
Under review as a conference paper at ICLR 2024

NEURAL NETWORKS AND SOLOMONOFF INDUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Solomonoff Induction (SI) is the most powerful universal predictor given un-
limited computational resources. Naive SI approximations require running vast
amount of programs for extremely long. Here we explore an alternative path
to SI consisting in meta-training neural networks on universal data sources. We
generate the training data by feeding random programs to Universal Turing Ma-
chines (UTMs) and guarantee convergence in the limit to various SI variants (un-
der certain assumptions). Experimentally, we investigate the effect neural net-
work architectures (i.e. LSTMs, Transformers, etc.) and sizes on their perfor-
mance on algorithmic data, crucial for SI. We test our networks on variable-order
Markov sources (VOMS), challenging algorithmic tasks on different levels of the
Chomsky hierarchy requiring different memory structures and, finally, on UTM-
generated data following our theoretical results. We show that scaling network
size always improves performance on all tasks, Transformers outperforming all
others, even achieving optimality on VOMS. Promisingly, large Transformers and
LSTMs trained on UTM data exhibit transfer to the other domains.

1 INTRODUCTION

Inductive inference is the process of deriving general rules out of a finite set of concrete examples
and using these rules for prediction (Angluin & Smith, 1983). Failed attempts to formalize induc-
tive inference abound (Gabbay et al., 2011; Rathmanner & Hutter, 2011), however, Solomonoff
(1964a;b) proposed a universal theory of induction that seems to address all issues that plagued
previous methods (Hutter, 2007). Solomonoff Induction (SI) is universal because it considers as
hypothesis class the space programs that run in a Universal Turing Machine (UTM) i.e. all com-
putable functions. In addition, SI has an in-built Occam’s razor, a bias towards simplicity, quan-
tized/formalized by Kolmogorov complexity (Li et al., 2019), i.e. short programs capture simple ex-
planations. This effectively renders Solomonoff Induction as doing Bayesian inference on program
space with a prior favoring shorter program lengths. Remarkably, Solomonoff showed that the pos-
terior over hypotheses (programs on a UTM) converges rapidly to the true sequence-generator µ (Li
& Vitanyi, 1992; Hutter, 2004; Sunehag & Hutter, 2013; Li et al., 2019), with the only requirement
that µ is a computable function. Although incomputable, this p(oste)rior is limit-computable, i.e. SI
becomes more accurate as programs are allowed to run for longer. To remedy SI’s incomputability,
though still intractable, time-limited (finitely computable) approximations were developed such as
the Speed Prior (Schmidhuber, 2002; Filan et al., 2016). For more limited model classes, specifically
variable-order Markov processes, very efficient Bayes-optimal algorithms such as the Context Tree
Weighting (CTW) algorithm exist (Willems et al., 1995; Willems, 1998; Veness et al., 2012). Given
the appeal of SI for general intelligence, it is surprising that there is no research in approximating it
with modern neural networks.

Recently, Ortega et al. (2019); Mikulik et al. (2020); Genewein et al. (2023) have shown that meta-
trained neural networks can learn Bayesian updating, key to Solomonoff induction, in the infinite
training limit. This is remarkable since it opens a path for amortizing the powerful Solomonoff
prediction (SP) into a neural network architecture, greatly saving computational costs. To make this
possible we need two additional components, i.e. universal network architectures and the right data
distribution. Most neural network architectures are actually universal in theory (Chen et al., 2017;
Stogin et al., 2020; Mali et al., 2023), however, they empirically lose universality under stochastic
gradient descent (SGD) training (Deletang et al., 2022).

1

Under review as a conference paper at ICLR 2024

Unfortunately, attaining easily-trainable universal architectures is still an open problem, and it is not
the focus of our paper. Nevertheless, we experiment with existing architectures augmented with a
stack or a tape that seem to maintain universality under SGD (Deletang et al., 2022). Orthogonally
to the universality issue, specifying the right training distribution also presents a challenge, since the
right training data must be consistent and make a universal approximator converge to computable
versions of SI.

The aim of this paper is to explore the idea of amortizing SI into a neural network by using synthetic
data from UTMs for training. Of course, fully arriving to SI is a futile endeavor (since it is incom-
putable), however, increasing model sizes, data sizes and computational resources should produce
better approximations. First, we theoretically investigate the dataset generation process and training
protocol that would make a model converge to SP. We show how properly masking the loss function
is critical to converge to a normalized version of SI (Lattimore et al., 2011) that has practical rele-
vance. We make use of a generalized Solomonoff prior (introducing a shorter self-contained proof
than (Sterkenburg, 2017)) maintaining the universality property for non-uniform programs. Second,
we conduct extensive experiments with RNNs, LSTMs, Transformers etc. on three types of algo-
rithmic data generators with various degrees of complexity and universality, namely variable-order
Markov data, on algorithmic tasks at various levels of the Chomsky hierarchy (Deletang et al., 2022)
and on algorithmic data generated by UTMs. Our experimental results show that for all architec-
tures, as model size increases, they attain lower cumulative regret on test trajectories.

Our contributions can be summarized as follows.

• We theoretically show how to generate synthetic universal data that make universal approx-
imators converge to SI in the limit, and a self-contained short proof stating that universality
is maintained even for non-uniform distributions over programs.

• Our extensive experiments show that increasing architecture size improves performance on
all models and tasks. On variable-order Markov sources, large LSTMs and Transform-
ers obtain optimal in-distribution performance, suggesting the capability of implementing
Bayesian-mixtures over programs.

• We show how large Transformers trained on UTM data outperform non-trivial Solomonoff
estimates and exhibit transfer to our other two tasks, suggesting that the UTM data contains
rich enough transferable patterns.

2 BACKGROUND

We begin with some terminology for sequential data generating sources. An alphabet is a finite,
non-empty set of symbols, denoted by X . A string x1x2 . . . xn ∈ Xn of length n is denoted by
x1:n. The prefix x1:j of x1:n, j ≤ n, is denoted by x≤j or x<j+1. The empty string is denoted by ϵ.
Our notation also generalizes to out of bounds indices; i.e. given a string x1:n and an integer m > n,
we define x1:m := x1:n and xn:m := ϵ. The concatenation of two strings s and r is denoted by sr.

Semimeasures. A semimeasure is a probability measure P over infinite and finite sequences X∞ ∪
X ∗ for some finite alphabetX assumed to be {0, 1} (most statements hold for arbitrary finiteX). Let
µ(x) be the probability that an (in)finite sequence starts with x. While proper distributions satisfy∑

a∈X µ(xa) = µ(x), semimeasures exhibit probability gaps and satisfy
∑

a∈X µ(xa) ≤ µ(x).

Turing Machines. A Turing Machine (TM) takes a string of symbols z as an input, and outputs
a string of symbols x (after reading z and halting), i.e. T (z) = x. For convenience we define the
output string at computation step s as T s(z) = x which may be the empty string ϵ. We adopt similar
notation for Universal Turing Machines U . Monotone TMs, see Definition 1 below, are special TMs
that can incrementally build the output string while incrementally reading the input program, which
is a convenient practical property we exploit in our experiments.
Definition 1 (Monotonicity). A universal machine U is monotone if for all p, q, x, y with U(p) = y
and U(q) = x we have that ℓ(x) ≥ ℓ(y) and p ⊑ q imply y ⊑ x, where p ⊑ q means that p is a
prefix string of q. See Appendix C for a more thorough description.

Algorithmic Data Generating Sources and the Chomsky Hierarchy. An algorithmic data gen-
erating source µ is simply a computable data source by, for example, a TM T . There is a nat-
ural hierarchy over machines based on their memory structure known as the Chomsky hierarchy

2

Under review as a conference paper at ICLR 2024

(CH) (Chomsky, 1956), which classifies sequence prediction problems—and associated automata
models that solve them—by increasing complexity. There are four levels in the CH, namely, regular,
context-free, context-sensitive, and recursively enumerable. Solving problems on each level requires
different memory structures such as finite states, stack, finite tape and infinite tape, respectively. We
use tasks on different levels of the CH to asses our models. Note that any reasonable approximation
to SP would need to sit at the top of the hierarchy.

Solomonoff Induction. Given an observed data string x1:n we want to predict the next symbol
xn+1. Assuming that strings are drawn from an unknown true probability distribution µ, the prob-
ability over the next symbol can be predicted with µ(xn+1|x1:n) = µ(x1:n+1)/µ(x1:n). The best
prior for prediction would be to have µ itself, but this is usually not accessible and an alternative
model ρ is us. Restricting the class of priors to the lower semi-computable semimeasures, we can
use a single universal semimeasure M for prediction (in place of ρ) widely known as the Solomonoff
Universal Prior (see definition below). As an intuition, using the Solomonoff prior to predict xn+1

using x1:n would be equivalent to doing Bayesian inference on program space by discarding the
ones that do not fit the data while assigning higher probability to shorter programs.
Definition 2 ((Monotone) Solomonoff). Let U be a universal monotone machine, then the
Solomonoff prior is defined as M(x) :=

∑
p:U(p)=x∗ 2

−ℓ(p) with the sum is over all p ∈ {0, 1}∗,
where the output x∗ is any string that starts with x and the whole program p has been read by U .

Solomonoff (1964a) showed that SP converges fast if the data is generated by any computable prob-
ability distribution µ:

∑∞
t=1

∑
x<t

µ(x<t)
∑

x∈X (M(x|x<t) − µ(x|x<t))
2 ≤ K(µ) ln 2 < ∞,

where K(µ) := minp{ℓ(p) : U(p) = µ} is the Kolmogorov complexity (Li et al., 2019) of the gen-
erator µ (represented as a bitstring). The Solomonoff predictor is essentially the best predictor given
a reference UTM. Although the reference machine can play a significant role for short sequences,
asymptotically for growing sequences its choice becomes irrelevant.

There exists a normalized version of the Solomonoff prior (among others (Wood et al., 2013)) that is
not a semimeasure but a proper measure i.e., properly normalized (see Definition 3 below), has nicer
properties when the sequence x contains incomputable sub-sequences (Lattimore et al., 2011) and
maintains the convergence properties of the standard Solomonoff prior. This version of Solomonoff
is of interest to us because it is more aligned with neural models (that are also properly normalized)
and exhibits more efficient sampling when compared to semimeasures.
Definition 3 (Normalized Solomonoff Prior). For a ∈ X , Solomonoff normalization is defined as
Mnorm(ϵ) := 1, Mnorm(a|x) := M(xa)∑

a∈X M(xa) = Mnorm(xa)
Mnorm(x) .

Meta-Learning. A parametric model πθ can be meta-trained by repeating the following steps: 1)
sample a task τ from the task distribution p(τ), 2) sample a sequence x1:n from τ , 3) train the model
πθ with the log-loss −

∑n
t=1 log πθ(xt|x<t). It can be shown that under mild assumptions, the

fully trained πθ behaves as a Bayes-optimal predictor, i.e. πθ(xt|x<t) ≈
∑

τ p(τ |x<t)p(xt|x<t, τ)
where p(xt|x<t, τ) is the predictive distribution of τ , and p(τ |x<t) is the posterior of τ (Or-
tega et al., 2019). If µ is a proper measure and D = (x1, ..., xJ) are sequences cut to length
n sampled from µ with empirical distribution µ̂(x) = 1

J

∑
y∈D[[y = x]], then the log-loss

Loss(θ) := − 1
J

∑
x∈D

∑ℓ(x)
t=1 log πθ(xt|x<t) = − 1

J

∑
x∈D log πθ(x) = −

∑
x∈Xn µ̂(x) log pθ(x)

is minimized for πθ(x) = µ̂(x) provided πθ can represent µ̂.

3 META-LEARNING AS AN APPROXIMATION TO SOLOMONOFF INDUCTION

Next we aim to provide answers to the following questions. First, how do we generate data that
allows to approximate SI? Second, given that most architectures are trained with a limited sequence-
length, how does this affect the meta-training protocol of neural models? Third, can we use different
program distributions (making interesting programs more likely) without losing universality?

3.1 THE RIGHT DATASET: ESTIMATING SOLOMONOFF FROM SOLOMONOFF SAMPLES

Our aim here is to define a data generation process such that when used for training our model πθ

(assuming for now universality and essentially infinite capacity), we obtain an approximation to M .
We consider the incomputable and computable cases. All proofs can be found in the Appendix A.

3

Under review as a conference paper at ICLR 2024

Solomonoff Data Generator (incomputable). Putting uniform random bits on the (read-only)
input tape of a monotone UTM U generates a certain distribution M of (in)finite strings on the
output tape. This is exactly Solomonoff’s universal a-priori distribution M and a semimeasure in
the sense above (see Section 2). Sampling from M is trivial; we just described how. It is easy to see
that M is equivalent to the more formal Definition 2. The following proposition shows consistency.
Proposition 4. Let D := (x1, ..., xJ) be J (in)finite sequences sampled from a semimeasure µ (e.g.

M). We can estimate µ as follows: µ̂D(x) := 1
|D|

∑
y∈D[[ℓ(y) ≥ ℓ(x) ∧ y1:ℓ(x) = x]]

w.p.1−→
µ(x) for |D| → ∞.

