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Figure 1: Segmentation results under extreme lighting conditions. The first and second rows show
scenes of overexposure and underexposure respectively. (a) and (b) are paired pixel-aligned RGB
images and event frames. (c) and (d) are segmentation results from CMDA Xia et al. (2023) and our
proposed method. Clearly, our method performs better by a large margin.

ABSTRACT

Existing semantic segmentation methods based on frame cameras often encounter
issues in complex lighting scenes, such as low-light nighttime or overexposed
scenes, and boundary ambiguities caused by motion blur in high-speed scenar-
ios. Event cameras, with their high dynamic range and high temporal resolution,
can effectively alleviate these issues and have consequently attracted increasing
attention. However, most existing event-based semantic segmentation methods
employ straightforward concatenation feature fusion, overlooking the heterogene-
ity of features between the two modalities. To address these issues, we propose an
event-frame alignment-distillation semantic segmentation method. Specifically,
we design a heterogeneous feature contrastive alignment module that projects both
modalities into a common space to bridge the representation gap. Furthermore,
we present a joint boundary-content knowledge distillation module to transfer the
clear region and edge information captured by event camera to frame domain,
effectively enhancing the robustness of segmentation results. In addition, we con-
struct the first real-world pixel-aligned event-frame semantic segmentation dataset
to enable comprehensive training and evaluation, which will be publicly available
online. Extensive experiments demonstrate the effectiveness of our method.

1 INTRODUCTION

Semantic segmentation is a crucial task in computer vision with many significant applications, such
as autonomous safe driving Siam et al. (2018) and video surveillance Lin et al. (2018). Although
great progress has been made in semantic segmentation under normal lighting conditions Long et al.
(2015); Chen et al. (2017); Cordts et al. (2016); Chen et al. (2018); Xie et al. (2021), challenges in
extreme lighting scenarios remain unsolved. The low dynamic range and low temporal resolution of
frame camera lead to phenomena such as overexposure, underexposure, and motion blur as shown in
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Morning Noon Afternoon Twilight Night Evening 

Figure 2: Real-world Pixel-aligned Event-frame All-day semantic segmentation dataset. The first,
second and third rows display the RGB images, event frames and annotations respectively, demon-
strating the richness of temporal dimensions and lighting conditions in RPEA.

Figure 1(a). This signal-level loss of information cannot be recovered by deep learning techniques.
Therefore, solely relying on frame cameras leads to performance drop in segmentation.

To address the limitations of frame camera, previous works Alonso & Murillo (2019) decided to
introduce event camera. Event cameras generate the spatiotemporal coordinates of pixels whose
luminosity changes exceed a threshold value Finateu et al. (2020). Their unique imaging mechanism
provides them with high dynamic range and high temporal resolution Jiang et al. (2023). These
characteristics are particularly advantageous in scenarios such as over/underexposure and motion
blur, allowing event cameras to provide complementary information for frame cameras. However,
event cameras do not capture color information and their spatial data is quite sparse, which limits
their performance in segmentation tasks Wang et al. (2021). To this end, we utilize both frame and
event modalities to tackle the all-day semantic segmentation challenge.

When addressing all-day event-frame semantic segmentation, two crucial challenges need to be re-
solved: (i) The absence of real-world, event-frame paired semantic segmentation datasets for driving
scenarios. Existing datasets either have synthetic event modality Zhang et al. (2021) or simulated
labels generated by pre-trained models Binas et al. (2017); Gehrig et al. (2021b). (ii) Due to the
huge domain gap between event and frame representation, how to transfer knowledge from event to
frame modality to help improve performance under over/under-exposure and motion blur conditions
remains a complex problem. Previous methods Zhang et al. (2021) for dual-modal fusion of event
and frame data overlooked the heterogeneity at representation level, resulting in networks that fail
to fully exploit information from events.

To tackle the above challenges, we construct a large-scale real-world, event-frame paired semantic
segmentation dataset for driving scenarios—RPEA. Specifically, we design a coaxial optical imag-
ing system comprising an event camera and a conventional frame camera, allowing for the simulta-
neous acquisition of events and images. RPEA contains 4058 image-event pairs which are densely
annotated with fine-grained semantic segmentation labels. As illustrated in Figure 2, our dataset
exhibits great diversity in lighting conditions and temporal dimensions.

