existing methods. We show that the structure
of equations (1)-(2) is closely related to, and inherits several important properties from, the classical
discrete Laplacian operator on the line — leading to new arguments that have not been explored
in the literature. In particular, we use this connection to show that an appropriate inversion of the
system produce estimators that are concentrated enough so that σ and η may be recovered. The heart
of the paper is the new definition of the estimators that exploits explicitly the shape of a certain data
dependent operator, and the subsequent concentration analysis. In particular, this approach yields
the first known geometric parameters of the data that can be used to bound convergence rates.

The rest of the paper is organized as follows: The related work is discussed in Section 2 and Section
3 contains the necessary definitions. In Section 4 we describe in general lines the methods and the
main results of this paper. The technical estimates on certain operator spectra, that are critical to
the analysis and may be of independent interest, are stated in Section 5. In Section 6 we present
experimental results on synthetic and real data. Due to space constraints, while we outline the main
arguments in the text, the full proofs are deferred to the Supplementary Material.

2 Literature

We refer to Chui and Chen (2017); Hamilton (1994); Anderson and Moore (1979); Shumway and
Stoffer (2011) for a general background on LDSs, the Kalman Filter and maximum likelihood esti-
mation.

Existing approaches to the variance estimation problem may be divided into three categories: (i)
General methods for parameter identification in LDS, either via maximum likelihood estimation
(MLE) (Hamilton, 1994), or via subspace identification (van Overschee and de Moor, 1996; Qin,
2006). In particular, finite sample bounds for system identification were given in (Campi and Weyer,
2005; Vidyasagar and Karandikar, 2006) and in the recent work Tsiamis and Pappas (2019). (ii)
Methods designed specifically to learn the noise parameters of the system, developed primarily in
the control theory community, in particular via the innovation auto-correlation function, such as the
classical Mehra (1970); Belanger (1974), or for instance more recent Wang et al. (2017); Dunik et al.
(2018). (iii) Improper Learning methods, such as Anava et al. (2013); Hazan et al. (2017); Kozdoba
et al. (2019). In these approaches, one does not learn the LDS directly, but instead learns a model
from a certain auxiliary class and shows that this auxillary model produces forecasts that are as good
as the forecasts of an LDS with “optimal” parameters.

Despite the apparent simplicity of the system (1)-(2), most of the above methods do not apply to
this system. This is due to the fact that most of the methods are designed for time invariant, asymp-
totically stationary systems, where the observation operator (ut in our notation) is constant and the
Kalman gain (or, equivalently Ctut in eq. (3)) converges with t. In particular this limitation exists
in all the system identification results cited above, and is essential to the approaches taken there.
However, if the observation vector sequence ut changes with time – a necessary property for the
dynamic regression problem – the system will no longer be asymptotically stationary. In particular,
due to this reason, neither the subspace identification methods, nor any of the improper learning
approaches above apply to system (1)-(2) .

Among the methods that do apply to (1)-(2) are the general MLE estimation, and some of the auto-
correlation methods (Belanger, 1974; Dunik et al., 2018). On one hand, both types of approaches
may be applicable to systems apriori more general than (1)-(2). On the other hand, the situation with
consistency guarantees – the guarantee that one recovers true parameters given enough observations
– for these methods is somewhat complicated. Due to the non-convexity of the likelihood function,
the MLE method is not guaranteed to find the true maximum, and as a result the whole method has
no guarantees. The results in Belanger (1974); Dunik et al. (2018) do have asymptotic consistency
guarantees. However, these rely on some explicit and implicit assumptions about the system, the
sequence ut in our case, which can not be easily verified. In particular, Belanger (1974); Dunik
et al. (2018) assume uniform observability of the system, which we do not assume, and in addition
rely on certain implicit assumption about invertibility and condition number of the matrices related
to the sequence ut. Moreover, even if one assumes that the assumptions hold, the results are purely
asymptotic, and for any finite T , do not provide a bound of the expected estimation error as a
function of T and {ut}Tt=1.
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In addition, as mentioned earlier, MLE methods by definition must assume that the noises are Gaus-
sian (or belong to some other predetermined parametric family) and autocorrelation based methods
also strongly use the Gaussianity assumption. Our approach, on the other hand, requires only sub
Gaussian noises with independent coordinates. We note that there are straightforward extensions of
our methods to certain cases with dependencies. Indeed, the operator analysis part of this paper does
not depend on the distribution of the noises. Therefore, to achieve such an extension, one would only
need to correspondingly extend the main probabilistic tool, the Hanson-Wright inequality (Hanson
and Wright, 1971; Rudelson et al., 2013, see also Section 4 and Supplementary Material Section E).
One such extension, for vectors with the convex concentration property, was recently obtained in
Adamczak (2015).

