
What Matters in Graph Class Incremental Learning?
An Information Preservation Perspective

Jialu Li1,2,3,∗
jialuli@tju.edu.cn

Yu Wang1,2,3,∗
wang.yu@tju.edu.cn

Pengfei Zhu1,2,3,†

zhupengfei@tju.edu.cn

Wanyu Lin4

wan-yu.lin@polyu.edu.hk
Qinghua Hu1,2,3

huqinghua@tju.edu.cn

1College of Intelligence and Computing, Tianjin University, Tianjin, China
2Engineering Research Center of City Intelligence and Digital Governance,

Ministry of Education of the People’s Republic of China, Tianjin, China
3Haihe Lab of ITAI, Tianjin, China

4Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China

Abstract

Graph class incremental learning (GCIL) requires the model to classify emerg-
ing nodes of new classes while remembering old classes. Existing methods are
designed to preserve effective information of old models or graph data to allevi-
ate forgetting, but there is no clear theoretical understanding of what matters in
information preservation. In this paper, we consider that present practice suffers
from high semantic and structural shifts assessed by two devised shift metrics. We
provide insights into information preservation in GCIL and find that maintaining
graph information can preserve information of old models in theory to calibrate
node semantic and graph structure shifts. We correspond graph information into
low-frequency local-global information and high-frequency information in spatial
domain. Based on the analysis, we propose a framework, Graph Spatial Information
Preservation (GSIP). Specifically, for low-frequency information preservation, the
old node representations obtained by inputting replayed nodes into the old model
are aligned with the outputs of the node and its neighbors in the new model, and
then old and new outputs are globally matched after pooling. For high-frequency
information preservation, the new node representations are encouraged to imitate
the near-neighbor pair similarity of old node representations. GSIP achieves a 10%
increase in terms of the forgetting metric compared to prior methods on large-scale
datasets. Our framework can also seamlessly integrate existing replay designs. The
code is available through https://github.com/Jillian555/GSIP.

1 Introduction

In real-world applications, graph data is continuously generated. For instance, in citation networks,
new types of papers and their citations may constantly emerge, an ideal literature classifier needs
to continuously distinguish literature in emerging research areas [1, 2]. Therefore, it is critical
for a graph model to incrementally integrate new classes on an extended graph, which is referred
to as Graph class incremental learning (GCIL). However, this poses a major challenge known as
catastrophic forgetting, where the model needs to preserve previous information while continuously
acquiring new information [3, 4].
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Many approaches attempt to preserve information from previous models or graph data to prevent
catastrophic forgetting in GCIL, which can be divided into four groups. The parameter isolation
methods entirely or partially preserve parameters of different tasks to protect model performance,
such as dynamically incrementing feature extractors and prototypes [2]. Regularization methods, on
the one hand, preserve important parameters, such as assessing parameter importance by considering
loss and topology [1], and maintaining orthogonality with parameters from previous tasks [5], on
the other hand, preserve the absolute position of nodes in feature space or output space, such as
aligning the outputs of samples on old and new models [6]. The replay methods preserve a few
nodes or subgraphs to retrain the model to prevent forgetting, such as saving representative nodes [7],
selecting subgraphs according to node degree [8], and compressing training graphs [9]. The hybrid
methods combine different learning paradigms (i.e. the combination of replay and regularization
methods), such as feature distillation after identifying critical nodes [10] and minimizing distribution
disparity of selected nodes across new and prior models [11]. These hybrid methods have demon-
strated considerable potential and achieved state-of-the-art results. Despite their effectiveness, the
information preservation mechanism by existing methods remains unclear, making it challenging to
develop effective solutions for GCIL. This motivates us to explore a fresh perspective: What matters
in information preservation when learning from the old model to the new model for GCIL?
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Figure 1: Visualizations of semantic shift and structure shift.

We investigate the unique characteristics of catastrophic forgetting on graphs and find node semantic
and graph structure shifts in GCIL. The visualization of node embeddings for new model of
baseline (ERGNN [7]) and our method on old classes of CoraFull dataset are exhibited in Figure
1. The structure learned by old model is selected as target instead of original topology due to noisy
real structure [12]. Five nodes belonging to two old classes are randomly selected and connected
(darker edges indicate more similar features). We detect distortion in the features of baseline (Figure
1(a)) relative to those of the target (Figure 1(c)), especially nodes located within the black dotted box.
The two categories can be well separated in the feature distribution of target but not in the baseline
model and lead to false predictions (grey nodes in Figure 1(a)). The topological correlation is also
significantly changed, node #2 is in proximity to node #1 but is distant from node #3. Surprisingly,
within the representation space of baseline, node #2 appears to be moving closer to node #3 while
simultaneously becoming more distant from node #1, which exacerbates catastrophic forgetting. Our
method (Figure 1(b)) designs graph information preservation modules to mitigate shifts successfully.

In this paper, we inspect GCIL from the perspective of information preservation and theoretically
find a key factor in reducing catastrophic forgetting risk with hybrid methods is preserving old graph
information. We correspond graph information into low-frequency local-global information and high-
frequency information in spatial domain. Subsequently, a Graph Spatial Information Preservation
(GSIP) framework is proposed for calibrating semantic and structural shifts. In detail, the old and
new representations of nodes are obtained after replay graph data is input to old and new models.
The old representations of a node are locally aligned with new representations of a node and its
neighbors. Further, old and new representations are globally matched after mean pooling. Finally,
new representations of nodes are encouraged to mimic neighbor distance similarities that appear in
old representations.

The proposed GSIP can outperform existing replay designs by up to 10% in terms of the forgetting
metric on large-scale datasets. It is easy to implement and can be easily adapted to information-
preserving approaches to boost their performance. Experiments show that GSIP greatly improves
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over current information-preserving methods under different experimental settings and calibrates
node semantic and graph structure shifts. Our main contributions can be summarized as follows:

• We provide theoretical insights into GCIL and find that preserving old graph information
corresponding to low-frequency local-global and high-frequency information in spatial
domain can calibrate semantic and structural shifts and reduce catastrophic forgetting risk.

• We propose a simple yet effective method that utilizes node representations on old and new
models to preserve node features, graph representations, and neighbor distances.

• By combining with graph replay-based methods, our framework consistently achieves
performance improvements across several benchmark datasets and shows the effectiveness
of all the proposed components.

2 Related Work

2.1 Incremental Learning

Incremental learning requires the model to retain the capability of predicting old tasks while acquiring
information about new ones [3, 13, 14, 15, 16, 17, 18]. Class incremental learning is not assigned
a task ID and has greater training difficulty than task incremental learning [19, 20]. Existing
methods can be categorized into three groups. Parameter isolation methods dynamically adapt
the model without restricting its structure and capacity, providing distinct parameters for each
task [21, 22, 23, 24, 25]. Replay-based methods replay a subset of examples stored in previous tasks
or generated using generative models to mitigate forgetting [26, 27, 28, 29]. Regularization-based
methods introduce an additional regularization term in the loss function to prevent modifications to
crucial parameters related to previous tasks [6, 30, 31, 32, 33].

Traditional incremental learning methods for images or text lack topology learning, making it
challenging to achieve effective topology mining and information preservation. By contrast, we
analyze the basics of preventing catastrophic forgetting in GCIL from information preservation and
solve them in the spatial domain.

2.2 Graph Incremental Learning

Graph incremental learning focuses on handling streaming graph data, and numerous methods have
been developed explicitly for graph data [34, 35, 36, 37, 38, 39, 40, 41]. Topology-aware Weight
Preserving (TWP) preserves key parameters and topology of previous tasks through regularization
terms [1]. Experience Replay Graph Neural Network (ERGNN) framework incorporates memory
replay by storing representative nodes [7]. Sparsified Subgraph Memory (SSM) stores sampled
sparse subgraphs in a memory repository to preserve structural information [8]. Su et al. introduced
regularization terms to mitigate catastrophic forgetting from structural drift [11]. Zhang et al.
redesigned the architecture into a three-layer prototype that adaptively selects different parameter
combinations for different tasks [2]. The Condense and Train (CaT) [9] framework compresses
the graph into a small but informative synthetic replay graph. Furthermore, two graph incremental
learning benchmarks have recently been developed [42, 43].

In comparison, GSIP combines graph information preservation to avoid catastrophic forgetting
through low-frequency local-global and high-frequency information preservation.

