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ABSTRACT

Instances-reweighted adversarial training (IRAT) can significantly boost the ro-
bustness of trained models, where data being less/more vulnerable to the given
attack are assigned smaller/larger weights during training. However, when tested
on attacks different from the given attack simulated in training, the robustness
may drop significantly (e.g., even worse than no reweighting). In this paper, we
study this problem and propose our solution—locally reweighted adversarial train-
ing (LRAT). The rationale behind IRAT is that we do not need to pay much attention
to an instance that is already safe under the attack. We argue that the safeness
should be attack-dependent, so that for the same instance, its weight can change
given different attacks based on the same model. Thus, if the attack simulated in
training is mis-specified, the weights of IRAT are misleading. To this end, LRAT
pairs each instance with its adversarial variants and performs local reweighting
inside each pair, while performing no global reweighting—the rationale is to fit the
instance itself if it is immune to the attack, but not to skip the pair, in order to pas-
sively defend different attacks in future. Experiments show that LRAT works better
than both IRAT (i.e., global reweighting) and the standard AT (i.e., no reweighting)
when trained with an attack and tested on different attacks.

1 INTRODUCTION

A growing body of research shows that neural networks are vulnerable to adversarial examples, i.e.,
test inputs that are modified slightly yet strategically to cause misclassification (Carlini & Wagner,
2017a; Finlayson et al., 2019; Kurakin et al., 2017; Nguyen et al., 2015; Szegedy et al., 2014; Wang
et al., 2019; Zhang et al., 2020b). It is crucial to train a robust neural network to defend against such
examples for security-critical computer vision systems, such as autonomous driving and medical
diagnostics (Chen et al., 2015; Ma et al., 2021; Miyato et al., 2017; Nguyen et al., 2015; Szegedy
et al., 2014). To mitigate this issue, adversarial training methods have been proposed in recent years
(Balunovic & Vechev, 2019; Goodfellow et al., 2015; Madry et al., 2018; Shafahi et al., 2020; Wang
et al., 2020a; Wu et al., 2020). By injecting adversarial examples into training data, adversarial
training methods seek to train an adversarial-robust deep network whose predictions are locally
invariant in a small neighborhood of its inputs (Bai et al., 2019; He et al., 2018; Papernot et al., 2016;
Raghunathan et al., 2020; Tsipras et al., 2019; Yang et al., 2020).

Due to the diversity and complexity of adversarial data, over-parameterized deep networks have
insufficient model capacity in adversarial training (AT) (Zhang et al., 2021). To obtain a robust model
given fixed model capacity, Zhang et al. (2021) suggest that we do not need to pay much attention to
an instance that is already safe under the attack, and propose instance-reweighted adversarial training
(IRAT), which performs global reweighting with a given attack. To identify safe/non-robustness
instances, they propose a geometric distance (GD) between natural data points and current class
boundary. Instances being closer to/farther from the class boundary is more/less vulnerable to the
given attack, and should be assigned larger/smaller weights during AT. This geometry-aware IRAT
(GAIRAT) significantly boosts the robustness of the trained models when facing the given attack.

However, when tested on attacks that are different from the given attack simulated in IRAT, the
robustness of IRAT drops significantly (e.g., even worse than no reweighting). First, we find
that a large number of instances are actually overlooked during IRAT. Figure 1(a) shows that, for
approximately four-fifths of the instances, their corresponding adversarial variants are assigned very
low weights (less than 0.2). Second, we find that the robustness of the IRAT-trained classifier drops
significantly when facing an unseen attack. Figures 1(b) and 1(c) show that the classifier trained by
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(a) Weight distribution
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(b) SAT Results
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(c) GAIRAT Results

Figure 1: The extreme reweighting in GAIRAT results in a significant decrease when facing an unseen attack.
The subfigure (a) illustrates the frequency distribution of weights in the GAIRAT model on the CIFAR-10
training set, where approximately four-fifths of the instances are assigned very low weights (less than 0.2). The
subfigure (b) and (c) illustrate the performance on the GAIRAT trained model and the AT trained model under
different attacks, which show that GAIRAT does improve the robustness when attacked by PGD (used during
training), but reduces the robustness when attacked by CW (unseen during training).

