
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

BEYOND SCALING LAWS: UNDERSTANDING TRANS-
FORMER PERFORMANCE WITH ASSOCIATIVE MEMORY

Anonymous authors
Paper under double-blind review

ABSTRACT

Increasing the size of a Transformer does not always lead to enhanced performance.
This phenomenon cannot be explained by the empirical scaling laws. Furthermore,
the model’s enhanced performance is closely associated with its memorization
of the training samples. We present a theoretical framework that sheds light on
the memorization during pre-training of transformer-based language models. We
model the behavior of Transformers with associative memories using Hopfield
networks, such that each transformer block effectively conducts an approximate
nearest-neighbor search. Based on this, we use a distance-based energy function to
approximate the one in the modern continuous Hopfield network, which provides
an insightful explanation for the attention mechanism. Since the softmax function
corresponds to the gradient of the LogSumExp function in the energy, using the
majorization-minimization technique, we construct a global energy function to
capture the layered architecture. We show a dependency between the model size
and the dataset for the model to attain optimal performance, and the achievable
cross-entropy loss is bounded below.

1 INTRODUCTION

Transformer-based neural networks have exhibited powerful capabilities in accomplishing a myriad
of tasks such as text generation, editing, and question-answering. These models are rooted in
the Transformer architecture (Vaswani et al., 2017) which employs the self-attention mechanisms
to capture the context in which words appear, resulting in superior ability to handle long-range
dependencies and improved training efficiency. In many cases, models with more parameters result
in better performance measured by perplexity (Kaplan et al., 2020), as well as in the accuracies of
end tasks (Khandelwal et al., 2019; Rae et al., 2021; Chowdhery et al., 2023). As a result, larger and
larger models are being developed in the industry. Recent models (Smith et al., 2022) can reach up to
530 billion parameters, trained on hundreds of billions of tokens with more than 10K GPUs.

Nevertheless, it is not always the case that bigger models result in better performance. For example,
the 2B model MiniCPM (Hu et al., 2024c) exhibits comparable capabilities to larger language models,
such as Llama2-7B (Touvron et al., 2023), Mistral-7B (Jiang et al., 2023), Gemma-7B (Banks &
Warkentin, 2024), and Llama-13B (Touvron et al., 2023). Moreover, as computational resources for
training larger models increase, the size of available high-quality data may not keep pace. It has
been documented that the generalization abilities of a range of models increase with the number of
parameters and decrease when the number of training samples increases (Belkin et al., 2019; Nakkiran
et al., 2021; d’Ascoli et al., 2020), indicating that generalization occurs beyond the memorization of
training samples in over-parameterized neural networks (Power et al., 2022). Therefore, it is crucial
to understand the convergence dynamics of training loss during memorization, both in relation to the
model size and the dataset at hand. There has been an increasing interest in the empirical scaling
laws under constraints on the training dataset size (Muennighoff et al., 2024). Extensive experiments
have led to the conclusion of the empirical scaling laws (Kaplan et al., 2020) in terms of the model
performance measured by the test cross-entropy loss. Unfortunately, this scaling law does not explain
why in many cases smaller models perform better.

In this paper, we focus on the theoretical aspects of the dependencies between the achievable
performance, indicated by the pre-training loss, for transformer-based models, and the model and
data sizes during memorization. It has been observed that a family of large language models tends
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to rely on knowledge memorized during training (Hsia et al., 2024), and the larger the models, the
more they tend to encode the training data and organize the memory according to the similarity of
textual context (Carlini et al., 2022; Tirumala et al., 2022). Therefore, we model the behavior of
the Transformer layers with associative memory, which associates an input with a stored pattern,
and inference aims to retrieve the related memories. A model for associative memory, known as the
Hopfield network, was originally developed to retrieve stored binary-valued patterns based on part
of the content (Amari, 1972; Hopfield, 1982). Recently, the Modern Continuous Hopfield Network
(MCHN) was proposed and has been shown to exhibit equivalence to the attention mechanism
(Ramsauer et al., 2020). However, the MCHN only explains an individual Transformer layer and
relies heavily on regularization.

Transformer-based models consist of a stack of homogeneous layers. The attention and feed-forward
layers contribute to the majority of the parameters in large models and are also the key components
of the attention mechanism. Furthermore, the layered structure of the transformer networks induces
a sequential optimization, reminiscent of the majorization-minimization (MM) technique (Ortega
& Rheinboldt, 1970; Sun et al., 2016), which has been extensively utilized across domains such as
signal processing and machine learning. Using the MM framework, we construct a global energy
function tailored for the layered structure of the transformer network.

Our model provides a theoretical framework for analyzing the performance of transformer-based lan-
guage models as they memorize training samples. Large language models only manifest capabilities
for certain downstream tasks once the training loss reaches a specific threshold (Du et al., 2024). In
practice, the training of large language models is terminated when the loss curves plateau. On the one
hand, the validation loss offers valuable insights for budgetary considerations; it has been observed
that even after training on up to 2T tokens, some models have yet to exhibit signs of saturation
(Touvron et al., 2023). On the other hand, implementing early stopping can potentially compromise
the generalization capabilities of the models (Murty et al., 2023). In Appendix F, we include a series
of experiments utilizing GPT-2, vanilla Transformer, and OpenELM models on various data. The
experimental outcomes provide evidence to support our theoretical results. We believe this work
offers valuable theoretical perspectives on the pre-training of large language models.

Our Contribution: (1) We take a new perspective by studying Transformer behavior using associa-
tive memories with Hopfield networks. We reveal the underlying connection between the attention
mechanism and nearest-neighbor search. (2) We approximate the continuous Hopfield network
using a distance-based energy function, excluding additional regularization terms. By recogniz-
ing that the softmax function corresponds to the gradient of the LogSumExp function, we employ
the majorization-minimization technique to construct a global energy function to accommodate
the layered architecture of the Transformer. (3) Using our theoretical framework, we character-
ize the dependencies between pre-training loss, model size, and dataset during memorization for
transformer-based language models.

2 RELATED WORK

Scaling laws. Empirical evidence suggests that the performance of models increases as both the
size of the models and the volume of training data scale up (Kaplan et al., 2020; Khandelwal et al.,
2019; Rae et al., 2021; Chowdhery et al., 2023). Intensive experiments on transformer-based large
language models have also been conducted to explore neural scaling laws under various conditions,
including constraints on computational budget (Hoffmann et al., 2022b), data (Muennighoff et al.,
2024), and instances of over-training (Gadre et al., 2024). In these analyses, a decomposition of the
expected risk is utilized, leading to the following fit:

L̂(N,D) = E +
A

Nα
+

B

Dβ
, (1)

where N and D denote the number of parameters of the model and the size of the training data
respectively. For Chinchilla models, the fitted parameters are (Hoffmann et al., 2022a)

α = 0.34, β = 0.28, E = 1.61, A = 406.4, B = 410.7.

A line of research concerns the generalization of over-parameterized neural networks (Belkin et al.,
2019; Nakkiran et al., 2021; Power et al., 2022). Recent experiments show that over-trained Trans-
formers exhibit inverted U-shaped scaling behavior (Murty et al., 2023), which is not explained
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by the empirical scaling laws. Further discussions on the relationship between our method and the
Chinchilla scaling laws are deferred to Appendix A.

