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Abstract

Pre-trained language models (PLM) are ef-001
fective components of few-shot named en-002
tity recognition (NER) approaches when aug-003
mented with continued pre-training on task-004
specific out-of-domain data or fine-tuning on005
in-domain data. However, their performance006
in low-resource scenarios, where such data is007
not available, remains an open question. We in-008
troduce an encoder evaluation framework, and009
use it to systematically compare the perfor-010
mance of state-of-the-art pre-trained represen-011
tations on the task of low-resource NER. We012
analyze a wide range of encoders pre-trained013
with different strategies, model architectures,014
intermediate-task fine-tuning, and contrastive015
learning. Our experimental results across ten016
benchmark NER datasets in English and Ger-017
man show that encoder performance varies018
significantly, suggesting that the choice of019
encoder for a specific low-resource scenario020
needs to be carefully evaluated.021

1 Introduction022

Pre-trained language models (PLM) have been023

shown to be very effective few-shot learners024

for a wide range of natural language processing025

tasks (Brown et al., 2020; Gao et al., 2021), as they026

capture semantically and syntactically rich repre-027

sentations of text via self-supervised training on028

large-scale unlabeled datasets (Peters et al., 2018;029

Devlin et al., 2019). Recent research in few-shot030

named entity recognition (NER) has leveraged such031

representations, e.g. for metric learning on task-032

specific out-of-domain1 data (Fritzler et al., 2019;033

Yang and Katiyar, 2020), optionally augmented by034

continued pre-training with distantly supervised, in-035

domain data (Huang et al., 2020). However, there036

has been no systematic comparison of the NER per-037

formance of such representations in low-resource038

scenarios without task-specific out-of-domain data039

1Out-of-domain and in-domain refer to NER-specific data
with disjoint label spaces, i.e. Yout 6= Yin.

and very limited in-domain data; a prevalent setting 040

in many practical applications. 041

In this paper we conduct a comparative study to 042

answer the following research questions: How well 043

do representations learnt by different pre-trained 044

models encode information that benefits these low- 045

resource scenarios? What can we observe for dif- 046

ferent categories of encoders, such as encoders 047

trained with masked language modeling, versus 048

encoders that are additionally fine-tuned on down- 049

stream tasks, or optimized with contrastive learn- 050

ing? How do they perform across different datasets 051

and languages? We present an evaluation frame- 052

work inspired by few-shot learning to evaluate 053

representations obtained via different pre-training 054

strategies, model architectures, pre-training data, 055

and intermediate-task fine-tuning in low-resource 056

NER scenarios of varying difficulty (see Figure 1). 057

We find that the choice of encoder can have sig- 058

nificant effects on low-resource NER performance, 059

with F1 scores differing by up to 25% between en- 060

coders, and simply picking an encoder of the BERT 061

family at random will usually not yield the best re- 062

sults for a given scenario. We observe that while 063

BERT in general performs adequately, ALBERT 064

and RoBERTa outperform BERT by a large mar- 065

gin in many cases, with ALBERT being especially 066

strong in very low-resource settings with only one 067

available labeled example per class. 068

In summary, the main contributions of this study 069

are: (1) a systematic performance evaluation of a 070

wide range of encoders pre-trained with different 071

strategies, such as masked language modeling, task- 072

specific fine-tuning, and contrastive learning on 073

the task of low-resource named entity recognition; 074

(2) an evaluation on ten benchmark NER datasets 075

in two languages, English and German; (3) an 076

encoder-readout evaluation framework that can be 077

easily extended with additional scenarios, encoders, 078

datasets, and readout approaches, and that we make 079

available as open source at anonymized-url. 080
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Figure 1: Encoder-readout evaluation framework. For each of the N classes, we randomly sample K support
tokens including their sentence context, and an unlabeled query token with sentential context. The encoder fθ(·)
provides an embedding (or representation) for each token, and the readout module g(·) assigns a class to a query
token by comparing its representation qj to the representations {z1, . . . ,zN×K} of the support tokens. Depending
on the readout approach, the c-th class in S is represented either by its prototype embedding (as shown in the
example) or by its set of associated token embeddings, e.g. for nearest neighbor classification. In this example q1
representing Merkel would be assigned the class PER based on the closest class prototype embedding (red circle).