GAIRAT (with projected gradient descent (PGD) attack (Madry et al., 2018)) has lower robustness
when attacked by the unseen Carlini and Wagner attack (CW) (Carlini & Wagner, 2017b) compared
with the robustness of standard adversarial training (SAT) (Madry et al., 2018).
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Figure 2: The ranking of attack in-
tensity on different datasets. AT
(Madry et al., 2018) and TRADES
(Zhang et al., 2019) are different ad-
versarial trianing methods. AT-60
and TRADES-60 denote the early
stop models at the epoch 60.

Since the robustness of a model is not determined by any single
attack, the improved performance for a kind of given attack is
not sufficient to justify robustness. As shown in Figure 2, the
ranking of attack intensity varies with different datasets, adver-
sarial training methods and so on, which means there is not the
strongest attack in all situations. For another, previous studies
of the adversarial detection (Lee et al., 2018; Ma et al., 2018;
Gao et al., 2021) show that the stronger adversarial examples
for robust classifiers to predict, the easier for the adversarial
detectors to detect. This means improving performance not
only on stronger attacks, but also on weaker ones, as some of
attackers may choose to use weaker attacks to escape from the
adversarial detection. Hence, robustness needs the network to
consider a variety of potential attacks.

In this paper, we investigate the reasons behind the failure of
IRAT on unseen attacks. Unlike the common scenario of the
classification problem where the training and testing data are
fixed, there are different adversarial variants for the same in-
stance in AT, e.g., PGD-based or CW-based adversarial variants.
A natural question comes with this—whether there are incon-
sistent vulnerabilities in the view of different attacks? The
answer is affirmative. Figure 3 visualizes this phenomenon
using t-SNE (Van der Maaten & Hinton, 2008). The four sub-
figures in Figure 3 visualize inconsistent vulnerable instances
in different views using t-SNE. The red dots in all subfigures
represent consistently vulnerable instances between different
views, while the blue dots represent the inconsistent vulnerable
instances. From the SAT-trained classifier (Figure 3(a)-3(d)),
we can clearly see that a large number of vulnerable instances
are inconsistent (the blue dots dominate in all the subfigures).

Given the above investigation, we argue that the safeness of
instances is attack-dependent, that is, for the same instance, its
weight can change given different attacks based on the same model. Thus, if the attack simulated in
training is mis-specified, the weights of IRAT are misleading. In order to ameliorate this pessimism
of IRAT, we propose our solution—locally reweighted adversarial training (LRAT). As shown in
Figure 4, LRAT pairs each instance with its adversarial variants and performs local reweighting
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(a) V-Union (b) VGD-VCW (c) VGD-VPGD (d) VPGD-VCW

Figure 3: Visualization of inconsistent vulnerable instances in different views using t-SNE. The dots in
subfigures are outputs of the last layers in SAT-trained classifier (subfigures (a)-(d)). Classifier inputs are natural
data points in the CIFAR-10 training set. The dots represent the vulnerable instances (top-20%). The red dots
represent consistently vulnerable instances, while the blue dots represent the inconsistent vulnerable instances in
the view of VGD, VPGD and VCW. VGD is the vulnerability w.r.t. geometry distance (GD) defined by Zhang et al.
(2021). VPGD and VCW are the vulnerability measurement function w.r.t. PGD and CW, respectively, which is
defined in Eq. (5) and Eq. (6). We can clearly see that there exist abundant blue dots but only a few red dots,
which means a large number of inconsistent vulnerable instances in different views.

inside each pair, while performing no global reweighting. The rationale of LRAT is to fit the instance
itself if it is immune to the attack, and in order to passively defend different attacks in future, LRAT
does not skip the pair.

In terms of the common attribute of adversarial attacks that misleading the classifier with a low
probability of predicting the correct label and a high probability of predicting the false label (Madry
et al., 2018; Carlini & Wagner, 2017b), we propose a general reweighting strategy that is applicable
to various representatively attacks. Our experimental results show that compared with AT, LRAT can
achieve better results on various simulated attacks. Other than previous global reweighting training
that GAIRAT, LRAT can boost the performance of AT on PGD with no decline on other attacks.