Furthermore, we introduce Contrastive Alignment Consistent Distillation framework (CACD) for
all-day semantic segmentation task. Observing the large domain gap between event and frame in-
puts, we design Heterogeneous Feature Contrastive Alignment module (HFCA) to align the event
and frame representation. We leverage the rich semantic knowledge in large model SAM Kirillov
et al. (2023) to construct a common semantic space, and then bridge the gap via contrastive learning.
Then we design Joint Boundary-Content Distillation module (JBCD) to fully utilize the complemen-
tarity of event and frame, smoothly transferring clear boundary knowledge and extreme exposed
region knowledge from event to image domain to help segmentation.

In brief, our contributions can be summarized as follows:

• We construct a event-frame semantic segmentation dataset—RPEA. To our best knowledge,
RPEA is the first real-world event-frame semantic segmentation dataset with all-day scenarios.

2
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(c) Scene & time distribution

Figure 3: Features of RPEA dataset. (a) Implementation of our coaxial optical imaging system. (b)
Distributions of labeled pixels in Cityscapes and RPEA. (c) Scene and time distribution of RPEA.

• We introduce Contrastive Alignment Consistent Distillation framework, contrastively aligning
frame and event in a common semantic space to address representational heterogeneity, and then
consistently transferring boundary-content knowledge from event to image to improve semantic
segmentation performance.

• Extensive experiments over multiple datasets showcase CACD outperforms existing state-of-the-
art methods without significantly increasing model parameters.

2 RELATED WORK

Event-based Semantic Segmentation. Compared to RGB semantic segmentation, event-based
semantic segmentation remains underexplored due to the lack of high-quality datasets. Utilizing
the paired image-event data in DDD17 dataset Binas et al. (2017), EV-SegNet Alonso & Murillo
(2019) used a pretrained image-based network to generate pseudo labels for corresponding events.
Since then, labeled events data has been used to train event-based networks in a supervised manner.
In addition, ESS Sun et al. (2022) proposed an unsupervised domain adaptation method to transfer
knowledge from labeled image datasets to unlabeled event data. CMDA Xia et al. (2023) utilized
the gradient of images as a bridge to close the domain gap between event and frame data. Recently,
OpenEss Kong et al. (2024) leveraged pretrained large language-vision model CLIP Radford et al.
(2021) to transfer knowledge from the image and text domain to event domain to learn a better
representation. HybridNN Li et al. (2025) combines SNN and ANN to fuse event and frame to
reduce energy consumption. EISNet Xie et al. (2024) filters event streams with attention mask,
enhancing salient event features while suppressing noise. BRENet Yao et al. (2025) utilizes optical
flow to enhance spatiotemporal alignment of RGB and event. However, existing works did not fully
address the semantic consistency and modality heterogeneity between RGB and event, failing to
fully exploit the advantages of event.

Event-Frame Semantic Segmentation Dataset. Most of the existing event-frame semantic seg-
mentation datasets are synthetic, such as EventScape Gehrig et al. (2021a), DADA-seg Zhang et al.
(2021), and DELIVER Zhang et al. (2023b). They use simulators or pretrained networks Zhu et al.
(2021) to generate event modality, which differs significantly from real-world events. Another set of
datasets like DDD17 Binas et al. (2017) and DSEC Gehrig et al. (2021b) record real-world events,
but their semantic labels are generated by pretrained networks, resulting in poor quality. The DSEC
Night-Semantic dataset Xia et al. (2023) contains 150 manually annotated labels, which are insuffi-
cient for training purpose and only suitable for testing. Our RPEA dataset fills the gap of the large
scale real-world event-frame semantic segmentation dataset.

3 RPEA DATASET

Coaxial Optical Imaging System. Semantic segmentation is a dense prediction task in which
each pixel must be assigned a class label. Therefore, achieving pixel-level alignment between the
event and frame modalities at the image level becomes crucial. To this end, we ensure pixel-level
alignment from both hardware and algorithmic perspectives. First, we construct a coaxial optical
imaging system, including an event camera (Prophesee EVK4, 1280*720), a frame camera (FLIR

3
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Figure 4: Advantages of event camera. (a) Event cameras exhibit robustness to lighting variations
with high dynamic range. (b) RGB’s gradient directions histogram shows strong alignment near 90°,
implying severe horizontal motion blur in image. Event’s distribution is smoother, less affected by
motion blur, exhibiting sharper boundaries with high temporal resolution.