Unfortunately there are three infinities which prevent us from using M above. There are infinitely
many programs, programs may loop forever, and output strings can have infinite length. Therefore,
we define the following computable version of the Solomonoff prior.
Definition 5 (Computable Solomonoff Prior). Let programs be of length ≤ L and stop U after s
steps (denoted Us), or if the output reaches length n. Then,

Ms,L,n(x) :=
∑

p∈{0,1}≤L:Us(p)=x∗

2−ℓ(p) if ℓ(x) ≤ n and 0 otherwise

is a computable version of the Solomonoff prior and a semimeasure.

We can sample DJ := (x1, ..., xJ) from Ms,L,n in the same trivial way as described above for M ,
but now the involved computation is finite. Note that all sampled strings have length ≤ n, since
Ms,L,n(x) := 0 for ℓ(x) > n.

Proposition 6. Let now DJ := (x1, ..., xJ) be samples from the measure Ms,L,n. Then, M̂DJ (x) =
1
J

∑
y∈DJ [[ℓ(y) ≥ ℓ(x) ∧ y1:ℓ(x) = x]] −→ Ms,L,n(x) for J →∞.

Since M(x) = lims,L,n→∞ Ms,L,n(x) = sups,L,n Ms,L,n(x), we in particular have M̂DJ → M

for s, L, n, J → ∞. Note that DJ depends on s, L, n, but this can easily be avoided by choosing
s(j), L(j), n(j) to be any functions tending to infinity, and sampling xj from Ms(j),L(j),n(j)(x) for
j = 1, 2, 3,
Remark 7. Although Ms,L,n is computable, it still suffers from two inconveniences. First, sampling
from it is inefficient because it is a semimeasure and exhibits a probability gap. Second, we need to
differentiate whether programs halt or end up in a infinite non-printing loop (to fill the probability
gap with “absorbing” tokens when training). We can bypass these inconveniences by estimating
instead the normalized (and computable) version of the Solomonoff prior from Definition 3.

We can estimate the normalized Solomonoff prior, Mnorm
s,L,n (x), by the following.

Proposition 8. Using the definitions from Proposition 6 we have that

M̂norm
s,L,n (xt|x<t) =

∑
y∈DJ [[ℓ(y) ≥ t ∧ y1:t = x1:t]]∑
y∈DJ [[ℓ(y) ≥ t ∧ y<t = x<t]]

J→∞−→ Mnorm
s,L,n (xt|x<t)

Then, we can take the product over t = 1, ..., n to obtain M̂norm
s,L,n (x)→Mnorm

s,L,n (x)→Mnorm(x).

Summary. Propositions 4, 6 and 8 state that the data generated by the Solomonoff Data Generator
and their respective variants (computable and normalized computable) are statistically consistent,
and that training on this data would make an estimator converge to their respective Solomonoff
version (under realizability and learnability assumptions).

3.2 TRAINING MODELS ON SOLOMONOFF DATA USING FIXED-SEQUENCE LENGTHS

Most neural model implementations (specially the Transformer model) require sequences of fixed
length (say) n. The version of M the neural model learns will depend on how we guarantee that
all sequences have length n. We drop s, L, n from M ···

s,L,n since what follows holds for infinite as
well as finite values. We focus on describing the training protocol that converges to the normalized
version of Solomonoff, Mnorm, since it is what we use in our experiments. We recommend read-
ers interested in the standard version of Solomonoff (M) to read the Appendix B, where we pad
sequences with absorbing token to fill the probability gap (see Semimeasures in Section 2).

4

Under review as a conference paper at ICLR 2024

Normalized Solomonoff Mnorm with neural networks. To converge to Mnorm, we pad the xj in
DJ to length n with arbitrary symbols from X and train on them, but we (have to) cut the log-loss
short at ℓ(xj). When doing so, the log-loss takes the form (see Appendix B.1 for derivation that uses
Proposition 8):

Loss(θ) = −
n∑

t=1

∑
x<t

(∑
xt

M̂DJ (x1:t)
)(∑

xt

M̂norm(xt|x<t) log πθ(xt|x<t)
)

(1)

The last bracket and hence the loss is minimized for πθ(xt|x<t) = M̂norm(xt|x<t), as desired. By
the chain rule this implies that the neural model πθ(x) converges to M̂norm(x). Note that Loss(θ)
does not depend on the padding of xj , so any padding leads to the same gradient and same solution.

Under the (unrealistic) assumptions that the neural model has the capacity to represent M̂ ···, and
the learning algorithm can find the representation, this (tautologically) implies that the neural model
distribution πθ converges to µ̂ = M̂ ··· minimizing (e.g. Eq.(1)). Similarly, if the neural model is
trained on xj sampled from M ···

s(j),L(j),n(x) for j = 1, 2, 3, ..., it converges to M ···
∞,∞,n. For a neural

model with context length n increasing over time, even M̂ ··· → M ···
∞,∞,∞ could be possible. Of

course there are many practical challenges that need to be surmounted to remotely achieve this.

3.3 SOLOMONOFF FROM NON-UNIFORM SAMPLES

For practical purposes, sampling from non-uniform (possibly learned) distribution over programs
can be advantageous. For our BrainPhoque language (that we use in our experiments later) it in-
creases the yield of ‘interesting’ programs by a factor of 137 (see Table 3). Below we show this can
be done without any concerns on loosing universality.

Let Q be a probability measure on X∞, with shorthand Q(q) := Q(Γq), the Q-probability that a
sequence starts with q, where Γq := {ω ∈ X∞ : q ⊑ ω} = qX∞. We define the generalized
Solomonoff semimeasure as

MQ
T (x) :=

∑
q:T (q)=x∗

Q(q) with special case MU (x) :=
∑

q:U(q)=x∗

2−ℓ(q)

for a universal TM T = U and unbiased coin flips Q(q) = 2−ℓ(q). MU is strongly universal in
the sense that it is a Bayesian mixture over all lower semi-computable semimeasures (Wood et al.,
2011). Next, we show to we show that under very mild conditions on Q, MQ

U is also universal. This
finding is similar to (Sterkenburg, 2017), but our independently discovered proof is shorter and more
self-contained.
Theorem 9 (Universality of generalized Solomonoff semimeasures). MQ

U (x) is strongly universal,
provided Q is a computable measure and Q(q) > 0 ∀q ∈ X ∗ and Q(q1:n) → 0 for n → ∞.
More precisely, for all universal monotone TM U and all Q with the above properties, there exists a
universal MTM V (as constructed in the proof) s.th. MQ

U (x) = MV (x) ∀x. Proof in Appendix C.

Note on the assumptions above. We assumed infinite number of data points and universality (and
learnablity) of the approximator, which are difficult to obtain in practice and diminish the relevance
of inductive biases of neural models. For finite data, however, inductive biases are crucial for gen-
eralization. In addition, easily-trainable universal neural models is key for (practically) learning
data on the highest level of the Chomsky hierarchy, i.e. UTM generated data. We leave out of the
scope of the paper the remaining theoretical work on the effect of the inductive bias and universality
of neural models and focus on providing experimental evidence of neural network performance on
UTM generated data in the next section.

4 EXPERIMENTAL METHODOLOGY

Our experiments consist of evaluating neural networks with different architectures and sizes trained
on three types of algorithmically generated data described next.

Variable-order Markov Sources (VOMS). A Markov model of order k sequentially assigns prob-
abilities to a string of characters by looking, at step t in the sequence, at the suffix string from t− k

5

Under review as a conference paper at ICLR 2024

0 24 48 72 96
0.0

0.5

1.0

Pr
ed

ict
io

ns

Sample CTW Transformer-L Ground truth

0 24 48 72 96
0

1

2
Re

gr
et

 [b
its

]

0 24 48 72 96
Step

0

10

Cu
m

ul
at

iv
e

 re
gr

et
 [b

its
]

RNN LSTM
Stack-RNN

Tape-RNN

Transformer
8

10

12

14

16

18

M
ea

n
cu

m
ul

at
iv

e
re

gr
et

 [b
its

]

Evaluated on CTW (256 steps)
Median
Seed
CTW

S
M
L

0 256 512 768 1024
Step

100

101

102

M
ea

n
cu

m
ul

at
iv

e
 re

gr
et

 [b
its

]

S

0 256 512 768 1024
Step

100

101

102

M
ea

n
cu

m
ul

at
iv

e
 re

gr
et

 [b
its

]

M

0 256 512 768 1024
Step

100

101

102

M
ea

n
cu

m
ul

at
iv

e
 re

gr
et

 [b
its

]

L

RNN
LSTM
Stack-RNN
Tape-RNN
Transformer

Figure 1: Evaluation on data from the variable-order Markov source. Left: Example sequence
and predictions of Transformer-L (red) and Bayes-optimal CTW predictor (blue), below we show
instantaneous and cumulative regret w.r.t. the ground-truth. Middle: Mean cumulative regret over
6k sequences (length 256, max. CTW tree depth 24, in-distribution) for different networks (3 seeds)
and sizes (S, M, L). Larger models perform better for all architectures, and the Transformer-L and
LSTM-L match the optimal CTW predictor. Right: Length generalization (1024 steps). LSTMs
generalize to longer length, whereas Transformers do not.

to t. This suffix is used to lookup the model parameters to make a prediction of the next character.
A VOMS is a Markov model where the value of k can vary depending on the suffix, and makes its
prediction using a suffix tree. We consider binary VOMS where an efficient Bayes-optimal predictor
exists: the Context Tree Weighting (CTW) predictor (Willems et al., 1995; 1997). We use the CTW
predictor as a baseline to get a better sense of how close are our models to Bayes-optimality. CTW
predictor is only universal w.r.t. n-Markov sources, and thus not universal w.r.t. all computable
functions like SI. See Appendix D.2 for more intuition about VOMS and information on how do we
generate the data and how to compute the CTW Bayes-optimal predictor.

Chomsky Hierarchy (CH) Tasks. We take the 15 algorithmic tasks (e.g. arithmetic, reversing
strings etc.) from Deletang et al. (2022) lying on different levels of the Chomsky hierarchy (see Ap-
pendix D.3 for a description of all tasks). In contrast to Deletang et al. (2022) who train on individual
tasks, we are interested in the more challenging setting where we train on all tasks simultaneously.
To do this we make sure that all tasks use the same alphabet X (effectively expanding the alphabet
of tasks with small alphabet size). In addition, we do not consider transduction as in Deletang et al.
(2022) but sequence prediction, thus we concatenate inputs and outputs with additional delimiter
tokens i.e. for {(xi ∈ X , yi ∈ X)}Ii=1 and delimiters ’,’ and ’;’, we construct sequences of the form
z := (x1, y1;x2, y2; . . . xn, yn; . . .). When evaluating our models we only account the regret (and
accuracy) on the output symbols (masking every other symbol) because inputs are usually random
and non-informative of whether the task has been solved. Denoting Oz the set of outputs time-
indices, we compute accuracy for trajectory z as A(z) := 1

|Oz|
∑

t∈Oz
[[argmaxy πθ(y|z<t) = zt]].

See Appendix D.3 for more details.

Universal Turing Machine Source. This data source is based on all the details on Sections 3.1
and 3.2. We generate random programs (that can effectively encode any structured sequence gener-
ation process) and run them in our UTM to get the outputs. In principle a program could generate
the image of a cow, a chess program, or the books of Shakespeare, but of course, these programs
are extremely unlikely to be sampled (see Figure 5 in the Appendix for exemplary outputs). As a
choice of UTM we constructed a variant of the brainf*ck UTM (Müller, 1993), which we call Brain-
Phoque, mainly to help with the sampling process and to ensure that all sampled programs are valid.
We also use an alphabet size |X | = 17 equal to the Chomsky tasks to enable evaluation between
tasks. BrainPhoque has a single working tape and a write-only output tape. It has 7 instructions to
move the working tape pointer (WTP), de/increment the value under the WTP (the datum), perform
jumps and append the datum to the output. All programs are valid, and imbalanced brackets are
simply skipped. While we slightly change the program distribution, this is not an issue according
to Theorem 9. Programs are sampled and run for s = 1000 steps with 200 memory cells, with
a maximum output length of n = 256 symbols. Ideally, the Solomonoff predictor should be the
optimal baseline to compare to but it is uncomputable and intractable. Hence, we calculate a (rather
loose, but non-trivial) upper bound on the log-loss incurred by the Solomonoff predictor by using

6

Under review as a conference paper at ICLR 2024

RNN LSTM
Stack-RNN

Tape-RNN

Transformer
0

20

40

60

80

100

M
ea

n
cu

m
ul

at
iv

e
re

gr
et

 [b
its

]

Evaluated on Chomsky tasks (256 steps)
Median
Seed

S
M

L

RNN LSTM
Stack-RNN

Tape-RNN

Transformer
0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
ac

cu
ra

cy

Evaluated on Chomsky tasks (256 steps)

0 256 512 768 1024
Step

10 1

100

101

102

103

M
ea

n
cu

m
ul

at
iv

e
 re

gr
et

 [b
its

]

S

0 256 512 768 1024
Step

10 1

100

101

102

103

M
ea

n
cu

m
ul

at
iv

e
 re

gr
et

 [b
its

]

M

0 256 512 768 1024
Step

10 1

100

101

102

103

M
ea

n
cu

m
ul

at
iv

e
 re

gr
et

 [b
its

]

L

RNN
LSTM
Stack-RNN
Tape-RNN
Transformer

Figure 2: Evaluation on 6k sequences from the Chomsky hierarchy tasks (400 per task). As
the model size increases, cumulative regret (Left) and accuracy (Middle) improve across all archi-
tectures. Overall, the Transformer-L achieves the best performance by a margin. Right: Length
generalization (1024 steps). Detailed results per task are in Figure 7 on the Appendix.

the prior probability of shortened programs (by removing unnecessary brackets or self-canceling
instructions) that generate the outputs. See Appendix E for a full description of BrainPhoque and
our procedure to sample programs and outputs.