2 ADVERSARIAL TRAINING

In this section, we briefly review existing adversarial training methods (Madry et al., 2018; Zhang
et al., 2021). Let (X , d∞) be the input feature space X with a metric d∞(x,x′) = ‖x− x′‖∞, and
Bε[x] = {x′ | d∞(x,x′) ≤ ε} be the closed ball of radius ε > 0 centered at x in X . The dataset
S = {xi, yi}ni=1, where xi ∈ X , yi ∈ Y = {0, 1, . . . ,K−1}. We use fθ(x) to denote a deep neural
network parameterized by θ. Specifically, fθ(x) predicts the label of an input instance x via:

fθ(x) = arg max
k∈K

pk(x; θ), (1)

where pk(x; θ) denotes the predicted probability (softmax on logits) of x belonging to class k.

2.1 STANDARD ADVERSARIAL TRAINING

The objective function of SAT (Madry et al., 2018) is

min
fθ∈F

1

n

n∑
i=1

`(fθ(x̃i), yi), (2)

where x̃i = arg maxx̃i∈Bε[x] `(fθ(x̃i), yi) and F = {f : X → Y}. The selected x̃ is the most
adversarial variant within the ε-ball center at x. The loss function ` : RK × Y → R is a composition
of a base loss `B : 4K−1 × Y → R (e.g., the cross-entropy loss) and an inverse link function
`L : RK → 4K−1 (e.g., the soft-max activation), where 4K−1 is the corresponding probalility
simplex. Namely, `(fθ(·), y) = `B(`L(fθ(·)), y). PGD (Madry et al., 2018) is the most common
approximation method for searching the most adversarial variant. Starting from x(0) ∈ X , PGD
(with step size α > 0) works as follows:

x(t+1) = ΠBε[x(0)](x
(t) + α sign(∇xt`(fθ(x

(t), y))), t ∈ N, (3)
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Decision boundary

From the same instance

Medium-weight

Large-weight

Small-weight

Natural instance

Adversarial variant

Figure 4: The illustration of LRAT. LRAT pairs each instance with its adversarial variants, and performs
local reweighting inside each pair instead of global reweighting. For the same instance, there is inconsistent
vulnerability in different views (the difference between red and blue). Thus, LRAT gives larger/smaller weights
on the losses of adversarial variants, respectively.

where N is the number of iterations; x(0) refers to the starting point that natural instance (or a natural
instance perturbed by a small Gaussian or uniformly random noise); y is the corresponding label for
x(0); x(t) is the adversarial variant at step t; ΠBε[x(0)](·) is the projection function that projects the
adversarial variant back into the ε-ball centered at x(0) if necessary.

2.2 GEOMETRY-AWARE INSTANCE-REWEIGHTED ADVERSARIAL TRAINING

GAIRAT is a typical IRAT proposed by Zhang et al. (2021). GAIRAT argues that natural training
data farther from/close to the decision boundary are safe/non-robustness, and should be assigned with
smaller/larger weights. Let ω(x, y) be the geometry-aware weight assignment function on the loss of
the adversarial variant x̃, where the generation of x̃ follows SAT. GAIRAT aims to

min
fθ∈F

1

n

n∑
i=1

ω(xi, yi)`(fθ(x̃i), yi). (4)

Eq. (4) rescales the loss using a function ω(x, y). This function is non-increasing w.r.t. GD, which
is defined as the least steps that the PGD method needs to successfully attack the natural instances.
The method then normalizes ω to ensure that ω(x, y) ≤ 0 and 1

n

∑n
i=1 ω(xi, yi) = 1. Finally

GAIRAT employs a bootstrap period in the initial part of the training by setting ω(xi, yi) = 1,
thereby performing regular training and ignoring the geometric-distance of input (xi, yi).

3 THE LIMITATION OF IRAT: INCONSISTENT VULNERABILITY IN DIFFERENT
VIEWS

The difference between Eq. (2) and Eq. (4) is the addition of the geometry-aware weight ω(x, y).
According to GAIRAT (Zhang et al., 2021), more vulnerable instances should be assigned larger
weights. However, the relative vulnerability between instances may vary in different situations, such
as for different adversarial variants. V represents the selected variable to measure the vulnerability
between the classifier and adversarial variants, and the smaller V , the more vulnerable is the instance.

For the PGD-based adversarial variant, the lower predicted probability it has on true class, the smaller
V . Here, we give the definition of VPGD.