BFS-U3-32S4C, 2048*1536) and a beam splitter (Thorlabs BSW26R), as illustrated in fig. 3(a).
The beam splitter divides the incoming light into two equal parts, directing them respectively into
the event camera and frame camera. Additionally, we build a programmable synchronous circuit
to provide external trigger signals to the cameras, ensuring synchronization of their timestamps.
Ultimately, we achieve pixel-level alignment between two cameras through the stereo rectification.

Annotations. Annotating RPEA dataset poses greater challenges compared to a traditional image-
based segmentation dataset. The dataset comprises two different modalities and contains many
complex lighting scenarios such as overexposure, underexposure and motion blur, which greatly in-
crease the difficulty of segmenting objects. To improve the accuracy and reliability of ground truth,
we present RGB images, event frames and an overlay of both modalities side by side to the pro-
fessional annotators, synchronizing their annotation traces to provide useful reference information.
This arrangement helps the annotators to label the less visible objects.

Statistical Analysis. In fig. 3(b), we compare the distribution of labeled pixels between RPEA
and Cityscapes. Since some categories have significantly more pixels than others, we present the
distribution in a log scale. Overall, the distribution of most categories in all-day scenarios is similar
to daytime scenarios, except for a few specific categories such as sky and bicycle. As demonstrated
in fig. 3(c), our dataset exhibits diversity both in terms of temporal dimension and scene dimension.

The RPEA contains 4058 event-image pairs with a resolution of 1034*617. Besides, the RPEA is
split into training and validation sets, which consist of 163/40 videos, leading to 3258/800 image
pairs. We split them in such way to avoid similar scenes in training and validation sets.

4 METHOD

Figure 5 illustrates an overview of our proposed CACD framework. The core of our framework
lies in two modules: Heterogeneous Feature Contrastive Alignment and Joint Boundary-Content
Distillation. We utilize HFCA to address representation heterogeneity, and leverage JBCD to distill
clear boundary knowledge and over/under-exposed region content knowledge from event to image
to reinforce the performance in hard regions.

The inputs to the model are paired, pixel-level aligned RGB images and event frames. The event
modality consists of a temporally ordered stream of events εi, recorded as quadruplets (xi, yi, ti, pi),
which include the coordinates of the pixel (xi, yi), a microsecond-level timestamp ti, and a polarity
pi ∈ {+1,−1} indicating an increase or decrease in brightness. We accumulate a period of such
event streams to create image-like frames Ievti ∈ R3×H×W . Meanwhile, the frame camera outputs
colored frames Iimg

i ∈ R3×H×W that are spatially aligned and temporally synchronized with events,
where H ×W represents the spatial resolution.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

 Embedding

Embedding

Gradient Intensity Map

RGB Space

Event Space

cluster

cluster

Boundary Feature

pull

Semantic Space
Prediction

(a)Feature Extraction (b)Heterogeneous Feature Contrastive Alignment (c)Joint Boundary-Content Distillation (d)Fusion and Decoding

 RGB

 RGB car feature

 RGB truck feature

 Event car feature

 Event truck feature

SAM pu
sh

pull

 R
ec

on
str

uc
tio

n
 Car

 Truck
 Train

 Motorcycle

 Bicycle

 Pedestrian

Category Mask

Semantic instance 
masks segmented 
by SAM, serve as 
the basis for 
feature clustering 
and alignment.

  RGB
Feature

  Event
Feature

  RGB
Feature

  Event
Feature

Boundary Feature

Exposure
Threshold

Exposure
Threshold

Same 
Spatial 
Coordinates

Content Feature

Content Feature
    Product 
Distribution

      Joint 
Distribution

  intra

clusterL

  inter

alignL

  boundary

distillL

  content

distillL
  

segL

push

push
  intra

clusterL

RG
B 

En
co

de
r

Ev
en

t E
nc

od
er

D
ec

od
er

Timeti
ti-1

Event Stream

Figure 5: Overview of Contrastive Alignment Consistent Distillation framework. (a) is used to
extract features, while (b) aligns the event and RGB features in semantic space. (c) transfers the
sharp boundary knowledge and under/over-exposed region content knowledge from event to RGB.
(d) fuses features and produces the results.