3 Problem Analysis

Graph Class Incremental Learning (GCIL). GCIL addresses the problem of supervised node
classification within the context of an expanding graph. Specifically, each Gt denotes a newly
emerging subgraph within the overarching graph. A Gt consists of a node set V t and an edge set
Et with its connectivity captured by adjacency matrix At ∈ Rn×n, where n is the number of nodes.
Each vertex v is associated with node features Xv and a target label Yv ∈ {0, 1}c, where c represents
the total number of classes. At time t, the GCIL problem denoted as PGCIL is provided with a
subgraph Gt = {Xt, At}. The PGCIL problem is formally defined with the following signature:

P
t
GCIL :

〈
f t−1,

(
Gt, Y t

)
,Mt−1

〉
→

〈
f t,Mt

〉
, (1)
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where f is graph neural networks andM signifies an external memory capable of storing a subset of
training nodes or other useful graph data.

In the scenario of graph incremental learning, disparate tasks are mapped into distinct partitions of
the graph. Once the learning for a specific task is completed, access to the corresponding data is
restricted. Our objective is to learn a shared graph neural network model that distinguishes all classes
from existing ones. Formally, we aim to minimize the loss caused by previously seen nodes at time
step τ in PGCIL, the statistical risk of catastrophic forgetting is defined as:

min
θτ

τ∑
t=1

E(Gt,Y t)

[
H

(
Y t, σ

(
f
(
Gt; θτ

)))]
, (2)

where θ indicates parameters of the model,H represents cross-entropy loss, and σ denotes softmax
activation function.

Replay-Based GCIL. Replay-based methods store replayed nodes or subgraphs in memoryM by
sampling. Catastrophic forgetting is solved by maintaining the historical distribution. These methods
train a new model by minimizing loss of old task nodes on new model concerning the true labels.
Given node representations on new model Znew(Z = f (M; θ)), the replay loss is calculated as:

Lreplay =
1

|M|
∑
i∈M
H (Yi, σ (Znew

i )) . (3)
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Figure 2: Semantic shift (left) and structural
shift (right) between old and new models.

Semantic Shift and Structural Shift. Due to mem-
ory and privacy limitations, a large amount of old
graph data cannot be accessed in graph incremental
learning, which leads to material information of old
models being gradually forgotten and seriously dam-
ages new model performance on old classes. We de-
sign two novel shift metrics measuring semantic and
structural forgetting degrees when trained on novel
classes to show that model divergence manifests in
node-level semantics and graph-level structure as-
pects. On CoraFull dataset, we conduct shift tests us-
ing model representations Zold and Znew generated
by classical replay method ERGNN [7]. Specifically,
central kernel alignment [44] scheme is leveraged to compute Semantic Shift Score (SSSX ):

SSSX(Zold, Znew) = 1− HS(Zold, Znew)√
HS(Zold, Zold)HS(Znew, Znew)

, HS(Zold, Znew) =
tr(ZoldCZnewC)

(n− 1)2
,

(4)
where C is centering matrix Cn = In − 1/n11⊤. In particular, Structural Shift Score (SSSA)
is derived by performing structure Â inference using feature cosine similarity, then computing
differences between graph representations obtained by Anonymous Walk Embedding (AWE) [45]:

SSSA(Z
old, Znew) = 1−COS(AWE(Âold), AWE(Ânew)), Âij = 1 [COS(Zi, Zj) > δ] , (5)

where cosine similarity function COS(a, b) = a⊤b/(∥a∥ ∥b∥) is used to calculate feature similarity
degree, and δ is similarity threshold. Each task is trained for 200 epochs, and shift scores range from
0 (no shift) to 1 (completely different). We observe that SSSX and SSSA in Figure 2 gradually
rise with the increase of epochs. Serious shifts are found in both node semantic and graph structure
between old and new models as new classes are trained.

4 Graph Spatial Information Preservation

4.1 Graph Information Preservation

Model information preservation for GCIL can be defined as the mutual information of graph informa-
tion across old and new models when considering the corresponding model parameters:

Pθold→θnew = I
(
Z old;Z new

)
, (6)

here, Z old and Z new are graph information on old and new models. We directly maximize mutual
information between Z old and Z new, which inherits powerful encoding capability of θold to θnew.
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Proposition 1. The upper bound on graph information preservation can be estimated as:

−I
(
Z old;Z new

)
≤ ∥Z old −Z new∥22 = ∥∆Z ∥22 , (7)

we expect to maximize mutual information I
(
Z old;Z new

)
, thus minimizing −I

(
Z old;Z new

)
in

estimation is needed.

Proposition 1 is proved in Appendix A.1, which suggests that graph information preservation is
bounded with the square of Euclidean norm between old graph information Z old and new graph
information Z new.

4.2 Spatial Property

Based on the spatial properties of graphs, we analyze the maintenance of graph information in spatial
domain to capture complex spatial relationships between nodes and edges in graphs.
Lemma 1. (Graph spatial information factorization [46]) The graph convolution between convolution
kernel F and the signal x to obtain graph information is formulated as follows:

F ∗ x =
1

2

(
F l + Fh

)
∗ x =

1

2

(
F l ∗ x+ Fh ∗ x

)
= x, (8)

where F l ∗ x and Fh ∗ x are low-/high- frequency graph information, F l = In + D̃− 1
2 ÃD̃− 1

2 ,
Fh = In − D̃− 1

2 ÃD̃− 1
2 , D̃ is diagonal degree matrix with D̃i,i =

∑
j Ãi,j , and Ã = A + In

represents adjacency matrix with self-loop. Two pieces of information in spatial domain can be
derived as follows:

F l ∗ xi → xl
i = xi +

∑
j∈Ni

xj√
|Ni| |Nj |

,Fh ∗ xi → xh
i = xi −

∑
j∈Ni

xj√
|Ni| |Nj |

, (9)

where N represents node neighbors.

According to Lemma 1, there is an identity map that filters out graph information Z with graph
convolution, which provides effective solutions to correspond Z old and Z new to spatial domain.
For each component i, low-frequency information preserving

∥∥∆Z l
i

∥∥2
2

is defined as:

∥∥∆Z l
i

∥∥2
2
=

∥∥∥∥∥∥
Zold

i +
∑
j∈Ni

Zold
j√

|Ni| |Nj |

−
Znew

i +
∑
j∈Ni

Znew
j√
|Ni| |Nj |

∥∥∥∥∥∥
2

2

, (10)

where Zold and Znew denote obtained representations on old and new models. This implies that the
low-frequency information preserving is a semantic gap between the sum of node features and their
neighbor features of replay data on old and new models.
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Figure 3: Global se-
mantic shift on old and
new models.

Sustained global connectivity is crucial to avert the erasure of global seman-
tic information inherited from the preceding model. As displayed in Figure
3, global semantic shift does exist. We extend the concept of first-hop
neighbor nodes in the previous equation to include the entire replay graph
(i.e. multi-hop neighbors), which is denoted as:∥∥∥∆Z l̂

i

∥∥∥2
2
=

∥∥∥∥∥
(
Zold

i +
∑
j∈M

Zold
j√

|M| |M|

)
−

(
Znew

i +
∑
j∈M

Znew
j√

|M| |M|

)∥∥∥∥∥
2

2

.

(11)
Similarly, the generalized low-frequency information preserving is the gap
between the sum of node features and all replay data features on old and new
models. It is worth noting that Eq. (10) provides a semantic comparison
from a local perspective, whereas Eq. (11) compares from a global perspective.

For each component i, high-frequency information preserving
∥∥∆Z h

i

∥∥2
2

is defined as:

∥∥∆Z h
i

∥∥2
2
=

∥∥∥∥∥∥
Zold

i −
∑
j∈Ni

Zold
j√

|Ni| |Nj |

−
Znew

i −
∑
j∈Ni

Znew
j√
|Ni| |Nj |

∥∥∥∥∥∥
2

2

. (12)
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High-frequency information preserving captures the gap between the difference in node features and
neighbor features on old and new models from topological space.

Motivated by the above concepts, we introduce the following definition:

Definition 1. (Graph spatial information preservation) A graph spatial information preservation

model mainly consists of three kinds of information preservation ∥∆Z ∥22 ≈
∥∥∆Z l

∥∥2
2
∪
∥∥∥∆Z l̂

∥∥∥2
2
∪∥∥∆Z h

∥∥2
2

(defined in Eq. (10), (11), and (12)).
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Figure 4: A high-level overview of GSIP framework. It consists of low-/high- frequency modules to
preserve old information. The old and new node representations are used to calculate information
preserving loss of node representations, graph representations, and neighbor distances.