2 Encoder Evaluation Framework081

To simulate low-resource NER scenarios of varying082

difficulty, we draw inspiration from the evaluation083

of few-shot learning methods. We first give a for-084

mal definition of the few-shot NER task, and then085

introduce the encoder evaluation framework itself.086

2.1 Few-shot NER task definition087

NER is typically formulated as a sequence label-088

ing problem, where the input is a sequence of to-089

kens X = {x1, x2, · · · , xT } and the output is the090

corresponding T -length sequence of entity type la-091

bels Y = {y1, y2, · · · , yT }. In contrast, few-shot092

learning is cast as an episodic N -way K-shot prob-093

lem, where in each episode, N classes are sampled094

with K examples each to construct a support set095

S = {Xi,Yi}N×Ki=1 for learning, and K ′ exam-096

ples per class are sampled to create a query set097

Q = {Xj ,Yj}N×K
′

j=1 for evaluation (S ∩ Q = ∅).098

In a sequence labeling problem like NER, samples099

are typically sentences, due to the importance of100

contextual information for token classification, but101

care has to be taken to ensure that the sampled sen-102

tences contain no other entities. In particular, there103

should be no entity overlap between the support104

and the query sets (Ding et al., 2021).105

2.2 Encoder-Readout Framework106

Our framework consists of two modules, an en-107

coder f(·) and a readout module g(·), as shown108

in Figure 1. The encoder provides an embedding109

z = fθ(x) of a token x, where θ denotes the pa-110

rameters of the encoder. The readout module is 111

responsible for assigning a class to each token x′ in 112

the query setQ given the support set S . Depending 113

on the readout approach, the c-th class in S is rep- 114

resented either by its prototype embedding or by its 115

associated set of token embeddings, e.g. for nearest 116

neighbor classification. The decision is made by 117

comparing the embedding q = fθ(x
′) with each of 118

the N class prototypes built from the support set S , 119

or with each of the token-level embeddings. 120

3 Experiments 121

We illustrate the evaluation framework using a rep- 122

resentative set of encoders pre-trained with differ- 123

ent strategies. We then give details of the readout 124

approaches, the datasets we used, and all other ex- 125

perimental settings. 126

3.1 Encoders 127

We group encoders into four categories, depending 128

on their type of pre-training: 129

PLM These models are pre-trained on a large 130

general corpus in a self-supervised manner without 131

any task-specific fine-tuning. We consider six rep- 132

resentative encoders for English: BERT cased and 133

uncased (Devlin et al., 2019), SpanBERT (Joshi 134

et al., 2020), XLNet (Yang et al., 2019), AL- 135

BERT (Lan et al., 2020) and RoBERTa (Liu et al., 136

2019), and three encoders for German: deepset’s 137

BERT, GottBERT (Scheible et al., 2020) and XLM- 138

RoBERTa (Conneau et al., 2020).2 139

2HuggingFace model identifiers for these and all other
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Language Dataset Domain # Entity types Entity tag set

English

CoNLL-2003EN News 4 LOC,MISC,ORG,PER
OntoNotes 5.0 News, Dialogue 18 CARDINAL,DATE,EVENT,MONEY,...
Few-NERDcoarse General 8 art,building,event,product,...
Few-NERDfine General 66 art-film,product-car,other-law,...
WNUT-17 Social Media 6 corporation,creative-work,group,...
WikiAnn General 3 LOC,ORG,PER
WikiGold General 4 LOC,MISC,ORG,PER
Zhang et al. e-Commerce 4 ATTRIBUTE,BRAND,COMPONENT,PRODUCT

German
CoNLL-2003DE News 4 LOC,MISC,ORG,PER
GermEval 2014 General 12 LOC,LOCderiv,LOCpart,ORG,...
Smartdata News, General 16 DISASTER-TYPE,DISTANCE,LOCATION,...

Table 1: Statistics of the evaluated datasets

Fine-tuned PLM Recent research has shown140

that intermediate-task training can result in signifi-141

cant performance gains on the target task even in142

low-resource settings (Vu et al., 2020; Poth et al.,143

2021). We evaluate three BERT encoders that144

are fine-tuned on token-level, sentence-level, and145

document-level intermediate tasks, respectively:146

BERTPOS for part-of-speech tagging, BERTMNLI,147

fine-tuned on the MultiNLI dataset (Williams et al.,148

2018), and BERTSQuAD for extractive question an-149

swering (Rajpurkar et al., 2016). Evaluating these150

encoders may allow us to observe whether the rep-151

resentation granularity induced by the tasks they152

were fine-tuned on has an effect on NER perfor-153

mance: While token-level part-of-speech tag in-154

formation is a staple feature of classic NER ap-155

proaches (Finkel et al., 2005), it is less clear if156

encoders trained on tasks that require conceptual157

representations (and possibly understanding) of158

sentence- and document-length context, learn en-159

tity representations useful for NER.160

PLM fine-tuned on NER We also experiment161

with BERTCoNLL, a BERT model fine-tuned on the162

CoNLL-2003 NER dataset. As this model’s hid-163

den representations have been adapted to NER, we164

expect it to exhibit better performance than the165

other representations. The most interesting ques-166

tion of using this model is whether its representa-167

tions transfer to NER datasets with non-CoNLL168

tagsets.169

PLM with contrastive learning For each of the170

English PLM encoders, we apply contrastive learn-171

ing to learn representations with better separability.172

The idea of contrastive learning is to pull positives173

closer and push negatives away in the representa-174

tion space during the pre-training phase (Rethmeier175

and Augenstein, 2021). We use the loss function176

models are listed in Appendix A.

proposed by Chopra et al. (2005): 177

LCL(xi, xj ;θ) := 1yi=yj · ‖fθ(xi)− fθ(xj)‖
+ 1yi 6=yj ·max

(
0, ε− ‖fθ(xi)− fθ(xj)‖

)
.