4.1 HETEROGENEOUS FEATURE CONTRASTIVE ALIGNMENT

Our ultimate goal is to leverage the clear knowledge in event and frame to achieve segmentation.
However, due to the heterogeneous nature of the image and event inputs, there is a significant domain
gap between their representations, which poses great challenges for knowledge transfer. The purpose
of the HFCA module is to align their representations in common space to bridge the gap.

Images and events exhibit semantic consistency because pixels at the same coordinate positions in
images and events reflect the same semantic concept. Therefore, even though their low-level features
differ significantly, they can be aligned at a higher semantic level.

We utilize the rich semantic knowledge in the large model SAM Kirillov et al. (2023) to construct
a semantic space, as SAM can generate instance-level masks to indicate regions corresponding to
a semantic concept. By aggregating the features of a region indicated by a mask, we can obtain a
feature vector that represents an instance. By ensuring that the feature vectors of the same instance in
image and event modalities are as similar as possible, and those of different instances are as distinct
as possible, we can achieve alignment at the semantic level. Since SAM is trained on clear images,
directly applying it to over/underexposed images does not yield good mask results. Therefore, we
input both image and event data into an event-frame reconstruction network EvLight Liang et al.
(2024) to produce a better-quality image, which is then segmented by SAM to obtain high-quality
masks. In practice, we use GroundedSAM Ren et al. (2024) instead of the original SAM.

We utilize contrastive learning to achieve feature alignment. To obtain a better feature space dis-
tribution, we approach the task in two steps: intra-domain clustering and inter-domain alignment.
The purpose of intra-domain clustering is to maximize the difference between features of different
instances within each domain, learning a better intra-domain representation distribution. The goal
of inter-domain alignment is to bring features of the same instance in image and event closer, while
pushing features of different instances further apart.

First, we use a projection layer to map the original features f img and fevent into a common space:

F evt
(i,j) = Pevt(f

evt
(i,j)), F

img
(i,j) = Pimg(f

img
(i,j)) (1)

where Pevt and Pimg are projection layers and (i, j) denotes the spatial coordinate. Then, we use
SAM to generate the instance mask Mk, corresponding to the kth instance, where k ∈ {1, 2, ...,K},
and K is the total number of instances in one image. The value of mask Mk at position (i, j) is 1
if (i, j) belongs to the instance k, and 0 otherwise. Then, we use Mk to aggregate the features from
the corresponding region, thereby obtaining the feature vector for each instance:

F evt
k =

∑
i,j Mk(i, j) · F evt

(i,j)∑
i,j Mk(i, j)

(2)
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Figure 6: Qualitative results on RPEA dataset. We highlight the details with the yellow boxes.

F img
k =

∑
i,j Mk(i, j) · F img

(i,j)∑
i,j Mk(i, j)

(3)

where F evt
k and F img

k denote the event and RGB feature of the kth instance. We achieve intra-
domain clustering by penalizing the similarity of features from different instances within each do-
main to make them more distinguishable:

Lintra
cluster =

K∑
i=1,i̸=j

K∑
j=1

exp(F evt
i · F evt

j ) + exp(F img
i · F img

j ) (4)

In experiments, we find that this differentiated representation learning significantly enhances the
task performance, as segmentation is fundamentally a classification task.

Then we utilize contrastive learning to achieve inter-domain alignment. We pull the image and event
features of the same instance closer together, while pushing the image and event features of different
instances further apart.

Linter
align = −

K∑
i=1

log
exp(F evt

i · F img
i /τ)∑K

j=1 exp(F
evt
i · F img

j /τ)
(5)

where τ denotes the temperature coefficient.

