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ABSTRACT

Detecting training data for large language models (LLMs) is receiving growing
attention, especially in applications requiring high reliability. While numerous ef-
forts have been made to address this issue, they typically focus on accuracy with-
out ensuring controllable results. To fill this gap, we propose Knockoff Inference-
based Training data Detector (KTD), a novel method that achieves rigorous false
discovery rate (FDR) control in training data detection. Specifically, KTD gener-
ates synthetic knockoff samples that seamlessly replace original data points with-
out compromising contextual integrity. A novel knockoff statistic, which incor-
porates multiple knockoff draws, is then calculated to ensure FDR control while
maintaining high power. Our theoretical analysis demonstrates KTD’s asymp-
totic optimality in terms of FDR control and power. Empirical experiments on
real-world datasets such as WikiMIA, XSum and Real Time BBC News further
validate KTD’s superior performance compared to existing methods.

1 INTRODUCTION

Large language models (LLMs) have demonstrated exceptional performance across a variety of
natural language processing (NLP) tasks, including machine translation (Wong et al., 2023), code
completion (Chen et al., 2021; Li et al., 2022), and question answering (Dong et al., 2024; Li et al.,
2024a). The success of LLMs is largely attributed to the use of incredibly massive language cor-
pora, often at the trillion-token level (Computer, 2023). Although such extensive datasets endow
LLMs with a broad knowledge base and robust text generation capabilities, they sometimes include
private information (Carlini et al., 2021) or copyrighted content (Chang et al., 2023) collected from
the Internet, leading to unexpected negative consequences. For example, LLMs may inadvertently
memorize and reproduce sensitive information when prompted with carefully crafted inputs, thereby
posing substantial risks of privacy leakage or copyright infringement (Carlini et al., 2021).

To address this issue, recent studies have focused on detecting training data from LLMs (Shi et al.,
2023; Golchin & Surdeanu, 2023). Unfortunately, these approaches treat the problem as a binary
classification task, solely aiming for accurately classifying training and non-training samples. How-
ever, we argue that in certain cases of copyright violation detection, accuracy alone is insufficient.
For instance, if a copyright holder intends to sue a technology company for unauthorized use of
proprietary content (Grynbaum & Mac, 2023), it is crucial to ensure that the majority of identi-
fied training samples were indeed used by the company for training. False detection in this context
can result in unnecessary legal consequences. Therefore, controlling the false discovery rate (FDR)
(Benjamini & Hochberg, 1995), also known as the false positive rate in binary classification, is
crucial for training data detection and should not be overlooked.

In this paper, we study the problem of detecting training samples from LLMs with controllable
FDR. Specifically, given a set of text samples, we aim to determine whether the model has been
trained on them while ensuring the proportion of detected samples that are non-training samples
is bounded. Inspired by controllable variable selection, we propose a Knockoff Inference-based
Training Data Detector (KTD), which treats the problem of detecting training samples as an instance
of relevant variable selection, thereby enabling the use of knockoff inference’s (KI) robust capacity
in FDR controlling. KI generates knockoff variables corresponding to each original variable and
computes knockoff statistics for each pair of original and knockoff variables, which are then used
to identify relevant variables. Building on the KI paradigm, KTD operates in two stages. In the first
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stage, KTD generates knockoffs that preserve the semantics of the original text samples, ensuring
they can substitute for the originals without altering the context. In the second stage, the knockoff
statistics capturing the difference between original text samples and their corresponding knockoffs
are computed to serve as a measure for identifying training samples.

In KTD, a fundamental component for successful detection is the construction of the knockoff statis-
tic. While the knockoff statistic from the vanilla KI method can be directly applied to KTD, it has
a significant drawback: the vanilla KI method uses only a single draw of the knockoff variable to
calculate the knockoff statistic Wj . This approach results in high variance in Wj due to the in-
herent randomness of the knockoff process, making it difficult to distinguish between training and
non-training samples. Such indistinguishability can lead to overly conservative detection results,
excluding too many true training samples to achieve the desired FDR control. Consequently, this
significantly impairs detection efficiency, as measured by power (the proportion of actual training
samples that are correctly detected).

To address this issue, KTD adopts a novel approach for calculating the knockoff statistic which
utilizes multiple draws of the knockoff variable. This design effectively reduces the variance of
the knockoff statistic, making it more centralized and thereby enhancing the separability between
training and non-training samples. Specifically, KTD draws m realizations of the knockoff variables
and computes the knockoff statistic W̃j by comparing the importance score of the original variable
to the average of the scores of these realizations.

To theoretically justify KTD, we first demonstrate that the knockoff statistic of KTD, i.e., WKTD
j

retains the symmetric property, ensuring that it can control the FDR just like the vanilla KI. Further-
more, we distinguish KTD from the vanilla KI by proving its asymptotically optimal property: as m
approaches infinity, the power converges to 1 and the FDR converges to 0.

We empirically evaluate KTD using three popular large language models on three real-world
datasets, including the established benchmark WikiMIA. The experimental results demonstrate that
KTD not only achieves the desired FDR control without relying on a validation set, which exist-
ing methods depend on but also exhibits significantly higher power compared to vanilla KI when
achieving similar FDR levels.

To summarize, our contributions are as follows:

1. We address the problem of detecting training data from LLMs with FDR control through the per-
spective of knockoff inference and propose a knockoff inference-based detecting method KTD.

2. We theoretically justify our proposed KTD from two aspects. Firstly, we prove that the knockoff
statistic in KTD possesses the symmetric property, which is essential for effective FDR control.
Secondly, we show that KTD exhibits asymptotically optimal properties, distinguishing it from
the vanilla KI.

3. Our experimental analysis validates the effectiveness of KTD by demonstrating its ability to
achieve the desired FDR level with competitive power.

2 RELATED WORK

2.1 TRAINING DATA LEAKAGE IN LLMS

Related to the training data leakage, memorization in language models has been extensively studied.
Works such as Kandpal et al. (2022); Carlini et al. (2021; 2022b); Zeng et al. (2024) analyze the
memorization behaviors of language models, providing insights into their underlying mechanisms.
However, these studies primarily focus on exploring the characteristics and contributing factors of
memorization, without proposing practical methods for detecting training samples.