Energy-based models. Energy-based models (LeCun et al., 2006), motivated by statistical physics,
have become a fundamental modeling tool in various fields of machine learning over the past few
decades. The central idea is to model the neural network through a parameterized probability density
function pθ(x) for x ∈ Rn and to express the distribution in terms of a learnable energy function
Eθ(x) : Rn 7→ R whose parameters correspond to the model’s parameters as pθ(x) =

exp(−Eθ(x))
Zθ

.

Here, Zθ =
∫
exp(−Eθ(x)) dx is the normalizing constant known as the partition function.

Hopfield models. Classical Hopfield networks (Amari, 1972; Hopfield, 1982) were introduced as
paradigmatic examples of associative memory. The network’s update dynamics define an energy
function, whose fixed points correspond to the stored memories. An important indicator is the number
of patterns that the model can memorize, known as the network’s storage capacity. Modifications
to the energy function (Krotov & Hopfield, 2016; Demircigil et al., 2017) result in higher storage
capacities (see Table 1 in Appendix B). The original model operates on binary variables, and
continuous Hopfield Networks have been developed later (Hopfield, 1984). The modern continuous
Hopfield network (MCHN) (Ramsauer et al., 2020) connects the continuous formulation with the
attention mechanism by introducing a specific model with a softmax activation function. Given an
input (e.g., a prompt), the Hopfield layer retrieves a memory by converging to a local minimum of the
energy landscape, and the update rule has a nice correspondence to the query-key-value mechanism
in attention. Krotov (2021) proposes a Hierarchical Associative Memory (HAM) model with a global
energy function for layered networks, as opposed to energy functions for individual layers. Further
discussions on the relationship between the energy function utilized in this paper and other energy
functions found in the literature on Hopfield networks is detailed in Appendix A.

3 SYSTEM MODEL

We consider tokenized training samples D = {s1, s2, . . . , sd}, where each element is a sequence
of tokens whose length is bounded by a number Tmax ∈ N. Let D̃ = {s̃1, s̃2, . . . , s̃d′} be the set of
held-out validation samples. Details on the pre-processing of the dataset is described in Appendix E.
The size D ∈ N of the dataset is proportional to the number of samples d ∈ N. Let demb ∈ N be
the embedding dimension of the tokens, so each input sequence has n = Tmaxdemb dimensions.
Let N ∈ N be the number of parameters in the attention layers and the feed-forward layers, which
constitute most of the parameters in the Transformer model. Suppose there are l layers, then

N ≈ Ald2emb =
Aldemb

Tmax
n, D ≈ Tmaxd. (2)

for some constant A (see Appendix E). We use a generic distance metric d(·, ·) in the Euclidean
space. In practice, this metric can usually be particularized to be the Euclidean norm.

3.1 ASSOCIATIVE MEMORIES

We consider models trained with a causal language modeling objective. Given an input sequence of
tokens s≤t = (s1, s2, . . . , st), the l-layer Transformer outputs a distribution over the next token st+1.
The transformer models are trained to maximize the log-probability of the correct token st+1 given
s≤t. During pre-training, input texts are segmented into sequences of length Tmax, and the model
develops the ability to generate desired content, such as predicting the correct continuations. Thus,
the sequences can be viewed as patterns in the setting of associative memories, where stored patterns
(e.g., sequences) can be retrieved using partial contents of the patterns. Since each prediction may
have access to a varying number of preceding tokens, the sequences padded to a length of Tmax earlier
may have less amount of information for the associative memory retrieval. As demonstrated in (Svete
& Cotterell, 2024; Svete et al., 2024), a Transformer can be modeled as a representation-based n-gram
model with relative small n. Consequently, only a small number of padded sequences are affected
by this discrepancy due to non-uniform lengths, and it does not significantly influence the collective
behavior as analyzed within the framework of statistical physics. We note that, for objectives that are
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not causal, such as masked token modeling and sequence-to-sequence modeling, analogous reasoning
can be applied within the latent space.

It has been observed that the models tend to memorize patterns from the training data (Carlini et al.,
2021; Biderman et al., 2024). Empirical studies on large language models have shown that the larger
the models are, the more they tend to memorize training data (Carlini et al., 2022; Tirumala et al.,
2022). This memorization allows the models to learn important patterns, such as world knowledge
(Hsia et al., 2024), individual words (Chang & Bergen, 2022), and linguistic structure (Chang &
Bergen, 2024). In light of these findings, we make the following assumption regarding memorization.
As passing the text data through an embedding layer reduces their correlation, we posit that the
Transformer blocks serve to store the resulting latent representations, which are extracted from the
sequences once they are embedded.
Assumption 1. During the pre-training process, the model memorizes the (latent) training samples
D as patterns {ρ1, ρ2, . . . , ρd}, where ρi ∈ Rn for i = 1, 2, . . . , d.

To be economical with notations, we use D to directly address the patterns D = {ρ1, ρ2, . . . , ρd}. By
memorizing the samples, we mean that the patterns are stored within the model and can be retrieved
when provided with an adequate prompt. Specifically, we follow the definitions in (Ramsauer et al.,
2020) for pattern storage and retrieval.
Definition 1. For every pattern ρi, denote by Bi := {x ∈ Rn : d(x, ci) ≤ ri} an n-ball such that
ρi ∈ Bi. The pattern ρi is said to be stored if there exists a single fixed point ρi∗ ∈ Bi to which all
points x ∈ Bi converge, and Bi ∩Bj = ∅ for i ̸= j. Such Bi is said to be associated to the pattern
ρi, and we denote Bi ∼ ρi. The pattern ρi is said to be retrieved if the converged point is ϵ-close to
the fixed point ρi∗.

Remark 1. In the work of Saha et al. (2023), a collective attraction mechanism is introduced to
address the challenge of partial cluster assignments using associative memory. When the intersection
of clusters Bi and Bj is non-empty (Bi ∩ Bj ̸= ∅), analogous relaxations to those presented in
Equation (7) of (Saha et al., 2023) can be made.

Without loss of generality, we assume ci = ρi. We also assume that the small set of held-out test
samples exhibits the same patterns as those in the training set. In practice, the validation samples are
randomly selected from the same dataset as the training samples, preserving the distribution.
Assumption 2. We posit that the latent representations derived from the validation set, after being
processed through an embedding layer, are stored in a manner analogous to those extracted from
the training set. Specifically, for every element in the set of latent patterns D̃ corresponding to the
validation data, there exists an Bi for some i ∈ [d]. Consequently, we assume that D̃ ⊂ D.

3.2 TRANSFORMER BLOCKS

Transformer-based models, originated by Vaswani et al. (2017), are often made of a stack of ho-
mogeneous layers. The multi-head attention and feed-forward (FF) layers account for most of the
parameters in the model. Appendix E provides more details using GPT-2 as an example.

Attention mechanism. The attention mechanism arguably contributes most to the overall per-
formance of the transformer models. The attention mechanism takes three matrices WK ∈
Rdemb×dk ,WQ ∈ Rdemb×dk , and WV ∈ Rdemb×dv as weights that can be interpreted as keys, queries,
and values. Setting dv = demb facilitates the inclusion of residual connections. In a single update, an
attention matrix is obtained using the update rule Attention(Q,K, V ) = V · softmax(QKT/

√
dk).

