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Abstract

Simultaneous Machine Translation (SiMT) gen-001
erates target outputs while receiving stream002
source inputs and requires a read/write policy003
to decide whether to wait for the next source004
token or generate a new target token, whose005
decisions form a decision path. Existing SiMT006
methods, which learn the policy by exploring007
various decision paths in training, face inherent008
limitations. These methods not only fail to pre-009
cisely optimize the policy due to the inability to010
accurately assess the individual impact of each011
decision on SiMT performance, but also cannot012
sufficiently explore all potential paths because013
of their vast number. Besides, building decision014
paths requires unidirectional encoders to simu-015
late streaming source inputs, which impairs the016
translation quality of SiMT models. To solve017
these issues, we propose Self-Modifying State018
Modeling (SM2), a novel training paradigm for019
SiMT task. Without building decision paths,020
SM2 individually optimizes decisions at each021
state during training. To precisely optimize022
the policy, SM2 introduces Self-Modifying pro-023
cess to independently assess and adjust deci-024
sions at each state. For sufficient exploration,025
SM2 proposes Prefix Sampling to efficiently026
traverse all potential states. Moreover, SM2 en-027
sures compatibility with bidirectional encoders,028
thus achieving higher translation quality. Ex-029
periments show that SM2 outperforms strong030
baselines. Furthermore, SM2 allows offline031
machine translation models to acquire SiMT032
ability with fine-tuning.033

1 Introduction034

Simultaneous Machine Translation (SiMT) (Gu035

et al., 2017; Ma et al., 2019; Zhang et al., 2020)036

outputs translation while receiving the streaming037

source sentence. Different from normal Offline038

Machine Translation (OMT) (Vaswani et al., 2017),039

SiMT needs a suitable read/write policy to de-040

cide whether to wait for the coming source inputs041

(READ) or generate target tokens (WRITE).042
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Figure 1: Illustration of different paradigms. (a) Train-
ing paradigm based on decision paths. All decisions
along a path are optimized in an integrated manner. (b)
Self-Modifying State Modeling. The decisions at each
state are optimized individually.

As shown in Figure 1(a), to learn a suitable pol- 043

icy, existing SiMT methods usually require build- 044

ing a decision path (i.e., a series of READ and 045

WRITE decisions made by the policy) to simulate 046

the complete SiMT process during training (Zhang 047

and Feng, 2022b). Methods of fixed policies (Ma 048

et al., 2019; Zhang and Feng, 2021) build the de- 049

cision path based on pre-defined rules, and only 050

optimize translation quality along the path. Meth- 051

ods of adaptive policies (Zheng et al., 2019; Miao 052

et al., 2021; Zhang and Feng, 2023) dynamically 053

build the decision path and optimize the policy 054

based on the SiMT performance along this path. 055

However, the current training paradigm based 056

on decision paths faces inherent limitations. First, 057

it can lead to unprecise optimization of the pol- 058

icy during training. For fixed policies, pre-defined 059

rules cannot ensure optimal decisions at each state. 060

For adaptive policies, there exists a credit assign- 061
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ment problem (Minsky, 1961), which means it is062