Definition 1 (Vulnerability in the view of PGD). In the view of PGD, the vulnerability VPGD regarding
x̃ (generated by PGD) is defined as

VPGD
(x̃,y) := py(x̃), (5)

where py denotes the predicted probability (softmax on logits) of x̃ belonging to the true class y.

For the CW-based adversarial variant, the relatively higher predicted probability it has on the false
class, the larger VCW. Here, we give the definition of VCW.
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(a) All PGD
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(b) Vulnerable PGD under all PGD
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(c) Vulnerable CW under all PGD
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(d) All CW
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(e) Vulnerable CW under all CW
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(f) Vulnerable PGD under all CW

Figure 5: The inconsistent vulnerability between instances about different variants. Six subfigures illustrate
the frequency distribution of adversarial variants in the GAIRAT trained model on the CIFAR-10 training set
(50,000). The x-coordinate in subfigures (a)-(c) is V in the view of PGD. The x-coordinate in subfigures (d)-(f)
is V in the view of CW. Light yellow and light blue are all instances (50,000) in the view of PGD and CW, while
dark yellow and dark blue are top-20% vulnerable instances (10,000) respectively in the view of PGD and CW.
Different distributions of dark yellow and dark blue between subfigure (b) and (c) (or between subfigure (e) and
(f)) show that, the vulnerable instances in the view of different attacks are not the same.

Definition 2 (Vulnerability in the view of CW). In the view of CW, the vulnerability VCW regarding
x̃ (generated by CW) is defined as

VCW
(x̃,y) := zy(x̃)−max

i6=y
zi(x̃), (6)

where zy denotes the predicted logits of x̃ (CW) belonging to the true class y. The maxi6=y zi(x̃)
denotes the maximum predicted logits of x̃ (CW) belonging to the false class i (i 6= y).

As shown in Figure 5, the dark yellow and dark blue are top-20% vulnerable instances in the view
of PGD and CW, respectively. The frequency distribution of dark yellow in Figure 5(b) and dark
blue in Figure 5(c) is clearly different, and the frequency distribution of dark blue in Figure 5(e) and
dark yellow in Figure 5(f) is also different. This phenomenon means that the most vulnerable 10, 000
PGD adversarial variants and the most vulnerable 10, 000 CW adversarial variants are not from the
same 10, 000 instances. As a consequence of this inconsistency, if the attack simulated in training is
mis-specified, the weights of IRAT will be misleading.

4 LOCALLY REWEIGHTED ADVERSARIAL TRAINING

To break the limitation of IRAT and train a robust classifier against various attacks, we propose LRAT
in this section, for which we perform local reweighting instead of global/no reweighting.

4.1 MOTIVATION OF LRAT

The Reweighting is Beneficial on the Given Attack. As suggested by GAIRAT (Zhang et al.,
2021), the global reweighting indeed improves the robustness when tested on the given attack (PGD)
simulated in training. Figures 1(b) and 1(c) also show that, as a global reweighting, GAIRAT
improves the robustness against PGD (when PGD is simulated in training). Thus, when training and
testing on the same attack, the rationale that we do not need to pay much attention to an already-safe
instance under the attack is significant.
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Local Reweighting Can Be Used to Take Care of Various Attacks. As introduced in Section 3,
there is inconsistent vulnerability between instances in different views. Thus, to defend against
various attacks, we should perform local reweighting inside each pair, while performing no global
reweighting—the rationale is to fit the instance itself if it is immune to the attack, but not to skip the
pair, in order to passively defend different attacks in future.

4.2 LEARNING OBJECTIVE OF LRAT

Let ω(x̃, y) be the weight assignment function on the loss of adversarial variant x̃. The inner
optimization for generating x̃ depends on attacks, such as PGD (Eq. (2)). The outer minimization is:

min
fθ∈F

1

n

n∑
i=1

C − m∑
j=1

ω(x̃ij , yi)


+

`(fθ(x̃
∗
i ), yi) +

m∑
j=1

ω(x̃ij , yi)`(fθ(x̃ij), yi)

 , (7)

where n is the number of instances in one mini-batch; m is the number of used attacks; C is a constant
representing the minimum weight sum of each instance; the notation [a]+ stands for max{a, 0}. We
impose two constraints on our objective Eq. (7): the first constraint ensures that ω(x̃, y) > 0 and the
second constraint ensures that C > 0. The non-negative coefficient [C −