Feed-forward layers. It has been shown that the FF layers operate essentially as key-value memo-
ries (Geva et al., 2020) such that FF(x) = f(x ·KT) · V, where K,V are parameter matrices and
f is a non-linear activation function such as ReLU. The FF layers can be merged into the attention
without degrading the Transformer’s performance (Sukhbaatar et al., 2019). Thus, the attention layer
and the FF layer can be conceptually integrated into a unified transformer layer.

As the model scales, the attention and FF layers, being stacked, constitute the majority of the model’s
parameters. Also, since the fundamental operations of the Transformer are the attention and FF
layers, we consider the number of parameters N in these layers, which is almost proportional to
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(a) −LogSumExp (b) Regularizations

(c) MCHN energy (d) Proposed energy

Figure 1: Left: Energy landscapes for a set of 2-dimensional patterns D =
{(−2,−0.5), (0.2,−0.3), (1.5, 1.5)}. (a) The negative LogSumExp function with β = 1, as an
extension of (Demircigil et al., 2017). (b) The regularization terms 1

2x
Tx+ β−1 log d+ maxi ∥ρi∥2

2

in the MCHN energy. (c) The MCHN energy E1
MCHN(x). (d) The layer-wise energy equation 4

with squared Euclidean norm. Right: Energy landscapes for a set of 1-dimensional patterns
D = {−2, 0, 1}. The orange curves correspond to the MCHN energy with β = 1, 2.

the square of the embedding dimension. The ratio depends on the number of layers and the hidden
dimensions of the transformer blocks. In the current work, we do not consider other modifications
such as lateral connections, skip-layer connections, mixture of experts, mixture of depths, routing, or
other compressive modules such as (Xiong et al., 2023; Fei et al., 2023; Munkhdalai et al., 2024).

4 A GLOBAL ENERGY FUNCTION

For the attention layer, we employ an energy function that does not rely on additional regularization
terms based on a distance metric. We then adapt this function to the layered transformer blocks
using the majorization-minimization technique. For reference, related energy functions for Hopfield
networks are listed in Table 1 in Appendix B. In particular, let M := (ρ1, ρ2, . . . , ρd), the energy
function for the modern continuous Hopfield network (Ramsauer et al., 2020) is

Eβ
MCHN(x) = −LogSumExp(β,MTx) +

1

2
xTx+ β−1 log d+

maxi ∥ρi∥2

2
, where

LogSumExp(β, y) := β−1 log

(
d∑

i=1

exp(βyi)

)
, x ∈ Rn, y = (y1, . . . , yd) ∈ Rd.

It can be readily observed that the negative LogSumExp function was adapted from (Demircigil et al.,
2017). However, in the continuous domain, the negative LogSumExp function is not convex, making
it a less suitable candidate for the energy function. The MCHN energy then adds regularization terms
to create a convex energy function. These regularization terms involve both the max norm of the
input and the number of patterns.

4.1 A LAYER-WISE ENERGY FUNCTION

Instead of designing different regularization terms, we apply an energy function by considering an
auxiliary function

g(x) := min
1≤i≤d

d(x, ρi), (3)
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which corresponds to the nearest neighbor search over the the set of patterns D. So it holds that
g(x) ≥ 0, with g(x) = 0 if and only if x ∈ D = {ρ1, . . . , ρd}. According to Assumption 1, the
model has memorized the patterns through pre-training; thus, the inference corresponds to a search
algorithm based on some distance d(·, ·). We use the squared Euclidean 2-norm d(x, y) = ∥x− y∥2
in the sequel. We consider a function E(x) which also takes the form of LogSumExp.

E(x) = − log

(
d∑

i=1

exp(−d(x, ρi))

)
. (4)

It is worth noting that the softmax function is the gradient of the LogSumExp function. So the
Transformer integrates the search over layers. By summing up the negative distance between x
and each stored pattern, the function assigns smaller values to points closer to the patterns. The
distance-based energy function equation 4 with an inverse temperature has been applied by Saha et al.
(2023) within the context of clustering. This energy function is well-suited to a more generalized
framework, namely the universal Hopfield networks (Millidge et al., 2022). By replacing the dot
product in the MCHN energy with the distance metric, E(x) achieves similar goal without additional
regularization. As shown in Figures 1a and 1b, as an extension of (Demircigil et al., 2017), the
negative LogSumExp is not convex in the real domain, so regularization terms are applied in MCHN.
Figures 1d and 1c show that the landscape of the proposed energy resembles that of the MCHN
energy. In (Ramsauer et al., 2020), it is shown that EMCHN induces stationary points near the stored
patterns. Here, the energy function E(x) serves as a smooth surrogate of the desired function g(x) in
equation 3, therefore also demonstrates the retrieval ability.
Proposition 1. Given D = {ρ1 . . . , ρd}, the layer-wise energy E(x) satisfies

g(x)− log d ≤ E(x) ≤ g(x).

The proof of Proposition 1 is due to Lemma 3 and is deferred to Appendix C. Furthermore, we show
that E(x) is close to the MCHN energy, as delineated below.
Proposition 2. Let β = 2 we have

|E(x)− (2Eβ=2
MCHN(x)− log d)| ≤ max

1≤i≤d
∥ρi∥2 − min

1≤i≤d
∥ρi∥2.

The proof is given in Appendix C. Fig. 1 provides visualizations for the two propositions using low
dimensional patterns. The following result follows directly from the above inequalities.
Proposition 3.

min
1≤i≤d

∥ρi∥2 − max
1≤i≤d

∥ρi∥2 ≤ g(x)− 2Eβ=2
MCHN(x) ≤ max

1≤i≤d
∥ρi∥2 − min

1≤i≤d
∥ρi∥2 + log d.

Since the energy function equation 4 and the MCHN energy both approximate the search for the
nearest pattern (desired stationary point), according to Theorem 4 in (Ramsauer et al., 2020), in each
transformer layer, the probability density of the transformer layer, corresponding to the retrieval, is
p(x) = 1

Z exp(−E(x)|Ω), where Z is the normalizing factor, Ω =
⋃d

i=1 Bi, and Bi is as defined in
Definition 1. We assume that Bi is centered at the i-th pattern. We make the following assumption on
the samples, such that the (latent) patterns are well-separated.
Assumption 3. Passing the input through an embedding layer reduces the correlation between
the original samples. Therefore the patterns in the latent space in D are well-separated, i.e.,
Bi ∩Bj = ∅,∀1 ≤ i < j ≤ d.

Under Assumption 3, the energy function, confined in Ω, can be replaced by the nearest neighbor
search g(x). So the probability density is

p(x) =
1

Z
exp(−g(x)). (5)

4.2 THE LAYERED STRUCTURE

As discussed in the related works, most Hopfield models only handle a single hidden layer, whereas
SoTA transformer-based models often consist of a stack of homogeneous blocks of attention and
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FF layers. To model the multi-layered structure of Transformers, we employ a technique known
as majorization-minimization (MM) (Ortega & Rheinboldt, 1970; Sun et al., 2016), which aims
to accelerate optimization using surrogate convex functions. We argue that the layered structure
serves the same purpose when the patterns memorized by all layers encompass the set of learned
representations.