3 Notation

We refer to Bhatia (1997) and Vershynin (2018) as general references on the notation introduced
below, for operators and sub Gaussian variables, respectively.

Let A : Rn → Rm be an operator with a singular value decomposition A = U ·Diag(λ1, . . . , λs)·W ,
where s ≤ min {m,n} and λ1 ≥ λ2 ≥ . . . ≥ λs > 0. Note that singular values are strictly
positive by definition (that is, vectors corresponding to the kernel of A do not participate in the
decomposition A = U ·Diag(λ1, . . . , λs) ·W ). The Hilbert-Schmidt (Frobenius) norm is defined
as ∥A∥HS =

√∑s
i=1 λ

2
i . The nuclear and the operator norms are given by ∥A∥nuc =

∑s
i=1 λi and

∥A∥op = λ1 respectively.

A centered (EX = 0) scalar random variable X is sub-Gaussian with constant κ, denoted
X ∼ SG(κ), if for all t > 0 it satisfies P (|X| > t) ≤ 2 exp

(
− t2

κ2

)
. A random vector

X = (X1, . . . , Xm) is κ sub-Gaussian, denoted X ∼ SGm(κ), if for every v ∈ Rm with |v| = 1 the
random variable ⟨v,X⟩ is κ sub-Gaussian. A random vector X is σ-isotropic if for every v ∈ Rm

with |v| = 1, E ⟨v,X⟩ = σ2.

Finally, a random vector X = (X1, . . . , Xm) is σ-isotropically κ sub-Gaussian with independent
components, denoted X ∼ ISGm(σ, κ) if Xi are independent, and for all i ≤ m, EXi = 0,
EX2

i = σ2 and Xi ∼ SG(κ). Clearly, if X ∼ ISGm(σ, κ) then X is σ-isotropic. Recall also that
X ∼ ISGm(σ, κ) implies X ∼ SGm(κ) (Vershynin, 2018). The noise variables we discuss in this
paper are ISG(κ, σ).

Throughout the paper, absolute constants are denoted by c, c′, c′′, . . .. etc. Their values may change
from line to line.

4 Overview of the approach

We begin by rewriting (1)-(2) in a vector form. To this end, we first encode sequences of T vectors
in Rn, {at}t≤T ⊂ Rn, as a vector a ∈ RTn, constructed by concatenation of at’s. Next, we define
the summation operator S′ : RT → RT which acts on any vector (h1, h2, . . . , hT ) ∈ RT by

S′(h1, h2, . . . , hT ) = (h1, h1 + h2, . . . ,
∑

i≤T−1

hi,
∑
i≤T

hi). (6)

Note that S′ is an invertible operator. Next, we similarly define the summation operator S : RTn →
RTn, an n-dimensional extension of S′, which sums n-dimensional vectors. Formally, for (hl)

Tn
l=1 ∈

RTn, and for 1 ≤ j ≤ n, 1 ≤ t ≤ T , (Sh)(t−1)·n+j =
∑

i≤t h(i−1)·n+j . Observe that if the
sequence of process noise terms h1, . . . , hT ∈ Rn is viewed as a vector h ∈ RTn, then by definition
Sh is the RTn encoding of the sequence Xt.

