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ABSTRACT

Plastic debris in ocean waters poses ecological and economic challenges. Ad-
dressing this issue begins with estimating plastic distribution in oceans for effec-
tive policy and awareness efforts. Traditional monitoring methods are costly and
labour-intensive, with limited coverage. Deep learning models using multispec-
tral remote sensing data show promise in overcoming these limitations. However,
accurately distinguishing floating plastic from other sea surface features remains
challenging. In our work, we use the multi-spectral Sentinel-2 MARIDA dataset
to explore the impact of various spectral feature combinations on the performance
of deep learning models for segmenting marine plastic in the presence of other
sea surface features. This innovative approach improves accuracy and serves as
an open benchmark for multi-spectral marine debris segmentation.

1 INTRODUCTION AND PREVIOUS WORKS

The world’s oceans receive more than 19 million tonnes of plastic waste annually (UNEP), posing
threats to aquatic wildlife, marine ecosystems, and human health. Despite growing awareness, ur-
gent attention is required as the amount of plastic litter entering the oceans continues to rise (Vered
& Shenkar, 2021). A key factor in addressing marine plastic pollution is accurate monitoring of its
distribution in the ocean. Accurate monitoring allows decision-makers to create effective policies to
target highly polluted areas (Copernicus) and heightens public awareness of the issue’s urgency, en-
couraging the adoption of responsible waste management and citizen advocacy for policy changes
(Soares et al., 2021). Conventional methods like on-site sample collection for monitoring water-
borne plastics are costly, labour-intensive, and offer limited coverage (Hafeez et al., 2018). This data
scarcity impedes our understanding of plastic quantities and longevity in aquatic ecosystems. Deep
learning models using remote sensing data overcome these constraints, bridging the gap in marine
pollution knowledge. Numerous studies have employed machine/deep learning models for ocean
plastic monitoring. Sannigrahi et al. (2022) utilized SVM and Random Forest models with input as
FDI, PI, and NDVI spectral indices. Mifdal et al. (2021) employed various machine learning algo-
rithms and a U-Net architecture using FDI and NDVI. Additionally Basu et al. (2021) employed a
range of models, including supervised (SVR), unsupervised (K-means, FCM), and semi-supervised
(SFCM), with NDVI and FDI as input. A commonality in these works is the use of spectral in-
dices in the input to aid models in distinguishing floating plastic from other sea surface features. In
our study, we focus on the input features and explore the impact of different spectral feature com-
binations on a U-Net’s performance in detecting ocean plastic amid various sea surface features.
We experiment with diverse combinations of 8 spectral indices, 11 spectral signatures, and 6 Gray
Level Co-Occurrence Matrices. Notably, our study stands out as the first to focus on the impact of
multi-spectral information, demonstrating its potential by significantly enhancing model accuracy.

2 METHODOLOGY AND RESULTS

We use the MARIDA (Marine Debris Archive) dataset (Kikaki et al., 2022), which contains multi-
spectral Sentinel-2 satellite images of coastal waters. The dataset contains classes for the various sea
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Figure 1: Base ocean image captured by Sentinel-2, Ocean image with 11 spectral signatures, Ocean
image with 8 spectral indices, Ocean image with 6 GLCM features

surface features that coexist with marine plastic (such as algae, ships, and waves). Certain classes
in the dataset contain considerably more annotated pixels than others, and to mitigate this class im-
balance, we conducted experiments involving reduced class subsets. Our experiments encompassed
two class sets: Subset 1: MD - Marine Debris (floating plastics/polymers), DenS & SpS - dense and
sparse Sargassum algae, NatM - floating organic materials, SWater – shallow water; Subset 2 inte-
grates Ships, Foam, and Waves, in addition to the classes from Subset 1. Subset 1 highlights marine
debris in optimal coastal conditions with minimal class imbalance. Subset 2 extends the evaluation,
introducing more classes for a comprehensive assessment but with increased imbalance. For each
image, 11 spectral signatures were extracted. A spectral signature represents the radiation reflected
off a surface as a function of wavelength (ESA). This information aids in identifying different sur-
face types. Additionally, 8 spectral indices were calculated. A spectral index is a mathematical
expression that combines data from different wavelengths in an image to enhance specific informa-
tion about the Earth’s surface (Sykas). It does this by analyzing spectral reflectance in various bands.
Lastly, a Grey Level Co-occurrence Matrix (GLCM) with 6 features was extracted. The GLCM ob-
jectively describes the texture of a surface (rough or smooth) and is the joint probability distribution
of the grey levels of pixel pairs (Zheng et al., 2018). ‘Our experimental framework utilises the
U-Net (Ronneberger et al., 2015), a standard encoder-decoder network. The input layer was modi-
fied to accommodate additional channels, incorporating various combinations of spectral signatures,
indices, and GLCM textures, all stacked and presented as input to the network. Our experimenta-
tion involved three different input channel configurations: 11 channels (solely spectral signatures),
19 channels (comprising spectral signatures and spectral indices), and 25 channels (encompassing
spectral signatures, spectral indices, and GLCM textures). Due to the uneven class distribution, we
experimented with several loss functions, opting for Dice Loss alongside Cross-Entropy Loss.

Table 1: IoU and F1-scores for Marine Debris
across different input modalities for Subset 1.

Input Modalities Loss IoU F1 - Score

SIGNATURES DICE 0.74 0.85
CE 0.68 0.81

+ INDICES DICE 0.54 0.70
CE 0.86 0.92

+ TEXTURES DICE 0.84 0.91
CE 0.79 0.88

Table 2: IoU and F1-scores for Marine Debris
across different input modalities for Subset 2.