Neural Predictors. Our neural models πθ sequentially observe symbols x<t from the data gen-
erating source and predict the next-symbol probabilities πθ(·|x<t). We train our models on 256-
length trajectories using the log-loss Loss(θ) := − 1

n

∑n
t=1 log πθ(xt|x<t) and mini-batch (size

128) stochastic gradient descent with the ADAM optimizer (Kingma & Ba, 2014) (learning rate
10−4). On the UTM data source, we cut the log-loss on short sequences to approximate the nor-
malized version of SI (see Section 3.2). We evaluate the following architectures: RNNs, LSTMs,
Stack-RNNs, Tape-RNNs and Transformers. We note that, Stack-RNNs (Joulin & Mikolov, 2015)
and Tape-RNNs (Deletang et al., 2022) are RNNs augmented with a stack and tape memory, re-
spectively, that can be used to store and manipulate symbols. We consider three model sizes (S, M
and L) for each architecture by increasing the width and depth simultaneously. We train 3 initial-
ization seeds per model variation for 500K SGD iterations. We expect that larger networks have an
increased capacity to represent longer computational traces and more parallel throughput and thus
better performance. The reason for including memory-augmented models is to check whether these
networks can meaningfully use their external memory to predict better. We expect this to be difficult
to achieve in practice. See Appendix D.1 for all the architecture details.

Evaluation procedure. Our main evaluation metric is the expected instantaneous regret, Rπµ(t) :=
Ext∼µ [logµ(xt | x<t)− log π(xt | x<t)] (at time t), and cumulative expected regret, RT

πµ :=∑T
t=1 Rπµ(t), where π is the model and µ the ground-truth source. We evaluate our neural models

on 6k sequences of length 256, which we refer as in-distribution (same length as used for training)
and of length 1024, referred as out-of-distribution.

5 RESULTS

Variable-order Markov Source (VOMS) Results. In Figure 1 (Left) we show an example trajec-
tory from VOMS data-source of length 256 with the true samples (blue dots), ground truth (gray),
Transformer-L (red) and CTW (blue) predictions. As we can see the predictions of the CTW pre-
dictor and the Transformer-L are aligned, suggesting it is implementing a Bayesian mixture over
programs/trees. In the second and third panels the instantaneous regret and the cumulative regret
also match. Figure 1 (Middle) shows the cumulative regret of all the neural predictors evaluated
in-distribution. First, we observe that as model size increases (from S, M, to L) the cumulative re-
gret decreases. In addition, the best model is the Transformer-L, which remarkably achieves optimal
performance, whereas the worst models are the RNNs and the Tape-RNNs. The latter model proba-
bly could not properly leverage its external memory successfully. Note also how LSTM-L achieves
close to optimal performance. On the Right we show out-of-distribution performance showing how
transformers fail on length-generalization. To better understand where our models struggle, we show
in the Appendix F, Figures 6c and 6d, the cumulative regret averaged across seeds and trajectories

7

Under review as a conference paper at ICLR 2024

RNN LSTM
Stack-RNN

Tape-RNN

Transformer
0

10

20

30

40

50

60

70

M
ea

n
cu

m
ul

at
iv

e
re

gr
et

 [b
its

]

Evaluated on UTM (256 steps)

Median
Seed
Solomonoff UB

S
M
L

RNN LSTM
Stack-RNN

Tape-RNN

Transformer
0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
ac

cu
ra

cy

Evaluated on UTM (256 steps)

0 256 512 768 1024
Step

101

102

M
ea

n
cu

m
ul

at
iv

e
 re

gr
et

 [b
its

]

S

0 256 512 768 1024
Step

101

102

M
ea

n
cu

m
ul

at
iv

e
 re

gr
et

 [b
its

]

M

0 256 512 768 1024
Step

101

102

M
ea

n
cu

m
ul

at
iv

e
 re

gr
et

 [b
its

]

L

RNN
LSTM
Stack-RNN
Tape-RNN
Transformer

Figure 3: Evaluation on the UTM data generator with 6k sequences. Left: The larger the ar-
chitecture the lower the cumulative regret. We see better performance than the non-trivial baseline
Solomonoff Upper Bound (UB). Middle: The mean accuracy on UTM data shows the models can
quickly learn UTM patterns. Right: Length generalization (1024 steps). Detailed results per pro-
gram length are in Figure 8.

RNN LSTM
Stack-RNN

Tape-RNN

Transformer
0

20

40

60

80

100

120

140

160

M
ea

n
cu

m
ul

at
iv

e
re

gr
et

 [b
its

]

Evaluated on Chomsky tasks (256 steps)

RNN LSTM
Stack-RNN

Tape-RNN

Transformer
0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n
ac

cu
ra

cy

Evaluated on Chomsky tasks (256 steps)
Median
Seed
Naive

S
M
L

LSTM

Transformer
0

20

40

60

80

100

120

M
ea

n
cu

m
ul

at
iv

e
re

gr
et

 [b
its

]

Evaluated on CTW (256 steps)

Median
Seed
CTW
Naive

S
M
L

LSTM

Transformer
0.0

0.2

0.4

0.6

0.8

1.0

M
ea

n
ac

cu
ra

cy

Evaluated on CTW (256 steps)

Figure 4: Transfer learning from UTM-trained models on 3k trajectories. Mean cumulative regret
(Left) and accuracy (Middle-Left) of neural models trained on UTM data evaluated against the tasks
of the Chosmky hierarchy. We observe a small increase in accuracy (transfer) from the Transformer
models. Transfer to CTW is shown in the right two panels: Middle-Right: mean cumulative regret,
Right: mean accuracy; ‘Naive’ is a random uniform predictor.

sampled from different CTW tree depths and context lengths. We can see as the size grows from S
to L, the cumulative regret above the CTW optimal is more or less uniform for all tree-depths and
higher on short context-lengths.

Chomsky Hierarchy Results. In Figure 2 (Left) we show the in-distribution performance of all
our models trained on the Chomsky hierarchy tasks by means of cumulative regret and accuracy.
Overall, the Transformer-L achieves the best performance by a margin. On the Right we show the
length-generalization capabilities of models, showing how Transformers fail to generalize to longer
lengths. In the Appendix (Figure 7) we show the results for each task individually.

Universal Turing Machine Results. Figure 3 (Left) shows the mean cumulative regret on the UTM
task with the (loose) Solomonoff Upper Bound (UB) as a non-trivial baseline (see Section 4 for its
description). In the Middle we show the accuracy, and as can be seen all models achieve fairly good
accuracy. The main reason for this is that naively sampling from our UTM produces fairly simple
programs (see example UTM trajectories in appendix Figure 5). In general, larger architectures
attain lower cumulative regret and all models show lower regret than the Solomonoff upper bound.
Note that the neural models do not have access to the underlying program that generate the output.
Interestingly, in Figure 8 (in the Appendix) we show the cumulative regret against program length
and observe that the longer the underlying program the higher the cumulative regret of our models
since it is more difficult to approximate them. Remarkably, in Figure 4 we see that the Transformer
networks trained on UTM data exhibit the most transfer to the Chomsky tasks and, LSTMs transfer
the most to the VOMS task (compare to the ‘naive’ random predictor). For the VOMS, we re-
trained the LSTM and Transformer models with the BrainPhoque UTM setting the alphabet size
to 2 matching our VOMS task to enable comparison. All transfer results suggest that UTM data
contains enough transferable patterns for these tasks.

8

Under review as a conference paper at ICLR 2024

6 DISCUSSION AND CONCLUSIONS

Large Language Models and Solomonoff Induction. The last few years the ML community
has witnessed the training of enormous models on massive quantities of diverse data (Kenton &
Toutanova, 2019; Hoffmann et al., 2022). This trend is in line with the premise of our paper, i.e. to
achieve increasingly universal models one needs large architectures and large quantities of diverse
data. Large Language Models (LLMs) have been shown to have impressive in-context learning ca-
pabilities (Kenton & Toutanova, 2019; Chowdhery et al., 2022). LLMs pretrained on long-range
coherent documents can learn new tasks from a few examples by inferring a shared latent con-
cept (Xie et al., 2022; Wang et al., 2023). They can do so because in-context learning does implicit
Bayesian inference (in line with our CTW experiments) and builds world representations and algo-
rithms (Li et al., 2023a;b) (necessary to perform SI). In fact, one could argue that the impressive
in-context generalization capabilities of LLMs is a sign of a rough approximation of Solomonoff
induction. The advantage of pre-trained LLMs compared to our method (of training on UTM data)
is that LLM data (books, code, online conversations etc.) is generated by humans, and thus very well
aligned with the tasks we (humans) want to solve; whereas our UTMs assign low probability to hu-
man tasks. However, mixing our data generation processes with human data might be advantageous
towards more general intelligence.

Learning the UTM. Theorem 9 of our paper (and (Sterkenburg, 2017)) opens the path for modify-
ing/learning the program distribution of a UTM while maintaining the universality property. In fact,
if we want to arrive at a practical approach that solve human problems this is probably necessary,
since the naive uniform prior over programs on our UTMs generated only relatively simple data.
Interestingly, learning a UTM aligned to problems of interest is also the goal of Sunehag & Hutter
(2014). Once having a good UTM, we could use it as a good synthetic data generator to improve our
models. This is the idea of data-augmentation that has been so successful in the machine learning
field (Perez & Wang, 2017; Lemley et al., 2017; Kataoka et al., 2020). In future work, equipped
with our Theorem 9, we plan to explore in depth how to modify the sampling process from UTMs
to produce more interesting, more complex or more useful outputs.

Increasingly Universal Architectures. By definition, the output of the function Us(p) (using pro-
gram p) requires at maximum s computational steps. Approximating Ms,L,n would naively require
wide networks (to represent many programs in parallel) of s-depth and context length n. The effi-
ciency of this representation would depend on whether computational patterns can be reused. Trans-
formers seem to exhibit such a feature where by means of “shortcuts” they can represent all automata
of length T in O(log T)-depth (Liu et al., 2023). An alternative way to increase the amount of serial
computations is with chain-of-thought (Wei et al., 2022) (see Hahn & Goyal (2023) for theoretical
results). When data is limited, inductive biases are important for generalization. Luckily it seems
neural networks have an implicit inductive bias towards simple functions at initialization (Dingle
et al., 2018; Valle-Perez et al., 2018; Mingard et al., 2023) compatible with Kolmogorov complex-
ity, which is greatly convenient when trying to approximate SI in the finite-data regime.

Limitations. Given the empirical nature of our results, we cannot guarantee, due to training for fi-
nite time, that our architectures mimic the universality of Solomonoff (although this becomes more
likely as training samples increase). Similarly, we note universality does not help with the fact
that Solomonoff Induction is uncomputable/undecidable and one would need infinite time to ex-
actly match Solomonoff in the limit. Our theoretical results establish that good approximations to
Solomonoff induction are obtainable, in principle, via meta-training; whereas our empirical results
show that is possible to make practical progress in that direction, though many questions remain
open, e.g., how to construct efficient relevant universal datasets for meta-learning, and how to obtain
easily-trainable universal architectures.

Conclusion. We aimed at using meta-learning as driving force to approximate Solomonoff Induc-
tion. For this we had to carefully specify the data generation process and the training loss so that
the convergence to various versions of Solomonoff predictors is attained in the limit. Our experi-
ments on the three different algorithmic data-sources tell similar stories: as model size increases,
performance increases. Remarkably, networks trained on the UTM data-source exhibit some trans-
fer to the other domains. We believe that we can improve LLM training by scaling our approach to
generate synthetic data-generation using UTMs and mixing it with existing large datasets.

9

Under review as a conference paper at ICLR 2024

Reproducibility Statement. On the theory side, we wrote all proofs in the Appendix.
For data generation, we fully described the variable-order Markov sources in the Appendix;
we used the open-source repository https://github.com/google-deepmind/neural_
networks_chomsky_hierarchy for the Chomsky tasks and fully described our UTM in the
Appendix. We used the same architectures as Deletang et al. (2022) (which can be found in the same
open-source repository) with modifications described in the Appendix. For training our models we
used JAX https://github.com/google/jax.

REFERENCES

Dana Angluin and Carl H Smith. Inductive inference: Theory and methods. ACM computing surveys
(CSUR), 15(3):237–269, 1983.

Corrado Böhm. On a family of turing machines and the related programming language. ICC bulletin,
3:185–194, 1964.

Elliot Catt, David Quarel, and Marcus Hutter. An Introduction to Universal Artificial Intelligence.
Chapman & Hall/CRC Artificial Intelligence and Robotics Series. Taylor and Francis, 2024. ISBN
9781032607153. URL http://www.hutter1.net/ai/uaibook2.htm. 400+ pages,
http://www.hutter1.net/ai/uaibook2.htm.

