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Abstract

Math reasoning has been one crucial ability of large language models (LLMs),
where significant advancements have been achieved in recent years. However,
most efforts focus on LLMs by curating high-quality annotation data and intricate
training (or inference) paradigms, while the math reasoning performance of multi-
modal LLMs (MLLMs) remains lagging behind. Since the MLLM typically
consists of an LLM and a vision block, we wonder: Can MLLMs directly absorb
math reasoning abilities from off-the-shelf math LLMs without tuning? Recent
model-merging approaches may offer insights into this question. However, they
overlook the alignment between the MLLM and LLM, where we find that there is
a large gap between their parameter spaces, resulting in lower performance. Our
empirical evidence reveals two key factors behind this issue: the identification of
crucial reasoning-associated layers in the model and the mitigation of the gaps in
parameter space. Based on the empirical insights, we propose IP-Merging that first
Identifies the reasoning-associated parameters in both MLLM and Math LLM, then
Projects them into the subspace of MLLM, aiming to maintain the alignment, and
finally merges parameters in this subspace. IP-Merging is a tuning-free approach
since parameters are directly adjusted. Extensive experiments demonstrate that our
IP-Merging method can enhance the math reasoning ability of MLLMs directly
from Math LLMs without compromising their other capabilities. 3.

1 Introduction

As one fundamental ability of large language models (LLMs), improving math reasoning abilities is
crucial to handle complex problem-solving tasks [1]. By creating a substantial amount of high-quality
math reasoning data [47] and designing intricate training procedures, LLMs such as GPT-4 or Qwen
have achieved remarkable progress in solving text-based math reasoning problems [1, 2, 9]. Despite
these advancements, the challenge of mathematical reasoning remains a significant obstacle for
MLLMs [19, 23, 57, 54]. Visual math reasoning tasks, which are essential for real-world applications,
require MLLMs to extract image information, analyze problem constraints, integrate text and visuals,
and perform complex reasoning.

Following similar training strategies for improving math reasoning abilities in LLMs, attempts have
been made to enhance MLLM’s math reasoning skills [30]. Despite the notable progress, collecting
and annotating high-quality multimodal reasoning data [8, 56] is expensive. Additionally, training
large models demands extensive computational resources, which makes it costly to improve their
reasoning abilities. As MLLMs typically include a foundation LLM as the core component [20]
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and share similar training processes with LLMs, we propose one intriguing question: Can MLLM
directly absorb math reasoning abilities from off-the-shelf math LLMs to enhance the multi-modal
math reasoning without tuning?
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Figure 1: We aim to enhance multi-modal rea-
soning skills of MLLM by merging parameters in
MLLM and Math LLM without tuning or changing
the size of the model.
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Figure 2: (a) Comparison of different methods of
merging MLLM with math LLM on MathVerse.
(b) Trace value of task vectors in 30 MLP layers
in two math LLMs (MetaMath-Llemma-7B and
Tora-code-7B) and one MLLM (LLaVA-v1.5-7B).

To answer this question, our initial attempt is
to adopt model merging techniques, which in-
tend to integrate task-specific knowledge into
one model by merging multiple fine-tuned mod-
els without involving any training [15, 41]. We
illustrate this process in fig. 1, where we aim to
improve MLLM’s multi-modal math reasoning
by integrating parameters from math LLM into
MLLM. One representative method called task
arithmetic [15] extracts the task vector of each
model via the subtraction of the fine-tuned and
pre-trained models (i.e., ∆W = W ft−W pre).
By adding all task vectors, the merged model is
expected to perform well on all tasks. However,
the direct merging of the reasoning-associated
LLM task vector and MLLMs does not improve
the reasoning abilities of MLLMs (fig. 2(a)). We
observe that existing merging methods work ef-
fectively when task vectors are similar [32, 45].
However, this does not hold between MLLMs
and Math LLMs. We argue that there exists a
gap between their task vectors. Without align-
ing them properly, direct addition leads to con-
flicts. MLLMs are designed to integrate vi-
sual and textual inputs, whereas math LLMs
acquire reasoning skills from text-based mathe-
matical problems. This fundamental difference
creates a substantial discrepancy in their task
vectors. To illustrate this, inspired by previous
works [16, 39] that adopt trace value to quantify
gradient change and learning difficulty in the
fine-tuning stage, we plot the trace value of task
vectors in 30 MLP blocks (fig. 2(b)), and there is a large gap between the MLLM and Math LLM.

To delve into the alignment issue in integrating reasoning abilities from math LLMs into MLLMs,
we conduct empirical analysis and unveil two key challenges: (1) How to identify math reasoning
abilities associated parameters in MLLM and LLM? We demonstrate that math reasoning-associated
parameters appear highly similar in the subspace; absorbing these parameters improves multi-modal
math reasoning, detailed in section 4.1. (2) How to quantify and mitigate the gaps between models in
the parameter space? We illustrate that parameter gaps between models can be quantified by singular
values, detailed in section 4.2. Bridging these gaps can enhance the alignment between models and
improve math reasoning performance.

Based on our empirical findings, we propose IP-merging that Identifies the math reasoning parameters
in the models, then Projects math reasoning parameters into the subspace of MLLM for better
alignment. In the parameter selection stage, the selection process is guided by the similarity between
the subspaces of the task vectors from the two models. To achieve this, we first perform singular
value decomposition (SVD) on the task vectors of both the LLM and the MLLM. Next, we compute
the cosine similarity between the basis vectors extracted from the LLM and the MLLM. Parameters
corresponding to the most similar subspaces are then selected for the subsequent merging process.
To further align the selected parameters, these parameters are rescaled by computing the rescaling
factor based on the eigenvalues of the selected parameters in MLLM and math LLM. The rescaled
math LLM parameters are projected into the subspace of the MLLM, allowing the projected LLM
parameters to be close to the MLLM parameters. Finally, the rescaled parameters are merged into the
MLLM. The overall process allows the reasoning capabilities of the LLM to be effectively transferred
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and adapted to the multimodal context of the MLLM. Our method requires no data or any additional
tuning and can be efficiently implemented.

We demonstrate the effectiveness of our method by merging MLLM (e.g., LLaVA series and Qwen
series) and different math reasoning LLMs. We validate the performance of our method on MathVista,
MathVerse, DynaMath and MathVision for evaluating math reasoning abilities. We further show
our method does not interfere with the model’s other abilities by evaluating our method general
knowledge datasets, i.e., MMMU [50], TextVQA [31] and MMBench [22]. Our contributions can be
summarized as follows:

• We propose the problem of improving the math reasoning abilities of MLLMs by directly
absorbing math LLMs without any tuning.

• We reveal two key challenges to answer this question, including the selection of math-
reasoning-associated parameters and the reduction of gaps between models.

• We propose the IP-merging method, which first identifies the crucial layers and then aligns
the selected layers by projecting them into the MLLMs subspace.

• Extensive experimental results validate that the IP-Merging method enhances the math
reasoning abilities of MLLMs without compromising other capabilities.

2 Related Works

2.1 Math Reasoning of MLLMs

The community has made significant efforts to improve mathematical reasoning ability, which is
regarded as a fundamental capability of MLLMs. In the pre-training stage, previous works focus on
enhancing math reasoning of base models by collecting math pre-training data [37, 11], generating
synthetic data [5], and optimizing training strategies [18]. Furthermore, in the post-training phase,
researchers significantly increase the scale and quality of math reasoning instruction data through
data augmentation techniques [8, 12, 30]. The introduction of variant fine-tuning [55], reinforcement
learning algorithms [48, 49, 38], and self-evolving frameworks [51, 21] greatly improves the efficiency
of data utilization. Recently, O1-like models successfully leverage the deep-thinking chain of thought
for inference scaling [6], substantially advancing reasoning capabilities. Different from these cost-
intensive works (either training or inference), we aim to improve MLLMs’ math reasoning abilities
by directly absorbing them from Math LLMs without any tuning.