178

To guarantee that this label-aware contrastive learn- 179

ing conforms to the few-shot setting, we construct 180

positive/negative pairs from the support set: Given 181

an N -way K-shot support set, for each of the N 182

classes we construct 1 positive pair and K negative 183

pairs.3 184

3.2 Readout approaches 185

We analyze three variants for the readout ap- 186

proach:4 (1) Logistic Regression (LR), a lin- 187

ear classification algorithm that can be extended 188

to multinomial logistic regression to deal with 189

multi-class (N -way) settings, such as the one dis- 190

cussed here. (2) k-Nearest Neighbor (NN), a non- 191

parametric classification method adopted in metric 192

space. As proposed in STRUCTSHOT (Yang and 193

Katiyar, 2020), we set k = 1 to find the exact 194

nearest token in the support set. (3) Nearest Cen- 195

troid (NC) works similar to NN, but instead of 196

computing the distance between the query and ev- 197

ery instance in the embedding space, we represent 198

each class by the centroid of all token embeddings 199

belonging to this class, and assign the query to the 200

class with the nearest centroid. 201

3.3 Datasets 202

In order to provide a comprehensive evalua- 203

tion, we evaluate all encoders on a range of 204

3One extra example per class is needed for K = 1 to build
one positive pair for this class. This extra example is involved
only in the contrastive learning phase and not introduced to
the encoding and readout steps.

4Computational details of the readout approaches can be
found in Appendix B.
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datasets covering different languages and domains,205

including seven English benchmarks: CoNLL-206

2003 (Tjong Kim Sang and De Meulder, 2003),207

Few-NERD (Ding et al., 2021), OntoNotes208

5.0 (Weischedel et al., 2013), WikiAnn (Pan209

et al., 2017), WNUT-17 (Derczynski et al., 2017),210

WikiGold (Balasuriya et al., 2009), and the dataset211

of Zhang et al. (2020). For German, we se-212

lected the following three datasets: CoNLL-213

2003 (Tjong Kim Sang and De Meulder, 2003),214

Smartdata (Schiersch et al., 2018) and GermEval215

2014 (Benikova et al., 2014). Table 1 lists the do-216

mains and tagset details of each dataset.217

3.4 Experimental settings / Hyperparameters218

Datasets We use the BIO tagging schema by de-219

fault and the IO schema only when BIO is not pro-220

vided by the original dataset (in case of Few-NERD,221

OntoNotes 5.0 and WikiGold). WikiGold and222

the dataset of Zhang et al. (2020) do not provide223

train/test splits, we therefore use the full dataset224

to sample support and query sets. For all other225

datasets, test splits are used for sampling.5226

General settings For each dataset, we evaluate227

our methods under three few-shot scenarios: 5-way228

1-shot, 5-way 5-shot and 5-way 10-shot. To pro-229

duce accurate performance estimates, we sample230

600 episodes for each scenario and report the mean231

token-level micro-F1 score over all episodes, av-232

eraged over all positive classes, and excluding the233

’O’ class.234

Encoders Max-length is fixed at 128. We use235

randomly initialized, static embeddings as the base-236

line encoder (Random). For contrastive learning,237

we use the Adam optimizer and set the learning238

rate to be 5× 10−5 and the number of epochs to be239

1 across all encoders.240

Readout approaches We L2-normalize the en-241

coder embeddings before feeding them to the read-242

out model. For NN and NC classification, Eu-243

clidean distance serves as the similarity metric be-244

tween tokens. For LR, an L2-penalty is applied to245

the coefficients. All reported results use LR as the246

default readout method, unless specified otherwise,247

as we found LR to perform best on average (see248

Section 4.4).249

Framework implementation We implement250

our low-resource NER encoder evaluation frame-251

work using the HuggingFace Transformers li-252

5For Few-NERD, we use the test data from the "super-
vised" split.