4.3 Instantiations for Graph Spatial Information Preservation

The above analysis yields two crucial insights: (1) old model information preservation can be solved
by preserving the learned graph information; (2) graph information preserving can correspond to low-
frequency local-global information and high-frequency information from spatial domain to calibrate
node semantic and graph structure shifts. Inspired by these two insights, we propose low-/high-
frequency information preservation to adequately capture the old model’s information. A high-level
overview of GSIP framework is shown in Figure 4. The pseudo-code can be found in Appendix A.4.

Low-Frequency Information Preservation. The node representations within the previous model
are derived via iterative feature integration and neighborhood communication, so it contains low-
frequency graph information. The information of old model is aligned into the neighborhood of new
model to better utilize low-frequency information, which can be represented as:

Ll =
∑
i∈M

∑
j∈Ni∪i

∥∥Zold
i , Znew

j

∥∥2
2
, (13)

where Z is the output given by model. Low-frequency local information preserving loss uses
Mean Squared Error (MSE) loss to locally match representations of nodes on old model Zold with
representations of nodes and their neighbors on new model Znew. For replay methods that do not
explicitly save neighbors, neighbor selection can be found in Appendix A.2. It is worth noting that
since inputs become sparse when converted to probabilities, the softmax followed by Kullback Leibler
(KL) divergence loss is not applied [47].

Preserving global information about low-frequency components aligns old model information as a
whole and prevents catastrophic forgetting. Low-frequency global information preserving loss is
introduced to minimize difference between global representations of old and new models, which is
defined as:

Ll̂ =
∥∥R(Zold), R(Znew)

∥∥2
2
, (14)

where R represents pooling method, which is computed by mean pooling R(Z) = 1/|M|
∑

i∈M Zi.
Similarly, MSE loss is used to calculate global representation gaps.
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High-Frequency Information Preservation. The high-frequency part of spatial domain represents
the difference between the features of nodes and neighbors. The updated model preserves old
topology by incorporating prior local contextual information and then mitigates heterogeneous
information propagation blockage caused by smoothness assumption. Specifically, for node vi, Ni

denotes neighborhood node set and defines Sold(vi,Ni) as the similarity of selected node vector with
adjacent nodes computed by old model:

Sold (vi,Ni) =
[
Sold
1 , . . . , Sold

|Ni|

]
, Sold

j =
exp

(
K
(
Zold
i , Zold

j

))
∑

j′∈Ni
exp

(
K
(
Zold
i , Zold

j′

)) , (15)

where K(·, ·) represents kernel function that measures pairwise distances between each node and its
neighbors in the latent feature space, and element-wise absolute values K (Zi, Zj) = |Zi − Zj | is
used. Then, we measure similarity distribution from new model Snew(vi,Ni), which is formed by:

Snew (vi,Ni) =
[
Snew
1 , . . . , Snew

|Ni|

]
, Snew

j =
exp

(
K
(
Znew
i , Znew

j

))
∑

j′∈Ni
exp

(
K
(
Znew
i , Znew

j′

)) . (16)

High-frequency information preserving is proposed to map neighborhood pairwise differences
between old and new models in topological space, information loss from old structure to new
structure is more easily recognized with the help of KL divergence, which is denoted as follows:

Lh =
∑
i∈M

Sold (vi,Ni) log
Sold (vi,Ni)

Snew (vi,Ni)
. (17)

Model Learning. To combine different preserving losses, the final graph information preservation
loss function is defined as:

Lgip = Ll + βLl̂ + γLh, (18)
where β and γ are loss weights.

Node classification loss is obtained by Lnc = 1/ |G|
∑

i∈GH (Yi, σ (f (G; θnew)))). Therefore, the
overall model learning objective is the weighted sum of current node classification loss, replay loss,
and graph information preserving loss:

L = Lnc + αreplayLreplay + αgipLgip, (19)
where αreplay and αgip are loss weights, and the value of αreplay is relevant to the design of
replayed method. More analysis about the preservation of other graph frequency information (i.e.
mid-frequency information and high-frequency global information) is given in Appendix A.3.

5 Experiments

5.1 Datasets and Setups

Datasets and Settings. We utilize five public datasets to evaluate the effectiveness of the proposed
method in GCIL, the statistics of datasets are reported in Appendix B.1. Three ways of dividing
classes are used: one is divided unequally, and the other two are divided equally, with equal classes
per task. The first dataset is CoraFull [48], which has 70 classes, 30 classes are used as base classes
for dividing unequally, then 20 classes are used as an increment, and we divide classes equally into
10 or 2 classes per task. Arxiv [49] and Reddit [50], both containing 40 classes, dividing unequally
using 10 classes as base classes, then in increments of 5 classes, and dividing equally with 10 or 2
classes per task. Each dataset has 3 tasks with 2 classes per task on Cora [51] and Citeseer [51]. The
latest benchmark [42] is employed to implement ERGNN, along with CaT [9] is used to implement
SSM and CaT, we follow their settings in graph class incremental learning. Our implementation and
detailed settings are available in Appendix B.4 and B.5.

Baselines and Metrics. We compare our method with the following baselines, including Finetuning,
Joint, EWC [30], GEM [31], MAS [32], LwF [6], TWP [1], SSRM [11], and three replay-based
methods (i.e. ERGNN [7], SSM [8], and CaT [9]), where three graph replay methods apply our
framework. Finetuning is the lower bound baseline updating the model only with newly emerging
graph data. Joint is the ideal upper bound and inputs contain all previous graph data. We choose
two widely used metrics to evaluate the performance of the compared methods, including Average
Performance (AP) and Average Forgetting (AF) [31].
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Table 1: Performance comparison on CoraFull, Arxiv, and Reddit for GCIL setting. Results are
averaged among three trials. The best performing results (excluding Joint) are highlighted in bold.

Method

CoraFull Arxiv Reddit

Unequally Equally (10) Equally (2) Unequally Equally (10) Equally (2) Unequally Equally (10) Equally (2)

AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑
Finetuning 23.95 -76.59 11.06 -85.77 2.70 -95.48 11.64 -70.41 5.41 -50.00 4.91 -87.61 14.66 -91.80 22.90 -94.42 5.83 -94.23

EWC 24.09 -75.78 11.15 -86.08 5.13 -93.08 11.93 -68.97 14.83 -57.33 4.91 -87.58 13.79 -95.35 22.30 -95.27 9.66 -93.85
GEM 23.95 -76.05 11.23 -85.78 7.97 -90.00 11.61 -60.27 8.27 -44.42 4.92 -86.66 18.51 -89.79 22.58 -93.93 35.11 -65.67
MAS 24.20 -75.97 10.94 -82.37 4.43 -89.22 11.09 -66.76 12.32 -57.99 5.29 -81.64 15.45 -0.50 25.54 0.01 5.98 -14.17
LwF 23.99 -76.14 11.14 -85.67 2.72 -95.08 11.93 -70.66 14.69 -58.93 4.91 -88.14 16.13 -90.31 24.39 -93.29 7.59 -88.98
TWP 23.86 -75.74 11.01 -85.43 3.56 -94.66 11.93 -69.26 14.41 -56.56 4.90 -87.75 13.95 -96.17 21.22 -96.41 9.34 -94.24
SSRM 63.62 -16.24 31.39 -60.61 3.22 -89.29 31.51 -45.12 26.61 -46.22 26.16 -61.24 78.40 -20.92 76.78 -23.16 83.96 -15.41

ERGNN 60.91 -19.47 24.39 -69.31 3.01 -94.34 31.18 -45.45 24.47 -49.11 24.70 -62.26 76.60 -23.22 75.22 -25.26 83.16 -16.21
+GSIP 67.22 -10.91 71.15 -11.37 44.79 -44.60 34.09 -32.59 33.88 -27.97 40.21 -28.96 90.82 -6.05 89.59 -2.03 93.03 -5.50
Improve ↑ 6.31 8.56 46.76 57.94 41.78 49.74 2.91 12.86 9.41 21.14 15.51 33.30 14.22 17.17 14.37 23.23 9.87 10.71
SSM 50.51 -10.56 62.90 -6.02 79.02 -4.24 63.48 -12.41 60.57 -10.09 63.91 -12.48 90.10 -5.83 86.91 -3.24 96.24 -1.64
+GSIP 55.32 -2.50 63.86 0.08 79.31 0.70 63.36 -7.27 61.34 -6.34 64.16 -8.87 90.74 -3.97 87.41 0.13 96.25 -0.65
Improve ↑ 4.81 8.06 0.96 6.10 0.29 4.94 -0.12 5.14 0.77 3.75 0.25 3.61 0.64 1.86 0.50 3.37 0.01 0.99
CaT 70.55 -5.26 76.35 -5.44 80.64 -4.31 71.66 -8.33 70.16 -7.25 66.21 -12.73 96.39 -0.77 93.97 -1.31 97.64 -0.49
+GSIP 71.06 -0.28 78.29 -1.25 81.10 2.68 71.52 -4.76 70.57 -3.97 68.80 3.49 96.15 -0.23 94.23 0.21 97.55 1.04
Improve ↑ 0.51 4.98 1.94 4.19 0.46 6.99 -0.14 3.57 0.41 3.28 2.59 16.22 -0.24 0.54 0.26 1.52 -0.09 1.53

Joint 85.3 - 85.3 - 85.3 - 63.5 - 63.5 - 63.5 - 98.2 - 98.2 - 98.2 -

5.2 Performance Comparison

Table 2: Performance comparison on Cora
and Citeseer for GCIL setting. Results are av-
eraged among three trials. The best perform-
ing results (excluding Joint) are highlighted
in bold.