difficult to identify the impact of each individual063

decision on the global SiMT performance along064

a path, thus hindering the precise optimization of065

each decision. Second, due to numerous poten-066

tial decision paths, existing methods (Zheng et al.,067

2019; Miao et al., 2021; Zhang and Feng, 2023)068

often prohibit the exploration of some paths during069

training, but this insufficient exploration cannot070

ensure the optimal policy. Third, for building deci-071

sion paths in training, existing methods require uni-072

directional encoders to simulate streaming source073

inputs and avoid the leakage of source future infor-074

mation (Elbayad et al., 2020), which impairs SiMT075

models’ translation quality (Iranzo-Sánchez et al.,076

2022; Kim and Cho, 2023).077

To address these issues, we propose Self-078

Modifying State Modeling (SM2), a novel training079

paradigm for SiMT task. As shown in Figure 1(b),080

instead of constructing complete decision paths,081

SM2 individually optimizes decisions at all poten-082

tial states during training. This paradigm neces-083

sitates addressing two critical issues: firstly, how084

to independently optimize each decision based on085

its own contribution to SiMT performance; and086

secondly, how to sufficiently explore all potential087

states during training. To realize the independent088

optimization, SM2 assesses each decision by esti-089

mating confidence values which measure the trans-090

lation credibility. High confidence means the SiMT091

model can predict a credible target token at cur-092

rent state and WRITE is beneficial for SiMT per-093

formance; otherwise, READ is preferred. Since094

golden confidence values are unavailable, SM2 in-095

troduces Self-Modifying process to learn accurate096

confidence estimation (DeVries and Taylor, 2018;097

Lu et al., 2022). Specifically, during training, the098

SiMT model is allowed to modify its prediction099

based on the received source prefix with the pre-100

diction based on the complete source sentence, and101

the confidence is estimated to determine whether102

the modification is necessary to ensure a credible103

prediction at current state. To sufficiently explore104

all potential states, SM2 conducts Prefix Sampling105

to divide all states into groups according to the106

number of their received source prefix tokens, and107

sample one group for optimization in each iteration.108

Compared to the training paradigm based on de-109

cision paths, SM2 presents significant advantages.110

First, the Self-Modifying process can assess each111

decision independently, which realizes the precise112

optimization of policy without the credit assign-113

ment problem. Second, Prefix Sampling ensures 114

sufficient exploration of all potential states, pro- 115

moting the discovery of the optimal policy. These 116

benefits enable SM2 to learn a more effective pol- 117

icy. Furthermore, without building decision paths 118

in training, SM2 ensures compatibility with bidi- 119

rectional encoders, thereby improving translation 120

quality. This compatibility also allows OMT mod- 121

els to acquire the SiMT capability via fine-tuning. 122

Our contributions are outlined in the following: 123

• We propose Self-Modifying State Modeling 124

(SM2), a novel training paradigm that individ- 125

ually optimizes decisions at all states without 126

building complete decision paths. 127

• SM2 can learn a better policy through precise 128

optimization of each decision and sufficient 129

exploration of all states. With bidirectional en- 130

coders, SM2 achieves higher translation qual- 131

ity and compatibility with OMT models. 132

• Experimental results on Zh→En, De→En and 133

En→Ro SiMT tasks show that SM2 outper- 134

forms strong baselines under all latency levels. 135

2 Background 136

Simultaneous machine translation For SiMT 137

task, we respectively denote the source sentence as 138

x = (x1, ..., xM ) and the corresponding target sen- 139

tence as y = (y1, .., yN ). Since the source inputs 140

are streaming, we denote the number of source to- 141

kens available when generating yi as gi, and hence 142

the prediction probability of yi is p(yi | x≤gi ,y<i) 143

(Ma et al., 2019). Thus, the decoding probability 144

of y is given by: 145

p (y | x) =
N∏
i=1

p(yi | x≤gi ,y<i) (1) 146

Decision state and decision path We define the 147

state sij as the condition in which the source 148

prefix x≤j has been received and the target pre- 149

fix y<i has been generated. At sij , a decision 150

dij ∈ {WRITE,READ} can be made based on the 151

context (x≤j ,y<i) (Zhao et al., 2023). Specifically, 152

if x≤j is sufficient for the SiMT model to predict 153

yi accurately, dij should be WRITE; otherwise, dij 154

should be READ. As shown in Figure 1(a), a series 155

of decisions [d00, ..., dNM ] are made in the SiMT 156

process, which forms a decision path from s00 to 157

sNM . Along the decision path, the SiMT model 158

can finish reading the whole x and outputting the 159

complete y (Zhang and Feng, 2022b). 160
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Figure 2: Overview of SM2. Sj contains the states where x≤j is received. SM contains the states where complete x
is received. We introduce a confidence net (ConfNet) to estimate the confidence of each state. The model parameters
in SiMT setting and OMT setting are shared. In this figure, the sentence lengths of the source and target sides are
set to M = 5 and N = 4 respectively, and j = 3 in the Prefix Sampling step.

3 The Proposed Method161

We propose Self-Modifying State Modeling (SM2),162

which individually optimizes decisions at all states.163

The overview of SM2 is shown in Figure 2. To inde-164

pendently optimize each decision, SM2 learns con-165

fidence estimation to assess decisions at each state166

by modeling the Self-Modifying process (Sec.3.1).167

To ensure sufficient exploration during training,168

SM2 conducts Prefix Sampling to traverse all poten-169

tial states (Sec. 3.2). Then, based on estimated con-170

fidence at each state, SM2 can determine whether171

the received source tokens are sufficient to generate172

a credible token and make suitable decisions during173

inference (Sec.3.3).174

3.1 Self-Modifying for Confidence Estimation175

Intuitively, when a translation model has access176

to the complete input x (i.e., OMT setting), it can177

produce credible outputs. Therefore, a prediction178

made by the translation model at sij (i.e. SiMT179

setting) is considered credible if it aligns with that180

in OMT setting. Conversely, if the prediction in181

SiMT setting is incredible, it will be modified in182

OMT setting. Based on this insight and Ask For183

Hints (DeVries and Taylor, 2018; Lu et al., 2022),184

we model the Self-Modifying process to assess the185

translation credibility of each state. Specifically,186

we provide the SiMT model an option to modify187

its prediction in SiMT setting with that in OMT188

setting, and confidence estimation is defined as a189

binary classification determining whether the cur-190

rent generation requires the modification to ensure191

a credible prediction. Through measuring trans- 192

lation credibility, decisions at each state can be 193

independently assessed. High confidence means 194

the SiMT model can generate a credible token at 195

sij without modification and the WRITE decision 196

is beneficial for SiMT performance; whereas low 197

confidence indicates the prediction is inaccurate at 198

sij and the READ decision is preferred. 199

During training, the Self-Modifying process is 200

conducted in two steps: prediction in SiMT setting 201

& OMT setting and confidence-based modification. 202

For prediction in SiMT setting& OMT setting, 203

the SiMT model outputs different predictions at 204

sij in SiMT setting and OMT setting respectively. 205

These predictions are calculated as follows: 206

pij = p(yi | x≤j ,y<i)

pi = p(yi | x,y<i)
(2) 207

It is noted that the model parameters in SiMT set- 208

ting and OMT setting are shared. 209

For confidence-based modification, an additional 210

confidence net is used to predict the confidence cij 211

at sij . The confidence net is represented as: 212

cij = sigmoid(W T · hij + b) (3) 213

where hij is the hidden representation from the top 214

decoder layer in SiMT setting and θ = {W, b} are 215

trainable parameters. If pij is credible, cij should 216

be close to 1; otherwise, cij should be close to 0. 217

To accurately calibrate cij in the training process, 218

we integrate the modification into the prediction 219
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Algorithm 1: Confidence-based Policy
Input :Streaming inputs x≤j , Threshold

