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Abstract
Protein–ligand co-folding has emerged as a pow-
erful alternative for modeling protein-ligand com-
plex, offering inherent flexibility and removing re-
liance on experimentally determined crystal struc-
tures. Recent AlphaFold3-style conditional dif-
fusion models achieve state-of-the-art accuracy
on docking benchmarks but lack mechanisms
to encode physical principles and expert expe-
rience. We propose to utilize Kahneman–Tversky
Optimization (KTO), a reinforcement learning
method that directly integrates human and bio-
chemical preference signals, for conditional diffu-
sion–based co-folding models. AF3-KTO seam-
lessly aligns with binary docking feedback and the
iterative, conditional architecture of AlphaFold3-
style models, eliminating the need for a sepa-
rate reward network and minimizing computa-
tional overhead. Extensive evaluations on multi-
ple benchmarks show that KTO consistently en-
hances binding-pose accuracy and physical plau-
sibility, even under imbalanced preference data.

1. Introduction
Protein–ligand co-folding is a specialized form of structure
prediction that simultaneously models the three-dimensional
structure of a receptor protein at the binding pose and con-
formation of one or more ligands, which requires the un-
derstanding of biomolecular interactions, and holds the po-
tential of accelerating the discovery of novel therapeutics.
Previous methods have approached the structure prediction
problem as protein-ligand docking, yet the advanced for-
mulation of co-folding enjoys twofold advantages over the
previous one: (i) it naturally accounts for the inherent flexi-
bility and induced-fit effects of protein–ligand complexes
by generating receptor and ligand coordinates in a single,
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Figure 1. An overview of AF3-KTO’s preference optimization
pipeline. KTO fully make use of generated data in co-folding
scenario.

integrated process rather than relying on time-consuming
iterative adjustments, which are usually conducted by tra-
ditional physics-based docking methods (Trott & Olson,
2010); and (ii) it is broadly applicable to high-throughput
wet-lab experiments, since it does not depend on exper-
imentally determined apo structures as required by deep
learning-based docking models such as DiffDock (Corso
et al., 2022), which may be unavailable or undiscovered.

A promising avenue to conduct AI-based protein-ligand co-
folding is leveraging AlphaFold3-like pre-trained models
with multiple capabilities folding bio-molecular complexes
incorporating interactions with proteins, nucleic acids, and
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small molecules. During this process, AlphaFold3-style
architectures leverage extensive multiple sequence align-
ments and structural templates, rather than explicit apo
structures, to achieve state-of-the-art results (Liu et al., 2024;
Wohlwend et al., 2024; Team et al., 2025). These emergent
capabilities stem from integrating diverse biological con-
straints during pre-training, novel network designs that fuse
multiple representations, and iterative recycling through
large-scale conditional diffusion modules. Despite these
breakthroughs, AlphaFold3-like models inherit the limita-
tions of one-shot deep learning approaches, including viola-
tion of physical principles and the absence of experiences
from human expert which hinders their adoption in wet-lab
settings.

In this work, we address these challenges by introduc-
ing a reinforcement-learning (RL) framework that embeds
biochemical preferences as reward signals, encouraging
model’s generalization beyond the data distribution and pro-
moting more physically feasible and explainable samples.
Building on direct preference optimization techniques, we
propose to utilize Kahneman–Tversky Optimization (KTO)
in AlphaFold3 architecture, an RL method which we found
tailored to protein–ligand co-folding and conditional diffu-
sion modules. Unlike prior approaches, KTO eliminates the
need for a separately trained reward model and constructs
win-loss comparisons under identical conditions to mini-
mize extra computation (Ethayarajh et al., 2024). Further-
more, by weighting training examples according to prospect
theory (Kahneman & Tversky, 2013), KTO mitigates abrupt
distributional shifts caused by extreme outliers while pre-
serving the core strengths of AlphaFold3-like models.