Focusing on LLMs, other studies (Brown et al., 2020; Wei et al., 2021; Du et al., 2022) consider
the potential impacts of training data leakage on evaluation results. To ensure the reliability of
the results, these studies exclude test samples that have n-gram overlaps with any data used during
pre-training. This approach requires access to pre-training datasets, making it impossible to detect
training samples without support from the model provider.

To evaluate training data leakage without access to the training dataset, several methods have been
proposed for detecting training samples. For instance, Golchin & Surdeanu (2023) prompts a model
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Table 1: Algorithmic properties
Property FX-Knockoff MX-Knockoff Contamination Test Mink% Time Traveling KTD (Ours)

Metadata-free ✓ ✓ ✓ ✓ ✗ ✓
Threshold-free ✓ ✓ ✓ ✗ ✓ ✓
FDR Control ✓ ✓ ✗ ✗ ✗ ✓
FDR analysis ✗ ✗ ✗ ✗ ✗ ✓

Power analysis ✗ ✗ ✗ ✗ ✗ ✓

to generate completions using two types of instructions and identifies training samples by compar-
ing the texts generated from these instructions. Shi et al. (2023) assumes that non-training texts are
more likely to contain outlier tokens that cause significantly high loss and proposes detecting train-
ing samples using top-k token log probabilities. Oren et al. (2023) leverages the exchangeability of
datasets, which implies that non-training samples are permutation invariant to the model, and iden-
tifies dataset-level contamination through hypothesis testing. Despite the empirical effectiveness of
these methods, they do not provide theoretically guaranteed control of the FDR.

Related to training data detection, membership inference attack (MIA) also has attracted much atten-
tion. Similar to our approach, Mattern et al. (2023); Fu et al. (2024) generate neighboring samples
resembling the original ones and compare each sample with its generated neighbors to detect train-
ing data. However, these methods do not explicitly focus on controlling the FDR and are primarily
driven by empirical observations rather than grounded in rigorous theoretical foundations. Some
works consider FDR in their method, such as Carlini et al. (2022a); Mireshghallah et al. (2022).
However, these works are not inherently designed for FDR control and often require either training
a large number of shadow models or access to the distribution of data that was not used to train the
target model. Such requirements render them unsuitable for LLM scenarios.

2.2 KNOCKOFFS

The knockoff framework was first proposed in Barber & Candès (2015) as a data-driven method
to control the FDR in variable selection for sparse regression problems. This framework was later
extended to high-dimensional regression in Candes et al. (2018). Some works extend the application
of knockoff inference to various tasks including multi-task regression (Dai & Barber, 2016), outlier
detection (Xu et al., 2016), and sample selection (Wang et al., 2024). To the best of our knowledge,
we are the first to apply the knockoff inference in the context of LLM training data detection.

To better illustrate the novelty of our proposed method, KTD, we compare it with works from the
knockoff literature such as FX-Knockoff (Barber & Candès, 2015) and MX-Knockoff (Candes et al.,
2018), as well as works from the training dataset detection literature such as Contamination Test
(Oren et al., 2023), Mink% (Shi et al., 2023), and Time Traveling (Golchin & Surdeanu, 2023) in
Table 1. In the table, ”metadata-free” indicates that the method does not require meta information
such as dataset name and partition name, and ”threshold-free” means the method does not rely on
heuristically determined thresholds. This table concludes the comprehensiveness of our proposed
method, KTD, regarding both training data detection and knockoff properties analysis.

3 BACKGROUND

Notation We use bold letters to represent vectors of random variables, e.g., X =
{X1, X2, . . . , Xn}. Furthermore, let X−j denote the vector resulting from the exclusion of the
j-th variable Xj , i.e., X\{Xj}. The independence between two random variables X and Y is sym-
bolized as X ⊥ Y . Let [n] represent the set {1, 2, . . . , n}; for any given set A, |A| denotes the
cardinality of A. For two number a and b, let a ∨ b represent max(a, b).

Problem Definition Suppose we have n potential training samples X1, X2, . . . , Xn to be tested.
For the sake of clarity afterward, we defined Dtotal as the index set of these samples, i.e.,
Dtotal = [n]. Depending on whether a sample has been used for training the model, Dtotal can
be divided into two disjoint subsets: Dtrain and Dnon−train, which represent the index of training
samples and non-training samples respectively. Given the dataset Dtotal and the language model fθ,
our objective is to identify an estimate of Dtrain, denoted as Ŝ ⊂ Dtotal, with an FDR bounded by a
predefined threshold q, while maintaining as high power as possible. Here, the power and FDR are
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defined as:

Power := E

[
|Ŝ ∩ Dtrain|
|Dtrain| ∨ 1

]
and FDR := E

[
|Ŝ ∩ Dnon−train|

|Ŝ| ∨ 1

]
. (1)

Auto-regressive LLMs The goal of auto-regressive large language models is to capture the un-
derlying language distribution Pθ(X). They achieve this by predicting the next token in a sequence
based on the preceding tokens. Specifically, given a sequence X = (x1, x2, · · · , xT ), these models
represent the probability of X using the chain rule:

Pθ(X) =

T∏
t=1

Pθ(xt | x1, x2, . . . , xt−1)

where θ denotes the parameters of the language model. The parameters θ are trained to maximize
the log-likelihood of sequences in the training dataset.

4 METHODOLOGY

In this section, we introduce our knockoff inference-based training data detector, KTD. We begin
by illustrating two critical procedures of KTD, which include synthetic knockoff generation and
knockoff statistic calculation. Then, the asymptotic analysis for KTD is provided.

4.1 KTD: A NOVEL KNOCKOFF-BASED FRAMEWORK

Motivation Knockoff inference is a method originally designed for selecting variables relevant to
certain outputs of interest while controlling FDR. In our settings, we can reformulate our problem as
a variable selection problem by treating the training samples {Xj}j∈Dtrain as relevant variables and
model parameter θ as the output of training algorithm Alg which takes training samples as input,
i.e., θ = Alg({Xj}j∈Dtrain−total

). Here, Dtrain−total represents the model’s entire training dataset,
and Dtrain is a subset of it. Through this reformulation, the robust FDR control ability of KI can be
utilized in our context. Since in our approach, we treat samples as random variables, we will use
these two terms interchangeably in the following text.