2.2 Model Merging

Model merging has emerged as a promising technique for enhancing the capabilities of models without
requiring raw training data or intensive computation, which offers a low-cost solution to elevate
the abilities of LLMs. Model merging takes off-the-shelf task-specific models and fuses all models
into a single model with diverse abilities [43]. Several advanced methods have been developed for
model merging, which can be broadly classified into pre-merging and during-merging strategies. Pre-
merging methods focus on merging model weights [40, 15, 41], architecture transformations [32, 52],
or disentangling weight spaces to create optimal conditions for merging [33, 25]. During-merging
methods address task conflicts using basic averaging, weighted strategies, subspace projections,
dynamic routing, or post-merging calibrations [46, 45, 44]. Previous methods focus on merging
models trained on single modality [43, 17], while our method aims to merge models from different
modalities.

3 Model Merging Framework

3.1 Preliminaries of Task Vectors

Let W 0 denote the parameters of a pre-trained language model, such as Llama-based model [34].
The math reasoning model WMath is obtained by fine-tuning the pretrained model W 0 on math
reasoning data Dtrain

math−txt. Math task vectors are defined as the difference between parameters
of LMs before and after finetuning, i.e., ∆WMath = WMath −W 0. Here, the task vectors are
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obtained by subtraction at each layer. For example, if the model has N layers, the task vector is
∆WMath = {∆W 1

Math,∆W 2
Math, . . . ,∆WN

Math}.

For an MLLM such as LLaVA [20], the model is trained by freezing the visual encoder [28] and
tuning the projection layers and the LLM using vision and language pairs Dtrain

vl . Here, we denote
the models’ task vector of receiving multi-modal input as ∆WMLLM = WMLLM −W 0. The task
vector of MLLM is computed between the LLM and the pretrained LLM, which does not include the
frozen visual encoder and the visual projection layers. During the model merging process, the visual
encoder and visual projection layers are not modified, only LLMs in the models are merged.

3.2 Model Merging Framework

Model merging techniques fuse several fine-tuned task-specific models into one comprehensive
multi-task model without training the models. In our case, we aim to obtain one math reasoning
MLLM WMathMLLM by merging math LLM WMath with the MLLM WMLLM . For simplicity,
we consider the case of merging two models here. We can formulate the general framework for
merging the models as

WMathMLLM = F(W 0,∆WMLLM ,∆WMath;M). (1)

Prevailing approaches, such as Task Arithmetic [15], Ties Merging [41], EMR Merging [14] can be
further formulated as

WMathMLLM = W 0 + α1f1(∆WMLLM ,M1) + α2f2(∆WMath,M2), (2)
where α1 and α2 are scaling parameters, M1 and M2 can be regard as alignment matrices. f1(·) and
f2(·) represent two mapping functions, such as the dot product of the element-wide product. For
example, task arithmetic [15] set M1 and M2 to identity mapping. Ties merging [41] and DARE [46]
compute sparse matrices M1 and M2, and select parameters by element-wise product. EMR merging
computes scaling factors α1, α2 based on the absolute values and derives task-specific masks M1,
M2. Our method follows a similar model merging framework. After merging the models, the model
is then tested on multi-modal math reason dataset Dtest

math−vl to evaluate its performance.

4 Methodology

In this section, we delve into the alignment issue in model merging by identifying parameters
associated with math reasoning in section 4.1, and then we quantify the gaps between models
in section 4.2. Finally, we describe our proposed IP-merging in section 4.3.

4.1 Identify Math-Reasoning-Associated Parameters

(a) (b)

Figure 3: (a) Absolute cosine value of the top 100
corresponding angles in one MLP layer. (b) The
highest similarity score distribution among model
parameters, orange bars represent the parameters
with a high similarity score.

Experimental results in fig. 2 provide one critical
observation: though limited, the MLLM already
demonstrates an inherent capability for multi-
modal mathematical reasoning. As the MLLM
is trained to align visual and textual input, the
direct addition of task vectors in all layers de-
rived from a math reasoning LLM harms the
learned alignment, yielding suboptimal perfor-
mance. To address this issue, a key question
arises: Which parameters are associated with
mathematical reasoning abilities in MLLM, and
how can we effectively identify and prioritize
them for merging?

To answer this question, we propose to quantify
this correlation by calculating the subspace sim-
ilarity between the parameters in Math LLMs
and MLLM. Recent efforts [26, 24] demonstrate
that task-specific competencies, such as mathe-
matical reasoning abilities, reside within particular subspaces of the model’s parameter space. If the
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subspace of one parameter in MLLM has higher subspace similarity with math LLM, this parameter
can be regarded as crucial for math reasoning abilities. Specifically, given the math reasoning task
vector ∆WMath and multi-modality task vector ∆WMLLM in the layer n, we can first factorize
these weights using singular value decomposition (SVD) respectively:

∆W n
Math = Un

MΣn
MVn

M
⊤, ∆W n

MLLM = Un
V Σ

n
V V

n
V
⊤, (3)

which can be organized into a combination of singular values and orthonormal bases:

∆W n
Math =

∑d

i=1
σn
M,iu

n
M,iv

n
M,i

⊤, ∆W n
MLLM =

∑d

i=1
σn
V,iu

n
V,iv

n
V,i

⊤, (4)

where σn
V,i and σn

M,i represent the i-th singular value of n-th layer in MLLM and Math-LLM
respectively, and d is the number of dimensions. σn

M,1 ≥ σn
M,2... ≥ σn

M,d, vice versa for σV,in .
vn
M,i,v

n
M,i,u

n
V,iv

n
V,i represent corresponding orthonormal bases respectively. If the direction of

two sets of orthonormal bases is closely aligned, the similarity between the two subspaces is high.
Meanwhile, we consider the singular value as the reference when computing similarity, as the singular
values determine the importance of each orthonormal basis. To this end, we propose to use the
corresponding angle to measure the similarity between two subspaces [4]:
Definition 1 (Similarity Value of Corresponding Angle). Given two groups of eigenvectors:
{v⊤

M,1, . . . ,v
⊤
M,d} and {v⊤

V,1, . . . ,v
⊤
V,d}, the corresponding angle represents the angle between

two eigenvectors corresponding to the same eigenvalue index. The cosine value of the i-th eigenvec-
tor’s corresponding angle is

Sn
i =

〈
vn
M,i

⊤,vn
V,i

⊤〉∥∥∥vn
M,i

⊤
∥∥∥ ·

∥∥∥vn
V,i

⊤
∥∥∥ . (5)

We visualize the distribution of the first 100 corresponding angles in a selected MLP layer in fig. 3(a).
We can see that the cosine value of the first corresponding angle is significantly higher than those of
the other angles. This observation suggests that the basis associated with the largest singular value
represents a subspace in MLLM that is strongly linked to math reasoning capabilities. Consequently,
the parameters with high subspace similarity may play a more critical role in math reasoning abilities.

Table 1: Performance comparison af-
ter selecting reasoning-related layers to
merge on MathVerse.