brary (Wolf et al., 2020), Hydra (Yadan, 2019), 253

and PyTorch (Paszke et al., 2019). Additional sce- 254

narios, encoders, and datasets can be easily added 255

simply by creating new experiment configurations. 256

Adding new readout methods is also a simple mat- 257

ter of a few lines of code. We make our code base 258

available as open source at anonymized-url. 259

4 Results and Discussion 260

4.1 Comparison of PLM encoders 261

We first analyze PLM encoders which have not 262

been fine-tuned on any task. 263

English results Table 2 presents the experimen- 264

tal results of English-language encoders for differ- 265

ent scenarios and datasets. For all scenarios and 266

datasets, the PLM encoders outperform the ran- 267

domly initialized baseline by a large margin. As ex- 268

pected, the NER classification performance of the 269

encoders increases with higher K, i.e. with more 270

instances per class in the support set. Overall, the 271

level of performance across various datasets of this 272

encoder-only approach to low-resource NER is sur- 273

prisingly good: We observe that ALBERT achieves 274

a token-level F1 score of F1 = 72.8 on CoNLL- 275

2003, XLNet a score of F1 = 85.7 on Few-NERD 276

fine-grained, and RoBERTa a score of F1 = 83.8 277

on OntoNotes 5.0. While these results are not di- 278

rectly comparable to those of state-of-the-art, fully 279

supervised approaches due to the differences in the 280

evaluation setup, they are achieved essentially fine- 281

tuning-free, and with much fewer labeled instances 282

per class. 283

Encoder analysis The best-performing en- 284

coders, on average and across datasets, are AL- 285

BERT, RoBERTa, and BERT. ALBERT is by far 286

the best encoder for K = 1, but the other encoders 287

achieve comparable performance or outperform 288

ALBERT for K ≥ 5. Even though ALBERT is 289

an order of magnitude smaller in terms of its num- 290

ber of parameters than either BERT or RoBERTa, 291

it provides very competitive embeddings in our 292

evaluation setup. As can be expected, BERTcased 293

consistently outperforms BERTuncased for datasets 294

with tag sets where casing provides useful informa- 295

tion for NER (e.g. CoNLL, WikiGold), but does not 296

necessarily perform better if the tag set contains en- 297

tity types whose instances use lower-case spelling. 298

XLNet achieves mixed results, mainly depending 299

on the dataset – on CoNLL-2003, WikiAnn and 300

WNUT-17, its F1 scores are significantly lower for 301

all scenarios than those of the best encoder, while 302
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Dataset K Random BERT↓ BERT↑ ALBERT↓ RoBERTa↑ SpanBERT↑ XLNet↑

CoNLL-2003EN

1 9.52 21.96 22.04 33.03† 21.71 18.39 18.49
5 12.53 60.94 62.17 68.33† 64.49 43.22 44.82

10 13.71 66.11 68.79 72.76 72.09 49.79 52.43

OntoNotes 5.0
1 18.66 42.71 45.09 50.45† 42.74 34.30 38.40
5 19.73 74.68 77.70 77.66 78.70 65.64 72.60

10 18.88 80.92 82.70 82.10 83.80† 74.14 78.38

Few-NERDcoarse

1 12.12 25.99 28.52 35.67† 28.12 23.34 25.93
5 15.59 53.85 56.04 59.14 58.66 45.50 52.32

10 16.04 59.44 63.20 63.30 65.52† 52.65 61.94

Few-NERDfine

1 21.14 49.74 48.50 54.27† 51.27 39.13 47.02
5 21.00 80.12 79.26 78.08 81.70 71.93 82.73

10 20.62 84.07 83.21 81.17 84.95 78.39 85.73

WNUT-17
1 18.86 25.71 25.67 28.47† 25.43 23.14 24.36
5 19.11 51.56 50.58 55.12 54.59 42.29 42.26

10 18.52 58.77 60.37 60.41 63.93† 48.84 49.74

WikiAnn
1 12.07 24.53 25.92 32.63† 24.80 22.67 22.06
5 15.64 48.33 52.29 53.11† 51.34 40.60 36.81

10 16.95 54.84 59.48 59.10 60.83 46.44 44.19

WikiGold
1 3.71 18.40 21.30 32.30† 20.63 14.90 18.01
5 10.02 49.19 55.54 55.87 56.08 41.07 45.44

10 11.62 55.85 63.91 61.23 64.84 48.09 53.85

Zhang et al.
1 13.49 37.39 36.82 41.23† 38.79 25.83 31.25
5 17.08 63.19 62.17 62.73 66.44† 49.08 57.69

10 16.21 67.45 67.09 66.61 70.16† 54.80 63.79

Table 2: Token-level micro-F1 scores of PLM encoders and a random baseline for 5-way K-shot scenarios, with
logistic regression readout. † denotes scores with significant difference to the next-best encoder’s score (α = 0.05).
↑ and ↓ indicate cased and uncased models.

Dataset K Random BERT↑ Gott-
BERT↑

XLM-R↑

CoNLL-
2003DE

1 12.53 29.42 26.27 30.65
5 15.38 65.98 58.37 65.22
10 16.00 71.43 64.77 71.18

GermEval
2014

1 17.52 25.89 24.08 27.24
5 20.70 61.79† 54.06 58.51
10 18.33 71.18† 60.30 65.37

Smartdata
1 26.12 51.12 49.96 53.17
5 23.52 82.50† 79.30 80.89
10 21.55 86.01 83.10 85.66

Table 3: Token-level micro-F1 scores of German PLM
encoders and a random baseline under 5-way K-shot
scenarios, with logistic regression readout. † denotes
scores with a significant difference to the next-best en-
coder’s score (α = 0.05). ↑ indicates cased models.

on Few-NERD fine-grained, XLNet achieves the303

best score of all encoders. SpanBERT on aver-304

age shows the worst performance of all encoders,305

with F1 scores in most scenarios several percent-306

age points lower than even those of XLNet. This307

suggests that SpanBERT’s span-level masking and308

training with a span boundary objective produce309

token-level embeddings that are less well separable310

by the logistic regression classifier. 311

Dataset analysis On a per-dataset basis, we can 312

observe the following from Table 2: On CoNLL- 313

2003, ALBERT outperforms the next-best encoder 314

BERTcased for K = 1 by 11% F1, and achieves a 315

best score of F1 = 72.8 for K = 10, closely fol- 316

lowed by RoBERTa. XLNet’s and SpanBERT’s 317

F1 scores are more than 20% lower than those 318

of ALBERT for K = 5 and K = 10. On Few- 319

NERD with coarse labels, ALBERT is again the 320

best encoder at K = 1. For K = 10, RoBERTa 321

achieves F1 = 65.5, but the other encoders ex- 322

cept for SpanBERT perform almost as well. Us- 323

ing the fine-grained labels of Few-NERD, all en- 324

coders achieve around 80% F1 score. The over- 325

all picture is similar for OntoNotes 5.0 and the 326

dataset of Zhang et al., with ALBERT being the 327

best encoder at K = 1 and RoBERTa outperform- 328

ing the other encoders at K = 10. BERT and 329

XLNet show competitive performance to ALBERT 330

and RoBERTa, yielding slightly lower F1 scores 331

in all scenarios. This trend is also confirmed for 332

the remaining datasets, WikiAnn, WNUT-17 and 333

WikiGold, with ALBERT and RoBERTa being the 334
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Dataset K BERT↓ BPOS↓ BMNLI↓ BSQuAD↓