We divide the set of samples into D = ∪l
i=1Di, where Di = {ρi1 , ρi2 , . . . , ρidi}. Then, the energy

function for each layer can be written as

Et(x) =
1

Zt
exp(−gt(x)), where gt(x) := min

1≤j≤dt

d(x, ρtj ).

Denote by x(0) the embedding vector input into the first transformer layer and x(t) ∈ Rn the output of
the t-th layer for t = 1, 2, . . . , l. Let Et(x) be the energy function associated with the Hopfield model
of the t-th layer, then the sequential structure of the transformer network is achieved by forwarding
the output x(t−1) to the t-th layer as input, i.e.,

x(t) = argmin
x∈Xt

Et(x), Xt = {x ∈ Rn : d(x, x(t−1)) ≤ δt}, t = 1, . . . , l (6)

where the retrieved fix point attractor in the t-th layer is δt-close to x(t−1) in d(·, ·) for some δt > 0.
Such sequential optimization step is equivalent to the MM technique where every minimization step
locally approximates the objective function. In particular, equation 6 corresponds to the surrogate
function Eq. (3) in (Sun et al., 2016). Therefore, we define a global energy function

Eglobal(x) := −LogSumExp((−E1(x),−E2(x), . . . ,−El(x))). (7)

Eglobal(x) is continuous but not convex. As opposed to the HAM (Krotov, 2021), the global energy
function is not a linear combination of the component energies. According to Lemma 3, we have

min
1≤i≤l

Ei(x)− log l ≤ Eglobal(x) < min
1≤i≤l

Ei(x). (8)

So Et(x)|x∈Xt
≥ Eglobal(x)|x∈Xt

+ ct as in Eq. (2) in (Sun et al., 2016). The probability density
function corresponding to the layered transformer network can then be written as

pθ(x) =
1

Zθ
exp(−Eglobal(x)), x ∈ Ω (9)

where θ denotes the model’s parameters and Zθ is the normalizing constant.

5 CROSS-ENTROPY LOSS

We now proceed to analyze the cross-entropy loss, a metric that quantifies the divergence between
predicted probabilities and actual labels, and is widely utilized for training Transformer models.

5.1 A LOWER BOUND

The attention mechanism encompasses a softmax operation that generates a probability distribution
p ∈ ∆n. In practice, the final softmax output is subsequently input into a task-specific layer to
facilitate downstream tasks, such as predictions and classifications. The attention softmax influences
the model’s ability to understand and process the input data, which in turn affects the output proba-
bilities that are used to calculate the cross-entropy loss. In essence, the attention softmax indirectly
influences the cross-entropy loss by shaping the model’s predictions. Consequently, we evaluate
the alignment between the final softmax output of the transformer blocks and the target distribution.
We demonstrate that the cross-entropy loss can be articulated through the logarithm of the partition
function of the model’s distribution. This formulation reveals how the allocation of attention weights
is contingent upon the learned patterns, thereby establishing a relationship between the characteristics
of the training data and the model size, which is pivotal for attaining optimal performance.

Let us consider the cross-entropy loss on the validation set D̃. Generally, the cross-entropy loss is the
negative log-likelihood computed over a mini-batch. Since we are considering un-batched validation
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samples, the loss is normalized by the size d′. According to equation 8, there exist a layer t such that
Eglobal(x) is close to Et(x), i.e.,

Eglobal(x) = Et(x)− log l + c(x), c(x) ∈ C∞(Rn) (10)

such that 0 ≤ c(x) < log l. To simplify, we further assume that c(x) = c ∈ [0, log l) is constant.
Under Assumption 1, the target distribution, which encodes all the patterns in D, is given by

pD(x) =

d∑
i=1

piδ(x− ρi), x ∈ Rn

where δ(·) is the Dirac delta function such that δ(x) = 0,∀x ̸= 0 and pi = Pr(x = ρi) is the
probability mass assigned to pattern ρi for i = 1, 2, . . . , d. Suppose the data points are homogeneous,
i.e., pi = 1

d , then PD(x) =
1
d

∑d
i=1 δ(x− ρi), and the corresponding test samples D̃ induces

PD̃(x) =
1

d′

d′∑
i=1

δ(x− ρσ(i)), σ(·) ∈ Sym([d]). (11)

Proposition 4. Let L be the cross-entropy loss of the above model, then

L ≈ logZt +
1

Zt
≥ 1, where c ∈ [0, log l).

The proof is deferred to Appendix D.1. Note that the empirically obtained loss function equation 1
for the Chinchilla model converges to L̂(N,D) = 1.61 as N → ∞ and D → ∞, which corroborates
our theory that L(N,D) ≈ logZt +

1
Zt

≥ 1, with minimum obtained when Zt = 1.

5.2 INTERDEPENDENCY BETWEEN MODEL SIZE AND TRAINING DATA

Next, we explore the optimal balance between model size and data during memorization. Let Bt(x)

denote the n-ball with radius t centered at x. Let An−1 = 2πn/2

Γ(n
2 ) represent the hyper-volume of the

(n− 1)-dimensional unit sphere.

γ(n, r) =

∫ r

0

tn−1e−t dt, Γ(n, r) =

∫ ∞

r

tn−1e−t dt

are the lower and upper incomplete gamma functions. Then∫
x∈Bi

exp(−∥x− ρi∥2) dx =

∫
∥x−ρi∥<ri

exp(−∥x− ρi∥2) dx =

∫
∥y∥<ri

exp(−∥y∥2) dy

=

∫ ri

0

∫
∂Bt(0)

e−t2 dHn−1dt =

∫ ri

0

e−t2Hn−1(∂Bt)dt (12)

=

∫ ri

0

e−t2An−1t
n−1 dt =

2π
n
2

Γ(n2 )

∫ ri

0

tn−1e−t2 dt = 2π
n
2
γ(n, ri)

Γ(n2 )
.

We take a closer look at the layer partition function, which gives us

Zt =

∫
x∈Ω

exp(−gt(x)) dµ =

∫
x∈Ω

exp(−min
i

d(x, ρti)) dµ

=

d∑
i=1

∫
x∈Bti

exp(−∥x− ρti∥2) dx (12)
= 2

d∑
i=1

π
n
2
γ(n, ri)

Γ(n2 )
, (13)

where ri is the radius of Bi. According to Lemma 5, we have

e−riVn(ri) ≤ 2π
n
2
γ(n, ri)

Γ(n2 )
=

∫
x∈Bi

exp(−∥x− ρi∥2) dx ≤ Vn(ri),

where Vn(r) = π
n
2 rn/Γ(1 + n

2 ) is the hyper-volume of the n-dimensional ball of radius r. Note that
the volume of the unit ball Vn(1) in higher dimensions decreases fast with respect to the increase

8
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in dimensionality. The stability of the probabilities is attributed to the application of normalization
operators, including LayerNorm (Xiong et al., 2020) and RMSNorm (Zhang & Sennrich, 2019),
which regulate the distribution of activations. The gamma function can be approximated using
Stirling’s approximation (Appendix D.2) for large values of its argument, which gives us

Vn(1) ≈
πn/2√

2π(n/2)
(

n/2
e

)n/2 =
1√
nπ

(
2πe

n

)n
2

For Vn(r) to have a volume of O(1), the radius r must be approximately
√
n/(2πe) asymptotically.