Approach Average
Accuracy

Base MLLM 11.3
Task Arithmetic 9.8−1.5↓

Task Arithmetic+Param Selection 13.4+2.1↑

To explore this further, we plot the distribution of the high-
est similarity value scores across model layers in fig. 3(b).
The figure illustrates that parameters have high similarity
scores, which can be regarded as crucial to math reason-
ing. To validate their importance, we perform experiments
where we selectively merge the corresponding layers of
the LLM into these parameters of the MLLM with a high
similarity score in table 1. The gain of performance ver-
ifies the critical role of the identified MLLM parameters
in facilitating math reasoning. This finding shows that
subspace similarity can be one key criterion for selecting
and prioritizing math reasoning parameters. More analysis
can be found in appendix D.

4.2 Gaps between Models in Parameter Space

As we aim to absorb math reasoning abilities from LLMs to MLLMs, the gap between models emerges
as a significant obstacle. While both models are derived from the same foundational LLM (e.g.,
LLaMA), the parameter changes within MLLMs and math reasoning LLMs can vary significantly.
This disparity reflects fundamental differences in their learned representations, task objectives, and
domain-specific knowledge. To quantify these differences, we use the distribution of eigenvalues
in the model parameters as an intuitive metric for understanding the magnitude and nature of these
changes. Specifically, the eigenvalue distribution offers insight into the “scale” of parameter updates.
We plot the top 1024 singular value distributions of one MLP layer in the model fig. 4(a), which
reveals that LLMs and MLLMs exhibit different eigenvalues, highlighting the inherent gap between
LLMs and MLLMs. When combining models of a math reasoning LLM with large eigenvalues and
an MLLM with smaller eigenvalues by addition, parameters with larger eigenvalues can overshadow
the contributions of parameters with smaller ones. Here, we take task arithmetic as an example:
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Proposition 1. Let ∆WMath and ∆WMLLM , be two real matrices. The L2-norm of two matrices
is defined by ∥∆WMath∥2 = σmax(∆WMath), ∥∆WMLLM∥2 = σmax(∆WMLLM ), Model
merged by task arithmetic satisfies the triangle’s inequality [13]

∥∆WMath∥2 − ∥∆WMLLM∥2 ≤ ∥∆WMath +∆WMLLM∥2 ≤ ∥∆WMath∥2 + ∥∆WMLLM∥2,

If we assume
∥∆WMLLM∥2 ≤ ε ∥∆WMath∥2, 0 < ε < 1,

then,
(1− ε) ∥∆WMath∥2 ≤ ∥∆WMath +∆WMLLM∥2 ≤ (1 + ε) ∥∆WMath∥2.

(a) (b)

Figure 4: (a) Singular values distribution in one MLP
layer. We plot the top 1024 singular values. (b) Maxi-
mum singular values across all model parameters.

Our proposition demonstrates that if the
maximum singular value of the math
reasoning parameters in LLM is far
larger than the MLLM parameter, i.e.,
σmax(∆WMath) ≫ σmax(∆WMLLM ),
ε → 0, the MLLM parameter will
be overshadowed by math parame-
ters (∥∆WMath + ∆WMLLM∥2 ≈
σmax(∆WMath)). To validate this point,
we further plot the distribution of the max-
imum singular across model parameters
in fig. 4(b), indicating that the Math LLM
model may overshadow MLLM during
merging. Therefore, it is crucial to align
the LLM and MLLM in the parameter
space to allow the smooth transfer of math
reasoning abilities.

4.3 IP-Merging

To transfer reasoning abilities from LLMs to MLLMs, we propose a novel merging method called
IP-merging. Our method first identifies the crucial parameters in both MLLM and math LLM,
then projects the rescaled selected LLM parameters into the MLLM subspace for better alignment.
Finally, the aligned parameters are merged with MLLM. In the parameter identification stage, crucial
math-reasoning-associated parameters between LLMs and MLLMs are identified and selected based
on their similarity in the subspace. In the parameter projection stage, these selected parameters are
rescaled, aligned, and projected into the MLLM subspace to minimize the gap between the models.
The overall process can be found in algorithm 1 and appendix F.

4.3.1 Parameter Identification

Given that MLLMs share a larger number of layers with LLMs, we restrict the merging process to
components shared by both models, such as attention layers and MLP layers, without modifying
the visual encoder or projection layer. Let N denote the total number of layers considered for
merging. To identify compatible parameters, we compute the corresponding angle for each layer
{Sn

1 , S
n
2 , . . . , S

n
d } between the MLLM and Math LLM using a cosine similarity metric (refer to

definition 1). Parameters with a similarity score higher than the threshold Sα are selected for merging,
while others are excluded. This selection process can be formalized as follows

∆W̄
n
Math =

{
∆W n

Math Sn
1 ≥ Sα

0 otherwise
. (6)

4.3.2 Parameter Projection

Empirical observations in section 4.2 highlight the importance of aligning parameters across different
model modalities. To facilitate the alignment, Ties Merging [41] or EMR Merging [14] offers a
straightforward solution by selecting parameters with consistent signs (i.e., both positive or both
negative) and discarding the rest. While these works reduce interference between the merged models,
they risk discarding critical parameters, leading to a decline in overall performance as shown in fig. 2.
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Different from previous works, we aim to merge the parameters of Math LLM into the MLLM
without harming other abilities of MLLM. To achieve this, our key idea is to reduce the gap between
LLM and MLLM parameter spaces by rescaling and projecting the selected mathematical reasoning
parameters from the LLM into the subspace of the MLLM. By rescaling the layers of LLM, we can
reduce parameter gaps between the models. We further project the selected LLM layers into the
subspace of MLLM, which pushes parameters in LLM to lie close to the MLLM in the parameter
space, fostering the alignment between the two models [29].

Rescaling. To normalize the parameter magnitudes between the two models, we compute a rescaling
factor λn, defined as the ratio of the nuclear norms of the corresponding parameter spaces in the
MLLM and LLM

λn =

∑d
i=1 σ

n
V,i∑d

i=1 σ
n
M,i

, (7)

where σn
V,i and σn

M,i are the singular values of the corresponding parameters in the MLLM and LLM,
respectively.

Projection. To align the rescaled parameters to the MLLM subspace, we calculate an importance
score γn for the subspace vectors based on their similarity Sn

i . The importance score is defined as

γn
i =

exp(Sn
i )∑d

i=1 exp(S
n
i )

. (8)

Using these importance scores, the selected mathematical reasoning layers from the LLM are
projected into the MLLM weighted subspace as

V̄
n
V = γnV

n
V
⊤, ∆W n

Math−P = λn∆W̄
n
MathV̄

n
V V̄

n
V

⊤
. (9)

This projection emphasizes the subspace basis vectors that are most relevant to mathematical reason-
ing, thereby ensuring effective alignment of the LLM parameters with the MLLM architecture. After
projection, we can obtain the math reasoning MLLM by adding the projected parameter to MLLM as

W n
MathMLLM = W n

0 +∆W n
MLLM + λn∆W̄

n
MathV̄

n
V V̄

n
V

⊤
, (10)

By referring to eq. (2), our method also fits the general framework, where α1 is sets as 1 and α2 is
set as λn, f1(·,M1) is the identity mapping, and f2(·,M2) is the projection matrix in eq. (9), the
overall algorithm of the proposed method can be found in appendix F.