CoNLL-
2003EN

1 21.96 43.01† 22.29 35.05
5 60.94 65.72 61.34 65.94
10 66.11 68.46 64.71 68.50

OntoNotes
5.0

1 42.71 50.85† 42.99 47.83
5 74.68 66.17 75.29 76.37
10 80.92 68.02 80.94 79.68

Few-
NERDcoarse

1 25.99 34.70 26.08 35.07
5 53.85 49.88 52.52 59.77†
10 59.44 52.78 58.17 63.09†

Few-
NERDfine

1 49.74 43.97 46.71 51.17
5 80.12† 63.08 77.14 78.58
10 84.07† 66.43 81.26 81.58

WNUT-
17

1 25.71 32.04† 25.12 29.04
5 51.56 44.90 48.50 51.05
10 58.77† 49.11 56.30 54.58

WikiAnn
1 24.53 32.92 23.35 33.33
5 48.33 43.54 46.94 55.93†
10 54.84 45.70 53.47 63.37†

WikiGold
1 18.40 37.46† 20.33 30.80
5 49.19 55.54† 50.86 53.96
10 55.85 55.62 55.81 57.99†

Zhang et
al.

1 37.39 45.67† 37.29 40.90
5 63.19 59.58 62.98 61.01
10 67.45 60.61 66.23 61.95

(a) Micro-F1 scores of BERT, and fine-tuned BERTPOS, BERTMNLI
and BERTSQuAD.

Dataset Overlap K BERT↓ BCoNLL↓

CoNLL-
2003EN

1.00
1 21.96 90.46†
5 60.94 94.73†
10 66.11 94.40†

WikiGold 1.00
1 18.40 68.83†
5 49.19 81.40†
10 55.85 84.68†

WikiAnn 0.75
1 24.53 55.15†
5 48.33 67.22†
10 54.84 71.34†

Few-
NERDcoarse

0.50
1 25.99 53.25†
5 53.85 70.04†
10 59.44 72.66†

WNUT-
17 0.25

1 25.71 44.96†
5 51.56 63.99†
10 58.77 69.76†

OntoNotes
5.0 0.16

1 42.71 58.99†
5 74.68 76.21†
10 80.92† 77.75

Few-
NERDfine

0
1 49.74 59.36†
5 80.12 79.70
10 84.07† 82.00

Zhang et
al. 0

1 37.39 49.22†
5 63.19 65.40†
10 67.45 66.13

(b) Micro-F1 scores of BERT and BERTCoNLL. The
datasets are listed in descending order of tag set over-
lap with CoNLL-2003, as measured by Jaccard Index.

Table 4: Token-level micro-F1 scores of fine-tuned encoders under 5-way K-shot scenarios, with LR readout. †
denotes scores with significant difference to the next-best encoder’s score (α = 0.05). ↓ indicates uncased models.

strongest contenders, and BERT often catching up335

in terms of F1 scores with increasing K.336

German results Table 3 shows the results of337

German-language encoders and the random base-338

line on three evaluation datasets. Similar to the En-339

glish results, we observe that: (i) BERT, GottBERT340

and XLM-RoBERTa all benefit from more support341

instances, and outperform the random baseline by342

a large margin. (ii) XLM-RoBERTa shows the best343

performance across datasets in one-shot settings,344

whereas BERT outperforms the other encoders for345

K ≥ 5. (iii) GottBERT’s encodings yield features346

that are less useful for low-resource NER, resulting347

in worse performance than the other two encoders348

in all scenarios.349

On CoNLL-2003, BERT achieves a micro-F1350

score of 71.4 at K = 10, XLM-R a competi-351

tive score of 71.2, while GottBERT only achieves352

F1 = 64.8. Similar performance differences be-353

tween the three encoders can be observed for the354

other two datasets at K = 5 and K = 10. At355

K = 1, XLM-R consistently outperforms BERT356

and GottBert, with GottBERT showing the worst 357

performance. The results show that BERT, a model 358

trained with less, but likely quality training data 359

(Wikipedia, OpenLegalData, News) produces rep- 360

resentations that are more suited for low-resource 361

NER in most of the evaluated settings, compared 362

to GottBERT (145GB of unfiltered web text), and 363

XLM-RoBERTa (≈100GB filtered CommonCrawl 364

data for German). 365

4.2 Fine-tuned encoders 366

Fine-tuned PLM The next group of encoders we 367

analyze are encoders fine-tuned on an intermedi- 368

ate task, in our case POS tagging, NLI, and QA. 369

Results are shown in Table 4a. We can see that 370

using a BERT encoder fine-tuned on POS tagging 371

significantly improves F1 scores at K = 1 for all 372

datasets except Few-NERD fine-grained, on av- 373

erage by about 9 points. However, for K ≥ 5, 374

BERTPOS’s performance is significantly worse than 375

that of BERT for the majority of datasets, except 376

CoNLL-2003 and WikiGold. 377

The BERTMNLI model’s performance is compet- 378
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itive with the base BERT model’s, with no statis-379