Method

Cora Citeseer

Equally (2) Equally (2)

AP↑ AF↑ AP↑ AF↑
Finetuning 32.58 -96.83 31.46 -77.86

EWC 32.58 -97.16 31.26 -78.22
GEM 32.70 -97.12 31.39 -77.70
MAS 31.84 -97.17 31.25 -76.67
LwF 32.58 -97.57 31.44 -78.29
TWP 32.58 -97.32 31.22 -78.14
SSRM 35.48 -70.01 51.91 -67.66

ERGNN 65.48 -46.09 47.65 -51.12
+GSIP 71.29 -36.95 61.29 -29.38
Improve ↑ 5.81 9.14 13.64 21.74
SSM 67.64 -19.78 60.99 -13.60
+GSIP 69.92 -11.82 61.86 -8.39
Improve ↑ 2.28 7.96 0.87 5.21
CaT 88.22 -4.40 75.08 -10.93
+GSIP 89.60 1.84 77.02 -9.95
Improve ↑ 1.38 6.24 1.94 0.98

Joint 93.09 - 78.27 -

GSIP can improve the performance of existing
replay-based information preservation methods.
The effect of GCIL on five datasets is presented in
Table 1 and Table 2, and the results with standard
deviation are presented in Appendix C.1. Joint does
not provide AF due to its non-compliance with the
incremental learning setting. The existing regular-
ization term relies on the correlation between old
and new classes leading to catastrophic forgetting,
and some of them do not take topology into account.
The hybrid method SSRM absorbs partial old infor-
mation, resulting in extremely limited performance
gains. GSIP consistently demonstrates significant
improvements in AP and AF when combined with ex-
isting replay methods. For example, ERGNN-GSIP
improves both AP and AF by about 10% on Reddit.
On CoraFull, SSM-GSIP under unequal partitioning
situation improves AP and AF by 4.81% and 8.06%,
respectively. CaT-GSIP performs remarkably well
on Arxiv, even surpassing the performance of Joint,
which has a 16.22% increase in AF on a setting with
an increment of 2. CaT experiences a slight decrease
in AP in some settings after using GSIP. This can be
attributed to GSIP enabling better preservation of graph spatial information from old model, resulting
in a lower forgetting rate. In addition, for ERGNN-GSIP, the AP and AF increase by 5.81% and
9.14% on Cora and by 13.64% and 21.74% on Citeseer. On Cora and Citeseer datasets, the AF of
SSM-GSIP improves by more than 5%, and CaT-GSIP achieves the highest performance in most
cases, with the AP approaching the value of Joint.

GSIP can consistently achieve excellent performance on old classes in different task IDs. The
performance matrices of ERGNN on CoraFull before and after incorporating GSIP are shown in
Figure 5(a) and Figure 5(b). It is difficult to remember the information of old classes before employing
graph spatial information preservation. After implementing the GSIP scheme, the performance matrix
demonstrates a deceleration in the forgetting process (i.e., the color of each column does not change
much and the color deepens), which indicates that the catastrophic forgetting problem is mitigated
due to the preserving of old graph information.
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Figure 5: (a)-(b) Performance matrices on CoraFull dataset. (c) Semantic and structural shift
calibration of old and new models during increments. (d) Performance changes affected by #M on
CoraFull dataset.

GSIP can offer information preservation capability to calibrate semantic shift and structural
shift. Figure 5(c) exhibits the curves of shift scores during the incremental process for ERGNN
on CoraFull. It can be noted that shift scores start at a relatively high value, gradually decrease,
and smooth out after graph spatial information is maintained, demonstrating that the low-frequency
local-global information and high-frequency information of old model are well captured, and semantic
and structural shifts are nicely calibrated.

5.3 Ablation Study

We investigate the effectiveness of low-frequency local modules (LL), low-frequency global modules
(LG), and high-frequency modules (H), the experimental results use ERGNN as baseline (B). The
results of ERGNN, SSM, and CaT with standard deviation are summarized in Appendix C.2. The
above components are added one by one to baseline for performance comparison. From Table 3 we
observe that: (1) When LL is utilized, the model can easily learn the aggregation rules of nodes and
neighbors from old model locally. AP (AF) improves by about 2% (6%) to 45% (55%) over the
baseline demonstrating the superiority of LL. (2) Combining LG significantly improves performance,
especially on Reddit. The reason may be that larger datasets have greater overall shifts during
increments. (3) H also brings significant improvements, with AP (AF) improving by about 1.6%
(0.9%) to 2.4% (7.4%) over B+LL+LG on Reddit. This indicates that the H module can extract more
topology information for better performance.

Table 3: Ablation comparisons of graph spatial information preservation.

Method

CoraFull Arxiv Reddit

Unequally Equally (10) Equally (2) Unequally Equally (10) Equally (2) Unequally Equally (10) Equally (2)

AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑
B 60.91 -19.47 24.39 -69.31 3.01 -94.34 31.18 -45.45 24.47 -49.11 24.70 -62.26 76.60 -23.22 75.22 -25.26 83.16 -16.21
B+LL 65.79 -13.20 69.02 -14.15 41.37 -47.39 33.27 -34.60 27.10 -40.95 38.09 -35.04 84.63 -12.09 84.26 -12.37 87.52 -10.97
B+LL+LG 66.22 -12.78 69.77 -13.13 41.84 -46.73 34.00 -33.61 32.80 -34.40 39.89 -28.85 89.21 -6.97 87.17 -9.45 91.34 -7.12
B+LL+LG+H 67.22 -10.91 71.15 -11.37 44.79 -44.60 34.09 -32.59 33.88 -27.97 40.21 -28.96 90.82 -6.05 89.59 -2.03 93.03 -5.50

5.4 Further Analysis

Hyper-Parameter Analysis. We analyze the impact of the number of storage nodes for each task
#M on performance. As depicted in Figure 5(d), it can be observed that the proposed method
consistently outperforms the original method in terms of the -AF metric (the lower, the better),
regardless of the value of #M. Interestingly, even with less memory, the proposed method still
achieves better performance. CaT cannot be trained on 400 nodes due to Cuda memory constraints.
We analyze the impact of loss weight αgip on ERGNN, SSM, and CaT across CoraFull, Arxiv,
and Reddit datasets with increments of 2 in Figure 6. For ERGNN, SSM, and CaT, αgip,1 is set
to [1, 1, 0.1], [0.01, 0.01, 0.01], and [0.1, 0.01, 0.01] for three datasets. It can be observed that the
performance change is not as significant with the variation of αgip on SSM and CaT. However,
different αgip has a greater impact on performance with ERGNN-GSIP. The possible reason is that
ERGNN selects representative nodes for replay, which may cause class imbalance and topology
discarding. For ERGNN, SSM, and CaT, the optimal hyper-parameters αgip on three datasets are
[50, 10, 1], [0.1, 0.1, 0.1], and [1, 0.5, 0.5]. Because of space limitation, we provide more curves about
#M in Appendix C.3 and hyper-parameter analysis of loss weights β and γ in Appendix C.4.
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Figure 7: The visualization of node embeddings in Task 1 and Task 7 on CoraFull dataset.

Visulization. To qualitatively demonstrate the effectiveness of our representations, we adopt t-
SNE [52] to visualize the learned node embeddings. After learning the last task, Figure 7(a) and
Figure 7(b) show the results of the learned node embeddings in Task 1 on CoraFull, while Figure 7(c)
and Figure 7(d) demonstrate the results of the last task. We can clearly observe that GSIP possesses
better representation ability by considering representations and classifying old and new classes well.