5 Experiments

5.1 Experiments Setup

We test our models on six benchmarks, i.e., MathVista [23], MathVerse [53], DynaMath (DM) [59],
MathVision [36] and three general QA benchmarks MMMU [50], TextVQA [31] and MMBench [22].
MathVista can be divided into five subsets: Figure Question Answering (FQA), Geometry Problem
Solving (GPS), Math Word Problems (MWP), Textbook Question Answering (TQA), and Visual
Question Answering (VQA). MathVerse includes a diverse set of math problems that require reasoning
over both textual and visual information, such as charts, diagrams, and equations, which can be
divided into five subsets, i.e., Text Dominant (T-D), Text Lite (T-L), Vision Intensive (V-I), Vision
Dominant (V-D) and Vision Only (V-O). DynaMath (DM) is a dynamic visual math benchmark
designed for in-depth assessment of VLMs. MathVision (Math-V) is a collection of high-quality
mathematical problems with visual contexts sourced from real math competitions. The MMMU
benchmark is suitable for assessing the general knowledge of MLLM. TextVQA evaluates a model’s
general ability to read and reason about text in images, requiring joint understanding of visual content
and language reasoning. MMBench is a comprehensive multimodal benchmark that tests large models
across diverse tasks to assess their general multimodal intelligence and robustness. We select the
English split for evaluation. We compare our proposed methods with prevailing model merging
techniques such as Task Arithmetic [15], Ties Merging [41] and EMR Merging [14]. More details on
implementation and hyperparameters can be found in appendix B and appendix B.3, respectively.
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Table 2: Comparison with other model merging approaches on the MathVerse and MathVista.
Bold represents the best performance. We merge LLaVA with Tora-code-7B, Qwen2-VL-7B-
Instruct with Qwen-2-Math-7B models, InternVL3-8B-Instruct with DeepSeek-R1-distilled-Qwen-
7B, respectively.
Approach MathVerse MathVista DM Math-V

T-D T-L V-I V-D V-O Overall TQA GPS VQA FQA MWP Overall
LLaVA-1.5-7B as Base Model

Base Model 12.4 10.0 12.2 12.8 9.1 11.3 36.1 22.1 37.4 20.8 13.9 25.2 15.4 11.1
Task Arithmetic 12.4 11.0 12.6 11.9 0.9 9.8 31.7 33.6 29.6 21.6 11.3 25.2 13.9 11.0
Ties Merging 13.1 14.0 13.3 13.1 0.1 10.7 39.9 40.4 26.8 23.8 6.5 27.1 14.0 10.6
EMR Merging 10.8 10.7 11.3 12.6 6.7 10.4 36.7 25.9 30.7 21.6 13.9 25.0 13.8 11.6
IP-Merging 16.0 16.1 14.1 15.5 15.0 15.34.0↑ 43.7 21.6 40.8 24.9 15.1 28.23.0↑ 16.10.7↑ 11.80.7↑

Qwen-2-VL-7B-Instruct as Base Model

Base Model 27.4 26.8 27.3 25.6 16.9 24.8 58.9 33.7 58.7 66.5 57.5 55.4 40.8 16.3
Task Arithmetic 15.7 10.9 10.0 9.8 0.3 9.3 37.3 38.0 32.4 25.3 25.3 31.1 14.8 11.3
Ties Merging 6.9 6.5 7.0 6.2 0.1 5.3 39.9 38.5 32.4 21.6 18.3 29.3 15.1 11.4
EMR Merging 20.9 18.4 18.3 18.4 11.9 17.6 50.6 35.6 44.7 43.1 30.1 40.8 21.8 14.5
IP-Merging 31.0 28.7 29.4 29.7 23.6 28.53.7↑ 63.3 41.8 57.5 69.9 66.7 60.24.8↑ 41.00.2↑ 19.12.8↑

InternVL3-8B-Instruct as Base Model

Base Model 47.6 40.9 39.1 37.8 27.5 38.5 65.2 70.2 53.1 65.8 75.3 66.1 50.7 24.9
Task Arithmetic 24.9 18.5 15.6 14.1 11.2 16.9 43.0 46.2 26.8 20.1 29.0 32.0 20.1 15.3
Ties Merging 18.8 13.8 14.6 15.0 14.2 15.3 34.8 34.6 25.1 19.7 13.4 25.0 16.1 9.6
EMR Merging 35.9 30.7 29.4 27.3 27.3 30.1 59.5 51.4 42.5 45.0 50.5 49.2 39.2 18.8
IP-Merging 48.1 41.4 39.5 37.6 28.3 39.00.5↑ 63.9 74.5 52.5 68.2 76.8 67.61.6↑ 51.40.7↑ 25.20.3↑

5.2 Experimental Results

We conduct our experiments on MathVista and MathVerse in table 2, and MMMU in table 3. For
LLaVA models, we select LLaVA-1.5-7B as the base MLLM and Tora-Code-7B [9] as the math
reasoning LLM, as it is trained on logical reasoning-based math problems. For Qwen models, we
select Qwen-2VL-7B-Intruct as the base MLLM and Qwen-2-math-7B [42] as the math LLM. For
InternVL models, we select InternVL3-8B-Instruct [58] as the base MLLM and DeepSeek-R1-
distilled-Qwen-7B as the math LLM.

Table 3: Comparison with other merging
approaches on three general benchmarks.
IP-merging preserves general abilities.

Approach MMMU TextVQA MMBench
LLaVA-1.5-7B as Base Model

Base Model 34.2 47.5 62.7
Task Arithmetic 30.2 23.5 17.4
Ties Merging 27.3 1.1 8.2
EMR Merging 34.8 48.0 57.1
IP-Merging 34.4 47.6 63.1

Qwen-2-VL-7B-Instruct as Base Model

Base Model 50.7 83.8 80.3
Task Arithmetic 32.6 37.9 54.1
Ties Merging 30.8 4.3 43.7
EMR Merging 41.8 73.2 74.8
IP-Merging 50.7 84.0 80.8

InternVL3-8B-Instruct as Base Model

Base Model 61.6 81.9 84.4
Task Arithmetic 32.6 18.9 31.3
Ties Merging 30.1 9.1 38.7
EMR Merging 47.0 67.6 67.8
IP-Merging 61.9 82.3 84.6

Compared to existing merging methods, our approach
consistently improves performance across all sub-tasks.
Notably, it achieves at least a 3.7% average gain over the
original model on MathVerse, demonstrating its effective-
ness in enhancing general math reasoning capabilities. For
MathVista, the biggest improvement for LLaVA models
lies in the task of the TQA subset, where science and
math knowledge are highly demanded, improving the base
model by 7.6% . The LLaVA model does not achieve a
performance gain in GPS after merging, where the multi-
ple steps of geometry reasoning are required. On the other
hand, the ties merging boost the LLaVA performance in
GPS, owing to its ability to resolve model conflicts by
selecting parameters with the same sign. The consistent
sign may indicate shared abilities across models. In this
case, the visual reasoning ability is retained and enhanced
by merging with the text-based reasoning ability in the
Math LLM, but other general abilities deteriorate (a drop
of 6.9% in MMMU) or VQA tasks (a drop of 6.7%). The
Qwen model obtains the performance gain of 4.8% on
average, with the most notable performance gain in MWP,
where task-specific reasoning skills are highly demanded,
improving the model by 9.2%.

We also conduct experiments by merging larger models in appendix C.1, and merging multiple
models in appendix C.2, demonstrating the effectiveness of our approach. Our method can further
improve the performance of math MLLM, and is effective when merging larger or multiple models.
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To validate that our approach does not harm other abilities in the MLLMs, we further conduct
experiments on evaluating the models on the general QA benchmarks in table 3. Compared to
the baseline model, our approach is able to maintain stable model performance across the general
benchmarks, while other methods (e.g., Task Arithmetic and Ties Merging) decrease the performance.
As our method only selects the crucial parameters related to math reasoning, our approach does not
interfere with parameters that are important to other general abilities. Hence, our method improves
the math reasoning abilities without interfering with the general abilities.