tically significant differences. Fine-tuning on this380

sentence-level task, which is rather unrelated to381

NER, hence seems to have neither negative nor382

positive effects on the resulting token embeddings.383

Embeddings obtained from BERTSQuAD, fine-384

tuned on document-level span extraction, outper-385

form BERT in most settings, often with statisti-386

cal significance. However, on some datasets (e.g.387

WNUT-17, Few-NERDfine), BERTSQuAD’s scores388

are lower than BERT’s forK ≥ 5. Compared to the389

other fine-tuned encoders, BERTSQuAD performs390

better in general for K ≥ 5. Its good performance391

may be attributed to the fact that approximately392

41.5% of the answers in the SQuAD dataset corre-393

spond to common entity types, and another 31.8%394

to common noun phrases (Rajpurkar et al., 2016).395

The observations for these three encoders coin-396

cide with the intuition, that the more relevant the397

knowledge encoded by the intermediate task is w.r.t.398

the target task, the more likely an improvement on399

the target task becomes.400

PLM fine-tuned on NER Table 4b shows the401

results obtained for BERTCoNLL, an encoder that402

was fine-tuned on CoNLL-2003. As can be ex-403

pected, this encoder performs very well on the404

CoNLL-2003 test set, with large F1 gains in all405

scenarios. For most of the other datasets, F1 scores406

are also significantly improved for all settings of407

K, especially with a large tagset overlap. These re-408

sults coincide with the intuition that the higher the409

tagset overlap, the larger the improvement. How-410

ever, we note that some of these datasets are con-411

structed from other data sources, e.g. web and so-412

cial media texts, which indicates some transfer-413

ability of the CoNLL-2003-tuned representations.414

Even for datasets where there is little or no overlap415

(OntoNotes 5.0, Zhang et al.), there are at least416

some gains at K = 1. However, at K = 10,417

the performance of the embeddings obtained from418

BERTCoNLL is significantly worse than that of the419

base BERT model.420

4.3 PLM with contrastive learning421

Table 5 compares the results of English encoders422

before and after contrastive learning. In general,423

results are mixed: For ALBERT and SpanBERT,424

using CL improves F1 scores in most cases, of-425

ten with significant differences, whereas for BERT,426

RoBERTa and XLNET, the base encoders mostly427

exhibit (marginally) better performance.428

Encoder analysis We observe that ALBERT 429

benefits the most from contrastive learning, with 430

significant F1 gains in 5 out of 12 comparisons, 431

followed by SpanBERT (3), XLNet (1), BERT (1) 432

and RoBERTa (0). Surprisingly, it achieves slightly 433

higher F1-scores on Few-NERD coarse-grained 434

and significantly higher F1-scores on WikiGold in 435

all three scenarios. For 1-shot scenario on CoNLL- 436

2003, ALBERT also gets a large F1 increase by 437

3.68%, the best improvement among all encoders. 438

Dataset analysis Few-NERD coarse-grained 439

and WikiGold show better compatibility with con- 440

trastive learning, with 11 and 8 F1 improvements 441

out of 15 comparisons after contrastive learning, 442

respectively, compared with CoNLL-2003 (6) and 443

OntoNotes 5.0 (4). Specifically, all five encoders 444

have F1 gains on Few-NERD dataset in the one- 445

shot scenario. 446

4.4 Readout approaches 447

Finally, Table 6 compares the different readout ap- 448

proaches on the CoNLL-2003 and OntoNotes 5.0 449

datasets, using ALBERT. For K >= 5, Logis- 450

tic Regression outperforms Nearest Centroid and 451

Nearest Neighbor classification, while for one-shot 452

scenarios Nearest Neighbor performs best. NC is 453

outperformed by LR and NN in all scenarios but 454

5-shot on OntoNotes 5.0. This suggests that with 455

very few samples, the raw token embedding infor- 456

mation, as used by NN, is a better representation of 457

a class than the averaged embeddings as produced 458

by LR and CN, but with more samples, weighted 459

embeddings obtained with LR are more useful. 460

5 Related Work 461

Few-shot NER Recent work on few-shot NER has 462

primarily focused on integrating additional knowl- 463

edge to support the classification process. Fritzler 464

et al. (2019) are the first to use pre-trained word 465

embeddings for this task. Yang and Katiyar (2020) 466

extend a Nearest Neighbor token-level classifier 467

with a Viterbi decoder for structured prediction 468

over entire sentences. Huang et al (2020) propose 469

to continue pre-training of a PLM encoder with 470

distantly supervised, in-domain data, and to inte- 471

grate self-training to create additional, soft-labeled 472

training data. Recently, Gao et al. (2021) and 473

Ma et al. (2021) investigate methods for making 474

PLMs better few-shot learners via prompt-based 475

fine-tuning. While these approaches extend stan- 476

dard few-shot learning algorithms in promising di- 477
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Dataset K
BERT↓ ALBERT↓ RoBERTa↑ SpanBERT↑ XLNet↑

w/o CL CL w/o CL CL w/o CL CL w/o CL CL w/o CL CL

CoNLL-
2003EN

1 21.96 23.87† 33.03 36.71† 21.71 22.57 18.39 17.61 18.49 18.25
5 60.94 60.55 68.33 66.85 64.49 62.45 43.22 44.23 44.82 45.93