Bringing r =
√
n/(2πe) to equation 13, we get

d · Vn(
√

n
2πe )

exp(
√

n
2πe )

≤ Zt ≤ d · Vn(

√
n

2πe
). (14)

According to equation 2, N ≈ Aldemb

Tmax
n and D ≈ Tmaxd. Therefore, for Zt to reach Zt = 1, we need

N = O(D2) for well-separated patterns D. The following proposition summarizes the result.
Proposition 5. During memorization of well-separated patterns learned from the data, to minimize
the cross-entropy loss, the optimal balance between model size N and data size D is N = O(D2).

In Table 2 in Appendix B, we compare the reported cross-entropy loss of various transformer-based
models in the literature. Usually, a family of models ranging in a variety of sizes is reported, and we
select the largest ones. We observe that similar cross-entropy loss is achieved across a wide range of
architectural shapes (including depth, width, attention heads, FF dimensions, and context lengths).
Nevertheless, the pre-training cross-entropy losses all satisfy L > 1.

Remark 2. We remark that some models add auxiliary regularization terms such as the z-loss
(Chowdhery et al., 2023; Yang et al., 2023) during their training. In these cases, the scaling laws
should take into consideration the additional terms. Also, modifications to the transformer blocks,
such as additional layer normalization may contribute to the lower bound of the cross-entropy.

5.3 SUMMARY OF EXPERIMENTATION

In Appendix F, we perform a series of experiments to validate our theoretical assumptions and results.
Below is a concise summary of these experiments.

Evaluation of the radius with GPT-2 In Appendix F.1, we evaluate the radius r in Zl of a 24-layer
pre-trained GPT-2 medium model. Our aim is to validate the hypothesis regarding the radius of
patterns in Section 5. We randomly sample 100K chunks, each containing 256 tokens, from the
OpenWebText dataset and record the activation vectors from the l-th layer. The distance between
each activation vector and its nearest neighbor is computed using the Euclidean norm.

Significance: The experiment found that the distances between activation vectors in the latent space
are approximately equal to the hypothesized magnitude of 2

√
n/2πe in equation 14.

Training vanilla Transformers In Appendix F.2, we train vanilla Transformers on the Question-
Formation dataset, comprising 2M tokens with pairs of English sentences in declarative and question
forms. We train two vanilla Transformers with 6 and 10 layers, respectively, each with an embedding
dimension of 512, following the configurations from (Murty et al., 2023).

Significance: The Question-Formation dataset not only offers a fixed amount of data for evaluating
models of different sizes, but also has a limited vocabulary that ensures the well-separated condition
in Assumption 3. The training losses stabilize at a value of approximately 1, aligning with the
prediction in Proposition 4.

Training models with varying widths and dimensions In Appendix F.3, we train models of
varying sizes based on the OpenELM design, adjusting the model dimensions and number of heads
to achieve different model sizes while maintaining a fixed number of layers. The models have
Transformer parameter counts of approximately 40M, 60M, and 80M. These models are pre-trained
from scratch using GPT-2 encoding on the Standardized Project Gutenberg Corpus (SPGC) dataset,

9
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with training data sizes ranging from 167.06M to 333.17M tokens. The optimal combinations of
model parameters and dataset size are determined by ensuring that training losses plateau and test
losses are minimized.

Significance: The ratio of model parameters to the square of the dataset size consistently approaches
a constant value, supporting the theoretical results in Proposition 5.

6 CONCLUSION

We model transformer-based networks with associative memory and study the cross-entropy loss
with respect to model and data sizes. We employ a distance-based layer-wise energy function
that corresponds to a nearest neighbor search across patterns memorized during training. We then
construct a global energy function for the layered structure of the transformer models using the
majorization-minimization technique. In practice, we have observed that the majority of transformer
models at the commercial level tend to achieve a cross-entropy loss of approximately 2.2. The optimal
balance between model and data sizes, however, is often determined by the collective expertise of
practitioners. Additionally, the performance of these models can be compromised by both early and
delayed stopping. We believe the current paper represents an important step towards understanding
the pre-training behaviors of large transformer models. Empirical evidence supporting our study can
be found in Appendix F. However, given the significant allocation of computational resources to other
scaling law investigations, we acknowledge that our numerical experiments constitute a preliminary
evaluation, constrained by computational restrictions. However, it is imperative to underscore the
theoretical significance of these findings.

ETHICS AND REPRODUCIBILITY STATEMENT

Limitations. The theoretical results rely on the assumptions, including Assumption 1 and Assump-
tion 3, made in the main content. We have shown that there exists a dependency between the best
model size and the dataset used for training transformer-based models, both in theory and in practice.
The most notable limitation is that achieving optimal performance through memorization requires
high-quality data. Since most models are trained on data derived from the Internet, the resulting
patterns may not be well separated. Future work will be required to identify the relationship between
the dataset and the learned patterns. The experiments are conducted on GPT-2, OpenELM models,
and vanilla Transformers. We expect that these results generalize to other transformer models. Also,
we do not consider other modifications such as lateral connections, skip-layer connections, mixture
of experts, mixture of depths, routing, or other compressive modules in the current work. These will
be interesting future directions.

Broader impacts. This study elucidates the performance of transformer-based models, measured
by cross-entropy loss. Consequently, the findings presented herein have the potential to influence
strategic budget allocation and model lifecycle management. By offering insights into the balance
between model performance and resource efficiency, it provides insights into the theoretically optimal
cross-entropy loss, which can inform both budgetary planning and model termination strategies.
We believe that this research delineates a constructive pathway for organizations to foster a more
sustainable approach to optimize their machine learning initiatives.

Given that the patterns recognized are directly extracted from the dataset at hand, there exists
a potential negative societal consequence: the propensity for models to memorize and thereby
perpetuate biases against certain groups. This risk can be attenuated through the implementation of
rigorous class-balancing methodologies. Nonetheless, it is imperative that comprehensive fairness
assessments be conducted prior to the deployment of any model.

Reproducibility. While the present study is predominantly theoretical in its nature, we have taken
multiple steps to ensure the reproducibility of our experiments. We refer the reader to Appendix F
and Appendix E for a complete description of the experiments. We have also attached necessary code
in the supplementary material.
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A DISCUSSION

Relationship to the Chinchilla Scaling Laws. Our findings are contingent upon the transformer
layers’ memorization of patterns, which are presumed to be well-separated points learned from the
data. In our experiments, we utilize a reduced dataset to emulate the conditions of pattern separation
and memorization. Moreover, we have trained the models on their respective datasets repeatedly,
ensuring that the training losses have stabilized and the test losses have begun to ascend, indicative
of a mild degree of over-parameterization. These conditions diverge from those of the Chinchilla
experiment. In practical scenarios, commercial LLMs, akin to the Chinchilla model, are not subjected
to such conditions. As we have noted in our paper, it has been observed that even after training on
up to 2T tokens, some models have yet to exhibit signs of saturation. In practice, we have observed
that the majority of transformer models at the commercial level tend to achieve a cross-entropy
loss of approximately 2.2. The optimal balance between model and data sizes, however, is often
determined by the collective expertise of practitioners. Additionally, the performance of these models
can be compromised by both early and delayed stopping. Therefore, our current experimental setup
represents an idealized condition that has not been encountered in commercial LLMs. Nevertheless,
considering the substantial computational resources allocated to other scaling law investigations, we
recognize that our numerical experiments represent a preliminary assessment that is contingent upon
computational limitations, with a thorough analysis reserved for subsequent research endeavors.