γ, i = 1, j = 1, y0 ← ⟨BOS⟩
Output :Target outputs y

1 while yi−1 ̸= ⟨EOS⟩ do
2 calculate confidence cij as Eq.(3);
3 if cij ≥ γ then // WRITE
4 generate yi with x≤j ,y<i;
5 i← i+ 1;
6 else // READ
7 wait for next source token xj+1;
8 j ← j + 1;
9 end

10 end

probability as follows:220

pmij = cij · pij + (1− cij) · pi (4)221

Subsequently, the translation loss is calculated us-222

ing the modified probability:223

Lsij = −yi log(pmij ) (5)224

Notably, the SiMT model can enhance the predic-225

tion credibility by estimating a lower cij for more226

modification. However, this manner may cause an227

over-reliance on pi. To avoid that, an additional228

penalty term for cij is introduced:229

Lcij = − log(cij) (6)230

Through Self-Modifying process, SM2 indepen-231

dently optimizes each decision based on their indi-232

vidual effect on the SiMT performance, thus realiz-233

ing the precise optimization of the policy without234

credit assignment problem. We provide a gradient235

analysis of the independent optimization in Ap-236

pendix A for further explanation.237

3.2 Prefix Sampling238

To sufficiently explore all potential states during239

training, Prefix Sampling is conducted in SM2.240

As shown in Figure 2, states are categorized into241

groups, and one group is randomly sampled for242

optimization in each iteration. Specifically, all pos-243

sible states of (x,y) are divided into M groups244

according to the number of their received source245

prefix tokens, and each group comprises N states,246

which can be formulated as follows:247

Sj = {sij | 1 ≤ i ≤ N}, j ∈ [1,M ] (7)248

In each iteration, we sample j ∼ U(1,M). 249

Then, SM2 respectively predicts target translation 250

in SiMT setting based on Sj and those in OMT 251

setting based on SM , where the complete source 252

sentence is received. Thus, the modified transla- 253

tion loss and the penalty item of each iteration are 254

computed as follows: 255

LSj =

N∑
i=1

Lsij

LCj =
N∑
i=1

Lcij

(8) 256

Besides, to ensure the pi in OMT setting can 257

provide effective modification, the translation loss 258

in OMT setting is required, which is formulated as: 259

Lomt = −
N∑
i=1

log(pi) (9) 260

The total training loss is the following: 261

L = Lomt + LSj + λLCj (10) 262

where λ is the super parameter. We discuss the 263

effect of λ in Appendix B. 264

Through Prefix Sampling, SM2 explores all po- 265

tential states without building any decision paths. 266

Therefore, SM2 can employ bidirectional encoders 267

without the leakage of source future information in 268

the training process. 269

3.3 Confidence-based Policy in Inference 270

During inference, SM2 utilizes cij to assess the 271

credibility of current prediction, thus making suit- 272

able decisions between READ and WRITE at sij . 273

Specifically, a confidence threshold γ is introduced 274

to serve as a criterion for making decisions. As 275

shown in Algorithm 1, if cij > γ, SM2 selects 276

WRITE; otherwise, SM2 selects READ. This deci- 277

sion process is constantly repeated until the com- 278

plete translation is finished. It is noted that we only 279

utilize SiMT setting in the inference process. 280

By adjusting γ, SM2 can perform the SiMT task 281

under different latency levels. A higher γ encour- 282

ages the SiMT model to predict more credible tar- 283

get tokens and the latency will be longer. Con- 284

versely, a lower γ reduces the latency but may lead 285

to a decrease in translation quality. The values 286

of γ employed in our subsequent experiments are 287

detailed in Appendix C. 288
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Figure 3: SacreBLEU against Average Lagging (AL) on Zh→En, De→En and En→Ro.
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Figure 4: COMET against Average Lagging (AL) on Zh→En, De→En and En→Ro.