Intuitively, the fundamental idea behind the knockoff inference-based method is to identify relevant
variables by comparing them with their noisy counterparts, known as knockoffs. As a result, the
knockoff inference-based method usually involves two critical procedures: first, generating knock-
offs for the text samples to be tested; second, calculating the knockoff statistic for these text samples
by comparing the scores assigned to them with the scores assigned to their knockoff counterparts.
Next, we illustrate how these two stages work in vanilla KI and how they are instantiated in KTD.

4.1.1 KNOCKOFF GENERATION

In vanilla KI, knockoffs are typically generated based on specific assumptions about the distribution
of variables {Xj}nj=1, such as Gaussian (Candes et al., 2018), Markov model Sesia et al. (2018) and
hidden Markov model (Sesia et al., 2018). However, due to the complexity of natural language, it
is challenging to use common distributions to model the relationships between text samples, render-
ing existing methods unsuitable for knockoff generation in this context. Consequently, we directly
adhere to the fundamental definition of knockoffs:
Definition 1. Model-X Knockoffs, (Candes et al., 2018) Model-X knockoffs for a family of random
variables X = {X1, X2, . . . , Xn} are a new family of random variables X̃ = {X̃1, X̃2, . . . , X̃n}
satisfying:

1. X̃ ⊥ θ | X.

2. For any s ⊂ [n], (X, X̃)swap(s)
d
= (X, X̃).

Here, (X, X̃) = (X1, X2, . . . , Xn, X̃1, X̃2, . . . , X̃n), and (X, X̃)swap(s) is obtained by swapping
Xj with its corresponding knockoff X̃j for all j ∈ s. For example, when n = 3, (X, X̃)swap({1,3}) =

(X̃1, X2, X̃3, X1, X̃2, X3).

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

This definition provides guidance for generating knockoff texts. Property (1) implies that the knock-
off text should not be generated by the model being tested, and property (2) requires that the gen-
erated knockoff texts should be able to replace the original text samples without altering the overall
joint distribution. In other words, the knockoff text should convey the same meaning as the original
text but in a different manner. To meet these requirements, we generate knockoffs in the KTD frame-
work using a natural language paraphraser, which restates or rephrases the text while preserving its
original meaning.

4.1.2 KNOCKOFF STATISTIC CALCULATION

Knockoff Statistic in Vanilla KI After constructing the knockoffs, a test statistic known as the
knockoff statistic is calculated for each text sample by comparing the importance of the original text
sample with that of its knockoff counterparts. This statistic can be viewed as a relevance measure
for each text sample and will serve as the basis for training sample selection, which is defined as
Definition 2. Knockoff Statistic, (Candes et al., 2018) A knockoff statistic W = {W1,W2, . . . ,Wn}
is a measure of variable importance that satisfies the following conditions:

1. W depends only on X, X̃, and θ:

W = f(X, X̃,θ). (2)

2. Swapping the original variable Xj with its corresponding knockoff X̃j switches the sign of Wj:

Wj([X, X̃]swap(s),θ) =

{
Wj([X, X̃],θ), if j /∈ s

−Wj([X, X̃],θ), if j ∈ s.
(3)

Typically, the calculation of the knockoff statistic of each variable can be decomposed into two steps.
First, assign importance scores Zj and Z̃j to each variable Xj and its knockoff X̃j respectively,
where the importance scores are calculated by a pre-defined scoring function T , i.e.,

Zj = Tj([X, X̃], Y ) and Z̃j = Tj+n([X, X̃], Y ). (4)

Next, calculate the knockoff statistic of j-th sample by

Wj = Zj − Z̃j . (5)

Intuitively, the scores Zj and Z̃j represent the importance of the original sample Xj and its knockoff
X̃j , respectively. A positive Wj (Wj > 0) indicates that the j-th sample is more relevant to the
model parameter θ than its knockoff, implying its membership in the training data. Conversely, a
negative Wj (Wj < 0) suggests that the j-th sample is more likely to be irrelevant to θ.

During this procedure, the key is to select an appropriate scoring function t that can effectively
measure the importance of each sample and its knockoff. In our scenario, we aim to ensure that
samples seen by the model are assigned higher scores. Inspired by works using gradient information
for OOD detection (Huang et al., 2021; Liang et al., 2018), we use the L2 norm of the model’s
gradient as the score in KTD, which is defined as:

Zj = −
∥∥∥∥∂ logPθ(Xj)

∂θ

∥∥∥∥
2

and Z̃j = −
∥∥∥∥∥∂ logPθ(X̃j)

∂θ

∥∥∥∥∥
2

(6)

where Pθ(·) represents the probability distribution modeled by the model.

Finally, a threshold is determined for thresholding knockoff statistics for training sample detection
with FDR control guarantee. This procedure is illustrated as follows:
Proposition 1. By choosing the threshold τ according to

τ = argmin
t>0

{
1 + |{j ∈ [n] : Wj ≤ −t}|
|{j ∈ [n] : Wj ≥ t}| ∨ 1

≤ q

}
. (7)

and setting Ŝ = {j : Wj ≥ τ}, the procedure can control the FDR at ≤ q.
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Our Calculation of Knockoff Statistic Despite the effectiveness of vanilla KI in controlling FDR,
its knockoff statistic Wj is prone to high variance due to the inherent randomness in the knockoff
generation process. This drawback complicates the differentiation between training and non-training
samples. Consequently, a conservative threshold τ is more likely to be selected, which excludes
many true training samples to ensure FDR control, thereby reducing the proportion of training sam-
ples that are successfully detected, i.e., power.