Relationship to Prior Work on Hopfield Networks Recently, there has been a growing interest
in physics-informed neural networks. The Energy Transformer (Hoover et al., 2024) designs a
energy attention mechanism and the corresponding energy function, resulting in a unique model
with a strong theoretical foundation that achieves SoTA results on graph anomaly detection and
graph classification tasks. Wu et al. (2024) introduces a kernelized version of modern Hopfield
networks, aiming to express energy in a feature space where patterns are well-separated, thus avoiding
memory interference. Hu et al. (2024b) presents a theoretical framework for deriving and analyzing a
family of modern Hopfield models, and Hu et al. (2024a) offers a compression method for Hopfield
models, showing superior post-quantization performance compared to vanilla Transformers. While
the existing literature, such as Hierarchical Associative Memory Krotov (2021), employs a system of
differential equations to design a global energy function that can encompass feedback connections,
our proposed model tackles the global energy specific to feedforward architectures. Predictive coding
networks (Tang et al., 2023; Li et al.) incorporate recurrent connections; however, their dynamics are
focused on minimizing the total squared prediction errors and has less connection to the attention
mechanism. By conceptualizing the information retrieval properties of the Transformer as a sequence
of associative memories, our model endeavors to establish relationships between model size and
memorization (of training data) within the framework of statistical physics.

SUMMARY OF NOTATIONS

ρi The i-th pattern
A Constant depends on the number of layers and the hidden dimension of the network
Bi Ball associated to the i-th pattern
d′ Number of samples in the test samples
d(·, ·) A distance metric
D Size of the training data, D ≈ Tmaxd

d Number of samples in the training samples
demb Embedding dimension
L Cross-entropy loss
l Number of Transformer layers
N Number of Transformer parameters
n Dimension of input sequences, n = Tmaxdemb

R Radius of the sphere S of patterns
Tmax Max number of tokens in a sequence
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B DEFERRED TABLES

Table 1: Table of selected related works for Hopfield network, enumerating their domain, energy
function, and memory capacity. For all the works above, n represents the dimension of the input
vector. W is the outer product of the patterns. M is the matrix of patterns. r is the order of polynomial
F (·), d is the number of patterns, and c is a positive constant.

Reference Domain Energy Capacity

Hopfield (1982) {−1,+1}n E(x) = − 1
2x

TWx− bTx O(n)
Krotov & Hopfield (2016) {−1,+1}n E(x) = −

∑n
i=1 F ((ρi)Tx) Θ(nr)

Demircigil et al. (2017) {−1,+1}n E(x) = −LogSumExp(MTx) Θ(2
n
2 )

Ramsauer et al. (2020) Rn E(x) = −LogSumExp(β,MTx)+ Θ(c
n−1
4 )

1
2x

Tx+ β−1 log d+maxi ∥ρi∥2/2

Table 2: Transformer-based language models and their reported cross-entropy loss.

Model Model Size Data Size L Reference

Transformer 1.5B 22B 2.5 Kaplan et al. (2020)
Chinchilla 70B 1.4T 2.2 Hoffmann et al. (2022a)
PaLM 2 16B 100B 2.4 Anil et al. (2023)
GPT-2 8.7B 178B 2.3 Muennighoff et al. (2024)
MiniCPM 2.4B 140B 2.4 Hu et al. (2024c)
Nanotron 1.2B 105B 2.4 Peng et al. (2024)

Table 3: Mean squared error over 1000 iterations between training loss and minimal validation loss
for different model configurations and pre-training settings. The last column reports the ratio between
N and D2 for D∗ with unit 10−10.

MSE D = 167.06M D = 190.38M D∗ = 214.18M D = 237.98M N/D∗2 (10−10)

N = 39.95M 0.07 0.05 0.04 0.04 8.71

D = 214.18M D = 237.98M D∗ = 261.78M D = 285.57M N/D∗2 (10−10)

N = 60.26M 0.05 0.04 0.02 0.02 8.79

D = 261.78M D = 285.57M D∗ = 309.37M D = 333.17M N/D∗2 (10−10)

N = 80.20M 0.05 0.04 0.02 0.02 8.38
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C SOME PROPERTIES OF THE ENERGY FUNCTIONS

We introduce some useful properties of the LogSumExp function defined below. This is particularly
useful because The softmax function, widely utilized in the Transformer models, is the gradient of
the LogSumExp function. As shown in (Grathwohl et al., 2019), the LogSumExp corresponds to the
energy function of the a classifier.

LogSumExp(x) := log

n∑
i=1

exi , x = (x1, . . . , xn) ∈ Rn.

Lemma 1. LogSumExp(x) is convex.

Proof.

tLogSumExp(x) + (1− t)LogSumExp(y) = log(

n∑
i=1

exi)t(

n∑
i=1

eyi)1−t

≥ log

n∑
i=1

etxi+(1−t)yi = LogSumExp(tx+ (1− t)y) ∀t ∈ [0, 1].

Lemma 2. Suppose x = (x1, . . . , xn) ∈ Rn, then we have

max
1≤i≤n

xi < LogSumExp(x) ≤ max
1≤i≤n

xi + log n.

Proof. Taking log on each side of the inequality

exp( max
1≤i≤n

xi) <

n∑
i=1

exp(xi) ≤
n∑

i=1

exp( max
1≤i≤n

xi)

yields the results.

Consequently, we have the following smooth approximation for the min function.

Lemma 3. Suppose x = (x1, . . . , xn) ∈ Rn, then we have

min
1≤i≤n

xi − log n ≤ −LogSumExp(−x) < min
1≤i≤n

xi.

Lemma 4. For x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Rn, we have

|LogSumExp(x)− LogSumExp(y)| ≤ ∥x− y∥∞,

where ∥x∥∞ := max1≤i≤n |xi|.

Proof. Let
f(t) := LogSumExp(tx+ (1− t)y), ∀t ∈ [0, 1].

According to the mean value theorem, ∃s ∈ (0, 1) such that

LogSumExp(x)− LogSumExp(y) = f ′(s) =

∑n
i=1 exp(sxi + (1− s)yi)(xi − yi)∑n

i=1 exp(sxi + (1− s)yi)
.

So

|LogSumExp(x)− LogSumExp(y)| ≤
∑n

i=1 exp(sxi + (1− s)yi)∥x− y∥∞∑n
i=1 exp(sxi + (1− s)yi)

= ∥x− y∥∞.
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C.1 PROOF OF PROPOSITION 2

Proof. Let ξ = max1≤i≤d ∥ρi∥, then we have

2Eβ=2
MCHN(x) = − log

(
d∑

i=1

exp(2(ρi)Tx)

)
+ log d+ ∥x∥2 + ξ2

= − log

(
d∑

i=1

exp(2(ρi)Tx)

)
− log(exp(−(∥x∥2 + ξ2))) + log d.

So

2Eβ=2
MCHN(x)− log d = − log(

d∑
i=1

exp(2(ρi)Tx− ξ2 − ∥x∥2))

= − log(

d∑
i=1

exp(∥ρi∥2 − ξ2 − ∥ρi − x∥2)).