Next, given a sequence of observation vectors u1, . . . , uT ∈ Rn, we define the observation operator
Ou : RTn → RT by (Oux)t =

〈
ut,
(
x(t−1)·n+1, . . . , x(t−1)·n+n

)〉
. In words, coordinate t of Oux

is the inner product between ut and t-th part of the vector x ∈ RTn. Define also Y = (Y1, ..., YT ) ∈
RT to be the concatenation of Y1, ..., YT . With this notation, one may equivalently rewrite the system
(1)-(2) as follows:

Y = OuSh+ z, (7)
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where h and z are independent zero-mean random vectors in RTn and RT respectively, with inde-
pendent sub Gaussian coordinates. The variance of each coordinate of h is σ2 and each coordinate
of z has variance η2.

Up to now, we have reformulated our data model as a single vector equation. Note that in that
equation, the observations Y and both operators Ou and S are known to us. Our problem may now
be reformulated as follows: Given Y ∈ RT , assuming Y was generated by (7), provide estimates of
σ, η.

As a motivation, we first consider taking the expectation of the norm squared of eq. (7). For any
operator A : Rm → Rm and zero-mean vector h with independent coordinates and coordinate
variance σ2, we have E |Ah|2 = ∥A∥2HS σ2, where ∥A∥HS is the Hilbert-Schmidt (or Frobenius)
norm of A. Taking the norm and expectation of (7), and dividing by T 2, we thus obtain

E |Y |2

T 2
=

∥OuS∥2HS

T 2
σ2 +

T

T 2
η2. (8)

Next, note that ∥OuS∥2HS is known, and an elementary computation shows that ∥OuS∥2
HS

T 2 is of con-

stant order (as a function of T ; see (25)), while the coefficient of η2 is 1
T . Thus, if the quantity |Y |2

T 2

were close enough to its expectation with high probability, we could take this quantity as a (slightly
biased) estimator of σ2. However, as it will become apparent later, the deviations of |Y |2

T 2 around the

expectation are also of constant order, and thus |Y |2
T 2 can not be used as an estimator. The reason for

these high deviations of |Y |2
T 2 is that the spectrum of OuS is extremely peaked. The highest squared

singular value of OuS is of order T 2, the same order as sum of all of them, ∥OuS∥2HS . Contrast
this with the case of identity operator, Id : RTn → RTn: We have E |Id(h)|2 = E |h|2 = Tnσ2,
and one can also easily show that, for instance, V ar |Id(h)|2 = Tnσ2, and thus the deviations are
of order

√
Tnσ – a smaller order than E |Id(h)|2. While for the identity operator the computation

is elementary, for a general operator A the situation is significantly more involved, and the bounds
on the deviations of |Y |2 will be obtained from the Hanson-Wright inequality (Hanson and Wright,
1971, see also Rudelson et al. (2013)), combined with standard norm deviation bounds for isotropic
sub Gaussian vectors.

With these observations in mind, we proceed to flatten the spectrum of OuS by taking the pseudo-
inverse. Let R : RT → RTn be the pseudo-inverse, or Moore-Penrose inverse of OuS. Specifically,
let

OuS = U ◦Diag(γ1, . . . , γT ) ◦W, (9)
be the singular value decomposition of OuS, where γ1 ≥ γ2 ≥ . . . ≥ γT are the singular values.

For the rest of the paper, we will assume that all of the observation vectors ut are non-zero. This
assumption is made solely for notational simplicity and may easily be avoided, as discussed later in
this section. Under this assumption, since S is invertible and Ou has rank T , we have λt > 0 for
all t ≤ T . For i ≤ T , denote χi = γ−1

T+1−i. Then χi are the singular values of R, arranged in a
non-increasing order, and we have by definition

R = W ∗ ◦Diag(χT , χT−1, . . . , χ2, χ1) ◦ U∗, (10)

where W ∗, U∗ denote the transposed matrices of U, V , defined in (9).