10 66.11 65.03 72.76 70.66 72.09 70.17 48.79 49.82 52.43 49.25

OntoNotes
5.0

1 42.71 42.89 50.45 51.38 42.74 41.66 34.30 32.95 38.40 38.64
5 74.68 74.02 77.66 76.65 78.70 75.29 65.64 64.29 72.60 70.66

10 80.92 80.36 82.10 81.47 83.80 82.51 74.14 74.72 78.38 75.99

Few-
NERDcoarse

1 25.99 27.42 35.67 38.16† 28.12 29.10 23.34 23.40 25.93 26.35
5 53.85 52.97 59.14 59.71 58.66 55.75 45.50 46.03 52.32 54.91†

10 59.44 59.89 63.30 64.53 65.52 62.86 52.65 55.47† 61.94 61.45

WikiGold
1 18.40 16.85 32.30 34.05† 20.63 19.90 14.90 15.39 18.01 19.13
5 49.19 49.19 55.87 57.67† 56.08 53.91 41.07 42.92† 45.44 44.21

10 55.85 56.87 61.23 62.68† 64.84 63.05 48.09 50.93† 53.85 52.26

Table 5: Token-level micro F1-scores of PLM encoders without and with contrastive learning (CL) for 5-way K-
shot scenarios, with logistic regression readout. † denotes scores with a significant (α = 0.05) improvement after
contrastive learning. ↑ and ↓ indicate cased and uncased models.

Dataset K LR NC NN

CoNLL-2003EN

1 33.03 35.21 40.76†
5 68.33† 61.53 62.24

10 72.76† 62.65 67.79

OntoNotes 5.0
1 50.45 51.52 52.72
5 77.66† 72.46 71.04

10 82.10† 73.49 76.11

Table 6: Micro-F1 scores of ALBERT for 5-way K-
shot scenarios, comparing Logistic Regression (LR),
Nearest Centroid (NC) and Nearest Neighbor (NN)
readout approaches.

rections, none of them directly investigate the con-478

tribution of different pre-trained representations.479

As such, our analysis complements these works.480

Das et al. (2021) present a contrastive pre-training481

approach for few-shot NER that uses in-domain482

data to fine-tune token embeddings before few-shot483

classification. In contrast, we only consider con-484

trastive examples from the sampled few-shot set to485

conform to the low-resource setting.486

Encoder comparisons In parallel to our work,487

Pearce et al. (2021) compare different Transformer488

models on extractive question answering and, sim-489

ilar to our results, find RoBERTa to perform best,490

outperforming BERT. However, they did not re-491

produce the strong performance we achieved with492

ALBERT and, unlike our results, found XLNet to493

be consistently outperforming BERT. Cortiz (2021)494

compare Transformer models for text-based emo-495

tion recognition and also found RoBERTa to per-496

form best with XLNet being (shared) second, again497

outperforming BERT.498

Our work can also be viewed as a kind of prob-499

ing task (Conneau et al., 2018; Belinkov and Glass, 500

2019; Tenney et al., 2019), since we analyze how 501

much information about named entities is pre- 502

served in the pre-trained representations, as mea- 503

sured by a linear classifier. 504

6 Conclusion 505

We presented a systematic, comparative study of 506

pre-trained encoders on the task of low-resource 507

named entity recognition. We find that encoder 508

performance varies significantly depending on the 509

scenario and the mix of pre-training and fine-tuning 510

strategies. This suggests that the choice of en- 511

coders for a particular setting in current state-of- 512

the-art low-resource NER approaches may need to 513

be carefully (re-)evaluated. We also find that PLM 514

encoders achieve reasonably good token classifica- 515

tion performance on many English and German 516

NER datasets with as little as 10 examples per 517

class, in a fine-tuning-free setting. In particular, 518

ALBERT turned out to be a very strong contender 519

in one-shot settings, whereas RoBERTa often out- 520

performs other PLMs in settings with more exam- 521

ples. For German, BERT shows the best average 522

performance across scenarios, with XLM-R being 523

more useful in one-shot settings. 524

One obvious direction for future work is to eval- 525

uate additional encoders, in particular models that 526

are pre-trained in an entity-aware manner (Peters 527

et al., 2019; Zhang et al., 2019). While our analy- 528

sis is limited to NER, the encoder-readout frame- 529

work can easily be adapted to evaluate other low- 530

resource classification tasks. 531
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A Additional Training Details812