5.3 Merging Math MLLM with Math LLM

Table 4: We merge Math MLLM with the math
LLM model. Bold represents the best perfor-
mance. “Avg” is the average performance.

Approach MathVista
TQA GPS VQA FQA MWP Avg

G-LLaVA-7B as Base Model

Base Model 29.1 48.6 33.5 19.3 11.3 28.0
+IP Merging 32.9 51.4 31.8 20.8 12.9 29.61.6↑

TableLLaVA-1.5-7B as Base Model

Base Model 34.2 27.4 29.6 24.9 41.9 30.9
+IP Merging 41.8 27.9 30.2 28.6 43.6 34.03.1↑

VL-Rethinker-7B as the Base Model

Base Model 70.9 76.0 54.2 78.1 80.6 72.7
+IP Merging 71.5 79.3 58.7 77.7 86.0 75.22.5↑

We conduct the experiments of merging fine-
tuned math MLLM (TableLLaVA-1.5-7B [56], G-
LLaVA-7B [8]) and the Tora model using our pro-
posed merging method, validating the effective-
ness of improving fine-tuned math MLLM further.
G-LLaVA is obtained by further fine-tuning the
LLaVA using geometry reasoning data. After merg-
ing the math LLM, the geometry reasoning ability
is further enhanced, which is validated by the 2.8%
and 1.5% improvement on GPS and FQA tasks.
TableLLaVA is obtained by further fine-tuning the
LLaVA using table reasoning data. By merging
math reasoning LLM, our method can further im-
prove the model’s performance on table reasoning
tasks such as FQA by 3.7%. VL-Rthinker-7B [35]
is one recent reasoning model that was tuned from
Qwen2.5-7B via reinforcement learning. By merg-
ing the Qwen2.5-Math model, the reasoning performance is further enhanced by 2.5 on MathVista,
with noticeable improvement of 5.4% on the MWP subset. All of these demonstrate that our method
can further improve the math reasoning abilities of both base MLLM and fine-tuned math MLLM.

5.4 Ablation Studies

Table 5: Ablation results.

Components Acc.
Selection Rescale Projection

✓ 25.8
✓ 26.2

✓ 25.6
✓ ✓ 26.3
✓ ✓ 26.3

✓ ✓ 26.7
✓ ✓ ✓ 28.2

We conduct the ablation experiments of the proposed method us-
ing the LLaVA model on MathVista in table 5. By selecting the
parameters and applying our method individually, the performance
is elevated by 3.3%, 3.7%, and 3.1%, respectively. More param-
eter selection analysis can be found in appendix D. Combining
Parameter Selection and Projection increases accuracy to 26.3%,
suggesting that projecting the selected parameters into the sub-
space provides better alignment. The combination of parameter
selection and rescaling demonstrates that rescaling improves the
utilization of selected parameters. The combination of rescaling
and projection achieves 26.7%, highlighting the complementary
benefits of parameter adjustment and alignment in improving per-
formance. When all three components are applied together, the model achieves the highest accuracy.
This improvement demonstrates the necessity of carefully selecting, rescaling, and aligning reasoning-
related parameters.

5.5 Selected Parameter Analysis

We visualize the selected parameters for merging in fig. 5. Most of the selected layers are MLP
components located in the middle and latter parts of the model, while only a few attention layers in the
early stages are chosen. This pattern aligns with recent findings that knowledge and reasoning skills
in LLMs are mainly encoded in deeper MLP layers [7, 3]. The selected layers in layers 17–31, and a
few in layers 3–4 indicate that our merging primarily operates on high-level semantic representations
while preserving early-layer perceptual alignment. This supports the view that reasoning transfer
mainly benefits from modifying deeper MLP pathways rather than early attention dynamics. We
further analyze selected layers in MLLM before and after math reasoning in appendix D.
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23: model.layers.3.self_attn.k_proj
30: model.layers.4.self_attn.k_proj
124: model.layers.17.mlp.gate_proj
138: model.layers.19.mlp.gate_proj
180: model.layers.25.mlp.gate_proj
187: model.layers.26.mlp.gate_proj
202: model.layers.28.mlp.up_proj
209: model.layers.29.mlp.up_proj
215: model.layers.30.mlp.gate_proj
219:model.layers.31.self_attn.k_proj
222: model.layers.31.mlp.gate_proj
223: model.layers.31.mlp.up_proj

Figure 5: Selected layers in the LLaVA model for merging.

5.6 Case Analysis

We demonstrate two examples that the merged model improves reasoning ability compared to the base
model in fig. 6. In the first example, the base model fails to read the table and outputs meaningless
text, showing that it cannot handle structured data. In contrast, the merged model correctly reads the
numbers, clearly explaining the rate of change. This shows that merging helps the model understand
tables and perform basic numerical reasoning. In the second example, the task involves a geometry
problem. The base model guesses the answer without any explanation, while the merged model
reasons step by step. This reasoning is both correct and interpretable. See more cases in appendix E.

Question: Kylie spent a 
week at the beach and 
recorded the number of 
shells she found each 
day. According to the 
table, what was the rate 
of change between 
Thursday and Friday? 

\n0\n0\n7\n0\n0\n7\n0\n0\n0\n7\n0\n0\n7\n0\n0
\n0\n7\n0\n0\n7\n0

Base Model

Merged Model

Rate of change = (0-7)/1 , Rate of change = -7 . 
The rate of change between Thursday and Friday 
was -7 shells per day.

Question: In triangle 
△ABC, the internal 
angle bisectors of 
angles B and C 
intersect at point O.
If ∠A = 110°, then 
what is the measure 
of ∠BOC?

The answer is B, 140°.

Base Model

Merged Model

Since ∠A = 110°, ∠ABC + ∠ACB = 180° − ∠A = 70°.
Because the internal angle bisectors of ∠ABC and 
∠ACB intersect at point O, ∠OBC + ∠OCB = 
½(∠ABC + ∠ACB) = 35°.Therefore, ∠BOC = 180° − 
(∠OBC + ∠OCB) = 145°. Hence, the correct answer 
is C.

Figure 6: Case study of examples are correctly answered after merging the math LLM.

6 Conclusion

In this paper, we aim to enhance the math reasoning abilities of MLLMs by directly absorbing
them from Math LLMs without tuning. However, it is challenging to merge models with different
modalities due to the large gap in parameter spaces between models. To this end, we propose a model
merging method, namely IP-merging, which mainly consists of two parts: i.e., parameter Selection
and Projection. Parameter selection identifies crucial parameters associated with math reasoning,
while parameter projection aligns the MLLM and math LLM by rescaling parameters and projecting
the parameters into the subspace of the MLLM. The proposed approach is tune-free and efficient
to implement. Experimental results demonstrate the IP-merging method can successfully enhance
the math reasoning abilities of MLLMs without harming their other abilities. In the future, we will
extend the method to merge models with different foundation LLM architectures.

Limitation: Our proposed method is effective for merging the MLLM and math LLM with the same
size and sharing the same foundation LLM architecture (e.g., LLaMA-2). Otherwise, it is challenging
to find those associated layers to merge.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: The imitations of the work are discussed in the Conclusion Section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The theoretical proposition is given complete proof and analysis.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the experimental details, and the anomalous link to our code with
guidelines for reproduction.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides uses open-source data and open access to the code. The
anonymous code link is provided in the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, this paper specifies all the training and test details in the Experiments
Section and the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We follow previous work when reporting results for fair comparsion, which
does not report error bias.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Yes, we give the details of computational requirements in the appendix.