6 Conclusion

We contribute to the literature of GCIL by addressing the issue of information preservation from old
model when adapting to new classes. The key insight is that preserving graph information from spatial
domain plays a vital role in preserving information about old model, and subsequently calibrates
semantic and structural shifts and reduces catastrophic forgetting risk. To accomplish this objective,
we introduce a framework, GSIP, which utilizes the outputs of nodes in old model to diffuse the
outputs of new model and its neighbors, then aligns the outputs of new model with old model after
pooling. Finally, GSIP maintains kernel distance of neighbor pairs on both old and new models.
The graph information is remembered by low-frequency local-global information preserving and
high-frequency information preserving in feature and topological space. Evaluations over benchmark
datasets show the superiority of GSIP in handling different dataset splitting cases. In the future, we
will investigate comprehensive analysis for the preservation of complicated graph signals.
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A Method

A.1 The Proof of Proposition 1

Proposition 1. The upper bound on graph information preservation can be estimated as:

−I
(
Z old;Z new

)
≤ ∥Z old −Z new∥22 = ∥∆Z ∥22 , (20)

we expect to maximize mutual information I
(
Z old;Z new

)
, thus minimizing −I

(
Z old;Z new

)
in

estimation is needed.

Proof. The mutual information of graph information on old model and new model [53] can be
equivalent to:

I
(
Z old;Z new

)
=

∫
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= H
(
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)
−H

(
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= H(Z old) + EZ old,Z new [log p(Z old | Z new)]
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[
DKL(p(Z

old | Z new)∥q(Z old | Z new))
]

≥ EZ old,Z new [log q(Z old | Z new)],
(21)

where expectations are over distribution p(Z old,Z new), H(Z old) has been removed since it is
constant with respect to optimized parameters. The reason for the inequality is the non-negativity of
entropyH and Kullback-Leiber divergence DKL.

We expect to maximize mutual information I
(
Z old;Z new

)
, so we need to minimize

−I
(
Z old;Z new

)
in the loss function, hence we can obtain:

−I
(
Z old;Z new

)
≤ −EZ old,Z new [log q(Z old | Z new)]. (22)

The conditional likelihood is maximized to fit the information of old model, and the new model
receives compressed information needed to recover old model. A Gaussian distribution with mean µ
and variance σ is employed to estimate variational distribution q(Z old | Z new), which is expressed
as follows:

−I
(
Z old;Z new

)
≤ −

|M|∑
i=1

log q
(
Z old

i | Z new
)

=

|M|∑
i=1

logσi +

(
Z old

i − µi(Z new)
)2

2σ2
i

+ C,

(23)

where C is constant. Mean squared error matching can be seen as a specific instance of the above
formula when µ(Z new) = Z new and σ = 1, thus −I

(
Z old;Z new

)
≤ ∥Z old −Z new∥22.
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A.2 Neighbor Selection

Some replay-based methods do not explicitly save topology, so we treat nodes with high representation
similarity and label correlation on old model as neighbors for each node when computing low-
frequency local information preserving loss. Nodes whose feature similarity is greater than the given
threshold and whose labels are the same can be neighbors, formulated as follows:

Ni = {j | (COS(Zold
i , Zold

j ) > δ̂) ∩ (Yi = Yj),∀j ∈M}, i ∈M, (24)

where the cosine similarity function COS(Zi, Zj) = Z⊤
i Zj/(∥Zi∥ ∥Zj∥) is used to calculate the

degree of feature similarity, and δ̂ is similarity threshold.

We only use node feature similarity when calculating the loss of high-frequency information preserva-
tion for neighbor selection. The absence of label correlation captures the distance between nodes on
different classes, which is conducive to the model to distinguish different classes. The neighborhood
selection process is expressed as follows:

Ni = {j | COS(Zold
i , Zold

j ) > δ, ∀j ∈M}, i ∈M, (25)

where δ is the similarity threshold.

A.3 The Analysis of Other Graph Frequency Information Preservation

We perform analyses and experiments to assess the preservation of various aspects of graph frequency
information, including mid-frequency information and high-frequency global information.

Mid-Frequency Information Preservation. According to the definition of mid-frequency filtering
graph convolutional networks [54, 55], the mid-frequency convolution can be expressed as:

Fm = (In − D̃− 1
2 ÃD̃− 1

2 )(In + D̃− 1
2 ÃD̃− 1

2 ). (26)

Through a similar analysis as mentioned above, mid-frequency information preservation is defined as:

∥∆Z m
i ∥

2
2 =

∥∥∥∥∥∥
Zold

i −
∑
j∈N 2

i

Zold
j√

|N 2
i |

∣∣N 2
j

∣∣
−

Znew
i −

∑
j∈N 2

i

Znew
j√

|N 2
i |

∣∣N 2
j

∣∣
∥∥∥∥∥∥

2

2

, (27)

where N 2 is the second-hop neighbors of nodes. The distinction between mid-/high- frequency
information preservation lies in that mid-frequency signals calculate the differences between the node
and its second-hop neighbors.

High-Frequency Global Information Preservation. The general formula for high-frequency
global information preservation is represented as follows:

∥∥∥∆Z ĥ
i

∥∥∥2
2
=

∥∥∥∥∥∥
Zold

i −
∑
j∈M

Zold
j√

|M| |M|

−
Znew

i −
∑
j∈M

Znew
j√
|M| |M|

∥∥∥∥∥∥
2

2

. (28)

It implies that every node in replayed graph needs to calculate disparity with other nodes. Since graph
neural network assumes that neighboring nodes have similar representations, the penalizing distance
between nodes and their neighbors at multiple hops away is redundant and does not contribute to
structural preservation. Moreover, the inclusion of this term imposes an optimization burden and
exhibits high time complexity (O(|M|2 · k), where k denotes the dimensions of the hidden spaces).

We add mid-frequency information preservation (M) and high-frequency global information preser-
vation (HG) to GSIP in Table 4, which can yield a slight performance improvement in some cases.
However, it does not lead to better performance enhancements or outstanding results. The possible
reason is that the preservation of first-hop neighbors is sufficient to calibrate structural shift.

A.4 Algorithm

The proposed method is summarized in Algorithm 1.
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Table 4: Performance comparison before and after adding other graph frequency information preser-
vation on CoraFull dataset.

Method
Unequally Equally (10) Equally (2)

AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑

GSIP 55.32
±0.75

-2.50
±1.13

67.22
±0.44

-10.91
±0.62

63.86
±0.85

0.08
±0.76

71.15
±0.98

-11.37
±0.74

79.31
±0.50

0.70
±0.25

44.79
±1.77

-44.60
±1.67

+M / HG 55.28
±0.65

-2.61
±1.04

66.63
±0.49

-10.07
±1.75

63.89
±0.86

0.20
±0.68

69.96
±0.85

-12.85
±0.94

79.29
±0.67

0.75
±0.52

24.66
±1.47

-68.48
±1.35

Algorithm 1 Framework of GSIP
Input: At time step t > 1: New input G, MemoryM, Graph neural networks f , Labels Y , Learned

parameter θold, Max epochs U , Loss weights αreplay, αgip

Output: Parameter θnew which can mitigate catastrophic forgetting of preceding classes
1: Initialize θnew at random
2: for u = 1 to U do
3: Lnc = ℓce(Y

G, f(G; θnew))
4: Lreplay = ℓce(Y

M, f(M; θnew))
5: Lgip = ℓreg(f(M; θold), f(M; θnew))
6: θnew ← argminL = Lnc + αreplayLreplay + αgipLgip

7: end for
8: Add selected nodes to memoryM
9: return Parameter θnew

B Implementation Details

B.1 Datasets

As illustrated in Table 5, we utilize five public datasets to evaluate the effectiveness of our proposed
method in graph class incremental learning. Three different ways for partitioning datasets are
employed: one involves an unequal division, where more classes are designated as base classes to
enhance model robustness, while the remaining classes are treated as novel classes; the other two
ways involve an equal division, with an equal number of classes allocated per task. The first dataset
is CoraFull [48], which encompasses 70 classes. For the unequal division, 30 classes are used as
base classes, and an additional 20 classes are selected as increments. Additionally, the classes are
divided equally into either 10 or 2 classes per task. Arxiv [49] and Reddit [50], both of which consist
of 40 classes. In the unequal division, 10 classes are designated as base classes, with increments of 5
classes. Similarly, the classes are evenly divided into either 10 or 2 classes per task. Each dataset has
3 tasks with 2 classes per task on Cora [51] and Citeseer [51].

Table 5: Statistics of datasets.