We used a single RTXA6000-GPU for all experi-813

ments. The average runtime per scenario (dataset,814

encoder) for 600 episodes was approximately 1815

minute (1-shot), 3 minutes (5-shot) and 6 minutes816

(10-shot). Constrastive pre-training was also per-817

formed on the same single RTXA6000-GPU, and818

took approximately 1 hour of GPU-time, including819

hyperparameter search.820

For contrastive pre-training, the following hy-821

perparameters were manually tuned: learning rate822

in [2× 10−5, 5× 10−5], the number of epochs in823

[1, 2, 5]. We used the most occurrences of F1-gains824

across all encoders and scenarios on CoNLL-2003825

dataset as criterion for hyperparameter selection.826

All pre-trained models evaluated in this study827

were used as they are available from Hugging-828

Face’s model hub, without any modifications. Ta-829

ble 7 lists the model identifiers. We used Hugging-830

Face’s dataset hub for all datasets except the dataset831

by Zhang et al. (2020), which is used here with the832

permission of the authors.833

Model HuggingFace ID

BERT↓ bert-base-uncased
BERT↑ bert-base-cased
ALBERT albert-base-v2
RoBERTa roberta-base
SpanBERT SpanBERT/spanbert-base-cased
XLNET xlnet-base-cased

BERT DE bert-base-german-cased
GottBERT uklfr/gottbert-base
XLM-R xlm-roberta-base

BERTPOS vblagoje/bert-english-uncased-finetuned-pos
BERTMNLI textattack/bert-base-uncased-MNLI
BERTSQuAD csarron/bert-base-uncased-squad-v1
BERTCoNLL dslim/bert-base-NER-uncased

Table 7: HuggingFace model identifiers of evaluated
encoders

B Readout approaches834

Logistic Regression (LR) is a linear classification835

algorithm that can be extended to multinomial lo-836

gistic regression to deal with multi-class (N -way)837

settings, such as the one discussed here. The prob-838

ability that query token x′ belongs to the c-th class839

is given by:840

Pr(y = c) =
score(x′, c)∑N
i=1 score(x′, i)

score(x′, i) := exp(Wi · fθ(x′)),
(1)841

where W is a matrix of N rows learned from the
support set S, and Wi denotes the i-th row of W .
score(·) serves as the metric to measure the affinity
between token x′ and the prototype of class c, and
the prediction is given by

y∗ = arg max
c∈{1,··· ,N}

score(x′, c).

k-Nearest Neighbor (NN) is a non-parametric 842

classification method adopted in metric space. As 843

proposed in STRUCTSHOT (Yang and Katiyar, 844

2020), we set k = 1 to find the exact nearest token 845

in the support set. Given a query token x′, 846

y∗ = arg min
c∈{1,··· ,N}

dc(x
′)

dc(x
′) := min

x∈Sc
d
(
fθ(x

′), fθ(x)
)
,

(2) 847

where Sc is the set of support tokens whose tags 848

are c, and d denotes the distance between two em- 849

beddings in the representation space. 850

Nearest Centroid (NC) works similar to NN. In 851

contrast, for each query token x′, instead of comput- 852

ing the distance between fθ(x′) and every instance 853

in the embedding space, we represent each class 854

by the centroid cc of all embeddings belonging to 855

this class, and assign token x′ to the class with the 856

nearest centroid: 857

y∗ = arg min
c∈{1,··· ,N}

d
(
fθ(x

′), cc
)

cc =
1

|Sc|
∑
x∈Sc

fθ(x).
(3) 858

C Entity tag sets of English datasets 859

We list the full entity tag sets for all English bench- 860

marks. Overlap entity tags with CoNLL-2003EN 861

are highlighted with underline. 862

C.1 CoNLL-2003EN 863

LOC, MISC, ORG, PER. 864

C.2 OntoNotes 5.0 865

CARDINAL, DATE, EVENT, FAC, GPE, LAN- 866

GUAGE, LAW, LOC, MONEY, NORP, ORDI- 867

NAL, ORG, PERCENT, PERSON, PRODUCT, 868

QUANTITY, TIME, WORK_OF_ART. 869

C.3 Few-NERDcoarse 870

art, building, event, location, organization, other6, 871

person, product. 872

6Few-NERDcoarse sets non-entity as ’O’ and various entity
types as ’other’. Therefore, we treat ’other’ as ’MISC’ in this
case.
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C.4 Few-NERDfine873

art-broadcastprogram, art-film, art-music, art-874

other, art-painting, art-writtenart, building-875

airport, building-hospital, building-hotel,876

building-library, building-other, building-877

restaurant, building-sportsfacility, building-878

theater, event-attack/battle/war/militaryconflict,879

event-disaster, event-election, event-other,880

event-protest, event-sportsevent, location-881

GPE, location-bodiesofwater, location-island,882

location-mountain, location-other, location-883

park, location-road/railway/highway/transit,884

organization-company, organization-education,885

organization-government/governmentagency,886

organization-media/newspaper, organization-other,887

organization-politicalparty, organization-religion,888

organization-showorganization, organization-889

sportsleague, organization-sportsteam, other-890

astronomything, other-award, other-biologything,891

other-chemicalthing, other-currency, other-892

disease, other-educationaldegree, other-god,893

other-language, other-law, other-livingthing,894

other-medical, person-actor, person-artist/author,895

person-athlete, person-director, person-other,896

person-politician, person-scholar, person-soldier,897

product-airplane, product-car, product-food,898

product-game, product-other, product-ship,899

product-software, product-train, product-weapon900

C.5 WNUT-17901

corporation, creative-work, group, location, person,902

product.903

C.6 WikiAnn904

LOC, ORG, PER.905

C.7 WikiGold906

LOC, MISC, ORG, PER.907

C.8 Zhang et al.908

ATTRIBUTE, BRAND, COMPONENT, PROD-909

UCT.910
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