2. Preliminaries
2.1. Diffusion Models

Diffusion models (Ho et al., 2020; Rombach et al., 2022;
Esser et al., 2024; Karras et al., 2022) are trained by sim-
ulating a forward–reverse noisy Markovian perturbation
process (Garcia & Rachelson, 2013). The forward process
q(xt | xt−1) transits data x0 to noisy sample xT , while re-
verse process pθ(xt−1 | xt) reconstruct noisy to generated
samples. Common training objective could be factorized as:

LDiff = Ex0,ϵ,t,xt
[w(λt)||ϵ− ϵθ(xt, t)||22] (1)

where θ is the main parameters of networks, w(λt) is a
weight function over signal noise ratio.

2.2. Kahneman Tversky Optimization for Diffusion

Originally, KTO (Ethayarajh et al., 2024) is designed for
language modeling (Achiam et al., 2023)(Guo et al., 2025)
distribution πθ(x | y) of sentence x given prompt y with

loss function written as:

LKTO = −Ec,x∈D[U(w(x)(β log
πθ(x|y)
πref (x|y)

)−Qref )]

(2)

where D for a binary Dataset with desirable or undesirable
samples, β for scaling factor, w(x) ∈ {+1,−1} for pref-
erence signal, Qref for average implicit reward, U(v) for
weight function. As shown in Figure.1, the main difference
between KTO and DPO are a sigmoid-like weight function
(which eliminated huge policy update when implicit reward
reach −∞) and the separation of win-loss pairs.

Meanwhile, KTO can be easily applied to diffusion models
(Li et al., 2024) using an estimated upper bound:

LDiff−KTO = −Ec,x0∈D,t∈[0,T ][U(w(x0)

(β log
πθ(xt−1|xt)

πref (xt−1|xt)
)−Qref )] (3)

where πθ stands for model under optimization, πref for
fixed pre-trained model. Qref can be calculated according
to construction of “mismatched pairs” over a small batch of
data {x0, x1, x2...xm} where j = (i+ 1) mod m.

{(xi
t, x

j
t−1)} = {(x1

t , x
2
t−1)..(x

m
t , x0

t−1)} (4)

Qref = β max(0,
1

m

m−1∑
i=1

log
πθ(x

j
t−1|xi

t)

πref (x
j
t−1|xi

t)
) (5)

3. Methodology: KTO for AlphaFold3
In this section, we aims to transfer the algorithm of KTO to
the core conditional diffusion module of AlphaFold3 archi-
tecture and enable optimization for protein ligand co-folding
task. Detailed derivation could be found in Appendix B.

For structure prediction model like AlphaFold3, we’re mod-
eling protein structure x (usually continuous atom coordi-
nates) given protein sequence y (discrete amino acid type).
Specifically as an unified framework conducting protein
ligand co-folding, AlphaFold3 is predicting complex struc-
ture x given sequence of protein yp and smiles of small
molecular ligand ym. However, input information of the
whole structure prediction model consists far more than that,
including Multiple Sequence Alignment (MSA) searched
from homologous database yM , as well as template searched
from structure database yT . For clarity, all input conditions
are allocated in formula of y:
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Figure 2. Distribution of invalid reasons for different dataset

y = {yp, ym, yM , yT , ...} (6)

Since KTO has already implied into conditional task with
textual prompt for example text-to-image generation, all
things we’re going to do are applying those conditions to
Diffusion-KTO algorithm for optimization on AlphaFold3:

LAF3−KTO =− Ec,(x0,y)∈D,t∈[0,T ][U(w(x0)

(β log
πθ(xt−1|xt, y)

πref (xt−1|xt, y)
)−Qref )] (7)

Correspondingly, conditions are also added when getting the
term of Qref with batch of data {([x0 | y0]...[xm | ym])}:

{([xi
t | yi], [x

j
t−1 | yj ])} = {([x1

t | y1], [x2
t−1 | y2])

...([xm
t | ym], [x0

t−1 | y0])}, j = (i+ 1) mod m (8)

Qref = β max(0,
1

m

m−1∑
i=1

log
πθ(x

j
t−1|xi

t, y
i)

πref (x
j
t−1|xi

t, y
i)
) (9)

Since then, we’ve applied KTO for AlphaFold3 architec-
ture theoretically. In addition, we find that AF3-KTO can
directly optimized using Diffusion MSE loss as part of loss
function with some algebra. For detailed implement al-
gorithm with practical setting considered, please refer to
Appendix B.2.