4.2 JOINT BOUNDARY-CONTENT DISTILLATION

Boundary Knowledge Distillation. Event cameras respond to changes in brightness due to their
unique imaging mechanism. This response is particularly strong at the edges of moving objects,
resulting in sharp boundary structures. This advantage becomes particularly apparent in scenarios
where frame cameras suffer from motion blur as shown in Figure 4(b). Therefore, we decided to
transfer the clear boundary knowledge from the event to image, addressing the challenges of motion
blur and enhancing the quality of segmentation boundaries.

To transfer the boundary knowledge, we first need to specifically target the boundary features. To
achieve this, we compute gradients on high-quality images reconstructed by EvLight, resulting in
a gradient intensity map. By multiplying the gradient intensity map with features of images and
events, we obtain respective boundary features responding to gradient magnitude. We then enforce
a pixel-level consistency loss to transfer the clear boundary knowledge.

Lboundary
distill =∥ F img ⊙MGIM − F evt ⊙MGIM ∥1 (6)

6
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Table 1: Quantitative evaluation on RPEA, CitySca: Cityscapes, DSEC-S: DSEC-Semantic,
DSEC-N: DSEC Night datasets using mIoU(%). The best score is highlighted in bold.

Method Venue Modality Backbone RPEA CitySca DSEC-S DSEC-N
RGB-based Models

PSPNet CVPR’17 RGB ResNet-101 53.0 76.5 53.8 51.7
OCRNet ECCV’20 RGB ResNet-101 54.4 78.6 53.9 53.2
Deeplabv3+ ECCV’18 RGB ResNet-101 52.2 79.0 54.2 54.8
SegFormer NeurIPS’21 RGB MiT-B5 55.2 81.5 72.1 56.1
SAM ICCV’23 RGB SAM 55.7 – – –

Event-based Models
ESS ECCV’22 Event ResNet-18 38.2 47.3 53.3 37.6
Ev-SegNet CVPRW’19 Event Xception 39.1 46.9 51.7 39.2
EvSegformer TIP’23 Event MiT-B3 39.7 47.5 52.1 37.3
ESEG AAAI’25 Event MiT-B1 – – 57.5 –

RGB-Event Models
BRENet arXiv’25 RGB-E MiT-B2 54.5 81.2 74.9 54.5
EISNet TMM’24 RGB-E MiT-B2 53.1 79.2 73.0 54.2
CMX TITS’23 RGB-E MiT-B5 55.8 80.9 72.4 54.9
CMNeXt CVPR’23 RGB-E MiT-B4 54.4 80.6 72.5 55.2
SE-Adapter ICRA’24 RGB-E SAM – – 69.7 –
HybridNN AAAI’25 RGB-E LIF(SNN) – – 66.5 –
ISSAFE IROS’21 RGB-E ResNet-18 52.5 72.3 54.5 50.3
CMDA ICCV’23 RGB-E MiT-B5 57.2 81.9 56.3 61.2
CACD Ours RGB-E MiT-B5 62.8 82.1 73.2 64.5

where MGIM denotes the gradient intensity map. Experiments prove that using L1 loss to constrain
boundary features of fine areas is very effective, improving the accuracy of edge differentiation.

Content Knowledge Distillation. Event cameras have higher dynamic range compared to tradi-
tional frame cameras. This allows them to capture information lost in over/under-exposed areas,
thereby providing complementary knowledge as illustrated in Figure 4(a). Therefore, we decide to
retrieve the extreme-exposed region knowledge from event and transfer it to image domain.

To transfer knowledge from extreme exposed areas, we need to target the spatial coordinates of
regions. Like previous studies Tan et al. (2021), we use the V channel in HSV space to represent ex-
posure intensity, setting two thresholds, α and β. Areas where the V value is below α are defined as
underexposed, and those above β as overexposed, identifying the extreme exposed region. The event
selects the same spatial coordinates as RGB. By thresholding, we obtain features corresponding to
extreme exposure area.

We transform the two content features into probability distributions P (fevt) and P (f img) within
each channel after normalization. The channel count matches the number of categories, ensuring that
probability distribution on each channel reflects the spatial distribution of each semantic concept.
We calculate the joint and product distributions of P (fevt) and P (f img), then maximize the KL
divergence between the joint distribution and product distribution.