To address this issue, we modify the calculation of the vanilla knockoff statistic Wj by considering
multiple draws of the knockoff variables X̃. Specifically, we calculate the knockoff statistic in KTD
as follows:

WKTD
j = Zj −

1

m

m∑
i=1

Z̃
(i)
j (8)

where Z̃
(i)
j is the score calculated based on the X̃

(i)
j , the i-th draw of X̃j . Clearly, Wj is a special

case of WKTD
j when m = 1. By taking multiple knockoff draws into consideration, we can reduce

the variance of knockoff statistic WKTD
j , thereby enhancing the separability between training and

non-training samples.

Next, we show that WKTD
j can also select the appropriate threshold for FDR controlling as Wj do in

Proposition 1. We first give the independence assumption of WKTD
j following Nguyen et al. (2020):

Assumption 1. For any j ∈ Dnon−train, the knockoff statistic WKTD
j defined in Equation 8 are

independent with each other.

Next, we illustrate the symmetric property of WKTD
j :

Lemma 1. WKTD
j associated with irrelevant samples is symmetrically distributed around 0, i.e.,

P (WKTD
j < −t) = P (WKTD

j > t) for any t > 0 and j ∈ Dnon−train. (9)

This Lemma is empirically validated by our experiments. For details please refer to the third part of
our experimental results.

This Lemma, combined with the independence assumed in Assumption 1 implies that the num-
ber of non-training samples whose WKTD

j > 0 equals the number of non-training samples whose
WKTD

j < 0. This conclusion allows the use of the right-hand side of Equation 10 as an upper bound
for FDR, thereby providing an FDR control guarantee.

Consequently, we can select training samples while controlling the FDR using WKTD
j through a

procedure similar to that described in Proposition 1, defined as follows:
Proposition 2. Assume {WKTD

j }nj=1 are independent with each other, by choosing the threshold τ
according to

τ = min
t>0

{
1 + |{j ∈ [n] : WKTD

j ≤ −t}|
|{j ∈ [n] : WKTD

j ≥ t}| ∨ 1
≤ q

}
(10)

and setting Ŝ = {j : WKTD
j ≥ τ}, the procedure can control the FDR at ≤ q.

4.2 THE ASYMPTOTIC OPTIMAL PROPERTY OF KNOCKOFF STATISTIC IN KTD

Here, we provide analysis inspired by Zhao et al. (2022) to illustrate the asymptotic optimality of
FDR and power in KTD. We begin by stating an assumption on which these theorems rely.
Assumption 2. For any j ∈ Dtrain, we have E[WKTD

j ] > 0.
Remark 1. This assumption ensures that, on average, training samples will have higher importance
scores than their knockoff counterparts. This is reasonable because a sample that has been seen by
the model will induce fewer updates(thus higher Zj defined in Equation 6) compared to its knockoff.
Like Lemma 1, we provide the empirical validation of this assumption in our experiment section.
Theorem 1. Assuming Assumption 2 holds, the variable selection procedure described in Proposi-
tion 2 satisfies

Power = E

[
|Ŝ ∩ Dtrain|
|Dtrain|

]
→ 1 as m → ∞. (11)
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Theorem 2. Assuming Assumption 2 holds and the threshold τ found by Proposition 2 is not equal
to 0, the variable selection procedure satisfies

FDR = E

[
|S̃ ∩ Dtrain|

|Ŝ|

]
→ 0 as m → ∞. (12)

Remark 2. Intuitively, as m approaches infinity, the values of WKTD
j will become increasingly

centralized around their expectations. Consequently, given Assumption 2, the WKTD
j values corre-

sponding to training and non-training samples will form distinct clusters. This separation allows
the KTD method to identify a threshold that optimizes both FDR and power.

5 EXPERIMENTS

In this section, we conduct extensive experiments to validate the empirical efficacy of our proposed
method. We begin by testing the effectiveness of our method in terms of FDR control. Following
that, we empirically validate the symmetric property of our proposed knockoff statistic WKTD

j .
Next, we investigate the influence of m, the number of knockoff draws, on FDR control performance
and the trade-off between power and FDR. Finally, we conduct experiments using Pythia models
with different numbers of parameters to examine how model size affects performance.

5.1 SETUP

Baselines We first select several classic baselines from MIA literature for comparison. Specifi-
cally, they include LOSS (Yeom et al., 2018), which uses the auto-regressive loss of a sample to
determine whether it has been seen during training; MinK% (Shi et al., 2023), which takes the
average loss of the top k% tokens with the highest loss as the basis for detection and methods that
compare a sample’s loss to its zlib compression entropy (Zlib (Carlini et al., 2021)), its loss after
lowercasing (Lowercase (Carlini et al., 2021)), and its loss from a smaller reference model (Ref
(Mireshghallah et al., 2022)). Then, we compare our method with vanilla KI, which is an instance
of our method when setting m = 1.

Models We adopt three popular large language models to evaluate our detection algorithm: GPT-
2 (137M parameters) (Radford et al., 2019), Pythia (1.4B parameters) (Biderman et al., 2023), and
GPT-Neo (1.3B parameters) (Black et al., 2021). For baseline Ref, we employ Distilled-GPT2 (Sanh
et al., 2019), Pythia-410m, and GPT-Neo-125 as reference models for the three aforementioned
main models, respectively. To generate reliable knockoffs for text samples, we use a paraphraser
(Vladimir Vorobev, 2023) with the highest downloads on Hugging Face. This paraphraser is based
on the T5-base model and fine-tuned with paraphrased texts generated by ChatGPT. Throughout our
experiments, we use the model checkpoints provided by Hugging Face1.

Dataset We conduct our experiments on three datasets: WikiMIA (Shi et al., 2023) includes texts
collected from Wikipedia events. The dataset is separated into two disjoint parts: one corresponding
to events happening before 2017 and the other to events happening after 2023. These two parts
are used as training samples and non-training samples, respectively. XSum (Narayan et al., 2018)
includes summaries of BBC news articles. We select the test set of this dataset and randomly separate
it into two parts, corresponding to training and non-training samples. BBC Real Time (Li et al.,
2024b) includes BBC articles from January 2017 to August 2024. Following the process in Shi et al.
(2023), we use the articles published in 2017 as training samples and articles published in 2024 as
non-training samples. To evaluate our method, we introduce the training samples in these datasets
into the models’ training data. Specifically, we fine-tune the models using the training samples while
ensuring that the non-training samples remain unseen by the models.