Yining Chen, Sorcha Gilroy, Andreas Maletti, Jonathan May, and Kevin Knight. Recurrent neural
networks as weighted language recognizers. arXiv preprint arXiv:1711.05408, 2017.

Noam Chomsky. Three models for the description of language. IRE Transactions on information
theory, 2(3):113–124, 1956.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

Gregoire Deletang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, et al. Neural networks and the chomsky
hierarchy. In The Eleventh International Conference on Learning Representations, 2022.

Kamaludin Dingle, Chico Q Camargo, and Ard A Louis. Input–output maps are strongly biased
towards simple outputs. Nature communications, 9(1):761, 2018.

Jeffrey L. Elman. Finding structure in time. Cogn. Sci., 1990.

Daniel Filan, Jan Leike, and Marcus Hutter. Loss bounds and time complexity for speed priors. In
Artificial Intelligence and Statistics, pp. 1394–1402. PMLR, 2016.

Dov Gabbay, John Woods, and Stephan Hartmann. Inductive logic, volume 10. Elsevier/North-
Holland, 2011.

Tim Genewein, Grégoire Delétang, Anian Ruoss, Li Kevin Wenliang, Elliot Catt, Vincent Dutordoir,
Jordi Grau-Moya, Laurent Orseau, Marcus Hutter, and Joel Veness. Memory-based meta-learning
on non-stationary distributions. International Conference on Machine Learning, 2023.

Michael Hahn and Navin Goyal. A theory of emergent in-context learning as implicit structure
induction. arXiv preprint arXiv:2303.07971, 2023.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Comput., 1997.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de Las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, et al. Train-
ing compute-optimal large language models. arXiv preprint arXiv:2203.15556, 2022.

Marcus Hutter. Universal artificial intelligence: Sequential decisions based on algorithmic proba-
bility. Springer Science & Business Media, 2004.

10

https://github.com/google-deepmind/neural_networks_chomsky_hierarchy
https://github.com/google-deepmind/neural_networks_chomsky_hierarchy
 https://github.com/google/jax
http://www.hutter1.net/ai/uaibook2.htm

Under review as a conference paper at ICLR 2024

Marcus Hutter. On universal prediction and Bayesian confirmation. Theoretical Computer Science,
384(1):33–48, 2007. ISSN 0304-3975. doi: 10.1016/j.tcs.2007.05.016. URL http://arxiv.
org/abs/0709.1516.

Armand Joulin and Tomás Mikolov. Inferring algorithmic patterns with stack-augmented recurrent
nets. In Advances in Neural Information Processing Systems 28, 2015.

Hirokatsu Kataoka, Kazushige Okayasu, Asato Matsumoto, Eisuke Yamagata, Ryosuke Yamada,
Nakamasa Inoue, Akio Nakamura, and Yutaka Satoh. Pre-training without natural images. In
Proceedings of the Asian Conference on Computer Vision, 2020.

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of NAACL-HLT, pp. 4171–
4186, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Tor Lattimore, Marcus Hutter, and Vaibhav Gavane. Universal prediction of selected bits. In Al-
gorithmic Learning Theory: 22nd International Conference, ALT 2011, Espoo, Finland, October
5-7, 2011. Proceedings 22, pp. 262–276. Springer, 2011.

Joseph Lemley, Shabab Bazrafkan, and Peter Corcoran. Smart augmentation learning an optimal
data augmentation strategy. Ieee Access, 5:5858–5869, 2017.

Kenneth Li, Aspen K Hopkins, David Bau, Fernanda Viégas, Hanspeter Pfister, and Martin Wat-
tenberg. Emergent world representations: Exploring a sequence model trained on a synthetic
task. In The Eleventh International Conference on Learning Representations, 2023a. URL
https://openreview.net/forum?id=DeG07_TcZvT.

Ming Li and Paul MB Vitanyi. Inductive reasoning and kolmogorov complexity. Journal of Com-
puter and System Sciences, 44(2):343–384, 1992.

Ming Li, Paul Vitányi, et al. An introduction to Kolmogorov complexity and its applications.
Springer, 4th edition, 2019.

Yingcong Li, M Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers as al-
gorithms: Generalization and implicit model selection in in-context learning. arXiv preprint
arXiv:2301.07067, 2023b.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In The Eleventh International Conference on Learning Representa-
tions, 2023. URL https://openreview.net/forum?id=De4FYqjFueZ.

Ankur Mali, Alexander Ororbia, Daniel Kifer, and Lee Giles. On the computational complexity and
formal hierarchy of second order recurrent neural networks. arXiv preprint arXiv:2309.14691,
2023.

Vladimir Mikulik, Grégoire Delétang, Tom McGrath, Tim Genewein, Miljan Martic, Shane Legg,
and Pedro Ortega. Meta-trained agents implement bayes-optimal agents. Advances in neural
information processing systems, 33:18691–18703, 2020.

Chris Mingard, Henry Rees, Guillermo Valle-Pérez, and Ard A Louis. Do deep neural networks
have an inbuilt occam’s razor? arXiv preprint arXiv:2304.06670, 2023.

Urban Müller. Brainf*ck. https://esolangs.org/wiki/Brainfuck, 1993. [Online;
accessed 21-Sept-2023].

Pedro A Ortega, Jane X Wang, Mark Rowland, Tim Genewein, Zeb Kurth-Nelson, Razvan Pascanu,
Nicolas Heess, Joel Veness, Alex Pritzel, Pablo Sprechmann, et al. Meta-learning of sequential
strategies. arXiv preprint arXiv:1905.03030, 2019.

Luis Perez and Jason Wang. The effectiveness of data augmentation in image classification using
deep learning. arXiv preprint arXiv:1712.04621, 2017.

11

http://arxiv.org/abs/0709.1516
http://arxiv.org/abs/0709.1516
https://openreview.net/forum?id=DeG07_TcZvT
https://openreview.net/forum?id=De4FYqjFueZ
https://esolangs.org/wiki/Brainfuck

Under review as a conference paper at ICLR 2024

Samuel Rathmanner and Marcus Hutter. A philosophical treatise of universal induction. Entropy,
13(6):1076–1136, 2011.

J. Schmidhuber. The speed prior: A new simplicity measure yielding near-optimal computable
predictions. In Proc. 15th Conf. on Computational Learning Theory (COLT’02), volume 2375 of
LNAI, pp. 216–228, Sydney, Australia, 2002. Springer.

Michael Sipser. Introduction to the Theory of Computation. Course Technology Cengage Learning,
Boston, MA, 3rd ed edition, 2012. ISBN 978-1-133-18779-0.

Ray J Solomonoff. A formal theory of inductive inference. part i. Information and control, 7(1):
1–22, 1964a.

Ray J Solomonoff. A formal theory of inductive inference. part ii. Information and control, 7(2):
224–254, 1964b.

Tom F Sterkenburg. A generalized characterization of algorithmic probability. Theory of Computing
Systems, 61:1337–1352, 2017.

John Stogin, Ankur Mali, and C Lee Giles. A provably stable neural network turing machine. arXiv
preprint arXiv:2006.03651, 2020.

Peter Sunehag and Marcus Hutter. Principles of solomonoff induction and aixi. In Algorithmic
Probability and Friends. Bayesian Prediction and Artificial Intelligence: Papers from the Ray
Solomonoff 85th Memorial Conference, Melbourne, VIC, Australia, November 30–December 2,
2011, pp. 386–398. Springer, 2013.

Peter Sunehag and Marcus Hutter. Intelligence as inference or forcing Occam on the world. In Proc.
7th Conf. on Artificial General Intelligence (AGI’14), volume 8598 of LNAI, pp. 186–195, Quebec
City, Canada, 2014. Springer. ISBN 978-3-319-09273-7. doi: 10.1007/978-3-319-09274-4 18.

Mirac Suzgun, Sebastian Gehrmann, Yonatan Belinkov, and Stuart M. Shieber. Memory-augmented
recurrent neural networks can learn generalized dyck languages. CoRR, 2019.

Guillermo Valle-Perez, Chico Q Camargo, and Ard A Louis. Deep learning generalizes because the
parameter-function map is biased towards simple functions. arXiv preprint arXiv:1805.08522,
2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems 30, 2017.

Joel Veness, Peter Sunehag, and Marcus Hutter. On ensemble techniques for aixi approximation. In
International Conference on Artificial General Intelligence, pp. 341–351. Springer, 2012.

Xinyi Wang, Wanrong Zhu, and William Yang Wang. Large language models are implicitly topic
models: Explaining and finding good demonstrations for in-context learning. arXiv preprint
arXiv:2301.11916, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, 35:24824–24837, 2022.

Frans Willems, Yuri Shtarkov, and Tjalling Tjalkens. Reflections on “the context tree weighting
method: Basic properties”. Newsletter of the IEEE Information Theory Society, 47(1), 1997.

Frans MJ Willems. The context-tree weighting method: Extensions. IEEE Transactions on Infor-
mation Theory, 44(2):792–798, 1998.

Frans MJ Willems, Yuri M Shtarkov, and Tjalling J Tjalkens. The context-tree weighting method:
Basic properties. IEEE transactions on information theory, 41(3):653–664, 1995.

12

Under review as a conference paper at ICLR 2024

Ian Wood, Peter Sunehag, and Marcus Hutter. (Non-)equivalence of universal priors. In Proc.
Solomonoff 85th Memorial Conference, volume 7070 of LNAI, pp. 417–425, Melbourne, Aus-
tralia, 2011. Springer. ISBN 978-3-642-44957-4. doi: 10.1007/978-3-642-44958-1 33. URL
http://arxiv.org/abs/1111.3854.

Ian Wood, Peter Sunehag, and Marcus Hutter. (non-) equivalence of universal priors. In Algorithmic
Probability and Friends. Bayesian Prediction and Artificial Intelligence: Papers from the Ray
Solomonoff 85th Memorial Conference, Melbourne, VIC, Australia, November 30–December 2,
2011, pp. 417–425. Springer, 2013.

Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. An explanation of in-context
learning as implicit bayesian inference. In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?id=RdJVFCHjUMI.

7 APPENDIX

A SOLOMONOFF SAMPLES

Sampling from semimeasures. We can sample strings from a semimeasure µ as follows: Start
with the empty string x = ϵ.
With probability µ(a|x) := µ(xa)/µ(x) extend x← xa for a ∈ X . Repeat.
With probability 1−

∑
a∈X µ(a|x) return x.

Let D := (x1, ..., xJ) be J (in)finite sequences sampled from µ. If we only have these samples, we
can estimate µ as follows:

µ̂D(x) :=
1

|D|
∑
y∈D

[[ℓ(y) ≥ ℓ(x) ∧ y1:ℓ(x) = x]]
w.p.1−→ µ(x) for |D| → ∞ (2)

Proof: Let Dx := (y ∈ D : ℓ(y) ≥ ℓ(x) ∧ y1:ℓ(y) = x) be the elements in D that start with x. Since
xj are sampled i.i.d. from µ, the law of large numbers implies |Dx|/|D| → µ(x) for J →∞.

Limit normalization. A simple way of normalization is

M̃s,L,n(x1:t) :=

∑
xt+1:n

Ms,L,n(x1:n)∑
x1:n

Ms,L,n(x1:n)
for t ≤ n and 0 else

This is a proper measure for sequences up to length n. Sampling from it is equivalent to sampling
from Ms,L,n but discarding all sequences shorter than n. Let D̃ := (xj ∈ DJ : ℓ(xj) ≥ n). Then

ˆ̃
M D̃(x) =

1

|D̃|

∑
y∈D̃

[[y1:ℓ(x) = x]] −→ M(x) for s, L, n, J →∞

Proof: First, |D̃|/|D| is the relative fraction of sequences that have length n, and∑
x1:n

Ms,L,n(x1:n) is the probability that a sequence has length n, hence the former converges
to the latter for J →∞. Second,

ˆ̃
M D̃(x1:n) =

1

|D̃|

∑
y∈D̃

[[y1:ℓ(x) = x1:n]] =
|D|
|D̃|

1

|D|
∑
y∈D

[[ℓ(y) ≥ n ∧ y1:ℓ(x) = x1:n]]

=
|D|
|D̃|

M̂DJ (x1:n)
J→∞−→ Ms,L,n(x1:n)∑

x1:n
Ms,L,n(x1:n)

= M̃s,L,n(x1:n)

Third, take the sum
∑

xt+1:n
on both sides, and finally the limit s, L, n→∞ and set x = x1:t.

A disadvantage of this normalization scheme is that the probability of a sequence x depends on n
even if ℓ(x) < n, while Ms,L,n(x) and Mnorm

··· (x) below are essentially independent of n.

Proposition 4. Let D := (x1, ..., xJ) be J (in)finite sequences sampled from a semimeasure µ (e.g.

M). We can estimate µ as follows: µ̂D(x) := 1
|D|

∑
y∈D[[ℓ(y) ≥ ℓ(x) ∧ y1:ℓ(x) = x]]

w.p.1−→
µ(x) for |D| → ∞.

13

http://arxiv.org/abs/1111.3854
https://openreview.net/forum?id=RdJVFCHjUMI

Under review as a conference paper at ICLR 2024

Proof: Let Dx := (y ∈ D : ℓ(y) ≥ ℓ(x) ∧ y1:ℓ(y) = x) be the elements in D that start with x. Since
xj are sampled i.i.d. from µ, the law of large numbers implies |Dx|/|D| → µ(x) for J →∞.