4. Experiments
4.1. Dataset Construction

To discover the strengths and limitations of our AlphaFold3-
like model in predicting protein–ligand interactions, we
constructed a synthetic preference dataset derived from
PDBBind2020 (Wang et al., 2004; Liu et al., 2017), which
comprises 19,443 protein–ligand complexes. Figure 2 high-
lights a distribution shift between standard and predictive
complexes, underscoring the need for a tailored dataset.

Our analysis of the primary PB-invalid failure modes reveals
two key shortcomings of existing datasets:

Figure 3. Evaluation pipeline of AF3-KTO

Overlap with Pre-training Data: AlphaFold3 was pre-
trained on the entire PDB (Sidi & Keasar, 2020) and multi-
ple distilled resources (AlphaFold2, MGnify (Richardson
et al., 2023), OpenProteinSet (Ahdritz et al., 2023), Uni-
Clust30 (Mirdita et al., 2017), etc.), which include most
proteins and many common ligands. Consequently, directly
using PDBBind for preference learning suffers from redun-
dancy and limited novelty.

Unmatched Error Modes: Ground-truth complexes do not
capture prediction-specific errors (e.g., incorrect chirality or
altered secondary structure). Moreover, generating negative
examples from model outputs shifts the dominant failure
modes in training samples.

As we apply the KTO optimization framework to this
dataset, all samples from generated dataset are used fully, la-
beling as positive any complex with RMSD<2Å or deemed
PB-valid, and negative otherwise. Details of the KTO hy-
perparameters are given in Appendix C.

4.2. Evaluation Pipeline

Following AlphaFold3 its reproducing works, we evaluate
protein–ligand co-folding on the PoseBuster v2 dataset (But-
tenschoen et al., 2024), which contains complexes resolved
in 2021 or later to avoid overlap with our training set. Two
complementary metrics quantify model performance:

RMSD Success rate: Predicted and reference complexes
are first superimposed by aligning protein backbones with
TM-align (Zhang & Skolnick, 2005). The ligand RMSD
is then computed, and predictions with RMSD<2Å are
counted as successful.

PB-Valid: Each predicted complex must pass a suite of
19 physics-based checks (bond lengths and angles, ligand
strain energy, chirality, steric clashes, etc.). Only complexes
that satisfy all checks are considered valid.
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Figure 4. Protein ligand co-folding results AF3-KTO compared
with baselines
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Figure 5. Detailed validity check between AF3-KTO and Protenix

4.3. Main Results

Figure 4, 5 and 7 compares AF3-KTO preference optimized
model against the baseline AlphaFold-like pre-training mod-
els. Across both RMSD success rate and PB-Valid metrics,
our method achieves substantially higher scores, demon-
strating that Kahneman Tversky Optimization markedly en-
hances predictive accuracy and physical plausibility. Qual-
itative examples in Figure 6 further illustrate how KTO
corrects common geometric and physical errors.

4.4. Ablation Study

To isolate the contributions of KTO, we performed a con-
trolled ablation in which the Protenix model was fine-tuned
using only positive examples (RMSD<2Å and PB-Valid),
under identical training steps. Table 1 reports results for

Table 1. Ablation study on SFT data and number of candidates

Model Protenix SFT Ours

RMSD<2Å
Top1 71.7% 72.1% 73.9%
Top5 77.9% 78.0% 79.0%
Top25 81.6% 81.9% 82.4%

PB-Valid
Top1 38.3% 34.1% 38.6%
Top5 61.0% 61.4% 62.1%
Top25 75.5% 73.8% 76.2%

Protenix AF3-KTO

7PIH - 7QW 7WJB - BGC

Protenix

8AIE - M7L

Protenix

7NU0 - DCL

ProtenixAF3-KTO AF3-KTO

AF3-KTO

Figure 6. AF3-KTO solves structural invalid issues
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varying numbers of generated candidates. In every configu-
ration, AF3-KTO outperforms Protein-SFT, confirming that
KTO-driven preference learning yields superior co-folding
performance. Notably, the decline in PB-Valid rate at lim-
ited candidate counts suggests a trade-off between candidate
volume and physical reliability.