Similarly to Eq. (8), we apply R to (7), and since ∥ROuS∥HS = T , by taking the expectation of
the squared norm we obtain

|RY |2

T
= σ2 +

∥R∥2HS

T
η2 +

(
|RY |2

T
− E |RY |2

T

)
. (11)

In this equation, the deviation term
(

|RY |2
T − E|RY |2

T

)
is of order O( 1√

T
) with high probability

(Theorem 1). Moreover, the coefficient of σ2 is 1, and the coefficient of η2, which is ∥R∥2
HS

T , is of
order at least Ω( 1

log2 T
) (Theorem 3, see Section 5 for additional details) – much larger order than

1√
T

. Since |RY |2 and ∥R∥2HS are known, it follows that we have obtained one equation satisfied by
σ2 and η2 up to an error of 1√

T
, where both coefficients are of order larger than the error.
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Algorithm 1 Spectrum Thresholding Variance Estimator (STVE)

1: Input: Observations Yt, observation vectors ut, with t ≤ T , and p = αT .
2: Compute the SVD of OuS,

OuS = U ◦Diag(γ1, . . . , γT ) ◦W,

where γ1 ≥ γ2 ≥ . . . ≥ γT > 0. Denote χi = γ−1
T+1−i for 1 ≤ i ≤ T .

3: Construct the operators
R = W ∗ ◦Diag(χT , . . . , χ1) ◦ U∗

and
R′ = W ∗ ◦Diag(0, 0, . . . , 0, χp, . . . , χ1) ◦ U∗

4: Produce the estimates:

η̂2 =

(
|R′Y |2

p
− |RY |2

T

)/(∥R′∥2HS

p
−

∥R∥2HS

T

)

σ̂2 =
|RY |2

T
−

∥R∥2HS

T
η̂2.

Next, we would like to obtain another linear relation between σ2, η2. To this end, choose some
p = αT , where 0 < α < 1 is of constant order. The possible choices of p are discussed later in this
section. We define an operator R′ : RT → RTn to be a version of R truncated to the first p singular
values. If (10) is the SVD decomposition of R, then

R′ = W ∗ ◦Diag(0, 0, . . . , χp, χp−1, . . . , χ1) ◦ U∗.

Similarly to the case for R, we have

|R′Y |2

p
= σ2 +

∥R′∥2HS

p
η2 +

(
|R′Y |2

p
− E |R′Y |2

p

)
. (12)

The deviations in (12) are also described by Theorem 1. Note also that since ∥R′∥2HS is the sum of

p largest squared singular values of R, by definition it follows that
∥R′∥2

HS

p ≥ ∥R∥2
HS

T .

Now, given two equations in two unknowns, we can solve the system to obtain the estimates σ̂2 and
η̂2. The full procedure is summarized in Algorithm 1, and the bounds implied by Theorem 1 on the
estimators σ̂2 and η̂2 are given in Corollary 2. We first state these results, and then discuss in detail
the various parameters appearing in the bounds.

Theorem 1. Consider a random vector Y ∈ RT of the form Y = OuSh+z where h ∼ ISGTn(σ, κ)
and z ∼ ISGT (η, κ). Set |umin| = mint |ut|. Then for any 0 < δ < 1,

P

(∣∣∣∣∣ |RY |2

T
−

(
σ2 +

∥R∥2HS

T
η2

)∣∣∣∣∣ ≥ c
B√
T

)
≤ 4δ, (13)

P

(∣∣∣∣∣ |R′Y |2

p
−

(
σ2 +

∥R′∥2HS

p
η2

)∣∣∣∣∣ ≥ c
B
√
p

)
≤ 4δ (14)

where B is given by

B =
(
1 + κ2

) (
1 + |umin|−2

)
log

1

δ
. (15)