Proposition 6. Let now DJ := (x1, ..., xJ) be samples from the measure Ms,L,n. Then, M̂DJ (x) =
1
J

∑
y∈DJ [[ℓ(y) ≥ ℓ(x) ∧ y1:ℓ(x) = x]] −→ Ms,L,n(x) for J →∞.

Proof: It follows directly from Proposition 4.
Proposition 8. Using the definitions from Proposition 6 we have that

M̂norm
s,L,n (xt|x<t) =

∑
y∈DJ [[ℓ(y) ≥ t ∧ y1:t = x1:t]]∑
y∈DJ [[ℓ(y) ≥ t ∧ y<t = x<t]]

J→∞−→ Mnorm
s,L,n (xt|x<t)

Then, we can take the product over t = 1, ..., n to obtain M̂norm
s,L,n (x)→Mnorm

s,L,n (x)→Mnorm(x).

Proof: For x = x<t and a = xt, we have∑
a∈X

M̂DJ (xa) =
1

J

∑
a

∑
y∈DJ

[[ℓ(y) ≥ ℓ(xa) ∧ y1:ℓ(xa) = xa]]

=
1

J

∑
y∈DJ

[[ℓ(y) ≥ t ∧ ∃a : y1:t = xa]]

hence M̂norm
s,L,n (a|x) =

M̂DJ (xa)∑
a M̂DJ (xa)

J→∞−→ Ms,L,n(ax)∑
a Ms,L,n(ax)

= Mnorm
s,L,n (a|x) (3)

B TRAINING WITH LLMS

Using Transformer LLMs for estimating M . Most Transformer implementations require se-
quences of fixed length (say) n. We can mimic shorter sequences by introducing a special absorbing
symbol ⊥ ̸∈ X , and pad all sequences xj shorter than n with ⊥s. We train the Transformer on these
(padded) sequences with the log-loss. Under the (unrealistic) assumptions that the Transformer has
the capacity to represent M̂···, and the learning algorithm can find the representation, this (tauto-
logically) implies that the Transformer distribution converges to M̂···. Similarly if the Transformer
is trained on xj sampled from Ms(j),L(j),n(x) for j = 1, 2, 3, ..., it converges to M∞,∞,n. For a
Transformer with context length n increasing over time, even M̂··· →M could be possible. To guar-
antee normalized probabilities when learning M̃··· and Mnorm

··· , we do not introduce a ⊥-padding
symbol. For M̃··· we train on D̃ which doesn’t require padding. For training towards Mnorm

··· , we
pad the xj in DJ to length n with arbitrary symbols from X and train on that, but we (have to) cut
the log-loss short −

∑ℓ(x)
t=1 log(LLM(xt|x<t)), i.e. ℓ(x) rather than n, so as to make the loss hence

gradient hence minimum independent of the arbitrary padding.

Limit-normalized M̃ . This is the easiest case: D̃ removes strings shorter than n from DJ (sam-

pled from M), so D̃ has distribution M̃ , hence for D = D̃, the log-loss is minimized by pθ =
ˆ̃
M ,

i.e. training on D̃ makes pθ converge to ˆ̃
M (under the stated assumptions).

Unnormalized M . For this case we need to augment the (token) alphabet X with some (absorb-
ing) padding symbol ⊥: Let D⊥ be all x ∈ DJ but padded with some ⊥ to length n. We can extend
M : X ∗ → [0; 1] to M⊥ : X ∗ ∪ {⊥} → [0; 1] by

M⊥(x) := M(x) for all x ∈ X ∗

M⊥(x⊥t) := M(x)−
∑

a∈X M(xa) for all x ∈ X ∗ and t ≥ 1

M⊥(x) := 0 for all x ̸∈ X ∗{⊥}∗

It is easy to see that D⊥ has distribution M⊥, hence for D = D⊥, the log-loss is minimized by
pθ = M̂⊥. Since M̂⊥(x) restricted to x ∈ X ∗ is just M̂(x), training on D⊥ makes pθ(x) converge to

14

Under review as a conference paper at ICLR 2024

M̂(x) for x ∈ X ∗. Though it is possible to train neural models that would converge in the limit to
the standard (computable) Solomonoff prior, we focus on the normalized version due to Remark 7.
Training variation: Note that for M , the Transformer is trained to predict x⊥ if ℓ(x) < n. If
ℓ(x) < n is due to the time limit s in Us, it is preferable to not train the Transformer to predict ⊥
after x, since for s → ∞, which we are ultimately interested in, x may be extended with proper
symbols from X . One way to achieve this is to cut the log-loss (only) in this case at t = ℓ(x) similar
to Mnorm below to not reward the Transformer for predicting ⊥.

B.1 NORMALIZED SOLOMONOFF LOSS

Here is the derivation of the loss.

Loss(θ) := − 1

J

∑
x∈DJ

log pθ(x) = − 1

J

∑
x∈DJ

ℓ(x)∑
t=1

log pθ(xt|x<t)

= − 1

J

n∑
t=1

∑
x∈DJ∧ℓ(x)≥t

log pθ(xt|x<t) = −
n∑

t=1

∑
x1:t

M̂DJ (x1:t) log pθ(xt|x<t)

= −
n∑

t=1

∑
x<t

(∑
xt

M̂DJ (x1:t)
)(∑

xt

M̂norm(xt|x<t) log pθ(xt|x<t)
)

where the last equality follows from (3).

C GENERALIZED SOLOMONOFF SEMIMEASURE

Streaming functions. A streaming function φ takes a growing input sequence and produces a
growing output sequence. In general, input and output may grow unboundedly or stay finite. For-
mally, φ : X# → X#, where X# := X∞ ∪ X ∗. In principle input and output alphabet could
be different, but for simplicity we assume that all sequences are binary, i.e. X = {0, 1}. For φ to
qualify as a streaming function, we need to ensure that extending the input only extends and does
not modify the output. Formally, we say that

φ is monotone iff [∀q ⊑ p : φ(q) ⊑ φ(p)]

where q ⊑ p means that q is a prefix of p i.e. ∃r ∈ X# : qr = p, and ⊏ denotes strict prefix r ̸= ϵ. p
is φ-minimal for x if ∃r : ϕ(p) = xr and ∀r∀q ⊏ p : ϕ(q) ̸= xr. We will denote this by φ(p) = x∗.
p is the shortest program outputting a string starting with x.

Monotone Turing Machines (MTM). A Monotone Turing machine T is a Turing machine with
left-to-right read-only input tape, left-to-right write-only output tape, and some bidirectional work
tape. The function φT it computes is defined as follows: At any point in time after writing the output
symbol but before moving the output head and after moving the input head but before reading the
new cell content, if p is the content left of the current input tape head, and x is the content of
the output tape up to the current output tape head, then φT (p) := x. It is easy to see that φT is
monotone. We abbreviate T (p) = φT (p). There exist (so called optimal) universal MTM U that
can emulate any other MTM via U(i′q) = Ti(q), where T1, T2, ... is an effective enumeration of all
MTMs and i′ a prefix encoding of i (Hutter, 2004; Li et al., 2019).

C.1 PROOF OF THEOREM 9

Theorem 9 (Universality of generalized Solomonoff semimeasures). MQ
U (x) is strongly universal,

provided Q is a computable measure and Q(q) > 0 ∀q ∈ X ∗ and Q(q1:n) → 0 for n → ∞.
More precisely, for all universal monotone TM U and all Q with the above properties, there exists a
universal MTM V (as constructed in the proof) s.th. MQ

U (x) = MV (x) ∀x. Proof in Appendix C.

We can effectively sample from any computable Q if we have access to infinitely many fair coin
flips. The conditions on Q ensure that the entropy of Q is infinite, and stays infinite even when
conditioned on any q ∈ X ∗. This also allows the reverse: Converting a sample from Q into infinitely

15

Under review as a conference paper at ICLR 2024

many uniform random bits. Forward and backward conversion can be achieved sample-efficiently
via (bijective) arithmetic (de)coding. This forms the basis of the proof below. The condition of Q
being a proper measure rather than just being a semimeasure is also necessary: For instance, for
Q(q) = 4−ℓ(q), on a Bernoulli(12) sequence x1:∞, MU (xt|x<t)→ 1

2 as it should, one can show that
MQ

U (xt|x<t) <
1
3 for infinitely many t (w.p.1).

Proof. (sketch) Let 0.q1:∞ ∈ [0; 1] be the real number with binary expansion q1:∞. With this identi-
fication, Q can be regarded as a probability measure over [0; 1]. Let F : [0; 1]→ [0; 1] be its cumu-
lative distribution function, which can explicitly be represented as F (0.q1:∞) =

∑
t:qt=1 Q(Γq<t0),

since [0; 0.q1:∞) =
⋃̇

t:qt=10.Γq<t0, where 0.Γq = [0.q0∞; 0.q1∞) and
⋃̇

denotes disjoint union.
Now assumption Q(q) > 0 ∀q ∈ X ∗ implies that F is strictly increasing, and assumption
Q(q1:n) → 0 implies that F is continuous. Since F (0) = 0 and F (1) = 1, this implies that F
is a bijection. Let 0.p1:∞ = F (0.q1:∞) and 0.q1:∞ = F−1(0.p1:∞). 1. Further for some finite
prefix q ⊏ q1:∞, we partition the interval

[0.p01:∞; 0.p11:∞) := [F (0.q0∞);F (0.q1∞)) =:
⋃̇

p∈Φ(q)
0.Γp

into a minimal set of binary intervals 0.Γp, where Φ(q) is a minimal prefix free set in the sense that
for any p, at most one of p, p0, p1 is in Φ(q). An explicit representation is

Φ(q) := {p0<t1 : t > t0 ∧ p0t = 0} ∪̇ {p1<t0 : t > t0 ∧ p1t = 1}
where t0 is the first t for which p0t ̸= p1t . Now we plug

Q(q) = F (0.q1∞)− F (0.q0∞) =
∑

p∈Φ(q)

|0.Γp| =
∑

p∈Φ(q)

2−ℓ(p) into

MQ
U (x) ≡

∑
q:U(q)=x∗

Q(q) =
∑

q:U(q)=x∗

∑
p∈Φ(q)

2−ℓ(p) =
∑

p:V (p)=x∗

2−ℓ(p) = MV (x)

where V (p) := U(q) for the maximal q such that p ∈ Φ(q). The maximal q is unique, since
Φ(q) ∩ Φ(q′) = {} if q ̸⊑ q′ and q′ ̸⊑ q, and finite since F is continuous.

It remains to show that V is universal. Let pı be such that 0.Γpı ⊆ [F (0.ı′0∞);F (0.ı′1∞)). The
choice doesn’t matter as long as it is a computable function of ı, but shorter is “better”. This
choice ensures that F−1(0.pı∗) = 0.ı′... whatever the continuation ∗ is. Now let F (q1:∞)tail :=
F (q1:∞)ℓ(pı)+1:∞ = pℓ(pı)+1:∞ if q1:∞ starts with ı′, and arbitrary, e.g. F (q1:∞), otherwise. Let T
be a MTM with T (q1:∞) := U0(F (q1:∞)tail) for some universal MTM U0. By Kleene’s 2nd recur-
sion theorem (Sipser, 2012, Chp.6), there exists an i such that Ti(q) = T (i′q) ∀q. Let k̇ := ℓ(i′)+1

and ℓ̇ := ℓ(pi) + 1 and q<k̇ := i′, hence p<ℓ̇ = pi. Now V (p1:∞) = U(q1:∞) implies

V (pipℓ̇:∞) = U(i′qk̇:∞) = Ti(qk̇:∞) = T (i′qk̇:∞) = U0(F (i′qk̇:∞)tail) = U0(pℓ̇:∞)

hence V is universal, which concludes the proof.

Practical universal streaming functions. Turing machines are impractical and writing a program
for a universal streaming function is another layer of indirection which is best to avoid. Programming
languages are already universal machines. We can define a conversion of real programs from/to
binary strings and prepend it to the input stream. When sampling input streams q1:∞ we convert the
beginning into a program of the desired programming language, and feed it the tail as input stream.

D EXPERIMENT METHODOLOGY DETAILS

D.1 ARCHITECTURE DETAILS

RNN. A vanilla multi-layer RNN (Elman, 1990) with hidden sizes and multi-layer perceptron
(MLP) before and after the RNN layers as described in Table 1.

1Note that p1:m is uniformly distributed and is (for some m) essentially the arithmetic encoding of q1:n with
one caveat: The mapping from sequences to reals conflates 0.q10∞ = 0.q01∞. Since the set of all conflated
sequences has probability 0, (under Q as well as Bernoulli(1

2
)), any error introduced due to this conflation has

no effect on the distribution MQ
U (x).