Lcontent
distill = −

∑
P (fevt, f img) · log P (fevt, f img)

P (fevt)P (f img)
(7)

Mathematically, by maximizing the KL divergence between the joint distribution and product dis-
tribution, we enhance the correlation and information sharing between P (fevt) and P (f img). This
essentially improves the semantic consistency of content features between event and RGB.

4.3 LOSS FUNCTIONS AND IMPLEMENTATION DETAILS

Due to the well-learned representations, our fusion process is simple and lightweight. We concate-
nate the features of event and RGB, then fuse them with multi-head attention mechanism. We utilize
the decoder from SegFormer to produce the segmentation results. The overall loss is formalized as:

Ltotal = LCE + λ1Lintra
cluster + λ2Linter

align + λ3Lboundary
distill + λ4Lcontent

distill (8)

7
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Figure 7: Ablation studies. (a) t-SNE visualization of visual and semantic features. HFCA can align
event and RGB features in semantic space. (b) JBCD can significantly enhance the performance in
underexposed region, making effective use of the corresponding features in the event modality.

where λ1, λ2, λ3, λ4 are weighting parameters for balancing the losses. We set λ1 = 0.0005,
λ2 = 0.01, λ3 = 0.001, λ4 = 0.001 respectively.

Our network is implemented on the Pytorch platform, trained with two Nvidia RTX 3090 GPUs. We
adopt MiT-B5 as encoder and Adam optimizer with an initial LR of 0.0001. Images are randomly
cropped to the size of 512× 512. We set the batch size to 16 and train for 200 epochs.

5 EXPERIMENTS

Experimental Settings. We compare various segmentation methods through experiments on RPEA,
Cityscapes, DSEC-Semantic and DSEC Night. These include image-based methods (PSPNet Zhao
et al. (2017), OCRNet Yuan et al. (2020), Deeplabv3+ Chen et al. (2018), SegFormer Xie et al.
(2021)), event-based methods (ESS Sun et al. (2022), Ev-SegNet Alonso & Murillo (2019), EvSeg-
Former Jia et al. (2023), ESEG Zhao et al. (2025)), dual-modal methods (CMX Zhang et al. (2023a),
CMNeXt Zhang et al. (2023c), HybridNN Li et al. (2025), ISSAFE Zhang et al. (2021), CMDA Xia
et al. (2023), EISNet Xie et al. (2024), BRENet Yao et al. (2025), SE-Adapter Yao et al. (2024)).

5.1 QUANTITATIVE AND QUALITATIVE EVALUATION

RPEA dataset. First, we compare our CACD with other SOTA models. Results in Table 1 reflect the
superiority of our method, surpassing CMDA Xia et al. (2023) by 5.6%, proving that we can better
extract and utilize the knowledge in event modality. Figure 6 demonstrates significant improvements
in segmentation performance brought by our method, especially on the boundaries of objects and in
extreme exposed region and high-speed moving vehicles.

Cityscapes synthetic event dataset. In ISSAFE Zhang et al. (2021), synthetic events are generated
for Cityscapes. In Table 1, compared to the baseline SegFormer, the improvement brought by the
event is not significant (+0.6%), which is within expectations. Since event is simulated from video
captured by frame cameras, it can’t provide truly complementary knowledge at signal level. This
also proves the importance of RPEA dataset.

DSEC-Semantic and DSEC Night. We train and test on DSEC-Semantic Sun et al. (2022). Be-
sides, we train on RPEA and directly test on DSEC Night dataset Xia et al. (2023) to verify the
generalizability of our method. Table 1 demonstrates significant improvements. There is notably a
3.3% increase on DSEC Night, proving the superiority of our method in low-light conditions. Our
method does not achieve SOTA on DSEC-Semantic, primarily because its labels are generated by
pretrained model and are of limited quality, serving only as a rough reference.

5.2 ABLATION STUDY AND DISCUSSION

Fair Comparison and Model Efficiency. We conducted a fair comparison with the competing
methods, including retraining all methods such as CMDA Xia et al. (2023) on RPEA. We standard-
ized preprocessing, data augmentation, and training epochs for all models. Besides, we only use
SAM Kirillov et al. (2023) and EvLight Liang et al. (2024) during training (both frozen). For infer-
ence, just the encoder, decoder and fusion are needed, keeping the model lightweight and ensuring
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fair comparison. As shown in Table 3, compared with other MiT-based methods, our model achieves
a good balance between performance and efficiency without significantly increasing the number of
parameters or inference time. The parameters and GFLOPs are counted in 512× 512.