The bounds on the estimators of Algorithm 1 are given in the following Corollary. As discussed
below, in addition to Theorem 1, the key to the derivation of this Corollary are the estimates of the
spectrum of R, given in Theorem 3, Section 5.
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Figure 1: Spectra of R

Corollary 2. Let σ̂2, η̂2 be the estimators of σ2, η2 obtained form Algorithm 1 with p ≥ 1
4T . Set

|umax| = maxt |ut|. Then for any 0 < δ < 1, with probability at least 1− 8δ,∣∣∣σ̂2 − σ2
∣∣∣ ≤ c

B√
T

(
1−

p ∥R∥2HS

T ∥R′∥2HS

)−1

, (16)

∣∣∣η̂2 − η2
∣∣∣ ≤ c

B√
T

(
1−

p ∥R∥2HS

T ∥R′∥2HS

)−1

n2 |umax|2 log2 T, (17)

with B given by (15).

We first discuss the assumption |umin| > 0. This assumption is made solely for notational con-
venience, as detailed below. To begin, note that some form of lower bound on the norms of the
observation vectors ut must appear in the bounds. This is simply because if one had ut = 0 for
all T , then clearly no estimate of σ would have been possible. On the other hand, our use of the
smallest value |umin| may seem restrictive at first. We note however, that instead of considering the
observation operator Ou : RTn → RT , one may consider the operator Oū : RTn → RT̄ for any
subsequence {ūt̄}

T̄
t̄=1. The observation vector Y would be correspondingly restricted to the subse-

quence of indices. This allows us to treat missing values and to exclude any outlier ut with small
norms. All the arguments in Theorems 1 and 3 hold for this modified Oū without change. The only
price that will be paid is that T will be replaced by T̄ in the bounds. Moreover, we note that typically
we have |ut| ≥ 1 by construction, see for instance Section 6.2. Additional discussion of missing
values may be found in Supplementary Material Section H.

Next, up to this point, we have obtained two equations, (11)-(12), in two unknowns, σ2, η2. Note
that in order to be able to obtain η2 from these equations, at least one of the coefficients of η2,

either ∥R∥2
HS

T or
∥R′∥2

HS

p must be of larger order than 1√
T

, the order of deviations. Providing lower
bounds on these quantities is one of the main technical contributions of this work. This analysis
uses the connection between the operator S and the Laplacian on the line, and resolves the issue
of translating spectrum estimates for the Laplacian into the spectral estimates for R. We note that
there are no standard tools to study the spectrum of R, and our approach proceeds indirectly via the
analysis of the nuclear norm of OuS. These results are stated in Theorem 3. In particular, we show
that ∥R∥2

HS

T is Ω( 1
log2 T

), which is the source of the log factor in (17).

Finally, in order to solve the equations (11)-(12), not only the equations must have large enough

coefficients, but the equations must be different. This is reflected by the term
(
1− p∥R∥2

HS

T∥R′∥2
HS

)−1

in

(16), (17). Equivalently, while
∥R′∥2

HS
/p

∥R∥2
HS/T

≥ 1 by definition, we would like to have

∥R′∥2HS /p

∥R∥2HS /T
≥ 1 + const (18)
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for the bounds (16), (17) to be stable. Note that since both ∥R′∥2HS and ∥R∥2HS are computed in
Algorithm 1, the condition (18) can simply be verified before the estimators σ̂2, η̂2 are returned.

It is worth emphasizing that for simple choices of p, say p = 1
4T , the condition (18) does hold in

practice. Note that, for any p, we can have
∥R′∥2

HS
/p

∥R∥2
HS/T

= 1 only if the spectrum of R is constant.
Thus (18) amounts to stating that the spectrum of R exhibits some decay. As we show in experiments
below, the spectrum (squared) of R, for ut derived from daily temperature features, or for random
Gaussian ut, indeed decays. See Section 6, Figures 1a and 1b. In particular, in both cases (18) holds

with const > 1. Additional bounds on the quantity
(
1− p∥R∥2

HS

T∥R′∥2
HS

)−1

under various assumptions
on the sequence ut are given in Section G of the Supplementary Material.