∑m
j=1 ω(x̃ij , yi)]+ assigns

some weight to the adversarial data term x̃∗, which serves as a gentle lower bound to avoid discarding
instances during training. It can also be seen that different weights are assigned to different adversarial
variants, respectively. LRAT pairs each instance with its adversarial variants and performs local
reweighting inside each pair. Figure 4 provides an illustrative schematic of the learning objective
of LRAT. We also consider a simple version of LRAT, i.e., locally simulated adversarial training
(LSAT) that simulating attacks with no reweighting in training that ω(x̃, y) = 1, C < 1, m = 1 and
x̃ is generated by any simulated attack, if x̃ is generated by PGD, LRAT recovers the SAT (Madry
et al., 2018), which assigns equal weights to the losses of PGD adversarial variant.

4.3 REALIZATION OF LRAT

The realization of LRAT consists of the locally simulated and locally reweighted.

Locally Simulated. Previous adversarial training methods (Madry et al., 2018; Zhang et al., 2021)
only simulated PGD attack in training. As analysed in Section 3, there are inconsistent vulnerablility
in different views. Different adversarial attacks simulated in training can also behave differently.
For defend against diverse attacks, we should consider simulating diverse attacks in training before
reweighting. According to the difference objective function, we simulate two kind of representative
attacks that CW attack and simplified targetted APGD-DLR attack (SAA).

The loss function in CW is:
CW(f,x, y) := −zy(x̃) + max

i 6=y
zi(x̃)− κc, (8)

where zy is the predicted logit of x̃ belonging to the true class y; κc = 50 is a hyper-parameter to
denote the confidence (following (Cai et al., 2018; Zhang et al., 2020a)).

The loss function in targeted APGD-DLR is:

Targeted-DLR(f,x, y, t) = − zy(x′)− zt(x
′)

zπ1
(x′)− 1

2 · (zπ3
(x′) + zπ4

(x′))
, (9)

where π is the ordering of the components of z in decreasing order.

Locally Reweighted. The objective in Eq. (7) implies the optimization process of an adversarially
robust network, with one step generating adversarial variants from natural counterparts and then
reweighting loss on them, and one step minimizing the reweighted loss w.r.t. the model parameters θ.
For each variant, the definition of the ω in Eq. (7) also means a lot. Zhang et al. (2021) heuristically
design a non-increasing function ω:

ω(x, y) =
(1 + tanh(λ+ 5× (1− 2× κ(x, y)/κmax)))

2
, (10)

where κ/κmax ∈ [0, 1], κmax ∈ N+, and λ ∈ R. κ(x, y) is the GD defined as the least steps that the
PGD method needs to successfully attack the natural instance. κmax is the maximally allowed steps.
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Algorithm 1 Locally Reweighted Adversarial Training (LRAT)
Input: network architecture parametrized by θ, training dataset S, learning rate η, number of
epochs T , batch size n, number of batches N , number of attacks m;
Output: Adversarial robust network fθ;
for epoch = 1, 2, . . . , T do

for mini-batch = 1,2,. . . ,N do
Sample a mini-batch {(xi, yi)}ni=1 from S;
for i = 1, 2, . . . , n do

for j = 1, 2, . . . ,m do
Obtain adversarial data x̃ij of xi by the attack j;
Calculate wij according to t(x̃ij ,yi) by Eq. (12);

end for
end for
θ ← θ − η

∑n
i=1∇θ

[[
C −

∑m
j=1 wij

]
+
` (fθ (x̃∗i ) , yi) +

∑m
j=1 wij` (fθ (x̃ij) , yi)

]
/n;

end for
end for
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Figure 6: The limitation of Eq. (10). The
figure illustrates the performance on the
GAIRAT trained model when the CW is sim-
ulated in training.

However, the efficacy of this heuristic reweighting
function is limited. As mentioned in Figure 1 (c),
when PGD is simulated in training, the robustness
on CW attack decreases. For another, as shown in
Figure 6, when CW is simulated in training, this
reweighting function shows the same decrease when
tested on CW.