Input Modalities Loss IoU F1 - Score

SIGNATURES DICE 0.64 0.78
CE 0.48 0.65

+ INDICES DICE 0.73 0.85
CE 0.80 0.89

+ TEXTURES DICE 0.77 0.87
CE 0.57 0.73

Due to dataset imbalance, we assessed model performance using the F1 score in addition to IoU. In
Table 1, combining spectral signatures and indices using Cross-Entropy Loss achieves the highest
Subset 1 F1-Score. Table 2 shows a decline in Subset 2 performance with additional classes, but
the spectral signature-indices pair exhibits the least decline. Across other input configurations, Dice
Loss generally enhances performance, except for the spectral signature-indices setup. Similarly, for
IoU performance, using spectral signatures and indices paired with Cross-Entropy produces the best
results. The decline in performance when integrating all channels may be due to noisy GLCM tex-
tures. This study demonstrates the potential of multi-spectral information in enhancing deep learn-
ing model performance in distinguishing ocean plastic from sea surface features. Our benchmark
results confirm the effectiveness of this approach, aiding accurate plastic detection for monitoring
and policy decisions. Despite promising results, the model’s generalisation may be challenged by
the uneven geographical distribution of data, particularly in regions with phenomena resembling
floating plastic, such as jellyfish blooms. To address this, future exploration could involve training
with diverse marine datasets akin to MARIDA’s objectives. Employing self-supervised learning can
leverage abundant unlabeled satellite data, contributing to a more even geographic image distribu-
tion. Experimentation with smaller input channel subsets may further enhance model performance.
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A APPENDIX

A.1 DATASET

The dataset consists of image patches of coastal waters gathered over several years (2015-2021)
from various locations around the globe. Initially, reports on marine litter and plastic pollution from
several different countries were gathered to serve as ground-truth data. These reports included obser-
vations from citizen scientists, social media, and ocean clean-up efforts. Based on the ground-truth
data, Sentinel-2 remote sensing images were acquired. The images were then manually annotated
by image interpretation experts.

The dataset contains 15 classes: MD (marine debris consisting of floating plastics or other poly-
mers, mixed anthropogenic debris), DenS (dense floating Sargassum macroalgae), SpS (sparse float-
ing Sargassum macroalgae), NatM (natural materials such as vegetation & wood), Ship (sailing
& anchored vessels), Cloud (clouds including thin clouds), MWater (clear marine water), SLWa-
ter (sediment-laden water which is high sediment river discharges with brown color), Foam (foam
recorded at riverfronts or coastal wave breaking area), TWater (turbid waters close to coastal areas),
SWater (coastal waters, including coral reefs and submerged vegetation), Waves, CloudS (cloud
shadows), Wakes (wakes & waves from a sailing vessel) and MixWater (water near floating materi-
als).

MARIDA consists of 1381 patches, with 837,357 annotated pixels. The image patches and their cor-
responding masks are provided in GeoTIFF format. For each scene 11 spectral signatures were ex-
tracted: nm440, nm490, nm560, nm665, nm705, nm740, nm783, nm842, nm865, nm1600, nm2200.
In addition to this, 8 spectral indices were also calculated: NDVI, NDWI, FAI, FDI, SI, NDMI, BSI,
and NRD. A Gray Level Co-occurrence Matrix was also extracted with 6 features: Contrast (CON),
Dissimilarity (DIS), Homogeneity (HOMO), Energy (ENER), Correlation (COR), and Angular Sec-
ond Moment. These are referred to as ”textures”.

A.2 TRAINING DETAILS AND RESULTS ACROSS ALL CLASSES

We used U-Net to perform our experiments. VGG16 with ImageNet pretrained weights was used
as the encoder. Each model underwent training for a total of 44 epochs, employing a batch size of
5. The initial learning rate was set at 2x10-4 and was subsequently reduced to 2x10-5 following the
40th epoch. We used the ADAM optimizer to minimize the loss in our experiments. Additionally,
random rotations (-90◦, 0◦, 90◦, or 180◦) were applied to the input images as part of the training
process. Additional results across all individual class configurations for both subsets are in Table 3
and Table 4. The code is available at: https://github.com/dyutitmohanty/MARIDA_
PLASTIC_DECTECTION.

Table 3: IoU scores across different classes and input modalities for Subset 1.

Input Modalities Loss MD DenS SpS NatM Swater mIoU

SIGNATURES Dice 0.74 0.75 0.75 0.09 0.94 0.65
CE 0.68 0.81 0.80 0.38 0.94 0.72

+ INDICES Dice 0.54 0.60 0.52 0.15 0.99 0.56
CE 0.86 0.80 0.83 0.28 0.99 0.75

+ TEXTURES Dice 0.84 0.80 0.78 0.20 0.97 0.72
CE 0.79 0.84 0.85 0.32 0.97 0.75

Table 4: IoU scores across different classes and input modalities for Subset 2.

Input Modalities Loss MD DenS SpS NatM Swater Ship Foam Waves mIoU

SIGNATURES Dice 0.64 0.83 0.79 0.18 0.92 0.92 0.42 0.73 0.68
CE 0.48 0.82 0.75 0.4 0.83 0.91 0.69 0.76 0.71

+ INDICES Dice 0.73 0.84 0.84 0.17 0.95 0.72 0.48 0.77 0.69
CE 0.80 0.86 0.83 0.27 0.94 0.74 0.40 0.79 0.70

+ TEXTURES Dice 0.77 0.83 0.84 0.14 0.94 0.88 0.62 0.84 0.73
CE 0.57 0.82 0.83 0.00 0.93 0.81 0.74 0.82 0.79
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