5. Conclusion
In this paper, we proposed a novel approach of conduct-
ing advanced preference optimization method KTO on the
framework of AlphaFold3. Based on pre-trained model, we
made a step forward to improve generative qualities with
human preference, which is an Out of Distribution (OOD)
ability captured by reinforcement learning. In addition,
AF3-KTO has clear implement theoretically and huge gen-
eralization potential which could perform on any labeled
dataset with any conditions of protein-ligand pairs.
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Impact Statement
Our work introduces Kahneman–Tversky Optimization
(KTO), a reinforcement-learning framework tailored for
protein–ligand co-folding. AF3-KTO offers a computation-
ally efficient, data-efficient pathway to improve the physical
realism and predictive confidence of AI-driven co-folding.
In the near term, this advance promises to accelerate early-
stage drug discovery and reduce the experimental burden
on wet-lab teams. In the longer term, our approach paves
the way for broader adoption of RL based structural biology
methods, fostering more reliable design of therapeutics and
other bio-molecular applications with the attendant respon-
sibilities to ensure ethical deployment and guard against
misuse.
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A. A Brief Discussion of Existing Works
In this section, We discuss the connection AF3-KTO between existing work, especially on the reinforcement learning side.

A.1. Reinforcement Learning from Human Feedback

Using a single signal as guidance may not always lead to the desired generative model, particularly when the metrics
involved are subjective, difficult to define, or not fully understood. To improve generative models, there is a growing need for
them to develop an implicit understanding of desirable objectives—learning human or natural preferences rather than relying
solely on explicit numerical signals. In the context of Reinforcement Learning from Human Feedback (RLHF), a reward
model is typically trained to assess human preferences, which then informs the policy gradient process. However, training
reward models presents challenges, such as resolving preference conflicts and dealing with the scarcity of preference data.

A.2. Direct Preference Optimization

One of the most significant architectural advancements in RLHF is the elimination of explicit reward models. Building on
Proximal Policy Optimization (PPO)(Schulman et al., 2017), Direct Preference Optimization (DPO) method(Rafailov et al.,
2023) have enabled direct training by modifying the objective function during training, rather than relying on a separate
reward model to guide the optimization process. This shift represents a substantial step forward, reducing the complexity of
RL and making it more scalable. There are two insights of innovation in the scope if DPO:

• Unification of objectives across the entire training pipeline, from pre-training to fine-tuning and preference optimization.

• Accommodation of DPO for diverse data structures to enhance data availability and efficiency.

A.3. Kahneman Tversky Optimization

KTO(Ethayarajh et al., 2024) is a more broadly practical preference optimization method built upon Direct Preference
Optimization (DPO)(Rafailov et al., 2023) with superior data efficiency and more reasonable weight function. It draws on
the well-known “Prospect Theory” in economics, originally proposed by Kahneman and Tversky in 1992(Kahneman &
Tversky, 2013). Prospect Theory characterizes a rational decision-maker’s behavior under uncertainty: when gains are large,
the marginal increase in perceived value slows down; likewise, when losses are large (i.e., substantial negative returns), the
marginal decrease in perceived value also decelerates. Only when gains and risks are of similar magnitude does perceived
value change markedly: at which point humans tend to “take a gamble” rather than accept the given outcome. The resulting
value–gain curve is thus well approximated by a sigmoid function.

In this context, the log-likelihood loss employed by DPO didn’t match human prospect. although the log-likelihood grows
slowly under large positive gains, it still tends toward negative infinity for large negative losses, rendering this behavior
inherently risk-averse. Such imbalance is a primary source of the persistent fixed bias seen in DPO. Consequently, the key
innovation of KTO is to substitute DPO’s log-likelihood with an approximately symmetric weighting function that better
mirrors human preference judgments, thereby further reducing dependence on tightly paired positive and negative samples
and requiring only binary labels for each datum.