4 Experiments289

4.1 Datasets290

We conduct experiments on three datasets:291

Zh→En We use LDC corpus which contains292

2.1M sentence pairs as the training set, NIST 2008293

for the validation set and NIST 2003, 2004, 2005,294

and 2006 for the test sets.295

De→En We choose WMT15 for training, which296

contains 4.5M sentence pairs. Newstest 2013 are297

used as the validation set and newstest 2015 are298

used as the test set.299

En→Ro WMT16 (0.6M) is used as the training300

set. We choose newsdev 2016 as the validation set301

and newstest 2016 as the test test.302

We apply BPE (Sennrich et al., 2016) for all lan-303

guage pairs. In Zh→En, the vocabulary size is 30k304

for Chinese and 20k for English. In both De→En305

and En→Ro, a shared vocabulary is learned with306

32k merge operations.307

4.2 System Settings308

The models used in our experiments are introduced309

as follows. All baselines are built based on Trans-310

former (Vaswani et al., 2017) with the unidirec-311

tional encoder unless otherwise stated. More de- 312

tails are presented in Appendix C. 313

OMT-Uni/OMT-Bi(Vaswani et al., 2017): OMT 314

model with an unidirectional/bidirectional encoder. 315

wait-k (Ma et al., 2019): a fixed policy, which 316

first reads k tokens, then writes one token and reads 317

one token in turns. 318

m-wait-k (Elbayad et al., 2020): a fix policy, 319

which improves wait-k by randomly sampling dif- 320

ferent k during training. 321

ITST (Zhang and Feng, 2022a): an adaptive 322

policy, which models the SiMT task as a transport 323

problem of information from source to target. 324

HMT (Zhang and Feng, 2023): an adaptive 325

policy, which models the SiMT task as a hidden 326

Markov model, by treating the states as hidden 327

events and the predicted tokens as observed events. 328

SM2-Uni/SM2-Bi: Our proposed method with 329

an unidirectional/bidirectional encoder. 330

4.3 Evaluation Metric 331

For SiMT, both translation quality and latency re- 332

quire evaluation. Since existing datasets mainly 333

focus on the OMT task, the metric based on n-gram 334

may cause inaccurate evaluation (Rei et al., 2020). 335

Therefore, we measure the translation quality with 336
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Correlation Coefficient Pearson Spearman Kendall’s τ

Value 0.82 0.84 0.65

Table 1: Correlation between cij and pcij .

both SacreBLEU (Post, 2018) and COMET1 scores.337

For latency evaluation, we choose Average Lagging338

(AL) (Ma et al., 2019) as the metric.339

Furthermore, to assess the quality of read/write340

policy in different SiMT models, we follow Zhang341

and Feng (2022a) and Kim and Cho (2023) to use342

Satisfied Alignments (SA), the proportion of the343

ground-truth aligned source tokens received before344

translating. Specifically, when generating yi, the345

number of received source tokens gi should be no346

less than the golden-truth aligned source position347

ai, so that the alignment between yi and xai can be348

satisfied in the SiMT process. Thus, SA(↑) can be349

calculated as:350

SA =
1

N

N∑
i=1

I(ai ≤ gi) (11)351

5 Results and Analysis352

5.1 Simultaneous Translation Quality353

We present the translation quality under various354

latency levels of different SiMT models in Figure 3355

and Figure 4. These results indicate that SM2 out-356

performs previous methods across three language357

pairs in terms of both SacreBLEU and COMET358

scores. With the unidirectional encoder, SM-Uni359

achieves higher translation quality compared to cur-360

rent state-of-the-art SiMT models (ITST, HMT) at361

low and medium latency levels (AL∈ [0, 6]), and362

maintains comparable performance at high latency363

level (AL∈ [6, 12]). We attribute this improve-364

ment to the effectiveness of learning a better policy365

1Unbabel/wmt22-cometkiwi-da

during training. Furthermore, with the superior ca- 366

pabilities of the bidirectional encoder, SM2-Bi out- 367

performs previous SiMT models more significantly 368

across all latency levels. All SiMT models with uni- 369

directional encoders can approach the translation 370

quality of OMT-Uni at high latency levels, but only 371

SM2-Bi achieves similar performance to OMT-Bi 372

as the latency increases. These experimental results 373

prove that SM2 achieves better performance than 374

other SiMT methods for learning better policy and 375

improving translation quality. Detailed numerical 376

results are provided in Appendix D, supplemented 377

with additional evidence demonstrating the robust- 378

ness of SM2 to sentence length variations. 379

5.2 Superiority of SM2 in Learning Policy 380

To verify whether SM2 can learn a more effective 381

policy, we compare SA(↑) under various latency 382

levels of different SiMT models. Following Zhang 383

and Feng (2022a) and Kim and Cho (2023), we con- 384

duct the analysis on RWTH2, a De→En alignment 385

dataset. The results are presented in Figure 5. Com- 386

pared with existing methods, both SM2-Uni and 387

SM2-Bi receive more aligned source tokens before 388

generating target tokens under the same latency. Es- 389

pecially at medium latency level (AL∈ [4, 6]), SM2 390

can receive about 8% more source tokens than fixed 391

policies (wait-k, m-wait-k) and 3.6% more than 392

adaptive policies (ITST, HMT). We attribute these 393

improvements to the advantages of SM2 in learn- 394

ing policy. Through precise optimization, SM2 can 395

make more suitable decisions at each state, which 396

generates faithful translations once receiving suf- 397

ficient source tokens and waits for more source 398

inputs when the predicted tokens are incredible. 399

With sufficient exploration, SM2 can investigate all 400

possible situations and reduce unnecessary latency 401

in the SiMT process. 402

5.3 Precise Optimization for Each Decision 403

To validate whether the confidence-based policy is 404

precisely optimized at each state, we examine the 405

relationship between estimated confidence cij and 406

the probability of the correct token yi in the predic- 407

tion, denoted as pcij . Specifically, we employ SM2 408

to decode the validation set in a teacher-forcing 409

manner, calculating the cij and pcij for all possible 410

states. Subsequently, a correlation analysis is per- 411

formed between cij and pcij . The results in Table 412

1 demonstrate a strong correlation, evidenced by 413

2https://www-i6.informatik.rwth-aachen.de/
goldAlignment/
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high values in Pearson (0.82) and Spearman (0.84)414