5 Properties of OuS and R

As discussed in Section 4 (see the discussion following eq. (11)), one of the crucial points enabling
Algorithm 1 and its analysis is the fact that the quantity ∥R∥2

HS

T is bounded below by an expression
that is of much higher order than the noise magnitude 1√

T
.

In this section we provide the formal statement of this and other associated results, and discuss
the related arguments. First, we obtain the following bound on the spectrum of OuS (Lemma 4,
Supplementary Material Section B). Recall that the nuclear norm was defined in Section 3, and that
for a sequence ut we set |umax| = maxt |ut| and |umin| = mint |ut|. Then:

∥OuS∥nuc =
∑
t≤T

λt(OuS) ≤ 4n |umax|T log T. (19)

The proof of this bound exploits the connection between S and the Laplacian on the line. In
particular, we use the fact that the eigenvalues of the Laplacian are known precisely, satisfying
λl = 2 sin

(
π(T−l)

2T

)
. Next, we state the lower (and upper) bounds for R.

Theorem 3. Let R : RT → RTn be the pseudoinverse of OuS. Then

c
1

n |umax| log T
≤ ∥R∥op ≤ 2 |umin|−1

, (20)

c
1

n2 |umax|2 log2 T
T ≤ ∥R∥2HS ≤ 4 |umin|−2

T, (21)

c
1

n4 |umax|4 log4 T
T ≤ ∥R∗R∥2HS ≤ 16 |umin|−4

T. (22)

Due to the complicated structure of R as a pseudo-inverse of a composition of operators, there are
no direct ways to control individual eigenvalues of R. Thus the main technical issue resolved in
Theorem 3 is nevertheless obtaining lower bounds on ∥R∥2HS . Our approach is rather indirect, and
we obtain these bounds from the nuclear norm bound (19) via a Markov type inequality on the
eigenvalues.

6 Experiments

6.1 Synthetic Data

In this section the performance of STVE is evaluated on synthetic data. The data was generated by
the LDS (1)-(2), using Gaussian noises with σ2 = 0.5, η2 = 2. The input dimension was n = 5,
and the input sequence ut sampled from the Gaussian N(0, In).

We run the STVE algorithm for different values of T , where for each T we sampled the data 150
times. Figure 2a shows the average (over 150 runs) estimation error for both process and observation
noise variances for various values of T . As expected from the bounds in Corollary 2, it may be
observed in Figure 2a that the estimation errors decay roughly at the rate of const/

√
T . A typical

spectrum of R is shown in Figure 1b. For larger T , the spectra also exhibits similar decay.
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Figure 2: Evaluation

6.2 Temperatures and Electricity Consumption

In this section we examine the relation between daily temperatures and electricity consumption in
the data from Hong et al. (2014) (see also Hong (2016)). The following forecasting methods are
compared: a stationary regression, an online gradient, and a Kalman filter for a dynamic regression,
with parameters learned via MLE or STVE. We find that the Kalman filter methods provide the best
performance, with no significant difference between STVE and MLE derived systems.

The data consists of total daily electricity consumption (load) yt, and the average daily temperature,
vt, for a certain region, for the period Jan-2004 to Jun-2008. Full details on the preprocessing of the
data, as well as additional details on the experiments, are given in Supplementary Material Section I.
Here we note that the data contains missing load values, for 9 non-consecutive weeks (out of about
234 weeks total). All methods discussed here, including STVE, can naturally incorporate missing
values, as discussed in Supplementary Material Section H.