A.4. Aligning Diffusion Models by RLHF

Reinforcement Learning from Human Feedback (RLHF) was initially developed to align Large Language Models (LLMs)
with human preferences, particularly for text generation tasks like summation or dialogue complement. However, it
has since been adapted to optimize the performance of Diffusion Models. Most studies treat the diffusion process as a
Markov Decision Process (MDP) and aim to find a trajectory that maximizes the reward. From this prospective, method
Diffusion-DPO(Wallace et al., 2024) proposed an upper bound of the original DPO(Rafailov et al., 2023) loss to estimate
implicit reward along the diffusion trajectory, which is further inherited in study Diffusion-KTO (Li et al., 2024).

At last, AF3-KTO follows the theoretical framework of Diffusion-KTO (Li et al., 2024), transferring the task from text-to-
image to protein-ligand co-folding. The process includes insertion of complex while exquisite AlphaFold3 architecture and
enabling practical algorithm with min convertion of backbone (2).

7



Enhancing AlphaFold3 Protein-Ligand Co-Folding via Reinforcement Learning

B. Mathematical Derivations
B.1. A More Accurate Setting for AlphaFold3 Architecture

In this part, we dive into the implement of conditional diffusion module of AlphaFold3. Actually, the input condition of
module are multiple representations: (i) token level single conditioning si; (ii) token level pair conditioning input zij ; (iii)
atom level single conditioning ci; (iv) atom level pair conditioning pij ; Again we assemble then into a formula of y:

y = {si, zij , ci, pij} (10)

We’re goint to use x̂θ(xt, t, y) to represent the denoised results after the whole diffusion modulre, it consist of: (i) adding
noise with a random sample t by input coodinates x0 to get input of network xt; forwarding process of network backbone
(the diffusion conditioning extraction, atom attention encoder, diffusion transformer and atom attention decoder), which is
Algorithm 20 in the supplying material in AlphaFold3 paper, resulting in x̂θ;

Given the forwarding function of diffusion module, the diffusion MSE loss of AlphaFold3 could be calculated as:

LAF3−MSE−Diffusion =
1

3
Ω(x) ||xaligned

0 − x̂θ(xt, t, y)||22, x ∈ R3 (11)

where xaligned means the ground truth complex is aligned with denoised complex in the context of protein backbone, Ω is a
weighted function related to biological type of data sample:

Ω = 1 + f is dna · 5 + f is rna · 5 + f is ligand · 10 (12)

B.2. Directly Apply KTO into AlphaFold3 Architecture

Lemma B.1. For an unmatched pair (xi, xj) each under diffusion process (xi
t, x

j
t ), t ∈ [0, T ]:

−Exj
t−1∼q(xj

t−1|x
j
0,y

j) log
πθ(x

j
t−1 | xi

t, y
i)

πref (x
j
t−1 | xi

t, y
i)
≤ ||xj

0 − x̂θ(x
i
t, t, y

i)||22 − ||x
j
0 − ˆxref (x

i
t, t, y

i)||22 (13)

where x̂θ(x
i
t, t, y

i) are implement of diffusion module including predicting distribution pθ(x
i
t−1 | xi

t, y
i) and reconstruct

denoised sample x̂θ.

Proof.

LHS = −Exj
t−1∼q(xj

t−1|x
j
0,y

j) log
πθ(x

j
t−1 | xi

t, y
i)

πref (x
j
t−1 | xi

t, y
i)

(14)

= Exj
t−1∼q(xj

t−1|x
j
0,y

j)[log
q(xj

t−1 | x
j
0, y

j)

πθ(x
j
t−1 | xi

t, x
i)
− log

q(xj
t−1 | x

j
0, y

j)

πref (x
j
t−1 | xi

t, y
i)
] (15)

= DKL[q(x
j
t−1 | x

j
0, y

j) || πθ(x
j
t−1 | xi

t, y
i)]−DKL[q(x

j
t−1 | x

j
0, y

j) || πref (x
j
t−1 | xi

t, y
i)] (16)

≤ ||xj
0 − x̂θ(x

i
t, t, y

i)||22 − ||x
j
0 − ˆxref (x

i
t, t, y

i)||22 (17)
= RHS (18)