coefficients, with a slightly moderate but signifi-415

cant Kendall’s τ coefficient (0.65). These results416

suggest a robust linear and monotonic relationship417

between cij and pcij , indicating the capacity of cij418

to accurately assess the credibility of the current419

predicted token. Consequently, this confirms the ef-420

fectiveness of the confidence-based policy in mak-421

ing precise decisions at each state.422

5.4 Advantage of Sufficient Exploration423

Existing methods often prohibit the exploration of424

some paths due to the possible decision paths being425

numerous (Zheng et al., 2019; Miao et al., 2021;426

Zhang and Feng, 2023). To investigate the impact427

of the prohibition on SiMT models and the supe-428

riority of SM2 in sufficiently exploring all states,429

we attempt to train these methods without prohibi-430

tion, but they fail to converge. Therefore, we ana-431

lyze the impact by employing the same prohibition432

in HMT (Zhang and Feng, 2023) and RIL(Zheng433

et al., 2019) to train SM2, which restricts SM2 to434

explore states only between wait-k1 and wait-k2435

paths in training. As shown in Figure 6(a), we set436

k1 = 1 and k2 = 10 in our experiments. The per-437

formances of SM2 with prohibition (SM2-Uni-P438

and SM2-Bi-P) are shown in Figure 6(c), indicat-439

ing a decline in performance. These results suggest440
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Figure 7: The SiMT performance of different OMT
models after fine-tuning according to SM2.

SacreBLEU
OMT model Parameters before FT after FT

Transformer-small 47.9M 30.86 31.33
Transformer-base 60.5M 31.93 31.87
Transformer-big 209.1M 32.99 32.75

Table 2: The OMT performance of different OMT mod-
els before/after fine-tuning according to SM2.

that the prohibition causes insufficient exploration, 441

leading to diminished performance. In contrast, 442

SM2 ensures comprehensive exploration, which is 443

shown in Figure 6(b), thereby achieving higher per- 444

formance. Further analysis of the policy quality is 445

provided in Appendix E. 446

5.5 Compatibility with OMT Models 447

SM2 allows for the parallel training of the bidirec- 448

tional encoder. Due to this compatibility, SM2-Bi 449

achieves superior translation quality than existing 450

SiMT methods with unidirectional encoders (Fig- 451

ure 3,4). To further present the superiority of this 452

compatibility, we propose fine-tuning OMT mod- 453

els according to SM2, so that the translation abil- 454

ity in OMT models can be easily utilized to gain 455

SiMT models. Specifically, two distinct methods 456

are used: fine-tuning all model parameters (SM2- 457

FT) and fine-tuning with adapters (SM2-adapter)3. 458

As shown in Figure 7(a), SM2-adapter can achieve 459

comparable performance with current state-of-the- 460

art SiMT models, and SM2-FT closely matches the 461

performance of SM2-Bi. 462

Additionally, we further explore the effect of 463

the OMT models’ translation abilities on the cor- 464

3We add adapters after the feed-forward networks of each
encoder and decoder layer. For each adapter, the input di-
mension and output dimension are 512, and the hidden layer
dimension is 128.
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Figure 8: Effect of Lomt and modification from OMT
setting on the SM2."w/o Lomt" is SM2 trained without
Lomt, and "w/o pi" means SM2 trained using one-hot
rather than OMT setting for modification.

Model SM2-Bi w/o Lomt w/o pi OMT

SacreBLEU 31.87 30.33 31.95 31.93

Table 3: Effect of Lomt and pi on the OMT ability.