Hence, a rational and effective reweighting function
is necessary. The generations of adversarial variants
follow different rules under different attacks, whereas
their common attribute is to mislead the classifier
with a low probability of predicting the correct label
and a high probability of predicting the false label
(Madry et al., 2018; Carlini & Wagner, 2017b). It is
reasonable to consider the margin of predicted prob-
ability between the correct label and the false label
as a variable that affects the reweighting function.
Definition 3 (The variable factor). The variable fac-
tor t regarding adversarial variant x̃ is defined as

t(x̃,y) := py(x̃)−max
i 6=y

pi(x̃), (11)

where py denotes the softmax on logit of x̃ belonging to the true class y.

Given the variable factor t, we also need to consider how to define the reweighting function of t. As
known, the reason why adversarial training improves adversarial robustness is that adversarial data
with a low t are used instead of natural data with a high t. It implies the adversarial variant with an
high t should be assigned a low weight. Motivated by this thinking, we propose a general reweighting
function of t to obtain the weights of the corresponding variants, where the higher variable factor t,
the lower weights ω.
Definition 4 (The reweighting function). The reweighting function ω regarding the variable factor t
is defined as

ω(t) := α(1− t)β , (12)
where α > 0 and β > 0 are hyper-parameters of each attack.

We present our LRAT in Algorithm 1. LRAT uses different given attacks (e.g., PGD, Algorithm 2 in
Appendix A) to obtain different adversarial variants, and leverages the attack-dependent reweighting
strategy for obtaining their corresponding weights. For each mini-batch, LRAT reweights the loss
of different adversarial variants according to our reweighting function, and then updates the model
parameters by minimizing the sum of the reweighted loss on each instance.
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5 EXPERIMENTS

In this section, we justify the efficacy of LRAT. We consider L∞-norm bounded perturbation that
||x̃− x||∞ ≤ ε in both training and evaluations in all experiments. All images of the CIFAR-10 are
normalized into [0,1].

5.1 EXPERIMENTAL SETUP

We compare our proposed LSAT and LRAT with the no-reweighting strategy (i.e., SAT (Madry
et al., 2018)) and previous global-reweighting strategy (i.e., GAIRAT (Zhang et al., 2021)). Rice
et al. (2020) show that, unlike standard training, overfitting in robust adversarial training decays test
set performance during training. Thus, as suggested by Rice et al. (2020), we compare different
methods on the performance of the best checkpoint model (the early stopping model at epoch 60).
We employ ResNet (ResNet-18) (He et al., 2016) as the targeted classifier. Our experimental setup
follows previous works (Madry et al., 2018; Wang et al., 2020b; Zhang et al., 2021). All networks are
trained for 100 epochs using SGD with 0.9 momentum. The initial learning rate is 0.1, divided by 10
at epoch 60 and 90, respectively. The weight decay is 0.0002.

For generating the PGD adversarial data for updating the network, L∞-norm bounded perturbation
εtrain = 8/255; the maximum PGD step κmax = 10; step size α = εtrain/10. For generating the
CW adversarial data (Carlini & Wagner, 2017b), we follow the setup in (Cai et al., 2018; Zhang et al.,
2020a), where the confidence κc = 50, and other hyper-parameters are the same as that of PGD
above. For generating SAA adversarial data, we follow the adaptive step and DLR loss in (Croce &
Hein, 2020), but only choose 3 targeted classes. Those attaining 3 highest scores at the original point
x (excluding the correct one), and 20 steps for computational efficiency.

Robustness to adversarial data is the main evaluation indicator in adversarial training (Carlini et al.,
2019; Chen et al., 2020; Cohen et al., 2019; Du et al., 2021; Pang et al., 2019; Yang et al., 2021;
Zhu et al., 2021). Thus, we evaluate the robust models based on four evaluation metrics, i.e.,
standard test accuracy on natural data (Natural), robust test accuracy on adversarial data generated
by projected gradient descent attack (PGD) (Madry et al., 2018), Carlini and Wagner attack (CW)
(Carlini & Wagner, 2017b) and AutoAttack (AA) (Croce & Hein, 2020). In testing, L∞-norm
bounded perturbation εtest = 8/255, the maximum PGD step K = 20, and step size α = ε/4. There
is a random start in training and testing, i.e., uniformly random perturbations ([−εtrain,+εtrain] and
[−εtest,+εtest]) added to natural instances. Note that, the extended version of GAIRAT that GAIRAT-
RST uses additional 500K unlabeled data on CIFAR-10 dataset, and to make a fair comparison,
adversarial training methods in our experiments only use original data and do not use additional data.