(19)

Specificly, when data pairs are matched (i = j), that formula comes into exactly diffusion MSE loss:

−Ext−1∼q(xt−1|x0,y) log
πθ(xt−1 | xt, y)

πref (xt−1 | xt, y)
≤ ||x0 − x̂θ(xt, t, y)||22 − ||x0 − ˆxref (xt, t, y)||22 = Lθ − Lref (20)
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Algorithm 1 Training algorithm of AF3-KTO
Input: a batch of noisy data with conditions {[x1

t | y1]...[xm
t | ym], size m. x ∈ R3, y = {si, zij , ci, pij}

Model: Lθ(xlabel, xt, y) =
1
3ω(x) ||xlabel − ˆxθ(xt, t, y)||22 and Lref (xlabel, xt, y) =

1
3ω(x) ||xlabel − ˆxθ(xt, t, y)||22

Construct mismatch pairs {([xi
t | yi], [x

j
t | yj ])}, j = i+ 1 mod m.

for i, j in mismatch pairs do
Lmis−k ← 3

Ω [Lθ(x
j
0, x

i
t, y

i)− Lref (x
j
0, x

i
t, y

i)]
end for
Qref = max(0, 1

m

∑m−1
k=1 Lmis−k)

for k = 1 to m do
label w(xk

0) = 1or − 1
Lmatch ← 3

ΩLθ(x
k
0 , x

k
t , y

k)− Lref (x
k
0 , x

k
t , y

k)
LAF3−KTO ← U(w(xk

0)β (Lmatch −Qref ))
Update x̂θ(xt, t, y) through gradient back propagation

end for

where Lθ representing the diffusion MSE loss of optimizing diffusion module, while Lref is the pre-trained diffusion
module.

Then we’re able to derive a clarified version of AF3-KTO loss (Equation 7) given diffusion module of AlphaFold3. Firstly,
let’s take a look at a full version of our loss:

LAF3−KTO = −Ec,(xi
0,y

i)∈D,t∈[0,T ][U(w(x0)β (log
πθ(xt−1|xt, y)

πref (xt−1|xt, y)
)−Qref )] (21)

= −Ec,(xk
0 ,y

k)∈{([x0|y0]...[xm|ym])},t∈[0,T ][U(w(xk
0)β (log

πθ(x
k
t−1|xk

t , y)

πref (xk
t−1|xk

t , y)
)−max(0,

1

m

m−1∑
i=1

log
πθ(x

j
t−1|xi

t, y
i)

πref (x
j
t−1|xi

t, y
i)
))]

(22)

where we’re optimizing kth data over a batch size of m with its unmatched pair (i, j). Since both xj
t−1 and are acquired by

forward diffusion process:

LAF3−KTO (23)
= −Ec,(xk

0 ,y
k)∈{([x0|y0]...[xm|ym])},t∈[0,T ], xj

t−1∼q(xj
t−1|x

j
0,t), x

k
t−1∼q(xk

t−1|xk
0 ,t)

[U(w(xk
0)β (log

πθ(x
k
t−1|xk

t , y)

πref (xk
t−1|xk

t , y)
)−max(0,

1

m

m−1∑
i=1

log
πθ(x

j
t−1|xi

t, y
i)

πref (x
j
t−1|xi

t, y
i)
))] (24)

≤ −Ec,(xk
0 ,y

k)∈{([x0|y0]...[xm|ym])},t∈[0,T ][U(w(xk
0)β (Exk

t−1∼q(xk
t−1|xk

0 ,t)
log

πθ(x
k
t−1|xk

t , y)

πref (xk
t−1|xk

t , y)

− Exj
t−1∼q(xj

t−1|x
j
0,t)

max(0,
1

m

m−1∑
i=1

log
πθ(x

j
t−1|xi

t, y
i)

πref (x
j
t−1|xi

t, y
i)
))] (25)

≤ Ec,(xk
0 ,y

k)∈{([x0|y0]...[xm|ym])},t∈[0,T ][U(w(xk
0)β (Lk

θ − Lk
ref )−max(0,

1

m

m−1∑
i=1

{||xj
0 − x̂θ(x

i
t, t)||22 − ||x

j
0 − ˆxref (x

i
t, t)||22}))]