Computation and Hyperparameters All the experiments are run with a single NVIDIA Tesla
V100 32GB GPU and a 10-core Intel Xeon (Skylake IBRS) CPU. When the model is too large, we
use 8-bit quantization to fit the model into GPU memory. Unless explicitly stated, we fix m = 10
for all experiments. All codes are implemented with Pytorch (Paszke et al., 2019).

1https://huggingface.co/
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Table 2: Comparison between KTD and baselines. For each dataset and model, if any methods
achieve FDR control, the one with the highest power among them will be bolded. Otherwise, the
method with the best FDR will be bolded.

WikiMIA XSum BBC Real Time

GPT-2 Pythia GPT-Neo GPT-2 Pythia GPT-Neo GPT-2 Pythia GPT-Neo
FDR Power FDR Power FDR Power FDR Power FDR Power FDR Power FDR Power FDR Power FDR Power

LOSS 0.179 0.928 0.175 0.999 0.145 0.996 0.153 0.150 0.163 0.938 0.133 0.843 0.135 0.950 0.122 0.999 0.123 0.998
MinK% 0.193 0.232 0.193 0.987 0.120 0.749 0.313 0.024 0.165 0.060 0.203 0.293 0.245 0.279 0.103 0.958 0.130 0.964

Zlib 0.000 0.060 0.187 0.984 0.096 0.881 0.237 0.499 0.164 0.880 0.164 0.801 0.122 0.800 0.142 0.997 0.112 0.993
Lowercase 0.484 0.995 0.485 0.991 0.487 0.983 0.570 0.096 0.697 0.019 0.654 0.081 0.807 0.005 0.495 0.016 0.671 0.017

Ref 0.326 0.835 0.167 1.000 0.181 1.000 0.172 0.487 0.140 0.999 0.114 0.990 0.182 0.553 0.169 1.000 0.126 0.996
Vanilla KI 0.207 0.476 0.194 0.991 0.198 0.972 0.194 0.998 0.117 0.973 0.109 0.936 0.161 0.223 0.083 0.915 0.083 0.873

KTD (Ours) 0.197 0.869 0.230 0.998 0.193 0.958 0.238 1.000 0.109 0.995 0.101 0.990 0.089 0.412 0.071 0.980 0.067 0.973
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(c) BBC Real Time

Figure 1: The FDR control results on three datasets. We vary the FDR bound q from 0.05 to 0.95
and calculate its corresponding FDR and power. Each subplot represent results on a dataset and each
line in the subplots represents the results of a model. To clearly visualize the bound, we also plot
the red line (y = x) in each subplots. If a model’s FDR is bounded, its corresponding line should be
below the red line.

5.2 RESULTS

The Effectiveness of FDR Control with fixed q We fix the FDR bound q = 0.1 and present
the comparison results between our method and the baselines in Table 2. Since baselines LOSS,
MinK%, Zlib, and Lowercase only output a confidence score for training data membership infer-
ence, they require a validation set to determine the threshold. For these methods, we sample a
100-sample validation set and select the thresholds that result in a bounded FDR with the high-
est power on the validation set. As for baseline Ref, since it requires a ”general distribution” to
determine the threshold, we mix all non-training samples from the three datasets to mimic the dis-
tribution. From the Table, we can observe that our method, KTD, successfully controls the FDR on
the XSum and BBC Real-Time datasets while maintaining relatively stable performance across dif-
ferent datasets and models. In contrast, baselines such as Zlib, MinK%, and Lowercase sometimes
exhibit exceptionally poor FDR or power, indicating that the success of these baselines heavily relies
on the selection of the validation set. Although some baselines achieve more favorable results on
WikiMIA, we argue that this is not a completely fair comparison, as these baselines require access
to a validation set with ground truth membership labels or the distribution of non-training samples,
which may not be available in practical settings.

The Effectiveness of FDR Control under varying q We vary q and plot the corresponding power
and FDR in Figure 1. The results demonstrate that our method effectively controls the FDR in most
cases. Although in certain instances (e.g., three models on WikiMIA and GPT-2 on XSum), the
FDR is not strictly bounded by q, the corresponding lines closely follow the red line, suggesting
that the FDR remains bounded by q plus a small constant. For a more detailed discussion of these
cases, please refer to Appendix B. The figure highlights the influence of model size on FDR control.
Smaller models, like GPT-2, pose greater challenges for maintaining FDR control, whereas larger
models, such as Pythia and GPT-Neo, demonstrate better controlled FDR.

The Symmetric Property of WKTD
j To empirically validate Lemma 1 and Assumption 2 which

are associated with our knockoff statistic WKTD
j , we plot the distribution of WKTD

j calculated on
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Figure 2: The distribution of our knockoff statistic WKTD
j .
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Figure 3: m’s influence on power and FDR. We fix the bound q at 0.1 and vary m in {1, 3, 5, 10, 30,
50, 100} to calculate the power and FDR for each model. The red line in the figure represents the
FDR bound given by q. Dots below the red line indicate successful bounding.

the BBC Real Time dataset in Figure 2. From the figure, we can make three observations. Firstly,
the WKTD

j of non-training samples are symmetrically distributed around 0, which is aligned with
Lemma 1. Secondly, the expectation of non-training samples’ WKTD

j is greater than 0, illustrating
the validity of Assumption 2, which Theorems 1 and 2 rely on. Lastly, larger models (Pythia and
GPT-Neo) exhibit better separability between training and non-training samples. This is expected,
as larger models have a higher probability of memorizing their training data (Carlini et al., 2022b),
thereby showing different behavior for training versus non-training samples.

The Influence of the Number of Knockoff Draws In KTD, we use multiple knockoff draws to
calculate KTD statistic WKTD

j . In this part, we justify our design by investigating two problems:
(1) what is the influence of m on the FDR control and power; (2) what is the influence of m on the
power-FDR trade-off? Please note that vanilla KI is an instance of KTD corresponding to m = 1.