16

Under review as a conference paper at ICLR 2024

Table 1: Architectures

RNN and LSTMs S M L
RNN Hidden size 16 32 128
Number of RNN layers 1 2 3
MLP before RNN layers (16,) (32, 32) (128, 128, 128)
MLP after RNN layers (16,) (32, 32) (128, 128, 128)

Transformer SINCOS
Embedding dimension 16 64 256
Number of heads 2 4 4
Number of layers 2 4 6

Stack-RNN. A multi-layer RNN controller with hidden sizes and MLP exactly the same as the
RNN and LSTMs on Table 1 with access to a differentiable stack (Joulin & Mikolov, 2015). The
controller can perform any linear combination of PUSH, POP, and NO-OP on the stack of size ac-
cording to Table 1, with action weights given by a softmax over a linear readout of the RNN output.
Each cell of the stack contains a real vector of dimension 6 and the stack size is 64 for all (S, M and
L) sizes.

Tape-RNN. A multi-layer RNN controller with hidden sizes according to the Table 1 with access
to a differentiable tape, inspired by the Baby-NTM architecture (Suzgun et al., 2019). The controller
can perform any linear combination of WRITE-RIGHT, WRITE-LEFT, WRITE-STAY, JUMP-LEFT, and
JUMP-RIGHT on the tape, with action weights given by a softmax. The actions correspond to: writing
at the current position and moving to the right (WRITE-RIGHT), writing at the current position and
moving to the left (WRITE-LEFT), writing at the current position (WRITE-STAY), jumping ℓ steps to
the right without writing (JUMP-RIGHT), where ℓ is the length of the input, and jumping ℓ steps to
the left without writing (JUMP-LEFT). As in the Stack-RNN, each cell of the tape contains a real
vector of dimension 6 and the tape size is 64 for all (S, M and L) sizes.

LSTM. A multi-layer LSTM (Hochreiter & Schmidhuber, 1997) of hidden sizes according to
Table 1.

Transformer decoder. A vanilla Transformer decoder (Vaswani et al., 2017). See Table 1 for the
embedding dimension, number of heads and number of layers for each model size (S, M and L).
Each layer is composed of an attention layer, two dense layers, and a layer normalization. We add a
residual connections as in the original architecture (Vaswani et al., 2017). We consider the standard
sin/cos (Vaswani et al., 2017) positional encoding.

D.2 CTW

Below is an ultra-compact introduction to (sampling from) CTW (Willems et al., 1995; 1997). For
more explanations, details, discussion, and derivations, see (Catt et al., 2024, Chp.4).

A variable-order Markov process. is a probability distribution over (binary) sequences
x1, x2, x3, ... with the following property: Let S ⊂ {0, 1}∗ be a complete suffix-free set of
strings (a reversed prefix-free code) which can equivalently be viewed as a perfect binary tree.
Then p(xt = 0|x<t;S,ΘS) := θs if (the unique) context of xt is s = xt−ℓ(s):t−1 ∈ S, and
ΘS := (θs ∈ [0; 1] : s ∈ S). We arbitrarily define xt = 0 for t ≤ 0.

Intuition about Variable-order Markov sources VOMS considers data generated from tree
structures. For example, given the binary tree

Root
0/ \1

Leaf_0 Node

17

Under review as a conference paper at ICLR 2024

0/ \1
Leaf_10 Leaf_11

and given the history of data “011“ (where 0 is the first observed datum and 1 is the last one) the
next sample uses Leaf11 (because the last two data points in history were 11) to draw the next datum
using a sample from a Beta distribution with parameter Leaf11. Say we sample a 0, thus history is
then transformed into “0110” and Leaf10 will be used to sample the next datum (because now the
last two datapoints that conform to a leaf are ”10”), and so forth. This way of generating data is
very general and can produce many interesting patterns ranging from simple regular patterns like
01010101 or more complex ones that can have stochastic samples in it. Larger trees can encode
very complex patterns indeed.

Sampling from CTW. Context Tree Weighting (CTW) is a Bayesian mixture over all variable-
order Markov sources of maximal order D ∈ N0, i.e. over all trees S of maximal depth D and all
θs ∈ [0; 1] for all s ∈ S. The CTW distribution is obtained as follows: We start with an empty
(unfrozen) S = {ϵ}. Recursively, for each unfrozen s ∈ S with ℓ(s) < D, with probability 1/2 we
freeze s; with probability 1/2 we split S ← S \{s}∪{0s, 1s} until all s ∈ S are frozen or ℓ(s) = D.
Then we sample θs from Beta(1/2, 1/2) for all s ∈ S. Finally for t = 1, 2, 3, ... we sample xt from
p(xt|x<t;S,ΘS).

Computing CTW. The CTW probability PCTW(x1:n) can be calculated as follows: Let as :=
|{t ∈ {1, ..., n} : xt = 0 ∧ xt−ℓ(s):t−1 = s}| count the number of xt = 0 immediately preceded
by context s ∈ {0, 1}∗, and similarly bs := |{t : xt = 1 ∧ xt−ℓ(s):t−1 = s}|. Let xs

1:n ∈
{0, 1}as+bs be the subsequence of xt’s that have context s. For given θs for s ∈ S, xs

1:n is i.i.d.
(Bernoulli(1 − θs)). Hence for θs ∼ Beta(1/2, 1/2), P (xs

1:n|s ∈ S) = PKT(as, bs) :=
∫ 1

0
θas
s (1 −

θs)
bsBeta(1/2, 1/2)(θs)dθs. If s ̸∈ S, we split xs

1:n into x0s
1:n and x1s

1:n. By construction of S, a
tentative s ∈ S gets replaced by 0s and 1s with 50% probability, recursively, hence PCTW(xs

1:n) =
1
2PKT(as, bs)+

1
2PCTW(x0s

1:n)PCTW(x1s
1:n) terminating with PCTW(xs

1:n) = PKT(as, bs) when ℓ(s) =
D. This completes the definition of PCTW(x1:n) ≡ PCTW(xϵ

1:n). Efficient O(nD) algorithms for
computing PCTW(x1:n) (and updating n → n + 1 in time O(D)) and non-recursive definitions can
be found in Catt et al. (2024, Chp.4).

Distributions of Trees. A tree has depth≤ d if either it is the empty tree or if both its subtrees have
depth < d. Therefore the probability of sampling a tree of depth≤ d is F (d) = 1

2+
1
2F (d−1)2, with

F (0) = 1
2 . Therefore the probability of sampling a tree of depth d is P (d) = F (d)− F (d− 1) for

d < D and P (D) = 1 − F (D − 1). The theoretical curve (P (0) = 1
2 , P (1) = 1

8 , P (2) = 9
128 ,...)

is plotted in Fig. 6a together with the empirical distribution. More meaningful is probably the
expected number of leaf nodes at each level d. Since each node at level d is replaced with prob. 1

2
by two nodes at level d+1, the expected number of leaf nodes E(d) is the same at all levels d < D.
Since E(0) = 1

2 , we have E(d) = 1
2 for all d < D and E(D) = 1, hence the total expected number

of leaf nodes is E+ = 1
2D + 1. While this doesn’t sound much, it ensures that for N = 10′000

samples, we uniformly test 5′000 contexts for each length d < D. We can get some control over
the distribution of trees by splitting nodes at level d with probability αd ∈ [0; 1] instead of 1

2 . In
this case, E(d) = 2α0 · ... · 2αd−1(1 − αd) for d < D. So for αd > 1

2 we can create trees of size
exponential in D, and (within limits) any desired depth distribution.

D.3 CHOMSKY

E UTMS: BRAINF*CK AND BRAINPHOQUE

Our BrainPhoque (BP) UTM produces program evaluation traces that are equivalent to those of
brainf*ck (BF) programs (Müller, 1993) (see also P ′′ (Böhm, 1964)), but the programs are written
slightly differently: they are even less human-readable but have better properties when sampling
programs.

We start by giving a quick overview of the BF machine, then we explain why we need a slightly
different machine, and we explain its construction next. Finally we explain how to shorten sampled

18

Under review as a conference paper at ICLR 2024

Table 2: Table taken from (Deletang et al., 2022). Tasks with their level in the Chomsky hierarchy
and example input/output pairs. The † denotes permutation-invariant tasks; the ⋆ denotes counting
tasks; the ◦ denotes tasks that require a nondeterministic controller; and the × denotes tasks that
require superlinear running time in terms of the input length.

Level Name Example Input Example Output

Regular (R)

Even Pairs aabba True
Modular Arithmetic (Simple) 1 + 2− 4 4
Parity Check† aaabba True
Cycle Navigation† 011210 2

Deterministic context-free (DCF)

Stack Manipulation abbaa POP PUSH a POP abba
Reverse String aabba abbaa
Modular Arithmetic −(1− 2) · (4− 3 · (−2)) 0
Solve Equation◦ −(x− 2) · (4− 3 · (−2)) 1

Context-sensitive (CS)

Duplicate String abaab abaababaab
Missing Duplicate 10011021 0
Odds First aaabaa aaaaba
Binary Addition 10010 + 101 10111
Binary Multiplication× 10010 ∗ 101 1001000
Compute Sqrt 100010 110
Bucket Sort†⋆ 421302214 011222344

programs and calculate an upper bound on the log-loss that Solomonoff induction based on this BF
UTM would incur.

See Figure 5 for some sample programs and outputs.

E.1 BRAINF*CK

BF is one of the smallest and simplest Turing-complete programming languages. It features a read-
only input tape, a working tape, and a write-only output tape. These tapes are assumed infinite but
for practical purposes they are usually fixed at a finite and constant length and initialized with 0.2
Each tape cell can contain an integer between 0 and 255 — we say that the alphabet size is 256, but
in the experiments we use an alphabet size of 17. Each tape has a pointer, and when a program is
being evaluated there is also an instruction pointer.

For simplicity, the pointer of the working tape is called WTP, and the value at the WTP is called
datum, which is an integer.

BF uses 8 instructions <>+-[],. which are:

• < and > decrement and increment the WTP, modulo the length of the tape.
• + and - increment and decrement the datum, modulo the alphabet size.
• [is a conditional jump: if the datum is 0, the instruction pointer jumps to the corresponding

(matching)].
•] is an unconditional jump to the corresponding [.3

• , copies the number under the reading tape pointer into the datum cell, and increments the
reading pointer.

• . copies the datum to the output tape at the output pointer and increments the output
pointer.

In this paper we do not use an input tape, so we do not use the , instruction.

When evaluating a program, the instruction pointer is initially on the first instruction, the output
tape is empty, and the working tape is filled with zeros. Then the instruction under the instruction

2The tape could also grow on request, but this tends to slow down program evaluation.
3For efficiency reasons the instruction] is usually defined to jump to the matching [if the datum is non-

zero. We stick to a unconditional jump for simplicity reasons.

19

Under review as a conference paper at ICLR 2024

pointer is evaluated according to the above rules, and the instruction pointer is moved to the right.
Evaluation terminates when the number of evaluated instructions reaches a given limit, or when the
number of output symbols reaches a given limit.

For a sequence of instructions A[B]C, where A, B and C are sequences of (well-balanced) instruc-
tions, we call B the body of the block and C the continuation of the block.

E.2 BRAINPHOQUE: SIMULTANEOUS GENERATION AND EVALUATION

We want to sample arbitrary BF programs and evaluate them for T steps each. To maximize compu-
tation efficiency of the sampling and running process, programs containing unbalanced parentheses
are made valid, in particular by skipping any additional].

Since we want to approximate normalized Solomonoff induction 3, we can make a few simplifica-
tions. In particular, programs do not need to halt explicitly, which removes the need for a halting
symbol and behaviour.4 Hence we consider that all programs are infinite, but that at most T in-
structions are evaluated. The difficulty with BF programs is that the evaluated instructions can be
at arbitrary locations on the program tape, since large blocks [...] may be entirely skipped,
complicating both the sampling process and

This can be fixed by generating BF programs as trees, where branching on opening brackets [: The
left branch corresponds to the body of the block (and terminates with a]), while the right branch
corresponds to the continuation of the block. When encountering an opening bracket for the first
time during evaluation, which branch is evaluated next depends on the datum. Hence, to avoid
generating both branches, we need to generate the program as it is being evaluated: when sampling
and evaluating a [, if the datum is 0 we follow the right branch and start sampling the continuation
without having to sample the body (for now); conversely, if the datum is not zero, we follow the
left branch and start sampling and evaluating the continuation. If the same opening bracket is later
evaluated again with a different datum value, the other branch may be generated and evaluated.

Our implementation of program generation and evaluation in BrainPhoque uses one growing array
for the program, one jump table, and one stack for yet-unmatched open brackets.

If the instruction pointer is at the end of the program, a new instruction among +-<>[]. is sampled;
if it is [and the datum is 0, it is changed to {. The new instruction is appended to the program, and
is then evaluated. If the new instruction is [, the next instruction to be sample (and appended to the
program) is the beginning of the body of the block, but if instead the new instruction is {, the next
instruction to be sampled (and appended to the program) is the continuation of the body. At this
point the jump table does not yet need to be updated — since the next instruction to evaluate is also
the next instruction in location. The jump table is updated to keep track of where the continuations
and bodies are located in the program. If the instruction pointer eventually comes back for a second
time of an opening bracket [(resp. {) and the datum is now 0 (resp. not 0), the continuation (resp.
body) of the block must now be sampled and appended to the program; and now the jump table must
be updated accordingly.

The stack of unmatched brackets is updated only when the body of a block is being generated.

Some properties of BrainPhoque:

• If a program is run for t+k steps, it behaves the same on the first t steps for all values of k.5
In particular, unmatched opening brackets behave the same whether they will be matched
or not.