Guidelines:
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• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, the research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Our work does not have negative societal impacts. To support this, we discuss
the impact statement in the appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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Answer: [NA]
Justification: The datasets and models are open-sourced and have been widely used and
researched, which does not pose such a risk.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All assets (e.g., code, data, models) used in the paper are properly credited, the
term of use are properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: New assets introduced in the paper are documented, and details are given in
the supplementary material.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
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14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is used only for writing, editing, or formatting purposes in the paper.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM


A Border Impact

This work presents IP-Merging, a novel tuning-free method that effectively transfers mathematical
reasoning capabilities from specialized math LLMs to multi-modal LLMs (MLLMs). Our approach
does not pose any potential societal impacts or ethical concerns. We rely solely on publicly available
models and datasets, none of which require specific acknowledgment.

B Detailed Experimental Settings

B.1 Datasets

We test our models math reasoning benchmarks MathVista [23], MathVerse [53], DynaMath [59]
and MathVision [36], general QA benchmarks MMMU [50], TextVQA [31] and MMBench [22].:

• MathVista assesses the MLLMs’ multimodal mathematical skills, the testing data can be
divided into five subsets: Figure Question Answering (FQA), Geometry Problem Solving
(GPS), Math Word Problems (MWP), Textbook Question Answering (TQA), and Visual
Question Answering (VQA). For evaluation, following [23, 30], we first employ GPT-4 to
extract the predicted choices or answers from responses, then report the answer accuracy,
which determines whether the final answer matches the ground truth.

• MathVerse includes a diverse set of math problems that require understanding and reasoning
over both textual and visual information, such as charts, diagrams, and equations. The testing
data can be divided into five subsets, i.e., Text Dominant, Text Lite, Vision Intensive, Vision
Dominant and Vision Only.

• DynaMath is a dynamic visual mathematics benchmark developed for comprehensive
evaluation of vision-language models. It consists of 501 carefully curated seed problems,
each implemented as a Python program, enabling the assessment of a model’s generalization
capability by measuring its robustness across multiple input variations derived from the
same underlying seed question.

• MathVision is a carefully constructed dataset comprising 3,040 high-quality visual mathe-
matics problems collected from real-world math competitions. Covering 16 mathematical
domains and organized into 5 difficulty levels, it offers a broad and balanced benchmark for
assessing the visual mathematical reasoning capabilities of MLLMs.

• MMMU includes 900 evaluation samples and covers six core disciplines: Art & Design,
Business, Science, Health & Medicine, Humanities & Social Science, and Technology &
Engineering, making it suitable for assessing the general knowledge of MLLLM.

• TextVQA evaluates a model’s ability to read and reason over textual information embedded
within images. It requires integrating visual understanding with text recognition to answer
questions grounded in image content. The dataset comprises 45,336 questions spanning
28,408 images sourced from the OpenImages dataset, providing a large-scale benchmark for
visual-text reasoning.

• MMBench provides multiple-choice questions in both English and Chinese, facilitating
direct and fair comparisons of MLLM performance across languages. Overall, it serves
as a systematically constructed and objective benchmark for comprehensive and reliable
evaluation of MLLM models. We use English dev set in the experiments.

B.2 Models and Comparison Methods

We employ the LLaVA series [20], Qwen 2 series [37] and InternVL3 [58] series as our base model.
We use other fine-tuned Math LLMs such as Tora series models, MetaMath models [9, 47] and
Qwen2-Math models [42]. The pretrained foundation LLM of LLaVA models, Tora models and
Metamath is the LLaMA-2 [34] model. The pretrained foundation of Qwen series models is the
Qwen-2 model [37]. The InternVL model is trained based on the Qwen2.5 models. We use RTX
3090 GPUs for all of our experiments. We compare our proposed methods with prevailing model
merging techniques:
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• Base Model The performance of base MLLM on three tasks, we reproduce the results with
the officially released code.

• Task Arithmetic [15] combines all the task vectors extracted from the models into one
multi-task model.

• Ties Merging [41] addresses task inference by pruning redundant parameters. The process
involves three steps: Trim, Elect Sign, and Disjoint Merge.

• EMR Merging [14] computes one unified task vector and computes task-specific masks
based on a unified task vector. The final task vector is computed by combining all the
masked task vectors and weighting all the task vectors by rescale parameters.

Table 6: List of MLLMs and LLMs.
Models Type Pretrained Base Model Source LLM

LLaVA-V1.5-7B MLLM Vincuna-v1.5-7B Llama-2-7B
Table-LLaVA-V1.5-7B MLLM Vincuna-v1.5-7B Llama-2-7B

LLaVA-Next-7B MLLM Vincuna-v1.5-7B Llama-2-7B
LLaVA-V1.6-7B-Llama3-8B MLLM Llama-3-8B Llama-3-8B

LLaVA-V1.5-13B MLLM Vincuna-v1.5-13B Llama-2-13B
InternVL3-8B-Instruct MLLM Qwen2.5-7B Qwen2.5-7B

VL-Rethinker MLLM Qwen2.5-7B Qwen2.5-7B
Qwen2-VL-7B-Instruct MLLM Qwen2-7B Qwen2-7B
Qwen2-Math-7B-base LLM Qwen2-7B Qwen2-7B

Tora-7b LLM Llama-2-7B Llama-2-7B
Tora-Code-7B LLM CodeLLaMA-7B Llama-2-7B
Tora-Code-13B LLM CodeLLaMA-13B Llama-2-7B

WizardMath-7B-V1.0 LLM Llama-2-7B Llama-2-7B
Tora-7b LLM Llama-2-7B Llama-2-7B

MetaMath-7B LLM Llama-2-7B Llama-2-7B
OpenO1-Llama3-8B LLM Llama-3-8B Llama-3-8B

DeepSeek-R1-distilled-Qwen-7B LLM Qwen2.5-Math-7B Qwen2.5-7B
DeepSeek-R1-distilled-Llama-3-8B LLM Llama-3-8B Llama-3-8B

We list the models used in the experiments in table 6.

B.3 Details of Hyperparameter Selection

Following previous works in model merging [41, 14], we adopt the grid search for hyperparameters
for the baseline methods, specifically, we set the hyperparameters based on the following range:

• Task Arithmetic [15] involves the scaling coefficients for merged task vectors, which are
set ranging from [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9].

• Ties Merging [41] involves the scaling coefficient and ratio to retain large parameters, the
scaling coefficients are set ranging from [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], ratio to
retain parameters with largest-magnitude values: [0.1, 0.2, 0.3].

• EMR Merging [14] does not involve specific hyperparameters.
• IP Merging involves the similarity threshold to determine whether the layer should be

selected for merging.
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C Further Experiments

C.1 Merge Larger Models

We conduct experiments on merging larger models in table 7. The experiments are conducted using
models with 13B parameters. When dealing with larger models, our approach can also boost the
performance compared to other model merging methods by 2.8% on average. In subtasks such as
VQA, where math-related knowledge is highly demanded, our method achieves a 3.3% performance
gain.

Table 7: Experiments of merging 13B models. We merge LLaVA-13B with Tora-code-13B using
different merging methods. Bold represents the best performance.“Avg” is the average performance.