For the first point, we plot the power and FDR against m in Figure 3a and Figure 3b respectively.
From these two figures, we can make several observations. Firstly, KTD provides better FDR control
compared to vanilla KI. Vanilla KI fails to control the FDR for GPT-2 while KTD bound the FDR
when m is greater than or equal to 10. Secondly, the increase of m not only benefits FDR but also
power. As the m increases, both power and FDR get improved consistently. Finally, for Pythia
and GPT-Neo, the power and FDR approaches 1 and 0 as m goes to infinity, which validates the
asymptotic optimal property given in Theorem 1 and Theorem 2.

To validate the second point, we plot the power against FDR for different values of m in Figure 4.
From this figure, we observe that as m increases, the curves move closer to the upper left corner,
indicating that increasing m benefits the power-FDR trade-off. Even relatively small values of m,
such as m = 3, result in significant improvements. This observation illustrates that the introduction
of multiple draws can significantly enhance the trade-off between power and FDR. Moreover, as
depicted in the figure, GPT-2 exhibits an unusual tendency when the number of knockoff draws m is
small (1 or 3): occasionally, the FDR decreases as the target FDR level q increases. We hypothesize
that this tendency is due to the high instability associated with small m.

Since the computation time is primarily dominated by the calculation of gradient norms for the
knockoffs. As a result, Figure 3 also shows the trade-off between computation time and performance
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Figure 4: Trade-off between FDR and power under different m. For each m, we vary FDR bound
q from 0.1 to 1 and calculate corresponding the trade-off between power and FDR. Each subplot
represents a model and each line in the subplots represents the trade-off curve under certain m. The
closer the curve is to the upper left corner, the better the trade-off between power and FDR.
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Figure 5: Trade-off between FDR and power under different model sizes. For each model size,
varying FDR bound q is applied to compute the trade-off between power and FDR. Each subplot
presents the results on a different dataset, with each line representing the trade-off curve of a model.
Curves closer to the upper-left corner indicate a more favorable balance between power and FDR.

of power and FDR control. From the figure, we can find that m = 10 strikes an optimal balance,
achieving good performance within a relatively short computation time.

The influence of Model Size We evaluate the FDR in terms of the power-FDR trade-off across
three datasets using different-sized Pythia models (440M, 1B, 1.4B, 2.8B). Figure 5 shows a clear
trend that the trade-off improves as model size increases. This aligns with our expectations, as larger
models are more likely to memorize training data, making it easier to distinguish between training
and non-training samples. Moreover, models with sizes larger than 1 billion parameters exhibit
relatively high power even when a strict FDR bound is imposed. This observation suggests that 1
billion parameters may serve as a threshold, beyond which models can easily memorize samples
from these three datasets, thereby making the distinction between training and non-training samples
exceptionally clear.

6 CONCLUSION AND LIMITATION

In this paper, we tackled the critical issue of detecting training data for LLMs with a focus on con-
trolling FDR and introduced a novel knockoff-based method, KTD. KTD instantiates the KI frame-
work in the context of training data detection and employs a novel calculation method that leverages
multiple knockoff draws to address the high variance of the knockoff statistic in vanilla KI. To sup-
port KTD, we provided theoretical guarantees for KTD, demonstrating that it not only effectively
controls the FDR but also possesses asymptotic optimal properties. Our empirical evaluations on
three datasets further validated the efficacy of KTD, showcasing its superior performance in terms
of FDR control and the power-FDR trade-off compared to existing methods. The limitations of our
method primarily stem from two factors. First, the effectiveness of our approach depends on access
to the gradients of LLMs, which may not be available for certain proprietary models where gradient
information is inaccessible. This dependency also limits the applicability of our method to tasks
such as paraphrased text detection. Second, our method assumes the availability of a high-quality
paraphraser to generate knockoff samples. This reliance on paraphraser quality introduces a poten-
tial bottleneck in achieving optimal performance. In the future, we will explore the possibility of
designing a framework for FDR control that relies solely on logits or even the output text of LLMs.
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A APPENDIX

A.1 THE PROOF OF LEMMA 1

Lemma 1. WKTD
j associated with irrelevant samples is symmetrically distributed around 0, i.e.,

P (WKTD
j < −t) = P (WKTD

j > t) for any t > 0 and j ∈ Dnon−train. (13)

Proof. For simplicity, let W (i)
j denote Zj − Z

(i)
j . Then,

P (WKTD
j < −t) = P

(
1

m

m∑
i=1

W
(i)
j < −t

)

=

∫ −t

−∞

∫
Dv

P (W
(1)
j = a1,W

(2)
j = a2, . . . ,W

(m)
j = am) da1 da2 . . . dam dv,

(14)

where Dv = {(a1, a2, . . . , am) | 1
m

∑m
i=1 ai = v}.

According to Lemma 3.3 in Candes et al. (2018), the signs of W (i)
j are independent of their magni-

tudes. As a result, we can express the probability P (W
(1)
j = a1,W

(2)
j = a2, . . . ,W

(m)
j = am) as

the product of the following two terms:

1. P (|W (1)
j | = |a1|, |W (2)

j | = |a2|, . . . , |W (m)
j | = |am|),

2.
∏m

i=1 P (sign(W
(i)
j ) = ϵi), where ϵi = sign(ai) ∈ {−1, 1}.

Given the symmetric property of standard knockoff statistic Wj , we have
P (sign(W

(i)
j ) = −1) = P (sign(W

(i)
j ) = 1). Therefore, switching the sign of W (i)

j will not af-
fect the probability above. Consequently, for any element (a1, a2, . . . , am) in Dv , there exists a cor-
responding element (−a1,−a2, . . . ,−am) in D′

v = {(a′1, a′2, . . . , a′m) | 1
m

∑m
i=1 a

′
i = −v} satisfy-

ing P (W
(1)
j = a1,W

(2)
j = a2, . . . ,W

(m)
j = am) = P (W

(1)
j = a′1,W

(2)
j = a′2, . . . ,W

(m)
j = a′m).
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As a result, Equation 14 equals:∫ −t

−∞

∫
Dv

P (W
(1)
j = a1,W

(2)
j = a2, . . . ,W

(m)
j = am) da1 da2 . . . dam dv

=

∫ −t

−∞

∫
D′

v

P (W
(1)
j = a′1,W

(2)
j = a′2, . . . ,W

(m)
j = a′m) da1 da2 . . . dam dv

=

∫ ∞

t

∫
Dv

P (W
(1)
j = a1,W

(2)
j = a2, . . . ,W

(m)
j = am) da1 da2 . . . dam dv

= P

(
1

m

m∑
i=1

W
(i)
j > t

)
= P (WKTD

j > t).