• Program generation (sampling) only requires a single growing-only array. A tree structure
is not required. This is the reason for having the additional { instruction, which makes
it clear — once evaluated the second time — whether the body or the continuation has
already been generated.

4The halting behaviour can be recovered by ending programs with a particular infinite loop such as []+[]
(which loops whether the datum is zero or not), and terminate the evaluation (instead of looping forever) upon
evaluating this sequence.

5While this is an obviously desirable property, it is also easy to overlook.

20

Under review as a conference paper at ICLR 2024

>-[.>>>++[>]>.+]

..>>>>->.<<..+.>++>-.<.

.+[<.]>>>.-<+>->-->+++>>-->>.-.<.-.>..[-[<-.<]]+<<<->>.<.--.[.]

>-[<-<]+<-<-[-[-[..+.<<<..>]]>+.]

<->.
<.
<<+>+..[+++<-<<+[.>]-..[+]]..->+<<-<-.[->>+>]<+<+>+<[.]

+>--.+[.-..]-.

>-.+..<<.-.+.>+[-.-[>>]..]-<-<--..

.>..++>>+++>>>--<.-.<<.[-.]>+.>>-<.++[>]<+>>->..+[>]<<-.

..<<.+.++<<+..>>+.

>+>.>.+...
-[-.]-<+<....<<+<+>+>+..+..>..<+..

-.++.<+<+[>-]-[.]

.>+.<<-->-[<[>.-]>{.-.]<+[>+>..<<<]]

++..
>..->>-[<]<.++<---.<.>>-<[<<]<++<.

<.+[.>]<[+>>]>.+[>>>+>]+.<+<.+[.-.<.]>>[-]....>>>-[+...>...+[.[.+..].]<.]-[>+<-.[.+>].]+<.++[<<-.>>[>]<+<+]>[.>-.+]..>++++.<<<+<+..+.<+>--.+>+[<]+<[->-].

Figure 5: Some BrainPhoque programs and their corresponding outputs (truncated at 256 symbols).
The smallest bars (in red) correspond to the value 0, and the largest bars (in gray) correspond to value
16. The programs have been reduced after evaluation by removing a set of unnecessary instructions.
Most of the generated outputs are regular, and only about 1 in 5000 sampled programs exhibits non-
regular patterns. But see Table 3 for a way to improve these numbers and generate more interesting
and complex sequences.

• If the instruction pointer is at cell n, then all instructions to the left of n have been evaluated
at least once. If this is the first evaluation of cell n, then no instruction to the right of n
have been evaluated yet.

E.3 SOLOMONOFF LOG-LOSS UPPER BOUND AND SHORTENING PROGRAMS

We tried to provide a meaningful upper bound for the loss of Solomonoff induction for Figure 3, but
this is far from easy. See Section 4 for context. As mentioned there, to calculate a more meaningful
upper bound, we shorten programs by recursively removing unnecessary open brackets and closing
brackets that are unmatched, as well as all self-cancelling pairs of instructions (+-, -+, <>,><).
Moreover, we remove all instructions of the program that have been evaluated for the first time after
the last evaluation of a print . instruction (since they do not participate in producing the output.
This procedure often reduces programs by a third. Programs that do not output anything are thus
reduced to the empty program (probability 1).

If q is a sampled program, then q̃ is the corresponding shortened program. We calculate an upper
bound on the loss of the Solomonoff predictor, with U = BrainPhoque, on a set of sampled programs
Q̂ = (q1, . . . , qJ) and corresponding outputs (U(q1)1:256, . . . , U(qJ)1:256),

Loss(MU , Q̂) =
∑
q∈Q̂

− log
∑

p:U(p)1:256=U(q)1:256

7−ℓ(p) ≤
∑
q∈Q̂

− log 7−ℓ(q̃) = log(7)
∑
q∈Q̂

ℓ(q̃) (4)

since the program alphabet is not binary but has 7 instructions. Unfortunately, even after reduction
this bound is still quite loose, but improving this bound meaningfully would likely require a much
larger amount of computation.

21

Under review as a conference paper at ICLR 2024

Markov chain order 0
Ctx. < > + - [] . Freq.

.14 .14 .14 .15 .08 .08 .27 1.000
Markov chain order 1

Ctx. < > + - [] . Freq.
_ .19 .19 .19 .20 .00 .00 .23 .018
+ .18 .17 .17 .00 .14 .07 .27 .141
- .17 .17 .00 .17 .13 .08 .28 .144
. .14 .15 .15 .15 .07 .09 .25 .272
< .17 .00 .19 .18 .06 .10 .30 .139
> .00 .18 .17 .19 .05 .11 .30 .140
[.15 .14 .15 .15 .12 .01 .28 .082
] .15 .17 .16 .17 .01 .09 .25 .064

Markov chain order 2
Ctx. < > + - [] . Freq.
__ .19 .19 .19 .20 .00 .00 .23 .018
_+ .22 .24 .19 .00 .11 .00 .24 .004
_- .15 .27 .00 .21 .13 .00 .24 .004
_. .17 .22 .21 .17 .00 .00 .23 .004
_< .23 .00 .28 .23 .00 .00 .26 .004
_> .00 .18 .17 .26 .00 .00 .39 .003
++ .19 .17 .17 .00 .15 .06 .26 .023
+. .15 .13 .14 .13 .11 .08 .26 .039
+< .18 .00 .19 .19 .05 .09 .30 .025
+> .00 .19 .19 .18 .06 .09 .29 .024
+[.16 .14 .15 .14 .12 .01 .28 .020
+] .12 .17 .17 .16 .02 .11 .25 .006
-- .17 .17 .00 .17 .15 .07 .27 .024
-. .14 .15 .13 .14 .11 .09 .24 .040
-< .17 .00 .20 .19 .07 .08 .29 .025
-> .00 .20 .18 .20 .05 .08 .29 .024
-[.16 .14 .14 .15 .13 .01 .27 .019
-] .18 .18 .18 .19 .01 .06 .20 .007
.+ .17 .16 .16 .00 .12 .09 .30 .041
.- .17 .17 .00 .17 .11 .09 .29 .040
.. .14 .15 .16 .15 .06 .11 .23 .066
.< .18 .00 .19 .17 .05 .10 .31 .039
.> .00 .16 .18 .18 .05 .12 .31 .041
.[.14 .15 .14 .17 .11 .01 .28 .019
.] .16 .17 .16 .16 .01 .08 .26 .019
<+ .19 .18 .16 .00 .16 .04 .27 .026
<- .21 .16 .00 .18 .13 .06 .26 .025
<. .14 .16 .14 .15 .03 .11 .27 .042
<< .18 .00 .19 .19 .05 .09 .30 .024
<[.14 .16 .17 .16 .11 .01 .25 .008
<] .14 .17 .16 .18 .01 .11 .23 .012
>+ .18 .16 .19 .00 .14 .06 .27 .025
>- .17 .18 .00 .17 .15 .05 .28 .027
>. .14 .14 .16 .16 .05 .10 .25 .042
>> .00 .18 .18 .21 .05 .09 .29 .025
>[.15 .15 .15 .17 .11 .01 .26 .007
>] .16 .15 .15 .18 .01 .09 .26 .013
[+ .17 .14 .14 .00 .12 .13 .30 .012
[- .17 .11 .00 .16 .09 .15 .32 .013
[. .15 .17 .16 .14 .10 .01 .27 .023
[< .15 .00 .12 .13 .07 .21 .32 .012
[> .00 .15 .10 .14 .07 .21 .33 .012
[[.14 .13 .17 .14 .09 .00 .33 .010
[] .11 .11 .33 .11 .00 .06 .28 .001
]+ .16 .15 .16 .00 .14 .15 .24 .010
]- .13 .17 .00 .15 .15 .17 .23 .011
]. .15 .19 .16 .19 .01 .08 .22 .016
]< .17 .00 .17 .16 .07 .14 .29 .009
]> .00 .19 .19 .19 .05 .12 .26 .011
][.13 .13 .10 .27 .10 .00 .27 .001
]] .13 .20 .17 .17 .00 .09 .24 .005

Table 3: Pre-trained BP program sampling
probabilities Instead of sampling programs uni-
formly, we can sample them w.r.t. any proba-
bility distribution Q that satisfies Theorem 9.
We initially sampled programs uniformly and fil-
tered out ‘boring’ sequences. Then we trained
Q via cross-entropy to mimic the distribution of
‘interesting’ sequences. We used a 2nd-order
Markov process as a model for Q. While uniform
sampling resulted in only 0.02% interesting se-
quences, sampling from Q increased it to 2.5%,
a 137-fold improvement. The table on the left
shows the 0th, 1st, and 2nd order Markov pro-
cesses Q(pt), Q(pt|pt−1), and Q(pt|pt−2pt−1)
from which BP programs are sampled, for p· ∈
{<>+-[]{.}, but where results for [and { have
been merged. Each row corresponds to a con-
text (none or pt−1 or pt−2pt−1). We also in-
cluded Q(p1|p0:=) and Q(p1|p−1p0:=). The
entries in each column correspond to the sam-
pling probability of pt in the corresponding row-
context. Training on interesting sequences has
led to a non-uniform distribution Q. Universal-
ity is preserved for any k-order Markov process,
provided all transition probabilities are non-zero.
The probability Q(.) of outputting a symbol has
nearly doubled from 0.14 to 0.27 on average,
while the probability of loop brackets ([,]) re-
duced to 0.07 each on average. The marginal
probabilities Q(<) ≈ Q(>) ≈ Q(+) ≈ Q(-) ≈
1/7 have not changed much, but many of the con-
ditional ones have. Certain combination of in-
structions are now blocked: For instance +- and
-+ and <> and >< have probability close to 0,
since they cancel each other and hence are re-
dundant. Some triples such as][- and <+ and
>- and others are enhanced.
Caveat: We did not have time to retrain our NN
models on these newly generated sequences (ex-
periments are still running). But since the statis-
tics is improved, we expect the results in Fig-
ures 3 and 4 to improve or at least not deteriorate.

22

Under review as a conference paper at ICLR 2024

F ADDITIONAL RESULTS DETAILS

Below we show additional results of the experiments on the VOMS (Figure 6), the Chomsky tasks
(Figure 7) and UTM source (Figures 8 and 9). Finally, on Figure 10 we show further details of the
length generalization analysis.

0 10 20
Tree depth

102

103

of

 tr
aj

ec
to

rie
s

(a) Tree depth per trajectory.

0 5 10 15 20
Context length

100

101

102

103

104

105

106

of

 d
at

a
po

in
ts

(b) Context length per datapoint.

0 10 20
Tree depth

10

20

30

40

50

M
ea

n
cu

m
ul

at
iv

e
re

gr
et

 [b
its

] RNN

0 10 20
Tree depth

LSTM

0 10 20
Tree depth

Stack-RNN

0 10 20
Tree depth

Tape-RNN

0 10 20
Tree depth

Transformer
S
M
L
CTW

(c) Average cumulative regret per tree depth of the generator.

0 5 10
Context length

0.0

0.2

0.4

0.6

0.8

Re
gr

et
 [b

its
]

RNN

0 5 10
Context length

LSTM

0 5 10
Context length

Stack-RNN

0 5 10
Context length

Tape-RNN

0 5 10
Context length

Transformer
S
M
L
CTW

(d) Average Instantaneous regret per current context length (only context-lengths up to 11).

0 10 20
Context length

0.0

0.5

1.0

1.5

2.0

Re
gr

et
 [b

its
]

RNN

0 10 20
Context length

LSTM

0 10 20
Context length

Stack-RNN

0 10 20
Context length

Tape-RNN

0 10 20
Context length

Transformer
S
M
L
CTW

(e) Average Instantaneous regret per current context length (all context-lenghts).

Figure 6: Detailed results for the same 6k sequences as in Figure 1. Top two panels show histograms
over tree depth (for all trajectories) and current context length (over all datapoints of all trajectories)
use for evaluation in Figure 1. As expected, most generated trees have low depth and most datapoints
have short contexts. The three lower panels show average cumulative regret per tree depth, and
average instantaneous regret per context length respectively. Thin lines correspond to individual
models (with different random initialization), bold lines show the median per model size. Across
architectures smaller models only predict well for very short tree depth or very short context lengths
(the maximum context length is upper bounded by the tree depth, but many contexts are much shorter
than the maximum tree depth). Context lenghts ≥ 11 are rare, which makes quantitative results in
this regime less reliable.