Therefore, due to Lemma 4, we have

|E(x)− (2Eβ=2
MCHN(x)− log d)| = |LogSumExp(∥ρi∥2 − ξ2 − ∥ρi − x∥2)− LogSumExp(−∥x− ρi∥2)|

≤ max
1≤i≤d

|∥ρi∥2 − ξ2| = max
1≤i≤d

∥ρi∥2 − min
1≤i≤d

∥ρi∥2.

D DEFERRED PROOFS FROM SECTION 5

D.1 PROOF OF PROPOSITION 4

Proof.

L(N,D) = H(pD̃, pθ) = − 1

d′

∑
x∈D̃

log(pθ(x)) = −Ex∼pD̃
[log pθ(x)]

= logZθ

∫
x∈Ω

PD̃(x) dµ+
1

d′

∫
x∈Ω

d′∑
i=1

δ(x− ρσ(i))Eglobal(x) dµ

= logZθ +
1

d′

∑
ρσ(i)

Eglobal(x)

(a)
= logZθ +

1

Zt
− log l + c

(b)
≈ logZt +

1

Zt
(15)

where (a) is because g(ρσ(i)) = 0, and (b) is due to equation 10, where we have

Zθ =

∫
x∈Ω

exp(−Eglobal(x))dx =
l

ec

∫
x∈Ω

exp(−Et(x))dx, and

logZθ ≈ log l − c+ log

∫
exp(−Et(x))dx = log l − c+ logZt.

D.2

Lemma 5. The incomplete gamma function γ(n, r) satisfies

e−r r
n

n
≤ γ(n, r) ≤ rn

n
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Proof. For 0 ≤ x ≤ r, we have

xn−1e−r ≤ xn−1e−x ≤ xn−1.

Integrating from 0 to r on each side yields the result.

Theorem D.1 (Stirling’s approximation). For any complex z, the Stirling’s approximation gives that

Γ(z) =

√
2π

z

(z
e

)z (
1 +O(

1

z
)

)
.

For large z,

Γ(z + 1) ≈
√
2πz

(z
e

)z
.

E TRANSFORMER DETAILS: USING GPT-2 AS AN EXAMPLE

The original GPT-2 model was trained on a 40GB large dataset called WebText that is made of data
derived from outbound links from Reddit. The model is trained on the next sentence prediction (NSP)
task in a self-supervised manner. A pre-trained tokenizer can be applied to convert the text into tokens
using a fixed vocabulary. A max token length Tmax (e.g., Tmax = 1024) is set, so during training, if
the number of tokens is greater than Tmax, the documents will be truncated. The model is trained
causally, which means that the prediction for the next token only depends on the inputs from earlier
tokens. The model was trained with a global batch size of 512, and the test perplexity still improves
if given more training time.

GPT-2 uses a byte-level version of Byte Pair Encoding (BPE), and the vocabulary size is nvoc =
50, 257. The hidden dimension for the medium size model is demb = 1024. So the input sequence
is of Tmaxdemb dimension. These sequences are passed through the model. For the medium size
model, these include 24 transformer encoder blocks with 1024 hidden units and 16 self-attention
heads (i.e., l = 24, demb = 1024, nh = 16). The number of parameters used for word embedding is
nvoc ·demb. The number of parameters in the multi-head attention layer is l ·nh ·(3·demb ·demb/nh) =
3ld2emb = 75, 497, 472. The number of parameters in the dense weights and layer normalization is
l(d2emb+2demb) = ld2emb+2ldemb = 25, 214, 976, and the number of parameters in the feed-forward
weight matrices and bias is l(2demb · dFF + demb + dFF) = 6ld2emb + 4ldemb = 151, 093, 248, with
dFF = 3072 = 3demb. As we can observe, the multi-head attention and feed-forward layers account
for most of the parameters in the model, and N ≈ Ald2emb with some constant A ≈ 10 in this case.

The loss used for the GPT-2 model is the log-probability of a dataset divided by the number of
canonical units (e.g., a character, a byte, a word), which is equivalent to the cross-entropy loss. The
cross-entropy loss is commonly used to measure the divergence between the predicted probabilities
and the true labels. For the NSP task, the model is trained to predict the next token in a sequence
based on the context of the previous tokens. So the cross-entropy is taken between the predicted
probabilities Prθ(xi) of the token xi and the labels’ probabilities PrD(xi) for all tokens xi in the
vocabulary, i.e.,

− 1

D

D∑
i=1

log(pθ(xi)) = −
∑
x∼pD

pD(x) log(pθ(x)).

Another commonly used loss is the perplexity, which is equivalent to the exponentiated version of the
cross-entropy.

F EMPIRICAL RESULTS

We explore the hypothesis regarding the radius r in Section 5 using a pre-trained GPT-2 medium
model. Additionally, we train vanilla Transformers and OpenELM models of different sizes to explore
their cross-entropy losses.
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Figure 2: Top: Distribution of nearest neighbor distances for output activations utilizing
40%, 60%, 80%, and 100% of output data. The mean and median values of these distances con-
sistently hover around 20, aligning with the magnitude 2

√
n/2πe as hypothesized. Bottom-left:

Performance of vanilla Transformers with 6 layers (left) and 10 layers (middle), each trained on
the 2M Question-Formation dataset. The models were configured according to the experimental
setup detailed in (Murty et al., 2023). The training losses for both models converge to a value of
approximately 1, a finding that is consistent with Proposition 4. Bottom-right: The pre-training loss
(dots) and validation loss (squares) of an OpenELM model across five training runs. The minimal
validation losses are displayed in dashed lines. Each run’s performance is marked by distinct colors,
with the minimum validation loss value for each run indicated along the y-axis.

F.1 EMPIRICAL EVALUATION OF THE RADIUS

We evaluate the radius r in Zl of a pre-trained GPT-2 medium model. We use the 24-layer pre-trained
GPT-2 model (Radford et al., 2019)1. The medium size model has 355M parameters. The model is
pre-trained with the next sentence prediction task on a large (40 GB) text corpus extracted from web
pages. The hidden dimension is demb = 1024.

We test the model on the OpenWebText (Gokaslan & Cohen, 2019) dataset, a reproduction of
the WebText dataset used for training the GPT-2 model. The dataset contains 9B tokens from
8,013,769 documents. We randomly sample 100K chunks of 256 tokens from the dataset. These
cover approximately 1.3% of the documents and constitute approximately 0.25% of the tokens used
for training. For each sample chunk, we record the activation vector of the last layer for prediction of
the next token. As discussed above, each vector should be close to a stored pattern ρli . We calculate
the distance between each activation vector and its nearest neighbor in terms of the L2 norm and
find the nearest neighbor distance for each vector, which results in 100K distance values. In Fig. 2
(top), we plot the histogram of the nearest neighbor distances for these output activations using
40%, 60%, 80%, and 100% of the output vectors. In all these cases, the mean and median equals
approximately to 20, so that a typical Bi of pattern ρi has radius 10. This corroborates equation 14 in
Section 5, according to which the radius is of order

√
1024/(2πe) = 7.74. The activation is only

collected for 1.3% of the documents, so the estimated radius may be greater than the actual value.