Datasets CoraFull Arxiv Reddit Cora Citeseer

# nodes 19,793 169,343 227,853 2,708 3,327
# edges 130,622 1,166,243 114,615,892 5,429 4,732
# class 70 40 40 7 6

# task 3 / 7 / 35 7 / 4 / 20 7 / 4 / 20 3 3
# base class 30 / 10 / 2 10 / 10 / 2 10 / 10 / 2 2 2
# novel class 20 / 10 / 2 5 / 10 / 2 5 / 10 / 2 2 2

B.2 Baselines

In this subsection, we introduce the baselines in the main paper. These baselines are as follows:

• Finetuning is the lower bound baseline updating the model only with newly emerging graph
data.

• Joint is the ideal upper bound and inputs contain all previous graph data.
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• Elastic Weight Consolidation (EWC) [30] quadratically penalizes model weights according
to their importance to previous tasks.

• Gradient Episodic Memory (GEM) [31] modifies gradients of the current task using gradi-
ents computed from stored graph data.

• Memory Aware Synapses (MAS) [32] utilizes analysis of parameter prediction as the
importance of parameters when adding regularization terms.

• Learning without Forgetting (LwF) [6] utilizes information distillation to reduce the dis-
crepancy between old and new models.

• Topology-aware Weight Preserving (TWP) [1] preserves the key parameters and topology
of the previous task through regularization terms.

• Structural Shift Risk Mitigation (SSRM) [11] introduces regularization terms to mitigate
catastrophic forgetting from structural drift.

• Experience Replay Graph Neural Network (ERGNN) [7] framework incorporates memory
replay by storing representative nodes.

• Sparsified Subgraph Memory (SSM) [8] stores sampled sparse subgraphs in memory reposi-
tory to preserve structural information.

• The Condense and Train (CaT) [9] framework compresses the graph into a small but
informative synthetic replay graph.

B.3 Metrics

We choose two widely used metrics to evaluate the performance of the compared methods, including
Average Performance (AP) and Average Forgetting (AF) [31]. When the model learns the latest task,
all previous tasks are evaluated and a lower triangular performance matrix W = {wtt′} ∈ wτ×τ

is formed, where wtt′ is node classification accuracy on task t after learning task t′ (t ≤ t′) and
τ is the total number of tasks. Average performance AP = 1/τ

∑τ
t=1 wτ,t evaluates the average

performance of model on previous task after learning from new task τ . Average Forgetting AF =

1/(τ − 1)
∑τ−1

t=1 (wτ,t − wt,t) represents the average performance degradation on previous tasks
after learning from task τ .

B.4 Reproducibility

Our method is trained using a fixed random seed to ensure the consistency and verifiability of results.
We are committed to open-sourcing and sharing our code to promote academic collaboration and
knowledge sharing, enabling other researchers to reproduce and validate our experimental results.

Table 6: Incremental learning settings.
ERGNN-GSIP d: 0.5, sampler: CM
SSM-GSIP subgraph_sampler: random
CaT-GSIP n_encoders: 500, feat_init: randomChoice, feat_lr: 0.001, hid_dim: 512, hop: 1

B.5 Detailed Settings

Our model is deployed in PyTorch with an NVIDIA RTX 3090 GPU and trained with 200 epochs for
every task. We use Adam with weight decay for optimization, and the learning rate is set to 0.005. We
use a two-layer GCN with a hidden dimension 256 as the backbone. All results are reported in means
and standard deviations over 3 trials. The train-validation-test splitting ratios are 60%, 20%, and
20% for all datasets. The train-validation-test split is achieved through random sampling, resulting in
variations in performance across different rounds of random sampling. δ̂ is set to 0.99 and the search
space of δ is {0.5, 0.6, 0.7, 0.8, 0.9}. Table 6 is the hyper-parameters we adopt from [42] and [9].

C Experimental Results

C.1 Performance Comparison
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Table 7: Performance comparison on CoraFull, Arxiv, and Reddit for GCIL setting. Results are
averaged among three trials. The best performing results (excluding Joint) are highlighted in bold,
and the standard deviations are shown in gray.

Method

CoraFull Arxiv Reddit

Unequally Equally (10) Equally (2) Unequally Equally (10) Equally (2) Unequally Equally (10) Equally (2)

AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑

Finetuning 23.95
±0.18

-76.59
±0.80

11.06
±0.14

-85.77
±0.03

2.70
±0.28

-95.48
±0.04

11.64
±0.20

-70.41
±0.76

5.41
±2.03

-50.00
±3.93

4.91
±0.01

-87.61
±0.41

14.66
±1.68

-91.80
±3.51

22.90
±1.89

-94.42
±1.74

5.83
±0.78

-94.23
±1.32

EWC 24.09
±0.48

-75.78
±0.61

11.15
±0.25

-86.08
±0.32

5.13
±1.99

-93.08
±1.94

11.93
±0.15

-68.97
±1.45

14.83
±0.31

-57.33
±1.16

4.91
±0.01

-87.58
±0.30

13.79
±0.27

-95.35
±1.54

22.30
±0.49

-95.27
±1.30

9.66
±2.03

-93.85
±2.07

GEM 23.95
±0.37

-76.05
±0.63

11.23
±0.29

-85.78
±0.07

7.97
±0.67

-90.00
±0.67

11.61
±0.38

-60.27
±5.38

8.27
±1.53

-44.42
±1.49

4.92
±0.08

-86.66
±0.61

18.51
±4.23

-89.79
±6.06

22.58
±2.58

-93.93
±1.08

35.11
±4.31

-65.67
±4.57

MAS 24.20
±0.59

-75.97
±0.97

10.94
±0.48

-82.37
±0.71

4.43
±0.64

-89.22
±1.43

11.09
±0.23

-66.76
±0.59

12.32
±0.69

-57.99
±1.82

5.29
±0.83

-81.64
±1.34

15.45
±3.38

-0.50
±0.76

25.54
±1.41

0.01
±0.03

5.98
±1.82

-14.17
±1.17

LwF 23.99
±0.62

-76.14
±0.55

11.14
±0.14

-85.67
±0.63

2.72
±0.25

-95.08
±0.05

11.93
±0.20

-70.66
±0.74

14.69
±1.48

-58.93
±1.25

4.91
±0.01

-88.14
±0.09

16.13
±3.17

-90.31
±3.99

24.39
±0.69

-93.29
±0.60

7.59
±0.51

-88.98
±0.74

TWP 23.86
±0.17

-75.74
±0.70

11.01
±0.21

-85.43
±0.18

3.56
±1.02

-94.66
±0.84

11.93
±0.08

-69.26
±0.24

14.41
±0.54

-56.56
±3.36

4.90
±0.01

-87.75
±0.32

13.95
±0.90

-96.17
±1.11

21.22
±1.58

-96.41
±0.11

9.34
±3.46

-94.24
±3.78

SSRM 63.62
±0.56

-16.24
±1.22

31.39
±2.25

-60.61
±3.11

3.22
±0.29

-89.29
±0.48

31.51
±0.44

-45.12
±0.55

26.61
±0.11

-46.22
±1.09

26.16
±0.85

-61.24
±0.84

78.40
±7.42

-20.92
±8.64

76.78
±4.35

-23.16
±5.62

83.96
±3.04

-15.41
±3.18

ERGNN 60.91
±1.12

-19.47
±1.43

24.39
±0.39

-69.31
±0.73

3.01
±0.20

-94.34
±0.51

31.18
±0.83

-45.45
±1.75

24.47
±2.67

-49.11
±3.03

24.70
±1.00

-62.26
±0.75

76.60
±5.77

-23.22
±6.47

75.22
±11.67

-25.26
±14.13

83.16
±1.92

-16.21
±2.06

ERGNN-GSIP
(Ours)

67.22
±0.44

-10.91
±0.62

71.15
±0.98

-11.37
±0.74

44.79
±1.77

-44.60
±1.67

34.09
±0.77

-32.59
±1.37

33.88
±0.87

-27.97
±1.63

40.21
±0.92

-28.96
±0.94

90.82
±0.70

-6.05
±0.68

89.59
±2.04

-2.03
±4.62

93.03
±3.87

-5.50
±4.11

SSM 50.51
±1.03

-10.56
±0.94

62.90
±0.50

-6.02
±0.37

79.02
±0.50

-4.24
±0.23

63.48
±0.78

-12.41
±0.01

60.57
±0.80

-10.09
±1.19

63.91
±0.35

-12.48
±0.58

90.10
±1.56

-5.83
±1.14

86.91
±1.77

-3.24
±0.56

96.24
±0.24

-1.64
±0.31

SSM-GSIP
(Ours)