responding SiMT abilities after fine-tuning. We465

conduct the full-parameter fine-tuning on OMT466

models with Transformer-small, Transformer-base,467

and Transformer-big respectively. The OMT and468

SiMT capabilities of these models are illustrated in469

Table 2 and Figure 7(b), which reveal that models470

with stronger OMT abilities achieve better SiMT471

performance after fine-tuning. Besides, the results472

in Table 2 show that these models’ original OMT473

abilities are not hurt, indicating that SM2 enables474

models to support both OMT and SiMT abilities.475

5.6 Ablation Study476

We conduct ablation studies on SM2 to analyze the477

effect of Lomt and modification from OMT setting.478

Effect of Lomt As shown in Figure 8, the SiMT479

model withoutLomt drops quickly. We argue this is480

because training without Lomt may cause a worse481

modification. The results in Table 3 show that the482

OMT performance of SM2 trained without Lomt483

is significantly affected, even worse than its SiMT484

performance in the high latency levels. This poor485

OMT ability cannot provide accurate modification,486

thus disrupting the policy learning process.487

Effect of OMT modification Following Ask For488

Hints (DeVries and Taylor, 2018; Lu et al., 2022),489

we use the one-hot label as the "hints" to modify the490

prediction in SiMT setting. Specifically, we denote491

ti as the ground-truth label of the i-th target token,492

and hence the modification in SM2 is adjusted as:493

pmij = cij · pij + (1− cij) · ti (12)494

As shown in Figure 8, the performance of SM2495

trained with modification in Eq.(12) also drops.496

We argue that the modification from ti cannot re- 497

flect the real available gain from the modification 498

after receiving the complete source sentence, thus 499

learning a worse policy. 500

6 Related Work 501

Simultaneous Machine Translation Existing 502

SiMT methods are divided into fixed policy and 503

adaptive policy. For fixed policy, Ma et al. (2019) 504

proposed wait-k, which starts translation after re- 505

ceiving k tokens. Elbayad et al. (2020) proposed 506

multipath wait-k, which randomly samples k dur- 507

ing training. For adaptive policy, heuristic rules 508

Cho and Esipova (2016) and reinforcement learn- 509

ing Gu et al. (2017) are used to realize the SiMT 510

task. Ma et al. (2020b) integrated monotonic at- 511

tention to model the decision process. Miao et al. 512

(2021) proposed a generative framework to learn 513

a read/write policy. Zhang and Feng (2022a) mea- 514

sured the information SiMT had received and pro- 515

posed an information-based policy. Zhang and 516

Feng (2023) used the Hidden Markov model in 517

SiMT task to learn an adaptive policy. 518

Previous methods based on decision paths are 519

limited in policy learning and model structure. Our 520

proposed SM2 individually explores all states dur- 521

ing training, overcoming these limitations. 522

Confidence Estimation for OMT Confidence 523

estimation is used to measure the models’ credibil- 524

ity. Wang et al. (2019) use Monte Carlo dropout 525

to propose an uncertainty-based confidence estima- 526

tion. Wan et al. (2020) utilize the confidence score 527

to guide self-paced learning. DeVries and Taylor 528

(2018) evaluates the confidence by measuring the 529

level it asks for hints from the ground-truth label, 530

and Lu et al. (2022) transfers it to OMT to improve 531

the out-of-distribution detection. 532

7 Conclusion 533

In this paper, we propose Self-Modifying State 534

Modeling (SM2), a novel training paradigm for 535

SiMT task. Instead of constructing complete deci- 536

sion paths, SM2 individually optimizes decisions at 537

all potential states during training. Experiments on 538

three language pairs show the superiority of SM2 539

in terms of read/write policy, translation quality, 540

and compatibility with OMT models. 541

8 Limitations 542

In this paper, we propose SM2, a novel paradigm 543

that individually optimizes decisions at each state. 544

8



Although our experiments show the superiority of545

not building decision paths during training, there546

are still some parts to be further improved. For ex-547

ample, using a more effective way to independently548

assess the individual effect of each decision on the549

SiMT performance. Besides, how to leverage other550

pre-trained encoder-decoder models like BART and551

T5, to gain SiMT models, is still a promising di-552

rection to explore. These will be considered as553

objectives for our future work.554
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A Gradient Analysis687

In this section, we provide a gradient analysis of688

the independent optimization in SM2. The train-689

ing loss function L of SM2 is formulated in Eq.690

(10). During training, this loss function adjusts691

each decision dij at state sij by changing the value692

of corresponding confidence cij . Specifically, the693

gradient of L with respect to cij is calculated as:694

∂L
∂cij

=
∂Lsij
∂cij

+ λ
∂Lcij
∂cij

= − yi
pmij
·
∂pmij
∂cij

− λ

cij

= − yi(pij − pi)