Significance: The experiment’s objective is to determine the radius r in Zl of a pre-trained GPT-2
model, thereby validating the hypothesis regarding the radius of patterns as stated in equation 14. We
compute the Euclidean distances between random sequences processed by the GPT-2 medium model
to estimate the magnitude of the radius r. The results indicate that the mean and median of the nearest
neighbor distances decrease as the sample size increases, and are around 20, which suggests that a
typical Bi associated with the pattern ρi has a radius of approximately 10. Considering the relatively
small sample size, we anticipate that the actual radius may be smaller than 10. Nevertheless, the

1available at https://github.com/openai/gpt-2
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experiment offers valuable insights into the order of magnitude of the radius and confirms the validity
of the hypothesis concerning the radius of patterns within the model’s latent space.

F.2 TRAINING VANILLA TRANSFORMERS

We next train vanilla Transformers using a small amount of high-quality data. The Question-
Formation dataset, proposed by McCoy et al. (2020), consists of pairs of English sentences in
declarative formation and their corresponding question formation. The dataset contains D = 2M
tokens. The sentences are context-free with a vocabulary size of 68 words, and the task is to convert
declarative sentences into questions.

We follow the settings in (Murty et al., 2023) to train two vanilla Transformers (demb = 512, Tmax =
5000) with l = 6 layers and l = 10 layers respectively. The training losses are shown in Fig. 2
(bottom-left), where the losses stabilize at a value of around L = 1 as predicted in Proposition 4.

Significance: The experiment investigates the pre-training loss by training two vanilla Transformers
with varying depths. Utilizing the Question-Formation dataset, this experiment offers a fixed amount
of data to evaluate the model’s memorization ability. The dataset’s simplicity, featuring a limited
vocabulary and a context-free structure, facilitates the well-separated condition in Assumption 3. The
stabilization of training losses around a value of 1 not only aligns with the theoretical predictions in
Proposition 4 but also indicates that the models have reached a point of diminishing returns, where
memorization is likely to predominate.

F.3 TRAINING MODELS WITH VARYING WIDTHS AND DIMENSIONS

Next, we train models of different sizes following the OpenELM (Mehta et al., 2024) design2, varying
the model configurations including the dimensions and the numbers of heads to achieve different
model sizes while keeping the number of layers fixed. We choose different widths and dimensions
such that the number of parameters of the transformer layers are about N =40M, 60M, and 80M
respectively. The configurations and hyperparameters can be found in Appendix G. Specifically, the
number of layers is fixed in our experiments, as empirical evidence has demonstrated that the depth is
a determinant factor influencing the performance.

We utilize the Standardized Project Gutenberg Corpus (SPGC) dataset (Gerlach & Font-Clos, 2020),
which contains a filtered timeseries of word-tokens without punctuation, derived from the Project
Gutenberg digital library of public domain literary works. We choose this subset because it offers a
collection of high-quality word sequences. We prepare the training data using different proportions of
the first 180M words of the SPGC, and we use the last 5% tokens as the validation set. We pre-train
the models from scratch on the tokenized training data with GPT-2 encoding, which encompasses
eight distinct sizes ranging uniformly from D =167.06M to D =333.17M. Throughout the training,
we employ random sampling to select chunks of the pre-determined context length. Given the
typically extensive length of the e-books within this dataset, it is plausible that sequences drawn with
the context length of 1024 tokens originate from the same book.

We report the number of transformer parameters N and the corresponding D∗ such that training loss
plateaus and the test loss is minimized, defined by D∗ = min {D : MSE(L

(N,D)
train , L

(N,D)
min ) < σ2},

where L
(N,D)
train is the training loss of model of size N using training data of size D, L

(N,D)
min is the

minimal validation loss throughout the training steps (as is depicted in the bottom-right of Fig. 2),
and MSE is the mean squared error taken over the proceeding 1000 iterations of the step where
the validation loss is minimized. In Table 3, we report the MSE for each configuration, with D∗

highlighted in each row when σ2 = 0.04. Upon analyzing the optimal combinations, we have
computed the ratio of model parameters to the square of the dataset size, as demonstrated in the
last column. The threshold σ were empirically selected based on our preliminary experiments, as
provided in Appendix G for visual inspection. Our findings indicate that the ratio N/D∗2 consistently
approaches a constant value, reinforcing our theoretical results in Section 5.

Significance: The experiment aims to support Proposition 5, which predicts a quadratic relationship
between the number of Transformer parameters and the size of well-separated datasets. We train

2available at https://github.com/apple/corenet.
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models of varying widths and dimensions following the OpenELM design from scratch and adjust
the training data size between 167.06M and 333.17M. We identify the optimal combinations of
model parameters and dataset size by ensuring that the training losses plateau and the test losses are
minimized. The consistent approach of the ratio of model parameters to the square of the dataset size
towards a constant value corroborates Proposition 5, implying that an optimal ratio exists, which can
inform the choice of model size in relation to dataset size for optimal performance.

G EXPERIMENTAL DETAILS

G.1 CONFIGURATIONS

We follow the OpenELM (Mehta et al., 2024) architecture and choose the following configurations
such that the number of transformer parameters are about 40M, 60M, and 80M.

Parameter Model 1 Model 2 Model 3
Number of Transformer Parameters 39.95M 60.26M 80.20M
Model Dimension 954 1280 1440
Number of Transformer Layers 8 8 8
Number of KV Heads 3, 3, 3, 3, 4, 4, 4, 5 3, 3, 3, 3, 4, 4, 4, 5 3, 3, 3, 4, 4, 4, 5, 5
Number of Query Heads 6, 6, 6, 6, 8, 8, 8, 10 6, 6, 6, 6, 8, 8, 8, 10 6, 6, 6, 8, 8, 8, 10, 10

Hyperparameters for pre-training are listed below.

Parameter Detail
Tokens per iteration 491,520
Vocabulary Size 50,257
Activation Function swish
Attention Dropout 0.1
Embedding Dropout 0.1
Head Dimension 64
Initializer Range 0.02
Max Context Length 1024
Normalization Layer rms_norm
Normalize QK Projections True
QKV Multipliers 0.5, 1.0
Batch size 12
AdamW β1 = 0.9, β2 = 0.95, ϵ = 10−8

G.2 ROBUSTNESS TO DEDUPLICATION

In order to further confirm the validity of our analyses, we conduct five independent training runs
of Model 1 to assess the model’s robustness and the consistency of its performance across different
training instances. Fig. 3 illustrates the CE loss over the course of training iterations for each run,
along with the minimum validation loss achieved during each run. It can be observed that the training
runs exhibit varying degrees of performance, as indicated by the different trajectories of the CE loss
curves. The minimum validation loss remains consistent to the second decimal place across various
training runs, and is achieved at approximately the 6000th training step.

G.3 ADDITIONAL RESULTS

Figured below are the training dynamics of the models in Table 3 for visual inspection.
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Figure 3: The cross-entropy loss for one model configuration during pre-training (depicted with dots)
and validation (depicted with squares) across five separate training runs. The minimal attainable
validation loss is represented by dashed lines. Each individual run’s performance is distinguished by
a unique color, and the y-axis highlights the lowest validation loss for each respective run.

Figure 4: Cross-entropy losses of eight models employing the OpenELM architecture as presented in
Table 3.
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