Importance of event modality. In table 2, we demonstrate the comparative performance of different
input modalities. Adding event provides a 7.6% performance gain over only using image, confirming
that event cameras can indeed offer complementary information. However, using only event as input,
the performance (39.2%) is far below of using image (55.2%), due to its spatial information being too
sparse and lacking color information. This validates the rationality of using a dual-modal approach.

Table 2: Ablation results of different configurations.

Configuration Trainable
Param (M)

RPEA
(mIoU)Modality Module

Image Event HFCA JBCD
✓ ✗ ✗ ✗ 84.6 55.2
✗ ✓ ✗ ✗ 84.6 39.2
✓ ✓ ✗ ✗ 174.2 57.6
✓ ✓ ✓ ✗ 174.5(+0.3) 61.2(+3.6)
✓ ✓ ✗ ✓ 174.3(+0.1) 57.4(-0.2)
✓ ✓ ✓ ✓ 174.6(+0.4) 62.8(+5.2)

How does HFCA work? Table 2 demon-
strates the effectiveness of our HFCA
module. By contrastively aligning the fea-
tures of images and events in semantic
space, a significant improvement of 3.6%
was achieved, indicating that bridging the
representation gap can enhance the per-
formance of knowledge transfer and fu-
sion. The large domain gap between event
and frame in visual space is bridged in se-
mantic space, as shown in fig. 7a. Be-
sides, HFCA module is very lightweight,
as shown in Table 2, adding only 0.3M parameters.

Table 3: Model parameters and latency comparison.

Method Backbone mIoU[%] Trainable
Para.(M)

Inference
Latency(ms) GFLOPs

CMX MiT-B5 55.8 181.1 32.3 143.1
CMNeXt MiT-B2 53.3 58.7 12.6 62.9
CMDA MiT-B5 57.2 175.3 43.3 158.4
Ours MiT-B5 62.8 174.6 28.3 135.5

Effectiveness of JBCD. When
knowledge is directly transferred
without using HFCA, performance
decreases by 0.2%. This is due to the
representation heterogeneity between
RGB and event, forcibly aligning
features at the pixel level can degrade
the model’s performance. However,
when we use the HFCA to project
features into semantic space, there is a performance increase of 1.6%, demonstrating that JBCD can
effectively distill knowledge and reinforce the performance in tough regions. As shown in fig. 7b,
JBCD can significantly improve boundary performance in underexposed area.

Table 4: Impact of misalignment on RPEA
using mIoU.

Time Period Misalignment(Pixel)
0 1 2 4 8

Morning 73.5 73.2 72.9 71.5 70.9
Night 55.6 51.8 51.4 50.6 50.1
Overall 62.8 60.1 59.6 58.3 58.1

Is pixel-level alignment really necessary? In
datasets such as DSEC Gehrig et al. (2021b), event
camera and frame camera are positioned side-by-
side without fully resolving parallax, resulting in
misalignment. For dense prediction tasks like se-
mantic segmentation, achieving pixel-level align-
ment is of paramount importance for two main rea-
sons. First, in annotation process, pixel-level align-
ment is essential to generate accurate GT. Second, as
shown in table 4, we misalign events and RGB im-
ages by a certain pixels in random directions, showing pixel-level alignment is crucial for enhancing
model performance. This demonstrates the superiority of our coaxial optical imaging system.

6 CONCLUSION

In this paper, we construct a real-world pixel-aligned event-frame all-day semantic segmentation
dataset—RPEA, featuring many challenging scenarios such as extreme exposure and motion blur.
Moreover, we propose the Contrastive Alignment Consistent Distillation framework, addressing the
heterogeneity at representation level and then transferring boundary-content joint knowledge based
on semantic consistency. The proposed method significantly outperforms the SOTA methods. We
believe that our work can contribute to complex scene sensing and parsing.
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