An elementary inspection of the data reveals that the load may be reasonably approximated as a
quadratic function of the temperature, yt = xt,1 · 1 + xt,2 · vt + xt,3 · v2t , where ut = (1, vt, v

2
t ) is

the observation vector (features), and xt = (xt,1, xt,2, xt,3) is the possibly time varying regression
vector. This is shown in Figure 2b, where we fit a stationary (time invariant) regression of the above
form, using either only the first or only the second half of the data. We note that these regressions
differ – the regression vector changes with time. It is therefore of interest to track it via online
regression.

We use the first half of the data (train set) to learn the parameters σ, η of the online regression (1)-(2)
via MLE optimization and using STVE. We also use the train set to find the optimal learning rate
α for the OG forecaster described by the update equation (5). This learning rate is chosen as the
rate that yields smallest least squares forecast error on the train set. In addition, we learn a time
independent, stationary regression on the first half of the data.

We then employ the learned parameters to make predictions of the load given the temperature, by
all four methods. The predictions for the system (1)-(2) are made with a Kalman filter (at time t, we
use the filtered state estimate x̃t, which depends only on y1, . . . , yt and u1, . . . , ut, and make the
prediction ỹt+1 = ⟨x̃t, ut+1⟩).

Daily squared prediction errors (that is, (yt − ỹt)
2) are shown in Figure 2c (smoothed with a moving

average of 50 days). We see that the adaptive models (MLE, STVE, OG) outperform the stationary
regression already on the train set (first half of the data), and that the difference in performance
becomes dramatic on the second half (test). It is also interesting to note that the performance of the
Kalman filter based methods (MLE, STVE) is practically identical, but both are somewhat better
than the simpler OG approach.

We also note that by construction, we have |umin| ≥ 1 in this experiment, due to the constant 1
coordinate, and also |umax| ≤ 5, due to the normalization. Since these operations are typical for
any regression problem, we conclude that the direct influence of |umin| and |umax| on the bounds
in Theorem 1 and Corollary 2 will not usually be significant.

9



7 Conclusion And Future Work

In this work we introduced the STVE algorithm for estimating the variance parameters of LDSs of
type (1)-(2), and obtained the first sample complexity guarantees for such estimators. We have also
shown how the shape of the spectrum of R can be exploited to obtain the estimators and the related
bounds, thus providing the first explicit geometric parameter of the data that affects the bounds.

As discussed in Section 1 and demonstrated in Section 6, the system (1)-(2) is of independent interest
in applications. However, we also believe that the analysis presented here is an important first step
towards a finite time data-dependent quantitative understanding of general LDSs. and perhaps even
non-linear dynamical systems.

Acknowledgments and Disclosure of Funding

This research was supported by the ISRAEL SCIENCE FOUNDATION (grant No. 2199/20).

References
Adamczak, R. (2015). A note on the hanson-wright inequality for random vectors with dependencies.

Electronic Communications in Probability, 20.

Anava, O., Hazan, E., Mannor, S., and Shamir, O. (2013). Online learning for time series prediction.
In COLT 2013 - The 26th Annual Conference on Learning Theory, June 12-14, 2013, Princeton
University, NJ, USA.

Anderson, B. and Moore, J. (1979). Optimal Filtering. Prentice Hall.

Belanger, P. R. (1974). Estimation of noise covariance matrices for a linear time-varying stochastic
process. Automatica, 10(3).

Bhatia, R. (1997). Matrix Analysis. Graduate Texts in Mathematics. Springer New York.

Campi, M. C. and Weyer, E. (2005). Guaranteed non-asymptotic confidence regions in system
identification. Automatica, 41(10):1751–1764.

Chui, C. and Chen, G. (2017). Kalman Filtering: with Real-Time Applications. Springer Interna-
tional Publishing.

Dunik, J., Kost, O., and Straka, O. (2018). Design of measurement difference autocovariance method
for estimation of process and measurement noise covariances. Automatica, 90.