23

Under review as a conference paper at ICLR 2024

ev
en

_p
ai

rs
m

od
ul

ar
_a

rit
hm

et
ic

pa
rit

y_
ch

ec
k

cy
cle

_n
av

ig
at

io
n

st
ac

k_
m

an
ip

ul
at

io
n

re
ve

rs
e_

st
rin

g
m

od
ul

ar
_a

rit
hm

et
ic_

br
ac

ke
ts

so
lv

e_
eq

ua
tio

n
du

pl
ica

te
_s

tri
ng

m
iss

in
g_

du
pl

ica
te

_s
tri

ng
od

ds
_f

irs
t

bi
na

ry
_a

dd
iti

on
bi

na
ry

_m
ul

tip
lic

at
io

n
co

m
pu

te
_s

qr
t

bu
ck

et
_s

or
t0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

S

ev
en

_p
ai

rs
m

od
ul

ar
_a

rit
hm

et
ic

pa
rit

y_
ch

ec
k

cy
cle

_n
av

ig
at

io
n

st
ac

k_
m

an
ip

ul
at

io
n

re
ve

rs
e_

st
rin

g
m

od
ul

ar
_a

rit
hm

et
ic_

br
ac

ke
ts

so
lv

e_
eq

ua
tio

n
du

pl
ica

te
_s

tri
ng

m
iss

in
g_

du
pl

ica
te

_s
tri

ng
od

ds
_f

irs
t

bi
na

ry
_a

dd
iti

on
bi

na
ry

_m
ul

tip
lic

at
io

n
co

m
pu

te
_s

qr
t

bu
ck

et
_s

or
t

M

ev
en

_p
ai

rs
m

od
ul

ar
_a

rit
hm

et
ic

pa
rit

y_
ch

ec
k

cy
cle

_n
av

ig
at

io
n

st
ac

k_
m

an
ip

ul
at

io
n

re
ve

rs
e_

st
rin

g
m

od
ul

ar
_a

rit
hm

et
ic_

br
ac

ke
ts

so
lv

e_
eq

ua
tio

n
du

pl
ica

te
_s

tri
ng

m
iss

in
g_

du
pl

ica
te

_s
tri

ng
od

ds
_f

irs
t

bi
na

ry
_a

dd
iti

on
bi

na
ry

_m
ul

tip
lic

at
io

n
co

m
pu

te
_s

qr
t

bu
ck

et
_s

or
t

L

RNN
LSTM
Stack-RNN
Tape-RNN
Transformer

(a) Mean accuracy per Chomsky task, grouped by model size.

ev
en

_p
ai

rs
m

od
ul

ar
_a

rit
hm

et
ic

pa
rit

y_
ch

ec
k

cy
cle

_n
av

ig
at

io
n

st
ac

k_
m

an
ip

ul
at

io
n

re
ve

rs
e_

st
rin

g
m

od
ul

ar
_a

rit
hm

et
ic_

br
ac

ke
ts

so
lv

e_
eq

ua
tio

n
du

pl
ica

te
_s

tri
ng

m
iss

in
g_

du
pl

ica
te

_s
tri

ng
od

ds
_f

irs
t

bi
na

ry
_a

dd
iti

on
bi

na
ry

_m
ul

tip
lic

at
io

n
co

m
pu

te
_s

qr
t

bu
ck

et
_s

or
t

0

50

100

150

M
ea

n
cu

m
ul

at
iv

e
re

gr
et

 [b
its

] S

ev
en

_p
ai

rs
m

od
ul

ar
_a

rit
hm

et
ic

pa
rit

y_
ch

ec
k

cy
cle

_n
av

ig
at

io
n

st
ac

k_
m

an
ip

ul
at

io
n

re
ve

rs
e_

st
rin

g
m

od
ul

ar
_a

rit
hm

et
ic_

br
ac

ke
ts

so
lv

e_
eq

ua
tio

n
du

pl
ica

te
_s

tri
ng

m
iss

in
g_

du
pl

ica
te

_s
tri

ng
od

ds
_f

irs
t

bi
na

ry
_a

dd
iti

on
bi

na
ry

_m
ul

tip
lic

at
io

n
co

m
pu

te
_s

qr
t

bu
ck

et
_s

or
t

M
ev

en
_p

ai
rs

m
od

ul
ar

_a
rit

hm
et

ic
pa

rit
y_

ch
ec

k
cy

cle
_n

av
ig

at
io

n
st

ac
k_

m
an

ip
ul

at
io

n
re

ve
rs

e_
st

rin
g

m
od

ul
ar

_a
rit

hm
et

ic_
br

ac
ke

ts
so

lv
e_

eq
ua

tio
n

du
pl

ica
te

_s
tri

ng
m

iss
in

g_
du

pl
ica

te
_s

tri
ng

od
ds

_f
irs

t
bi

na
ry

_a
dd

iti
on

bi
na

ry
_m

ul
tip

lic
at

io
n

co
m

pu
te

_s
qr

t
bu

ck
et

_s
or

t

L
RNN
LSTM
Stack-RNN
Tape-RNN
Transformer

(b) Mean cumulative regret per Chomsky task, grouped by model size.

Figure 7: Detailed performance of networks trained and evaluated on the Chomsky tasks (6k se-
quences, 400 sequences per task; main results shown in Figure 2). Thin lines correspond to a single
random initialization of a model, bolt lines show the median respectively.

24

Under review as a conference paper at ICLR 2024

0 100 200
Program length

0

200

400

600

M
ea

n
cu

m
ul

at
iv

e
re

gr
et

 [b
its

] RNN

0 100 200
Program length

LSTM

0 100 200
Program length

Stack-RNN

0 100 200
Program length

Tape-RNN

0 100 200
Program length

Transformer
S
M
L

(a) Average cumulative regret per program length.

0 100 200
Program length

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

RNN

0 100 200
Program length

LSTM

0 100 200
Program length

Stack-RNN

0 100 200
Program length

Tape-RNN

0 100 200
Program length

Transformer

S
M
L

(b) Average accuracy per program length.

0 100 200
Program length

100

101

102

of

 tr
aj

ec
to

rie
s

(c) Histogram over program
lengths.

Figure 8: Results per program length for UTM in-distribution evaluation (same data as in Figure 3;
6k sequences, length 256).

25

Under review as a conference paper at ICLR 2024

ev
en

_p
ai

rs
m

od
ul

ar
_a

rit
hm

et
ic

pa
rit

y_
ch

ec
k

cy
cle

_n
av

ig
at

io
n

st
ac

k_
m

an
ip

ul
at

io
n

re
ve

rs
e_

st
rin

g
m

od
ul

ar
_a

rit
hm

et
ic_

br
ac

ke
ts

so
lv

e_
eq

ua
tio

n
du

pl
ica

te
_s

tri
ng

m
iss

in
g_

du
pl

ica
te

_s
tri

ng
od

ds
_f

irs
t

bi
na

ry
_a

dd
iti

on
bi

na
ry

_m
ul

tip
lic

at
io

n
co

m
pu

te
_s

qr
t

bu
ck

et
_s

or
t

100

200

300

M
ea

n
cu

m
ul

at
iv

e
re

gr
et

 [b
its

] S
ev

en
_p

ai
rs

m
od

ul
ar

_a
rit

hm
et

ic
pa

rit
y_

ch
ec

k
cy

cle
_n

av
ig

at
io

n
st

ac
k_

m
an

ip
ul

at
io

n
re

ve
rs

e_
st

rin
g

m
od

ul
ar

_a
rit

hm
et

ic_
br

ac
ke

ts
so

lv
e_

eq
ua

tio
n

du
pl

ica
te

_s
tri

ng
m

iss
in

g_
du

pl
ica

te
_s

tri
ng

od
ds

_f
irs

t
bi

na
ry

_a
dd

iti
on

bi
na

ry
_m

ul
tip

lic
at

io
n

co
m

pu
te

_s
qr

t
bu

ck
et

_s
or

t

M

ev
en

_p
ai

rs
m

od
ul

ar
_a

rit
hm

et
ic

pa
rit

y_
ch

ec
k

cy
cle

_n
av

ig
at

io
n

st
ac

k_
m

an
ip

ul
at

io
n

re
ve

rs
e_

st
rin

g
m

od
ul

ar
_a

rit
hm

et
ic_

br
ac

ke
ts

so
lv

e_
eq

ua
tio

n
du

pl
ica

te
_s

tri
ng

m
iss

in
g_

du
pl

ica
te

_s
tri

ng
od

ds
_f

irs
t

bi
na

ry
_a

dd
iti

on
bi

na
ry

_m
ul

tip
lic

at
io

n
co

m
pu

te
_s

qr
t

bu
ck

et
_s

or
t

L

ev
en

_p
ai

rs
m

od
ul

ar
_a

rit
hm

et
ic

pa
rit

y_
ch

ec
k

cy
cle

_n
av

ig
at

io
n

st
ac

k_
m

an
ip

ul
at

io
n

re
ve

rs
e_

st
rin

g
m

od
ul

ar
_a

rit
hm

et
ic_

br
ac

ke
ts

so
lv

e_
eq

ua
tio

n
du

pl
ica

te
_s

tri
ng

m
iss

in
g_

du
pl

ica
te

_s
tri

ng
od

ds
_f

irs
t

bi
na

ry
_a

dd
iti

on
bi

na
ry

_m
ul

tip
lic

at
io

n
co

m
pu

te
_s

qr
t

bu
ck

et
_s

or
t0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

S

ev
en

_p
ai

rs
m

od
ul

ar
_a

rit
hm

et
ic

pa
rit

y_
ch

ec
k

cy
cle

_n
av

ig
at

io
n

st
ac

k_
m

an
ip

ul
at

io
n

re
ve

rs
e_

st
rin

g
m

od
ul

ar
_a

rit
hm

et
ic_

br
ac

ke
ts

so
lv

e_
eq

ua
tio

n
du

pl
ica

te
_s

tri
ng

m
iss

in
g_

du
pl

ica
te

_s
tri

ng
od

ds
_f

irs
t

bi
na

ry
_a

dd
iti

on
bi

na
ry

_m
ul

tip
lic

at
io

n
co

m
pu

te
_s

qr
t

bu
ck

et
_s

or
t

M

ev
en

_p
ai

rs
m

od
ul

ar
_a

rit
hm

et
ic

pa
rit

y_
ch

ec
k

cy
cle

_n
av

ig
at

io
n

st
ac

k_
m

an
ip

ul
at

io
n

re
ve

rs
e_

st
rin

g
m

od
ul

ar
_a

rit
hm

et
ic_

br
ac

ke
ts

so
lv

e_
eq

ua
tio

n
du

pl
ica

te
_s

tri
ng

m
iss

in
g_

du
pl

ica
te

_s
tri

ng
od

ds
_f

irs
t

bi
na

ry
_a

dd
iti

on
bi

na
ry

_m
ul

tip
lic

at
io

n
co

m
pu

te
_s

qr
t

bu
ck

et
_s

or
t

L
RNN
LSTM
Stack-RNN

Tape-RNN
Transformer
Naive

Figure 9: UTM transfer to Chomsky tasks.

26

Under review as a conference paper at ICLR 2024

0 256 512 768 1024
Step

100

101

102

M
ea

n
cu

m
ul

at
iv

e
 re

gr
et

 [b
its

]
S

0 256 512 768 1024
Step

100

101

102

M
ea

n
cu

m
ul

at
iv

e
 re

gr
et

 [b
its

]

M

0 256 512 768 1024
Step

100

101

102

M
ea

n
cu

m
ul

at
iv

e
 re

gr
et

 [b
its

]

L

RNN
LSTM
Stack-RNN
Tape-RNN
Transformer

(a) Variable-order Markov source (CTW) data.

0 256 512 768 1024
Step

10 1

100

101

102

103

M
ea

n
cu

m
ul

at
iv

e
 re

gr
et

 [b
its

]

S

0 256 512 768 1024
Step

10 1

100

101

102

103

M
ea

n
cu

m
ul

at
iv

e
 re

gr
et

 [b
its

]

M

0 256 512 768 1024
Step

10 1

100

101

102

103

M
ea

n
cu

m
ul

at
iv

e
 re

gr
et

 [b
its

]

L

RNN
LSTM
Stack-RNN
Tape-RNN
Transformer

(b) Chomsky tasks.

0 256 512 768 1024
Step

101

102

M
ea

n
cu

m
ul

at
iv

e
 re

gr
et

 [b
its

]

S

0 256 512 768 1024
Step

101

102

M
ea

n
cu

m
ul

at
iv

e
 re

gr
et

 [b
its

]

M

0 256 512 768 1024
Step

101

102

M
ea

n
cu

m
ul

at
iv

e
 re

gr
et

 [b
its

]

L

RNN
LSTM
Stack-RNN
Tape-RNN
Transformer

(c) UTM data.

Figure 10: Full details of sequence-length generalization results. Models were trained on sequences
of length 256 on their respective tasks, and are evaluated on 6k sequences of length 1024 from the
same data generator type. Thin lines show individual models, bold lines are the median across ran-
dom initializations of the same model. As expected, all models perform fairly well up to their trained
sequence length, and then performance deteriorates more or less sharply. Most notably, prediction
performance of the transformer models, regardless of their size, degrades very rapidly after step 256
and is often an order of magnitude worse than the other models. Across all experiments, LSTMs
perform best in terms of generalizing to longer sequences.

27

	Introduction
	Background
	Meta-Learning as an Approximation to Solomonoff Induction
	The right dataset: Estimating Solomonoff from Solomonoff Samples
	Training Models on Solomonoff Data using Fixed-Sequence Lengths
	Solomonoff from Non-Uniform Samples

	Experimental Methodology
	Results
	Discussion and Conclusions
	Appendix
	Solomonoff samples
	Training with LLMs
	Normalized Solomonoff Loss

	Generalized Solomonoff Semimeasure
	Proof of Theorem 9

	Experiment methodology details
	Architecture details
	CTW
	Chomsky

	UTMs: Brainf*ck and BrainPhoque
	Brainf*ck
	BrainPhoque: Simultaneous generation and evaluation
	Solomonoff log-loss upper bound and shortening programs

	Additional Results Details