cij · pij + (1− cij) · pi
− λ

cij

(13)695

It is evident that this gradient does not contain any696

ci′j′ (i′ ̸= i or j′ ̸= j). Therefore, in the training697

process, the estimated value of cij is adjusted only 698

based on its current value and the prediction prob- 699

ability of the current state, without being affected 700

by the decisions at other states, thus allowing for 701

the independent optimization of cij . 702

In contrast, existing SiMT methods usually con- 703

duct training on decision paths and can not ensure 704

independent optimization. Taking ITST (Zhang 705

and Feng, 2022a) as an example, whose loss func- 706

tion L′ is formulated as: 707

L′ = Lce + Llatency + Lnorm

Llatency =
I∑

i=1

J∑
j=1

Tij × Cij

Lnorm =

I∑
i=1

∥∥∥∥∥∥
J∑

j=1

Tij − 1

∥∥∥∥∥∥
2

(14) 708

where Lce is the cross-entropy for learning trans- 709

lation ability, and Cij is the latency cost for each 710

state. During training, the decision is dominated 711

by Tij . The gradient of L′ with respect to Tij is 712

calculated as: 713

∂L′
∂Tij

=
∂Lce
∂Tij

+ Cij + 2(

J∑
j=1

Tij − 1) (15) 714

It is noted that the gradient of Tij is also affected by 715

the current values of Tij′(j′ = 1, 2, ..., J). These 716

decisions are coupled in the optimization, thus not 717

enabling the independent optimization of each de- 718

cision. This can trigger mutual interference during 719

training (Zhang and Feng, 2023) and lead to a credit 720

assignment problem. 721

B Effect of λ 722

We analyze the effect of λ, which is the weight 723

of the penalty during training. We train SM2 with 724

different λ ranging from 0.1 to 1, in increments 725

of 0.1. As shown in Figure 9(a), the SM2 models 726

trained with different λ show comparable perfor- 727

mance across all latency. This indicates that the 728

performance of SM2 is robust to variations in hyper- 729

parameters λ. 730

When λ becomes larger, the corresponding γ 731

at the same latency will also increase. Therefore, 732

we further analyze the effect of λ on the applica- 733

ble latency range of SM2. We denote the "MAX 734

AL" as the latency of SM2 when γ is set as 0.99 735

during inference. The results are shown in Figure 736

9(b). When λ becomes larger, "MAX AL" also de- 737

creases, which means a smaller applicable latency 738
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Figure 9: Effect of λ on SM2.

range. For example, when λ = 1.0 in training, it739

is hard for SM2 to perform SiMT task under the740

latency levels where AL is larger than 5.79 since741

the threshold γ has been close to 1.742

C Hyper-parameters743

The system settings in our experiments are shown744

in Table 4. We set λ = 0.1 during training. Be-745

sides, we follow (Ma et al., 2020b) to use greedy746

search during inference for all baselines. The val-747

ues of γ we used are 0.3,0.4,0.5,0.55,0.6,0.65 for748

Zh→En, 0.3,0.4,0.5,0.55,0.6,0.65,0.7 for De→En,749

and 0.3,0.4,0.5,0.6,0.65,0.7,0.75 for En→Ro.750

D Main Results Supplement751

D.1 Numerical Results752

Table 5, 6, 7 respectively report the numeri-753

cal results on LDC Zh→En, WMT15 De→En,754

MWT16 En→Ro measured by AL, SacreBLEU755

and COMET.756

D.2 Robustness of SM2 to Sentence Length757

To validate the robustness of SM2 to Sentence758

Length, we conduct additional experiments on759

De→En SiMT tasks. Specifically, we divide the760

test set into two groups based on sentence length:761

LONG group and SHORT group. The average762

lengths and the number of sentences in each group763

are shown in Table 8. Then, we test SM2-Bi and764

Hyper-parameter

encoder layers 6
encoder attention heads 8
encoder embed dim 512
encoder ffn embed dim 1024
decoder layers 6
decoder attention heads 8
decoder embed dim 512
decoder ffn embed dim 1024
dropout 0.1
optimizer adam
adam-β (0.9, 0.98)
clip-norm 1e-7
lr 5e-4
lr scheduler inverse sqrt
warmup-updates 4000
warmup-init-lr 1e-7
weight decay 0.0001
label-smoothing 0.1
max tokens 8192

Table 4: Hyper-parameters of our experiments.

SM2-Uni separately on these two groups. The 765

translation quality under different latency levels 766

for SM2-Bi and SM2-Uni are presented in Figure 767

10. For clearer comparison, we also provide the per- 768

formances of OMT models (OMT-Bi, OMT-Uni) 769

on LONG and SHORT groups. 770

The results in Figure 10 indicate that when ap- 771

plied to longer sentences, the performance changes 772

of SM2 are similar to OMT models in both unidirec- 773

tional and bidirectional encoder settings. Since the 774

performance of OMT models unavoidably drops 775

as the sentences become longer (Neishi and Yoshi- 776

naga, 2019; Kang et al., 2020; Ma et al., 2020a; 777

Variš and Bojar, 2021), it is not SM2 that triggers 778

the decrease of translation quality. Therefore, SM2 779

is still effective on long sentences. 780

E Effect of Prohibition on Policy 781

To further validate that the prohibition of explo- 782

ration negatively affects the policy. We compare 783

the SA of SM2 with and without the prohibition on 784

RWTH dataset. The results in Figure 11 indicate 785

that the prohibition makes SM2 learn a worse pol- 786

icy. Therefore, we can conclude that the prohibition 787

will hurt the quality of policy. This further presents 788

the advantage of SM2 in sufficiently exploring all 789

states through Prefix Sampling. 790
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Chinese→English

wait-k
k AL SacreBLEU COMET
1 -0.60 23.14 67.06
3 3.03 31.94 73.91
5 4.96 35.56 75.87
7 6.87 37.50 76.99
9 8.82 38.90 77.85

m-wait-k
k AL SacreBLEU COMET
1 0.72 28.06 70.85
3 2.80 32.41 74.29
5 4.76 35.05 75.81
7 6.81 36.68 76.86
9 8.64 37.61 77.37

HMT
(L,K) AL SacreBLEU COMET
(2,4) 2.93 35.59 76.90
(3,6) 4.52 37.81 78.08
(5,6) 6.11 39.41 78.73
(7,6) 7.69 40.33 79.11
(9,8) 9.64 41.37 79.58