Gohberg, I. and Krein, M. (1969). Introduction to the Theory of Linear Nonselfadjoint Operators.
Translations of mathematical monographs. American Mathematical Society.

Hamilton, J. (1994). Time Series Analysis. Princeton University Press.

Hanson, D. L. and Wright, E. T. (1971). A bound on tail probabilities for quadratic forms in inde-
pendent random variables. Ann. Math. Statist., 42.

Hazan, E. (2016). Introduction to online convex optimization. Found. Trends Optim.

Hazan, E., Singh, K., and Zhang, C. (2017). Online learning of linear dynamical systems. In
Advances in Neural Information Processing Systems, pages 6686–6696.

Hong, T. (2016). Tao hongs’s blog. http://blog.drhongtao.com/2016/07/
gefcom2012-load-forecasting-data.html. Accessed: 1/8/2019.

Hong, T., Pinson, P., and Fan, S. (2014). Global energy forecasting competition 2012. International
Journal of Forecasting, 30:357–363.

Kozdoba, M., Marecek, J., Tchrakian, T. T., and Mannor, S. (2019). On-line learning of linear
dynamical systems: Exponential forgetting in Kalman filters. AAAI.

10

http://blog.drhongtao.com/2016/07/gefcom2012-load-forecasting-data.html
http://blog.drhongtao.com/2016/07/gefcom2012-load-forecasting-data.html


Mehra, R. (1970). On the identification of variances and adaptive kalman filtering. IEEE Transac-
tions on Automatic Control, 15(2).

Mitchell, A. and Griffiths, D. (1980). The finite difference method in partial differential equations.
Wiley-Interscience publication. Wiley.

Petris, G. (2010). An R package for dynamic linear models. Journal of Statistical Software.

Qin, S. J. (2006). An overview of subspace identification. Computers & chemical engineering,
30(10-12):1502–1513.

Rudelson, M., Vershynin, R., et al. (2013). Hanson-wright inequality and sub-gaussian concentra-
tion. Electronic Communications in Probability, 18.

Shumway, R. and Stoffer, D. (2011). Time Series Analysis and Its Applications (3rd ed.).

Tsiamis, A. and Pappas, G. J. (2019). Finite sample analysis of stochastic system identification. In
2019 IEEE 58th Conference on Decision and Control (CDC), pages 3648–3654. IEEE.

van Overschee, P. and de Moor, L. (1996). Subspace identification for linear systems: theory, imple-
mentation, applications. Kluwer Academic Publishers.

Vershynin, R. (2018). High-Dimensional Probability: An Introduction with Applications in Data
Science. Cambridge Series in Statistical and Probabilistic Mathematics. Cambridge University
Press.

Vidyasagar, M. and Karandikar, R. L. (2006). A learning theory approach to system identification
and stochastic adaptive control. Probabilistic and randomized methods for design under uncer-
tainty, pages 265–302.

Wang, H., Deng, Z., Feng, B., Ma, H., and Xia, Y. (2017). An adaptive kalman filter estimating
process noise covariance. Neurocomputing, 223.

West, M. and Harrison, J. (1997). Bayesian Forecasting and Dynamic Models (2nd ed.). Springer-
Verlag.

Zinkevich, M. (2003). Online convex programming and generalized infinitesimal gradient ascent.
ICML.

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A] The

main focus of this work is a theoretical analysis.
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] Thus Supplementary

Materail contains all the proofs. Proofs outlines are given in the main body of the
paper.

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main exper-

imental results (either in the supplemental material or as a URL)? [Yes] The data is
publically available, see the references in Section 6. The short code is not provided at
the moment, but can be fully derived from Algorithm 1.

11



(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Sections 6 and I.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A] The link to the data author’s docu-

mentation is provided.
(c) Did you include any new assets either in the supplemental material or as a URL? [No]

(d) Did you discuss whether and how consent was obtained from people whose data
you’re using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifi-
able information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

12