Approach MathVista
Param TQA GPS VQA FQA MWP Avg

Base Model 13B 41.1 25.0 34.1 21.9 16.1 26.7
Task Arithmetic 13B 39.9 34.6 29.1 22.3 7.0 26.0

Ties Merging 13B 38.6 29.3 34.1 22.3 17.2 25.9
IP-Merging 13B 42.4 26.0 37.4 23.1 18.8 28.5 +1.8 ↑

C.2 Merge Multiple Models

We conduct experiments on emerging multiple models to verify the scalability of our method in
table 8. We use LlaVA-Next-7B as the foundation MLLM, then merge multiple LLMs, such as
the Tora Model and MetaMath-based models. As is shown in the table 8, by merging more math
reasoning models, the performance of math reasoning MLLM can be further improved.

Table 8: Experiments of merging multiple models on MathVista.

Models MathVista
Params Approach Merged LLM TQA GPS VQA FQA MWP Avg

MLLM 7B Base Model None 44.9 26.9 33.5 32.3 17.8 30.7

MLLM+ 1 LLM 7B IP-Merging Tora-code-7B 46.2 32.2 30.2 33.8 18.3 31.9 +1.2 ↑

MLLM+ 2 LLMs 7B IP-Merging Tora-code-7B
MetaMath-7B 47.5 26.0 32.4 35.7 23.7 32.7 +2.0 ↑

C.3 Merge Different System-1 LLMs and System-2 LLMs

By employing the proposed method, we conduct experiments on merging different reasoning pattern
LLMs with base MLLM LLaVA-7B in table 9. We compare system-1 thinking LLMs such as
WizardMath, MetaMath, Tora and Tora-code models. Merging Tora-code yields the best performance.
Different from other models, Tora-code uses the high-quality reasoning data involved with the critique
process. We believe Tora outperforms others for two main reasons: (1) CoT & PoT Collaboration:
Tora employs a collaborative reasoning approach that integrates CoT and PoT to solve problems. In
contrast, WizardMath and MetaMath rely solely on CoT. (2) Reflection Mechanism: Tora’s training
data incorporates a reflection-based correction process, where incorrect responses are analyzed
and revised, contributing to improved reasoning abilities. Others merely filter incorrect reasoning
data. By further fine-tuning the code llama, Tora-code is able to perform code-like reasoning on
math problems, which exhibits strong performance compared to other math LLM on text-based
math reasoning datasets such as GSM8K and Math. This experiment also reveals one interesting
observation: math reasoning abilities obtained by Tora series models are more transferable to MLLM.
We further conduct experiments on merging system-2 thinking LLMs such as OpenO1 [27] and the
DeepSeek-R1-distilled-LLaMA3 model [10], demonstrating the effectiveness of our method. Our
method further improves the model performance by merging the long CoT LLMs, obtaining a 2.3%
performance gain on average.
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Table 9: Experiments of merging different System-1 LLMs and System-2 LLMs on MathVista.

MathLLM MathVista
Params TQA GPS VQA FQA MWP Avg

LLaVA-1.5-7B with System-1 LLMs

Base Model 7B 36.1 22.1 37.4 20.8 14.0 25.2
MetaMath-V1.0-7B 7B 36.1 22.6 34.1 23.4 15.6 25.7 +0.5 ↑

WizardMath-7B 7B 41.4 25.0 34.1 23.4 13.4 26.6 +1.4 ↑
Tora-V1.0-7B 7B 39.9 26.9 34.6 26.7 12.9 27.4 +2.2 ↑

Tora-code-V1.0-7B 7B 43.7 21.6 40.8 24.9 15.1 28.2 +3.0 ↑
LLaVA-1.6-LLaMA3-8B with System-2 LLMs

Base Model 8B 50.6 29.3 38.6 46.5 23.1 37.8
OpenO1-LLaMA3-8B 8B 51.9 29.8 40.2 46.5 24.7 38.7 +0.9 ↑

DeepSeek-R1-distilled-LLaMA3 8B 51.9 32.7 40.8 45.7 29.6 40.1 +2.3 ↑

C.4 Similarity Threshold and Time Cost Analysis

(a) (b)

Figure 7: (a) Time cost of our method compared
to other methods. (b) The results of different simi-
larity thresholds.

We compare the time cost of different model
merging algorithms in fig. 7(a). We conduct this
experiment of merging 7B MLLM and one math
reasoning LLM on a GPU server with 8-card
Nvidia RTX 3090. As task arithmetic does not
involve operations that modify the models, this
method takes the least time. Ties merging and
EMR merging involve comparing the sign of
each parameter. Thus, they go through all pa-
rameters, which can be time-consuming. Since
our method directly operates parameters of each
layer (formatting as matrix), our method can
be accelerated by GPUs and takes less time to
merge the models.

We show the results of different similarity
thresholds in fig. 7(b), see more results in ap-
pendix C.5. The performance fluctuates within a small range with higher similarity. We further
compare the time cost of different model merging algorithms in fig. 7(a). Task arithmetic is the
fastest since it doesn’t change the models. Ties and EMR merging are slower because they process
all parameters. Our method is faster as it works on each layer’s parameters and can be accelerated by
GPUs and takes less time to merge the models.

C.5 Results of Hyperparameter Experiments

We conduct ablation experiments for the hyperparameters in table 10. We show the results of different
scaling coefficients in the task vector, the proportion of the retained parameters and the scaling
coefficients in ties merging, and similarity thresholds (i.e., Sα in eq. (6)) in our method. We can see
that for the Llava models, the threshold around 0.3 and 0.4 provides the best performance, balancing
the number of layers associated with math reasoning to be merged and the importance of the layers to
math reasoning. For the Qwen model, 0.6 is the optimal choice. We can also see that with higher
thresholds, the performance fluctuates within a small range. We also show the comparative methods
of ties merging and task vector, the performance is sensitive to the different scaling coefficients or the
rate of the retained parameters.
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Table 10: Results of different hyperparameters. Bold represents the best performance.

Methods LLaVA-1.5-7B Qwen-2-VL

MathVista MathVerse MMMU MathVista MathVerse MMMU
Base Model 25.2 11.3 34.2 55.4 24.8 50.7

Task Vector
scale=0.1 21.0 6.5 24.4 25.8 6.0 29.3
scale=0.2 25.2 7.9 25.6 27.8 5.9 32.6
scale=0.3 22.2 8.5 26.6 30.8 8.8 29.1
scale=0.4 24.5 3.6 26.3 31.1 9.3 31.0
scale=0.5 23.1 4.4 30.2 28.9 7.6 26.0
scale=0.6 24.8 5.4 25.8 28.1 4.9 26.9
scale=0.7 23.3 6.2 26.2 28.5 1.4 24.9
scale=0.8 23.9 8.0 24.4 29.2 0.0 25.2
scale=0.9 20.9 9.8 25.6 24.1 0.0 23.9