(11,8) 11.35 41.75 79.85

ITST
δ AL SacreBLEU COMET

0.2 0.62 30.31 73.66
0.3 2.88 35.87 77.02
0.4 4.88 39.27 78.41
0.5 6.94 41.20 79.27
0.6 9.17 42.23 79.68
0.7 11.40 42.75 79.93

SM2-Uni
γ AL SacreBLEU COMET

0.3 -0.63 29.52 73.62
0.4 1.99 36.16 77.02
0.5 4.56 39.94 78.66
0.55 6.24 41.06 79.13
0.6 8.51 42.21 79.50
0.65 9.75 42.54 79.61

SM2-Bi
γ AL SacreBLEU COMET

0.3 -0.14 31.41 75.00
0.4 2.35 37.77 78.09
0.5 4.68 41.15 79.42
0.55 6.19 42.47 79.91
0.6 8.37 43.51 80.21
0.65 11.61 44.34 80.45

Table 5: Numerical results on LDC Zh→En.

German→English

wait-k
k AL SacreBLEU COMET
1 0.10 20.11 70.74
3 3.44 26.34 76.24
5 6.00 28.96 78.44
7 8.08 29.52 78.92
9 9.86 30.23 79.71

m-wait-k
k AL SacreBLEU COMET
1 0.03 20.71 70.49
3 2.94 24.85 74.49
5 5.48 27.43 76.80
7 7.66 28.2 77.67
9 9.63 28.87 78.23

HMT
(L,K) AL SacreBLEU COMET
(2,4) 2.20 25.67 75.66
(3,6) 3.58 28.29 77.94
(5,6) 4.96 29.33 78.76
(7,6) 6.58 29.47 79.23
(9,8) 8.45 30.25 79.82
(11,8) 10.18 30.29 79.74

ITST
δ AL SacreBLEU COMET

0.2 2.27 25.17 75.17
0.3 2.85 26.94 76.86
0.4 3.83 28.58 77.98
0.5 5.47 29.51 78.85
0.6 7.60 30.46 79.28
0.7 10.17 30.74 79.53
0.8 12.72 30.84 79.61

SM2-Uni
γ AL SacreBLEU COMET

0.3 1.39 24.68 75.58
0.4 2.4 27.88 78.09
0.5 3.56 29.6 79.51
0.55 5.2 30.67 80.28
0.6 6.33 30.86 80.36
0.65 8.06 30.89 80.42
0.7 10.74 31.08 80.53

SM2-Bi
γ AL SacreBLEU COMET

0.3 1.52 24.74 75.96
0.4 2.73 28.48 78.85
0.5 3.73 30.17 80.21
0.55 5.49 31.11 80.83
0.6 7.03 31.42 81.00
0.65 9.22 31.65 81.18
0.7 12.33 31.92 81.25

Table 6: Numerical results on WMT15 De→En.
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English→Romanian

wait-k
k AL SacreBLEU COMET
1 2.70 26.62 74.12
3 5.05 29.74 77.52
5 7.18 31.61 78.54
7 9.10 31.86 79.20
9 10.92 31.89 78.97

m-wait-k
k AL SacreBLEU COMET
1 2.66 26.65 74.27
3 5.07 30.11 77.44
5 7.18 31.05 78.35
7 9.07 31.44 78.71
9 10.89 31.37 78.62

HMT
(L,K) AL SacreBLEU COMET
(1,2) 1.98 24.11 71.73
(2,2) 2.77 27.18 74.85
(4,2) 4.47 30.41 77.65
(5,4) 5.48 31.56 78.80
(6,4) 6.45 31.88 78.94
(7,6) 7.41 31.85 79.17
(9,6) 9.24 31.98 79.05

ITST
δ AL SacreBLEU COMET

0.1 2.75 22.76 71.19
0.2 3.25 28.40 75.58
0.3 5.09 30.52 77.53
0.4 7.47 31.37 78.28
0.45 8.81 31.62 78.49
0.5 10.30 31.63 78.51
0.55 11.69 31.74 78.73

SM2-Uni
γ AL SacreBLEU COMET

0.3 2.52 27.85 75.45
0.4 2.72 29.21 76.62
0.5 3.16 30.21 77.59
0.6 4.17 31.20 78.26
0.65 5.13 31.56 78.58
0.7 6.56 31.72 78.77
0.75 8.67 31.67 78.98

SM2-Bi
γ AL SacreBLEU COMET

0.3 2.60 28.74 76.81
0.4 2.91 30.27 78.20
0.5 3.57 31.33 79.04
0.6 5.11 32.03 79.56
0.65 6.51 32.40 79.90
0.7 8.15 32.59 79.85
0.75 10.10 32.74 79.95

Table 7: Numerical results on WMT16 En→Ro.

LONG SHORT

Average Sentence Length 36.95 14.07
Number of Sentences 1085 1084

Table 8: Statistics on the average sentence length and
number of sentences for LONG and SHORT groups.
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Figure 10: Translation quality against latency of SM2

on LONG and SHORT groups. We provide the perfor-
mance of OMT models for a clearer comparison.
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Figure 11: Evaluation of policies in SM2 with and with-
out prohibition. We calculate SA (↑) under different
latency levels.
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