(15)

A.2 THE PROOF OF THEOREM 1

Theorem 1. Assuming Assumption 2 holds, the variable selection procedure described in Proposi-
tion 2 satisfies

Power = E

[
|Ŝ ∩ Dtrain|
|Dtrain|

]
→ 1 as m → ∞. (16)

Proof. The main idea of the proof comes from (Zhao et al. (2022), Theorem 6). For the sake of
clarity of the article, we provide the complete proof here. Let ξj denote the expectation of WKTD

j ,
i.e., ξj = E[WKTD

j ], and let ξ be the minimum ξj among the relevant variable set Dtrain, i.e.,
ξ = minj∈Dtrain

ξj . Use σj to represent the standard error of WKTD
j .

For any j ∈ Dtrain, we have

P (WKTD
j > −ξ

2
) ≥ P (WKTD

j >
ξj
2
)

≥ P (|WKTD
j − ξj | <

ξj
2
)

≥ 1−
4σ2

j

ξ2jm

≥ 1−
4σ2

j

ξ2m
.

(17)

Due to the symmetric property of elements in Dnon−train, we have ξj = 0 for all j ∈ Dnon−train.
Hence, similar to the above equation, the following formula holds:

P (WKTD
j > −ξ

2
) ≥ 1−

4σ2
j

ξ2m
∀j ∈ Dnon−train. (18)

Combining Equation 17 and Equation 18, we get:

P (min
j

WKTD
j < −ξ

2
) = P (WKTD

1 < −ξ

2
∨WKTD

2 < −ξ

2
∨ · · · ∨WKTD

n < −ξ

2
)

=

n∑
j=1

P (WKTD
j < −ξ

2
)

≤ 4

ξ2m

n∑
j=1

σ2
j .

(19)
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If minj W
KTD
j < − ξ

2 , according to the procedure described in Proposition 2 to determine the
threshold, we have τ ≤ max{0,−minj W

KTD
j }. Therefore, we can derive a lower bound for the

power:

Power = E

[
|Dtrain ∩ Ŝ|
|Dtrain|

]
≥ E

[
|Dtrain ∩ Ŝ|
|Dtrain|

∣∣∣∣min
j

WKTD
j > −ξ

2

]
· P (min

j
WKTD

j > −ξ

2
).

(20)

Note that τ < ξ
2 . Thus, the above formula is less than or equal to

1

|Dtrain|
∑

j∈Dtrain

P (WKTD
j >

ξ

2
) · P (min

j
WKTD

j > −ξ

2
). (21)

This lower bound approaches 1 as m → ∞.

A.3 THE PROOF OF THEOREM 2

Theorem 2. Assuming Assumption 2 holds and the threshold τ found by Proposition 2 is not equal
to 0, the variable selection procedure satisfies

FDR = E

[
|S̃ ∩ Dtrain|

|Ŝ|

]
→ 0 as m → ∞. (22)

Proof. Similar to Equation 19, we have:

P ( min
j∈Dtrain

WKTD
j <

ξ

2
) ≤ 4

ξ2m

∑
j∈Dtrain

σ2
j . (23)

This probability approaches 0 as m → ∞.

We then consider FDR:

E
[
|Dnon−train ∩ Ŝ|

|Ŝ|

]
= E

[
|Dnon−train ∩ Ŝ|

|Ŝ|

∣∣∣∣min
j

W
KTD
j > −

ξ

2

]
· P (min

j
W

KTD
j > −

ξ

2
)

+ E
[
|Dnon−train ∩ Ŝ|

|Ŝ|

∣∣∣∣min
j

W
KTD
j > −

ξ

2
, min
j∈Dtrain

W
KTD
j <

ξ

2

]
· P (min

j
W

KTD
j > −

ξ

2
, min
j∈Dtrain

W
KTD
j <

ξ

2
)

+ E
[
|Dnon−train ∩ Ŝ|

|Ŝ|

∣∣∣∣min
j

W
KTD
j > −

ξ

2
, min
j∈Dtrain

W
KTD
j >

ξ

2

]
· P (min

j
W

KTD
j > −

ξ

2
, min
j∈Dtrain

W
KTD
j >

ξ

2
).

(24)

The probabilities in the first and second terms go to 0 as m → ∞. Hence, we focus on the expec-
tation in the third term. Under the condition minj W

KTD
j > − ξ

2 , we have τ < ξ
2 . Additionally,

considering minj∈Dtrain W
KTD
j > ξ

2 , it follows that |Ŝ| > |Dtrain|.

E

[
|Dnon−train ∩ Ŝ|

|Ŝ|

∣∣∣∣min
j

WKTD
j > −ξ

2
, min
j∈Dtrain

WKTD
j >

ξ

2

]

≤ 1

|Dtrain|
∑

j∈Dnon−train

P (WKTD
j > τ).

(25)

Since we assume τ > 0, there exists a δ > 0 such that τ > δ > 0. Therefore, the above formula is
less than or equal to:

1

|Dtrain|
∑

j∈Dnon−train

σj

mδ
, (26)

which goes to 0 as m → ∞.
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A.4 PARAMETER SETTINGS

For fine-tuning, we used the following settings:

• warmup step = 100
• weight decay = 0.01
• batch size = 2
• num epochs = 2

All other hyperparameters were set to the default values provided by the ’TrainingArguments’ class
in the Transformers library.

For paraphrasing, we applied the following configurations:

• Top-k sampling with ’topk’ = 50
• Top-p sampling with ’topp’ = 0.95
• Temperature scaling with ’temperature’ = 1.9

B EXPERIMENTS ON ”PERFECT” KNOCKOFFS

B.1 WHY ”PERFECT KNOCKOFFS” MATTER?