55.32
±0.75

-2.50
±1.13

63.86
±0.85

0.08
±0.76

79.31
±0.50

0.70
±0.25

63.36
±1.13

-7.27
±0.82

61.34
±0.77

-6.34
±0.70

64.16
±0.37

-8.87
±0.58

90.74
±0.44

-3.97
±0.40

87.41
±1.60

0.13
±0.91

96.25
±0.37

-0.65
±0.64

CaT 70.55
±0.67

-5.26
±0.40

76.35
±0.41

-5.44
±0.58

80.64
±0.30

-4.31
±0.43

71.66
±0.73

-8.33
±0.26

70.16
±0.14

-7.25
±0.79

66.21
±0.12

-12.73
±0.09

96.39
±0.17

-0.77
±0.40

93.97
±0.30

-1.31
±0.08

97.64
±0.09

-0.49
±0.04

CaT-GSIP
(Ours)

71.06
±0.54

-0.28
±0.07

78.29
±0.11

-1.25
±0.25

81.10
±0.18

2.68
±0.16

71.52
±0.64

-4.76
±0.08

70.57
±0.14

-3.97
±0.51

68.80
±0.24

3.49
±0.39

96.15
±0.30

-0.23
±0.31

94.23
±0.28

0.21
±0.64

97.55
±0.05

1.04
±0.30

Joint 85.3
±0.1 - 85.3

±0.1 - 85.3
±0.1 - 63.5

±0.3 - 63.5
±0.3 - 63.5

±0.3 - 98.2
±0.0 - 98.2

±0.0 - 98.2
±0.0 -

Table 8: Performance comparison on Cora and
Citeseer for GCIL setting. Results are averaged
among three trials. The best performing results
(excluding Joint) are highlighted in bold, and the
standard deviations are shown in gray.

Method

Cora Citeseer

Equally (2) Equally (2)

AP↑ AF↑ AP↑ AF↑

Finetuning 32.58
±0.00

-96.83
±0.39

31.46
±0.27

-77.86
±0.67

EWC 32.58
±0.00

-97.16
±0.55

31.26
±0.15

-78.22
±0.61

GEM 32.70
±0.19

-97.12
±0.16

31.39
±0.09

-77.70
±1.06

MAS 31.84
±0.10

-97.17
±0.22

31.25
±0.55

-76.67
±1.18

LwF 32.58
±0.00

-97.57
±0.27

31.44
±0.00

-78.29
±0.36

TWP 32.58
±0.00

-97.32
±0.17

31.22
±0.23

-78.14
±0.22

SSRM 35.48
±0.49

-70.01
±1.12

51.91
±4.59

-67.66
±6.67

ERGNN 65.48
±0.76

-46.09
±1.15

47.65
±0.57

-51.12
±1.47

ERGNN-GSIP
(Ours)

71.29
±0.91

-36.95
±1.22

61.29
±0.96

-29.38
±2.28

SSM 67.64
±3.14

-19.78
±8.10

60.99
±1.43

-13.60
±3.61

SSM-GSIP
(Ours)

69.92
±1.46

-11.82
±6.74

61.86
±2.23

-8.39
±3.82

CaT 88.22
±0.49

-4.40
±1.04

75.08
±0.35

-10.93
±1.07

CaT-GSIP
(Ours)

89.60
±0.62

1.84
±3.89

77.02
±0.70

-9.95
±1.15

Joint 93.09
±0.85 - 78.27

±0.10 -

The effect of GCIL on five datasets with standard
deviation is presented in Table 7 and 8. GSIP
improves existing information preservation meth-
ods under different dataset splitting scenarios.
The performance matrices of SSM and CaT on
CoraFull before and after incorporating GSIP are
shown in Figure 8 and Figure 9. Remembering
information from previous classes becomes chal-
lenging without the implementation of the pro-
posed GSIP. The performance matrix illustrates a
deceleration in the forgetting process after adopt-
ing the GSIP scheme. This is evident by the
minimal changes and deepening in color of each
column, indicating mitigation of the catastrophic
forgetting problem. This is achieved through the
preservation of information from previous model.

C.2 Ablation Study

Efficiency. As shown in Table 9, Table 10, and
Table 11, the consequences of ablation experi-
ments with standard deviation for ERGNN, SSM,
and CaT as baselines (B) are presented. We in-
vestigate the effectiveness of low-frequency lo-
cal modules (LL), low-frequency global mod-
ules (LG), and high-frequency modules (H). The
above components are added one by one to base-
lines for performance comparison. B is the
baseline. B+LL indicates that it only uses low-
frequency local preservation. B+LL+LG represents that it uses low-frequency local-global preserva-
tion. B+LL+LG+H is the full model, which uses low-frequency and high-frequency preservation. All
the components are effective and can bring great benefits to the model in performance improvement.
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Figure 8: Performance matrices in SSM.
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Figure 9: Performance matrices in CaT.

Table 9: Ablation comparisons of graph spatial information preserving strategy for ERGNN.

Method

CoraFull Arxiv Reddit

Unequally Equally (10) Equally (2) Unequally Equally (10) Equally (2) Unequally Equally (10) Equally (2)

AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑

B 60.91
±1.12

-19.47
±1.43

24.39
±0.39

-69.31
±0.73

3.01
±0.20

-94.34
±0.51

31.18
±0.83

-45.45
±1.75

24.47
±2.67

-49.11
±3.03

24.70
±1.00

-62.26
±0.75

76.60
±5.77

-23.22
±6.47

75.22
±11.67

-25.26
±14.13

83.16
±1.92

-16.21
±2.06

B+LL 65.79
±0.87

-13.20
±1.26

69.02
±0.11

-14.15
±0.05

41.37
±1.90

-47.39
±2.19

33.27
±1.48

-34.60
±1.29

27.10
±3.47

-40.95
±4.17

38.09
±1.02

-35.04
±1.67

84.63
±4.58

-12.09
±6.36

84.26
±1.12

-12.37
±1.96

87.52
±2.86

-10.97
±2.98

B+LL+LG 66.22
±0.56

-12.78
±1.12

69.77
±0.37

-13.13
±0.29

41.84
±1.25

-46.73
±1.16

34.00
±0.37

-33.61
±0.58

32.80
±2.71

-34.40
±3.17

39.89
±0.16

-28.85
±0.49

89.21
±2.43

-6.97
±0.94

87.17
±2.70

-9.45
±3.86

91.34
±3.58

-7.12
±3.91

B+LL+LG+H 67.22
±0.44

-10.91
±0.62

71.15
±0.98

-11.37
±0.74

44.79
±1.77

-44.60
±1.67

34.09
±0.77

-32.59
±1.37

33.88
±0.87

-27.97
±1.63

40.21
±0.92

-28.96
±0.94

90.82
±0.70

-6.05
±0.68

89.59
±2.04

-2.03
±4.62

93.03
±3.87

-5.50
±4.11

Table 10: Ablation comparisons of graph spatial information preserving strategy for SSM.

Method

CoraFull Arxiv Reddit

Unequally Equally (10) Equally (2) Unequally Equally (10) Equally (2) Unequally Equally (10) Equally (2)

AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑

B 50.51
±1.03

-10.56
±0.94

62.90
±0.50

-6.02
±0.37

79.02
±0.50

-4.24
±0.23

63.48
±0.78

-12.41
±0.01

60.57
±0.80

-10.09
±1.19

63.91
±0.35

-12.48
±0.58

90.10
±1.56

-5.83
±1.14

86.91
±1.77

-3.24
±0.56

96.24
±0.24

-1.64
±0.31

B+LL 54.75
±0.76

-5.45
±1.06

63.68
±0.58

-1.60
±0.60

79.30
±0.65

-0.49
±0.36

62.99
±0.91

-9.70
±0.18

60.13
±0.48

-7.04
±0.98

63.93
±0.34

-9.89
±0.58

90.55
±0.48

-4.06
±0.46

87.34
±1.56

0.06
±0.93

95.98
±0.19

-0.84
±0.30

B+LL+LG 55.16
±0.56

-2.62
±1.21

63.67
±0.65

-0.02
±0.59

79.31
±0.65

0.61
±0.60

63.40
±1.16

-7.60
±0.96

61.17
±1.02

-6.57
±1.32

64.01
±0.60

-9.22
±1.07

90.70
±0.35

-4.05
±0.33

87.38
±1.69

0.14
±0.93

96.16
±0.35

-0.75
±0.57

B+LL+LG+H 55.32
±0.75

-2.50
±1.13

63.86
±0.85

0.08
±0.76

79.31
±0.50

0.70
±0.25

63.36
±1.13

-7.27
±0.82

61.34
±0.77

-6.34
±0.70

64.16
±0.37

-8.87
±0.58

90.74
±0.44

-3.97
±0.40

87.41
±1.60

0.13
±0.91

96.25
±0.37

-0.65
±0.64

Table 11: Ablation comparisons of graph spatial information preserving strategy for CaT.