Ties Merging
retain=0.3,scale=0.1 22.9 5.9 25.8 24.9 1.5 27.6
retain=0.3,scale=0.2 22.9 4.8 24.2 26.5 1.2 27.0
retain=0.3,scale=0.3 24.8 7.3 25.8 26.2 2.3 27.2
retain=0.3,scale=0.4 23.1 6.9 25.6 27.9 0.6 26.4
retain=0.3,scale=0.5 26.1 1.9 22.6 27.6 0.6 26.2
retain=0.3,scale=0.6 25.7 1.8 26.2 26.7 0.4 27.1
retain=0.3,scale=0.7 26.6 0.0 25.7 26.8 0.1 25.7
retain=0.3,scale=0.8 26.6 0.0 22.6 27.0 0.0 24.8
retain=0.3,scale=0.9 25.0 0.0 25.8 24.6 0.0 26.2

retain=0.2,scale=0.1 23.6 6.4 25.3 26.3 2.1 28.1
retain=0.2,scale=0.2 23.6 4.6 24.0 29.2 2.3 26.0
retain=0.2,scale=0.3 24.1 5.3 26.0 28.5 1.9 29.2
retain=0.2,scale=0.4 25.6 7.1 26.0 27.9 1.2 26.9
retain=0.2,scale=0.5 26.1 0.5 21.0 27.5 3.4 25.2
retain=0.2,scale=0.6 26.8 0.0 27.3 27.2 0.3 23.9
retain=0.2,scale=0.7 24.9 0.0 21.4 25.0 0.3 23.1
retain=0.2,scale=0.8 24.8 0.0 24.1 24.8 0.0 28.3
retain=0.2,scale=0.9 23.3 0.0 23.9 24.8 0.0 25.8

retain=0.1,scale=0.1 23.2 6.2 25.7 27.5 1.5 30.0
retain=0.1,scale=0.2 22.9 5.7 25.0 27.5 3.5 30.6
retain=0.1,scale=0.3 23.6 6.4 24.4 27.5 3.4 30.8
retain=0.1,scale=0.4 22.6 10.7 23.4 29.3 5.3 28.8
retain=0.1,scale=0.5 24.3 6.7 25.0 27.0 2.9 27.3
retain=0.1,scale=0.6 24.8 0.3 24.3 25.0 0.9 27.3
retain=0.1,scale=0.7 27.1 0.0 26.9 26.3 0.5 24.4
retain=0.1,scale=0.8 27.1 0.0 20.4 25.8 0.3 27.1
retain=0.1,scale=0.9 24.8 0.0 25.8 26.1 0.2 29.1

EMR Merging 25.0 10.4 34.8 40.8 17.6 41.8

IP Merging
Sim threshold=0.1 25.4 14.5 34.0 59.3 27.8 50.2
Sim threshold=0.2 26.2 14.8 34.2 59.7 28.0 50.2
Sim threshold=0.3 26.4 15.3 34.4 59.8 27.9 49.8
Sim threshold=0.4 28.4 14.7 33.9 59.7 28.0 49.8
Sim threshold=0.5 26.4 14.9 34.2 59.7 27.9 49.8
Sim threshold=0.6 27.3 14.6 34.2 60.2 28.5 50.7
Sim threshold=0.7 27.6 14.4 34.2 60.1 28.5 50.7
Sim threshold=0.8 27.0 14.4 34.2 60.1 28.4 50.7
Sim threshold=0.9 27.3 14.3 34.2 60.1 28.4 50.7
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D Analysis of Selected Parameters

We visualize the proportion and composition of the selected parameters in fig. 8. As shown in the
figure, the selected layers account for less than 10% of the total model parameters, with the majority
concentrated in the MLP layers. This observation aligns with recent studies on knowledge storage
in LLMs, which suggest that most knowledge and skills are encoded within the MLP layers [7, 52].
Since Table-LLaVA is fine-tuned on math reasoning datasets, it has already acquired a certain
level of mathematical reasoning ability. Consequently, our selection process identifies a higher
proportion of reasoning-related layers in Table-LLaVA compared to the base model, LLaVA. To
further analyze the distribution of these selected layers, we plot their locations in fig. 8(c) and (d).
The visualization reveals that most reasoning-associated layers are concentrated in the latter part
of the model, suggesting that deeper layers play a crucial role in encoding mathematical reasoning
skills.

(b)
LLaVA-7B TableLLaVA-7BLLaVA-7B TableLLaVA-7B

(a)

(c)

(d)

Figure 8: (a) The proportion of selected layer in two MLLMs. (b) The proportion of attention layers
and MLP layers in selected layers.(c) Selected layers’ location in LLaVA. (d) Selected layers’ location
in Table-LLaVA.
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E User Case Analysis

As illustrated in fig. 9, the merged model effectively solved a symbolic reasoning problem by following
logical steps to infer intermediate relations and reach the correct answer, showing that mathematical
reasoning knowledge from the text-based LLM was successfully transferred and integrated into
the multimodal model. This demonstrates that our merging strategy not only enhances reasoning
depth but also improves consistency across steps, leading to more interpretable and reliable outputs.
In contrast, the failure case occurred in a geometric reasoning scenario where the merged model
predicted an incorrect angle despite the visual clues being straightforward. This reveals that while
the merged model excels at structured symbolic inference, it still struggles to align textual reasoning
with precise spatial understanding.

Question: On average, 
how many people can 

commute on this vehicle?

Prediction: 50

Base Model

Merged Model
Prediction: 40

Question:In the figure, AB 
is the diameter of circle 
⊙O, and CD is a chord. 
Given that ∠ADC = 26°, 

what is the degree of 
∠CAB?

The correct answer is 64

Base Model

Merged Model

The correct answer is 26.

Question: Find the value 
of the square in the figure

To solve this brain teaser, let's analyze the given 
equations step by step:1. Circle + Square = 5. 2. 

Triangle + Triangle = 8. 3. Circle + Triangle = 7. We need 
to find the value of the square.  First, let's find the value 
of the circle: Circle + Triangle = 7. Therefore, the value 

of the square is 2.

To solve this brain teaser, let's analyze the given 
equations step by step: 1. Circle + Square = 52, 
2.Triangle + Triangle = 8, 3. Circle + Triangle = 7. From 
equation 2, we know that Triangle + Triangle = 8. This 
means that Triangle = 4. Now, let's substitute the 
value of Triangle in equation 3: Circle + 4 = 7, Circle = 3. 
Now, we can substitute the value of Circle in equation 
1: 3 + Square = 5, Square = 2.Therefore, the value is 2.

Base Model

Merged Model

Question: A decrease in 
rabbits would affect 
whose food source?

A decrease in rabbits will affect producers’ food source.

A decrease in rabbits will affect mountain lion’s food 
source.

Base Model

Merged Model

Figure 9: Successful cases and failure cases studies.
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F Method Overview

IP merging firstly identifies key parameters in both the MLLM and the math LLM. It then projects
the rescaled, selected parameters from the LLM into the subspace of the MLLM to achieve better
alignment. Finally, the aligned parameters are merged into the MLLM. During the parameter
identification phase, reasoning-related parameters are selected based on their similarity within a
shared subspace. In the projection phase, these parameters are rescaled and aligned to minimize the
discrepancy between the two models. The complete procedure is illustrated in fig. 10. We visualize
the process of IP-Merging as follows:

Parameter Identification
Subspace

MLLM

MATH LLM

Subspace
SVD

SVD

Similarity 
Comparison

Selected Layers

Parameter Projection

Rescale

Rescaled
LayerSelected

Layer

Projected
Layer

Figure 10: The general process of IP merging.

Algorithm 1 IP-Merging

Input: Parameters of MLLM WMLLM and Math LLM WMath, Pretrained Model W 0; Thresh-
old Sα; Number of layers N .
Output: Math reasoning model WMathMLLM .
Compute task vectors: ∆WMLLM and ∆WMath.
for n = 1 to N do

Compute SVD decomposition of ∆W n
MLLM and ∆W n

Math using Equation 3.
Compute the similarity scores {Sn

1 , S
n
2 , . . . , S

n
d } for the n-th layer using definition 1.

if Sn
1 > Sα then

Compute the scaling factor λn using Equation 7.
Compute the importance score γn using Equation 8.
Project ∆W n

Math into the subspace to obtain ∆W n
Math−P using Equation 9.

return W n
0 +∆W n

MLLM +∆W n
Math−P

else
return W n

0 +∆W n
MLLM

end if
end for
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