5.2 PERFORMANCE EVALUATION

In our experiments of LRAT, we simulate three representative attacks that PGD, CW and SAA.
For adversarial variants CW and SAA, we use our reweighting function (Eq. (12)) to obtain their
corresponding weights, where t follows Eq. (11). We choose the three hyper-parameters (C in Eq. (7),
α, β in Eq. (12)) that α = 2, β = 0.5, and C = 0.1, and we analyze it in Appendix B.

We evaluate the performance of LSAT first. As shown in Table 1, compared with SAT, by locally
simulated on given attack CW and SAA, LSAT performs better when tested on the simulated attack.
The results indicate that practitioners should choose to simulate the corresponding attack when there
is only one type of attack need to defend against. For adaptive and unseen attacks, the adversarial
defense could be described as a barrel effect: if there is a short slab, the barrel would leak. Similarly,
if there is a weakness in defending against some attacks, the classifier would fail to predict. In this
case, practitioners should choose to simulate the attack with higher intensity (e.g, AA in Table 2).
For another, compared to AT, LRAT-SAA performs better on all attacks in testing (PGD, CW and
AA), which also indicates that the simulated PGD attack in previous studies can be replaced with
SAA to achieve better adversarial robustness.

Then we evaluate the performance of LRAT. As shown in Table 1, compared with LSAT, LRAT can
boosts adversarial robustness on the simulated attack even further, which is an evidence that our
reweighting function (Eq. (12)) works well. The results show that our locally reweighting strategy is
superior to the no-reweighting strategy and can achieve better adversarial robustness on the simulated
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Table 1: Test accuracy (%) of LRAT and other methods.
Methods Natural PGD CW AA

Baselines

SAT 83.17 51.14 49.95 46.12

GAIRAT 79.69 60.82 38.69 32.14

LSAT

LSAT-CW 80.40 50.49 52.03 45.26

LSAT-SAA 81.58 55.04 51.84 46.95

LRAT

LRAT-CW 79.65 50.01 54.27 45.09

LRAT-SAA 81.02 54.49 51.05 47.34

LRAT-SAA+CW 80.69 53.56 52.02 46.67

Table 2: Ablation study.
Natural PGD CW AA

GD+CW 79.40 58.12 42.95 36.09

GD+SAA 80.47 58.55 41.05 40.71

SAA+CW 80.69 53.56 52.02 46.67

SAA+CW+GD 80.13 57.28 45.15 38.47

attack. It means a lot for the defense on the attack with higher intensity, e,g., LRAT-SAA can perform
best on AA. For defending against unseen attacks, we recommend that practitioners simulate multiple
attacks and assign some weight to the SAA adversarial data term for each instance during training.

Compared with GAIRAT, LRAT has a great improvement under CW and AA but a decline on PGD.
Although GAIRAT improves the performance under PGD and can be a good targeted defense against
PGD, its poor performance on CW and AA makes GAIRAT not enough to be an effective adversarial
defense in most scenarios . Meanwhile, the ablation study in Table 2 also shows involving geometric
distance (GD) as a component leads to the decreased robustness when attacked by CW and AA. In
contrast, LRAT reduces the threat of any potential attacks as an effective defense. Thus, the results
also show that our local-reweighting strategy is superior to previous global-reweighting strategy. In
general, the results affirmatively confirm the efficacy of LRAT.

6 CONCLUSION

It has been showing great potential to improve adversarial robustness by reweighting adversarial
variants during AT. This paper provides a new perspective to this promising direction and aims to
train a robust classifier to defend against various attacks. Our proposal, locally reweighted adversarial
training (LRAT), pairs each instance with its adversarial variants and performs local reweighting
inside each pair. LRAT will not skip any pairs during adversarial training such that it can passively
defend against different attacks in future. Experiments show that LRAT works better than both IRAT
(i.e., global reweighting) and the standard AT (i.e., no reweighting) when trained with an attack
and tested on different attacks. As a general framework, LRAT provides insights on how to design
powerful reweighted adversarial training under any potentially adversarial attacks.
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A ADVERSARIAL ATTACK

Algorithm 2 and Algorithm 3 are the adversarial data generation of PGD and CW, respectively. The
loss function in PGD is:

`CE := − log py(x̃), (13)

where py denotes the predicted probability (softmax on logits) of x̃ belonging to the true class y.