(26)

where Lk
θ and Lk

ref is the diffusion MSE loss with input kth data, ||xj
0 − x̂θ(x

i
t, t)||22 and ||xj

0 − ˆxref (x
i
t, t)||22 are the

diffusion MSE loss between ith input data and jth labels. In all, the algorithm of AF3-KTO are be concluded in Algorithm
2.
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Algorithm 2 Training algorithm of AF3-KTO
Input: a batch of noisy data with conditions {[x1

t | y1]...[xm
t | ym], size m. x ∈ R3, y = {si, zij , ci, pij}

Model: Lθ(xlabel, xt, y) =
1
3ω(x) ||xlabel − ˆxθ(xt, t, y)||22 and Lref (xlabel, xt, y) =

1
3ω(x) ||xlabel − ˆxθ(xt, t, y)||22

Construct mismatch pairs {([xi
t | yi], [x

j
t | yj ])}, j = i+ 1 mod m.

x← [yp, ym]
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0.4
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ss
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Figure 8. Loss Function in KTO Optimization Process

C. Experimental Details
C.1. Training Configurations

We train our AF3-KTO model on synthetically generated datasets, where each sample is randomly sub-sampled according
to a user-defined positive-sample ratio. Compared to the hyper-parameter settings used in Diffusion-KTO for text-to-image
tasks (Li et al., 2024), we make the following adjustments in AF3-KTO :

1. Learning rate: reduced from 5×10−4 to 1×10−4

2. DPO KL penalty (β): from 100 to 10

3. Positive sampling ratio: from 0.5 to 0.9

All other training hyper-parameters follow the Protenix conditional diffusion backbone without modification. Both the
KTO-optimized model and baseline model (and vaiants fine-tuned on only positives samples) are trained for 2,000 steps; we
select and report the best-performing checkpoint for each to minimize the risk of over-fitting.

Figure 8 illustrates the training loss curves for AF3-KTO , demonstrating that KTO effectively conducts tractable and
efficient preference optimization on the AlphaFold3-inspired conditional diffusion architecture.
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C.2. Baselines

We compare AF3-KTO against three strong baselines:

• AlphaFold3: The state-of-the-art conditional diffusion–based predictor for protein structure, recently shown to surpass
specialized end-to-end docking models in accuracy and robustness.

• Protenix: A representative reproduction of the AlphaFold3 architecture, whose performance on protein ligand is
enhanced by extra data collected.

• Protenix-SFT: Protenix fine-tuned on all positive examples from our synthetic dataset.
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Figure 9. RMSD success rate curve with threshold on Top5 candidates

C.3. Analysis of optimization results

In Figure 4, we compare root-mean-square deviation (RMSD) and PB-Valid (physical plausibility) metrics across models.
AF3-KTO consistently outperforms both the pretrained-only AlphaFold3(Protenix) and the supervised Protenix-SFT
baselines, achieving higher accuracy and improved physical plausibility. This confirms that human-preference optimization
can correct physically implausible predictions without compromising binding-pose accuracy.

Figure 9 and 10 examines RMSD success rates when selecting only the top-k candidate poses. Consistent with the ablation
results in Table 1, AF3-KTO maintains its lead over baselines across different candidate thresholds. Notably:

• RMSD performance degrades more slowly than PB-Valid as k decreases, indicating that AlphaFold3-style models
already achieve high accuracy on high-confidence poses.
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Figure 10. RMSD success rate curve with threshold on Top1 candidates

• Even when optimizing only for RMSD<2Å, KTO yields marginal gains at tighter thresholds (e.g. RMSD<1Å),
suggesting an overall distributional shift toward lower RMSD values.

Finally, Figure 6 presents representative ligand–protein complexes before and after KTO optimization. While preserving
the global ligand geometry, KTO substantially reduces steric clashes with the receptor, illustrating how preference-based
optimization effectively mitigates common docking errors and enhances the reliability of predicted binding poses.

12