Method

CoraFull Arxiv Reddit

Unequally Equally (10) Equally (2) Unequally Equally (10) Equally (2) Unequally Equally (10) Equally (2)

AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑ AP↑ AF↑

B 70.55
±0.67

-5.26
±0.40

76.35
±0.41

-5.44
±0.58

80.64
±0.30

-4.31
±0.43

71.66
±0.73

-8.33
±0.26

70.16
±0.14

-7.25
±0.79

66.21
±0.12

-12.73
±0.09

96.39
±0.17

-0.77
±0.40

93.97
±0.30

-1.31
±0.08

97.64
±0.09

-0.49
±0.04

B+LL 70.74
±0.57

-1.32
±0.69

78.31
±0.16

-2.03
±0.13

80.91
±0.14

-0.89
±0.52

71.42
±0.77

-6.02
±0.20

70.42
±0.37

-4.80
±0.75

67.23
±0.24

-2.85
±0.44

96.12
±0.28

-0.29
±0.31

93.23
±0.39

-0.12
±0.78

97.26
±0.28

0.35
±0.36

B+LL+LG 70.89
±0.42

-0.39
±0.07

77.91
±0.27

-1.41
±0.33

81.12
±0.19

-0.10
±0.17

71.41
±0.92

-4.85
±0.04

70.59
±0.15

-3.99
±0.59

68.61
±0.10

3.10
±0.34

96.14
±0.24

-0.26
±0.24

93.91
±0.47

0.04
±1.09

97.27
±0.33

0.48
±0.36

B+LL+LG+H 71.06
±0.54

-0.28
±0.07

78.29
±0.11

-1.25
±0.25

81.10
±0.18

2.68
±0.16

71.52
±0.64

-4.76
±0.08

70.57
±0.14

-3.97
±0.51

68.80
±0.24

3.49
±0.39

96.15
±0.30

-0.23
±0.31

94.23
±0.28

0.21
±0.64

97.55
±0.05

1.04
±0.30
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Figure 10: Graph information preservation training losses of different variants with epochs on
CoraFull dataset.
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Information Pattern. Training losses of ERGNN-GSIP during incremental processes in the dataset
inequality partition setting are illustrated. Specifically, we focus on the last two tasks and examine
how the loss of different variants changes with increasing epochs. We make three observations: (1)
Low-frequency local graph information is well preserved. Figure 10(a) measures the degree of feature
similarity. It can be observed that losses of the first two variants start to rise around the 50th epoch.
However, the GSIP loss remains much lower than the first two variants and converges quickly. (2) The
learning of low-frequency information is ensured after global graph embedding similarity correction.
It can be seen that the loss of GSIP is slightly lower than the other two variants in Figure 10(b). (3)
GSIP can preserve high-frequency information and reduce the forgetting of topology. In Figure 10(c),
we can see that the losses of the first two variants decrease and then increase at each increment. This
demonstrates that node difference information is almost completely discarded in these variants.

C.3 Hyper-Parameter Analysis of Memory Size

We analyze the impact of the number of storage nodes for each task #M on performance of each task
that has 2 classes. As depicted in Figure 11-Figure 15, it can be observed that the proposed method
consistently outperforms the original method in terms of the AP (the higher, the better) and -AF
metric (the lower, the better), regardless of the value of #M. CaT cannot be trained with 400 nodes
on CoraFull due to Cuda memory constraints. Interestingly, despite having less memory, the proposed
method demonstrates superior performance across three datasets. Furthermore, the performance
remains relatively consistent when storing 200 or 400 nodes, indicating that our method does not
incur higher storage costs. Notably, storing only 10 nodes per task yields performance comparable to
storing 400 nodes on Reddit, highlighting the superiority of our approach.
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Figure 11: The change of AP affected by #M on CoraFull dataset.
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Figure 12: The change of AP affected by #M on
Arxiv dataset.
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Figure 13: The change of AF affected by #M on
Arxiv dataset.
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Figure 14: The change of AP affected by #M on
Reddit dataset.
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Figure 15: The change of AF affected by #M on
Reddit dataset.
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C.4 Hyper-Parameter Analysis of Loss Weights

As shown in Figure 16, Figure 17, and Figure 18, the analysis for two hyper-parameters, loss weights
β and γ on ERGNN, SSM, and CaT in terms of AF is conducted, and the results are in an experimental
setting of increment 2. For ERGNN, β1 is set to [2e − 5, 1e − 1, 1e − 5] and γ1 is set to [2e − 2,
1e− 8, 1e− 4] for different datasets. For SSM, β1 is set to [1, 1, 10] and γ1 is set to [1e− 7, 1e− 8,
1e− 3] for three datasets. For CaT, β1 is set to [1e− 1, 2, 2e− 4] and γ1 is set to [1e− 1, 1e− 6,
2e− 1] for three datasets. We notice that the model performance remains unaffected by changes in β
when γ is set to 0 and by changes in γ when β reaches its optimal value.
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Figure 16: The analysis of β and γ in ERGNN-GSIP on CoraFull, Arxiv, and Reddit datasets.
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Figure 17: The analysis of β and γ in SSM-GSIP on CoraFull, Arxiv, and Reddit datasets.
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Figure 18: The analysis of β and γ in CaT-GSIP on CoraFull, Arxiv, and Reddit datasets.
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C.5 Visualization

To qualitatively demonstrate the effectiveness of representations, we utilize t-SNE [52] to visualize
the node embeddings of ERGNN and ERGNN-GSIP. After learning the last task, Figure 19(a) and
Figure 19(b) display the results of the learned node embeddings in Task 1 on Reddit, while Figure
19(c) and Figure 19(d) illustrate the results of the last task. GSIP exhibits superior representation
ability, effectively considering representations and accurately classifying old and new classes.

(a) ERGNN, Task 1 (b) ERGNN-GSIP, Task 1 (c) ERGNN, Task 7 (d) ERGNN-GSIP, Task 7

Figure 19: The visualization of node embeddings from ERGNN and ERGNN-GSIP in Task 1 and
Task 7 of Reddit dataset.

C.6 Time Complexity Analysis

The time complexity of framework mainly comes from three aspects: (1) node classification
O(|V |kG

k+ |E|k+ |V |k), (2) replay scheme O(|M|kG
k+ |EM|k+ |M|k), and (3) graph spatial

information preservation O(|EM|k + k). The total time complexity is O(|V |kG
k + |M|kG

k +
|V |k+ |M|k+ |E|k+ |EM|k+k), where V andM are subgraph vertices and memory, E and EM
are edge sets of subgraph vertices and memory, then kG and k denote the dimensions of inputs and
hidden spaces. The time complexity increases linearly compared with baselines. The running time on
CoraFull is presented in Table 12. For ERGNN, |V | ≫ |M| leads to phenomenon that the higher the
number of tasks, the shorter training time. On the contrary, more tasks result in longer training time
due to the properties of compressed graphs in SSM and CaT.

Table 12: Running time (s) of each epoch under three dataset partitioning cases on CoraFull dataset.
Method Unequally Equally (10) Equally (2)

ERGNN 0.8073 0.3694 0.1660
+GSIP 1.1913 0.4672 0.3792
SSM 0.0110 0.0279 0.0410
+GSIP 0.0113 0.0312 0.0494
CaT 0.0106 0.0189 0.0488
+GSIP 0.0147 0.0235 0.0524

D Discussion

D.1 Limitation

The primary limitation of GSIP lies in its focus on replayed designs and the lack of connection to
other methods. Also, the paper does not examine other GCIL settings on the graph, such as the lack
of a clear task boundary, which would be an interesting direction to explore in the future.

D.2 Broader Impact

Considering the broader implications of our work, we posit that the proposed framework for infor-
mation preservation of the old graph model will support the development of systems in an open
environment based on machine learning. However, accessing old data may raise privacy concerns,
and the dynamic updating of systems could inadvertently marginalize under-represented groups,
potentially have a negative impact on outcomes and interfere with fair decision-making.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: See abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are discussed in Appendix D.1.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Section 4 for assumptions and the detailed proof is provided in Appendix
A.1.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the information needed to reproduce the main experimental results is added
in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: They are enclosed in the supplemental material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experiment settings are provided in Appendix B.5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: See that Table 7-Table 11 report the standard deviation of experimental results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The detailed description is provided in Appendix B.5 and C.6.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conforms with the NeurIPS Code of
Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Broader impacts are discussed in Appendix D.2.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: The paper does not use existing assets.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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