As shown in Figure 1, TKD cannot strictly control the FDR in the low-FDR region. According
to our analysis, the performance limitations observed for small q values are primarily attributed to
imperfections in the generated knockoffs.

Theoretically, we prove that the WKTD
j for non-training samples should be symmetrically dis-

tributed around zero (Lemma 1). This proof relies on the assumption that the generated knockoffs
are perfectly swappable with the original texts (the second requirement in Definition 1).

However, in natural language processing scenarios, generating perfect knockoffs that fully meet the
second requirement in Definition 1 for all texts is inherently challenging. This differs from tradi-
tional settings, where data distributions are often assumed to follow well-defined distributions, such
as the Gaussian distribution. Since Lemma 1 strictly holds only for the perfect knockoffs, we observe
in our experiments that the distribution of WKTD

j values for non-training samples is not perfectly
symmetrical in some cases.

Next, we illustrate why this asymmetry can impair FDR control. In Equation 10 we use the expres-
sion (denoted as frac1(t))

1 + |{j ∈ [n] : WKTD
j ≤ −t}|

|{j ∈ [n] : WKTD
j ≥ t}| ∨ 1

(from the left-hand side of Equation 10) to upper bound the true FDR(t) (FDR induced by setting
the threshold as t). Here, |{j ∈ [n] : WKTD

j ≤ −t}| acts as an upper bound for the numerator in the
definition of FDR(t), i.e.,
|{j ∈ [n] : WKTD

j ≤ −t}| ≥ |{j ∈ Dnon−train : WKTD
j < −t}| = |{j ∈ Dnon−train : WKTD

j > t}|,

similar to Equation 3.9 of Candes et al. (2018). Consequently, the violation of the symmetry property
results in a situation where frac1(t) can no longer serve as a strict upper bound for FDR(t).

This issue becomes more pronounced as q approaches very small values, since in such cases, the
threshold τ determined by Equation 10 increases. A larger τ reduces the denominator of frac1(τ)
(which is also the denominator of FDR(τ)), thereby amplifying the impact of the asymmetry-
induced disparity between the numerators of frac1(τ) and KTD(τ). As a result, when q is very
small, it becomes increasingly difficult to impose a strict FDR bound.

This highlights the importance of generating high-quality knockoffs, which is especially critical for
effective FDR control in low-FDR settings.
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Figure 6: The FDR control results on three datasets with the more symmetrical distribution of
WKTD

j . Other settings are identical to those in Figure 1
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Figure 7: The FDR control results in extremely low FDR-region on three datasets with more sym-
metrical distribution of WKTD

j . Other settings are identical to those in Figure 1.

B.2 KTD’S PERFORMANCE WITH PERFECT KNOCKOFFS

While the imperfections in the generated knockoffs can impact the effectiveness of our method,
particularly in the low-FDR region, we emphasize that the primary focus of this paper is on designing
the overall framework rather than optimizing the generation of high-quality knockoffs. We argue
that KTD can achieve improved performance with better knockoffs and conduct experiments to
empirically illustrate this. Specifically, we select a subset of non-training samples and adjust the
distribution of their WKTD

j to ensure greater symmetry. Such selection can be challenging in practi-
cal settings, as it is unclear whether each sample is from the training or non-training data. However,
our goal here is to explore the performance of KTD under perfect knockoffs, so we make this ideal
selection.

FDR Controlling Performance We first evaluate the performance of KTD in terms of FDR con-
trol when the distribution of non-training samples’ WKTD

j is made more symmetrical. To be specific,
we apply our method in both the regular-FDR region (0.1–0.9) and the extremely low-FDR region
(0.01–0.09). The results of these experiments are shown in Figures 6 and 7. From these figures, we
observe that a more symmetrical distribution of WKTD

j for non-training samples enables more strict
FDR control, even when the restrain q is extremely low.

Power-FDR Tradeoff We extend Figure 4 to explore the extremely low-FDR region, with the
results shown in Figure 8. From the figure, we can observe that with a more symmetrical WKTD

j
distribution, the trends in the low-FDR region are consistent with those observed in the ordinary
scenario (where FDR > 0.1).
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Figure 8: Trade-off between FDR and power under different m in the extremely low-FDR region.
All other settings are identical to those in Figure 4.
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Figure 9: The FDR control results for different training-to-non-training ratios with more symmetri-
cal distribution of WKTD

j . Other settings are identical to those in Figure 1
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Figure 10: The FDR control results for different diluting degrees. Other settings are identical to
those in Figure 1

Robustness to Imbalanced Test Set We evaluated the performance of KTD in scenarios with
highly imbalanced ratios of training to non-training samples in the test set. Specifically, we sampled
the training data within the test set to achieve training-to-non-training sample ratios of 0.1, 0.05, and
0.01 in the test set. The experimental results are presented in Figure 9. As shown in the figure, when
the WKTD

j distribution becomes more balanced, KTD demonstrates robustness in highly imbalanced
scenarios.

C EXPERIMENTS ON DILUTION

In this section, we investigate the robustness of KTD in a ”diluted scenario,” where the test set
contains only a subset of the data used for fine-tuning the model. To simulate this scenario, we
select a portion of the training data for subsequent testing and present the results in Figure 10. As
shown in the figure, the results exhibit a similar trend to those in the standard scenario, indicating
that KTD remains robust across varying degrees of dilution.
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Table 3: KTD’s performance on 7B LLM under varying q (corresponding to Figure 1)

q 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Power 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
FDR 0.103 0.215 0.326 0.347 0.347 0.347 0.347 0.347 0.347

Table 4: KTD’s performance on the 7B model with varying m (corresponding to Figure 3).

m 1 3 5 10
Power 0.877 0.945 0.957 0.967
FDR 0.121 0.111 0.112 0.103

D EXPERIMENTS ON 7B MODELS

To assess the effectiveness of KTD on models with approximately 7 billion parameters, we present
the results of Pythia-6.9B on the BBC Real-Time dataset in Tables 3 and 4, corresponding to Figures
1 and 3, respectively. From these tables, we observe that the performance trend of Pythia-6.9B is
consistent with that of smaller models.
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