The loss function in CW is:

`CW := −zy(x̃) + max
i 6=y

zi(x̃)− κc, (14)

where zy denotes the logits of x̃ belonging to the true class y; κ = 50 (following the setup in (Cai
et al., 2018; Zhang et al., 2020a)) is a hyper-parameter to denote the confidence.

B EXPERIMENTAL DETAILS

Weighting Normalization. In our experiments, we impose another constraint on our objective
Eq. (7):

1

n

n∑
i=1

[C −
m∑
j=1

ω(x̃∗ij , yi)]+ +

m∑
j=1

ω(x̃ij , yi)

 = 1, (15)

to implement a fair comparison with baselines.

Selection of Hyper-parameters. It is an open question how to define the decreasing function ω of
t in Eq. (12). (or given the definition of ω in Eq. (12), how to select the hyper-parameters under
different situations.) In our experiments, given an alternative value set {0.25, 0.5, 1.5, 2, 4}, we
choose α, β in Eq. (12) that α = 2, β = 0.5, and given an alternative value set {0.1, 0.2, 0.4, 0.6}, we
choose C in Eq. (7) that C = 0.1. Our experiments show that the performance has a minor variation
between different hyper-parameters, and we choose the optimal hyper-parameters depending on
whose robustness attacked by PGD is the best.

Adversarial Data Term. To avoid discarding instances during training, we impose the non-negative
coefficient [C −

∑m
j=1 ω(x̃∗ij , yi)]+ in Eq. (7) to assign some weight to the adversarial data term. The

definition of the adversarial data term can vary as required by different tasks. When practitioners
only focus on the robustness under attacks simulated in training, this term can be eliminated. When
practitioners focus on the robustness under attacks simulated in training and the accuracy on natural
data, this term can be defined as the loss of the natural instance. When practitioners focus on the
robustness under attacks both simulated and unseen in training, this term can be defined as the loss of
the adversarial variant, and we recommend to use SAA adversarial variant.

C EXPERIMENTAL RESOURCES

We implement all methods on Python 3.7 (Pytorch 1.7.1) with an NVIDIA GeForce RTX 3090 GPU
with AMD Ryzen Threadripper 3960X 24 Core Processor. The CIFAR-10 dataset can be downloaded
via Pytorch. Given the 50, 000 images from the CIFAR-10 training set, we conduct the adversarial
training on ResNet-18 for classification. DNNS are trained using SGD with 0.9 momentum, the
initial learning rate of 0.1 and the batch size of 128.

D DISCUSSIONS ON THE DEFENSE AGAINST UNSEEN ATTACKS

As a general framework, LRAT provides insights on how to design powerful reweighting adversarial
training under different adversarial attacks. Due to the inconsistent vulnerability in different views,
reweighting adversarial training has the risk of weakening the ability to defend against unseen attacks.
Thus, we recommend that practitioners simulate diverse attacks during training. Note that it does not
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mean that practitioners should use different attacks indiscriminately—for instance, during standard
adversarial training, mixing some weak adversarial data into PGD adversarial data will weaken the
robustness on the contrary. The recommended diversity is diverse information focused on during
adversarial data generation, such as SAA and CW.

Algorithm 2 Adversarial Data Generation in Projected Gradient Descent Attack (PGD)
Input: natural data x ∈ X , label y ∈ Y , model f , loss funciton `CE , maximum PGD step K,
perturbation bound ε, step size α;
Output: adversarial data x̃;
x̃← x;
while K > 0 do
x̃← ΠBε[x](x̃+ αsign(∇x̃`CE(f(x̃), y));
K ← K − 1;

end while

Algorithm 3 Adversarial Data Generation in Carlini and Wagner Attack (CW)
Input: natural data x ∈ X , label y ∈ Y , model f , loss funciton `CW , maximum PGD step K,
perturbation bound ε, step size α;
Output: adversarial data x̃;
x̃← x;
while K > 0 do
x̃← ΠBε[x](x̃+ αsign(∇x̃`CW (f(x̃), y));
K ← K − 1;

end while
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