
Can MLLMs Absorb Math Reasoning Abilities from LLMs as Free Lunch?

Yijie Hu^{1,2*}, Zihao Zhou^{1,2*}, Kaizhu Huang³, Xiaowei Huang², Qiufeng Wang^{1†}

¹ Xi'an-Jiaotong Liverpool University

² University of Liverpool

³ Duke Kunshan University

Abstract

Math reasoning has been one crucial ability of large language models (LLMs), where significant advancements have been achieved in recent years. However, most efforts focus on LLMs by curating high-quality annotation data and intricate training (or inference) paradigms, while the math reasoning performance of multimodal LLMs (MLLMs) remains lagging behind. Since the MLLM typically consists of an LLM and a vision block, we wonder: *Can MLLMs directly absorb math reasoning abilities from off-the-shelf math LLMs without tuning?* Recent model-merging approaches may offer insights into this question. However, they overlook the alignment between the MLLM and LLM, where we find that there is a large gap between their parameter spaces, resulting in lower performance. Our empirical evidence reveals two key factors behind this issue: the identification of crucial reasoning-associated layers in the model and the mitigation of the gaps in parameter space. Based on the empirical insights, we propose **IP-Merging** that first Identifies the reasoning-associated parameters in both MLLM and Math LLM, then Projects them into the subspace of MLLM, aiming to maintain the alignment, and finally merges parameters in this subspace. IP-Merging is a tuning-free approach since parameters are directly adjusted. Extensive experiments demonstrate that our IP-Merging method can enhance the math reasoning ability of MLLMs directly from Math LLMs without compromising their other capabilities.³.

1 Introduction

As one fundamental ability of large language models (LLMs), improving math reasoning abilities is crucial to handle complex problem-solving tasks [1]. By creating a substantial amount of high-quality math reasoning data [47] and designing intricate training procedures, LLMs such as GPT-4 or Qwen have achieved remarkable progress in solving text-based math reasoning problems [1, 2, 9]. Despite these advancements, the challenge of mathematical reasoning remains a significant obstacle for MLLMs [19, 23, 57, 54]. Visual math reasoning tasks, which are essential for real-world applications, require MLLMs to extract image information, analyze problem constraints, integrate text and visuals, and perform complex reasoning.

Following similar training strategies for improving math reasoning abilities in LLMs, attempts have been made to enhance MLLM's math reasoning skills [30]. Despite the notable progress, collecting and annotating high-quality multimodal reasoning data [8, 56] is expensive. Additionally, training large models demands extensive computational resources, which makes it costly to improve their reasoning abilities. As MLLMs typically include a foundation LLM as the core component [20]

*Equal contribution.

†Corresponding author.

³Code Repository: <https://github.com/tambourine666/MergeVLM>

and share similar training processes with LLMs, we propose one intriguing question: *Can MLLM directly absorb math reasoning abilities from off-the-shelf math LLMs to enhance the multi-modal math reasoning without tuning?*

To answer this question, our initial attempt is to adopt model merging techniques, which intend to integrate task-specific knowledge into one model by merging multiple fine-tuned models without involving any training [15, 41]. We illustrate this process in fig. 1, where we aim to improve MLLM’s multi-modal math reasoning by integrating parameters from math LLM into MLLM. One representative method called task arithmetic [15] extracts the task vector of each model via the subtraction of the fine-tuned and pre-trained models (i.e., $\Delta W = W_{ft} - W_{pre}$). By adding all task vectors, the merged model is expected to perform well on all tasks. However, the direct merging of the reasoning-associated LLM task vector and MLLMs does not improve the reasoning abilities of MLLMs (fig. 2(a)). We observe that existing merging methods work effectively when task vectors are similar [32, 45]. However, this does not hold between MLLMs and Math LLMs. We argue that there exists a gap between their task vectors. Without aligning them properly, direct addition leads to conflicts. MLLMs are designed to integrate visual and textual inputs, whereas math LLMs acquire reasoning skills from text-based mathematical problems. This fundamental difference creates a substantial discrepancy in their task vectors. To illustrate this, inspired by previous works [16, 39] that adopt trace value to quantify gradient change and learning difficulty in the fine-tuning stage, we plot the trace value of task vectors in 30 MLP blocks (fig. 2(b)), and there is a large gap between the MLLM and Math LLM.

To delve into the alignment issue in integrating reasoning abilities from math LLMs into MLLMs, we conduct empirical analysis and unveil two key challenges: (1) *How to identify math reasoning abilities associated parameters in MLLM and LLM?* We demonstrate that math reasoning-associated parameters appear highly similar in the subspace; absorbing these parameters improves multi-modal math reasoning, detailed in section 4.1. (2) *How to quantify and mitigate the gaps between models in the parameter space?* We illustrate that parameter gaps between models can be quantified by singular values, detailed in section 4.2. Bridging these gaps can enhance the alignment between models and improve math reasoning performance.

Based on our empirical findings, we propose **IP-merging** that **Identifies** the math reasoning parameters in the models, then **Projects** math reasoning parameters into the subspace of MLLM for better alignment. In the parameter selection stage, the selection process is guided by the similarity between the subspaces of the task vectors from the two models. To achieve this, we first perform singular value decomposition (SVD) on the task vectors of both the LLM and the MLLM. Next, we compute the cosine similarity between the basis vectors extracted from the LLM and the MLLM. Parameters corresponding to the most similar subspaces are then selected for the subsequent merging process. To further align the selected parameters, these parameters are rescaled by computing the rescaling factor based on the eigenvalues of the selected parameters in MLLM and math LLM. The rescaled math LLM parameters are projected into the subspace of the MLLM, allowing the projected LLM parameters to be close to the MLLM parameters. Finally, the rescaled parameters are merged into the MLLM. The overall process allows the reasoning capabilities of the LLM to be effectively transferred

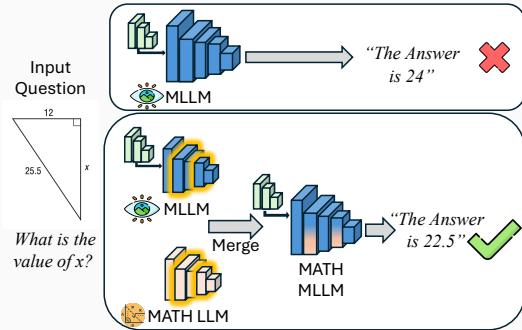


Figure 1: We aim to enhance multi-modal reasoning skills of MLLM by merging parameters in MLLM and Math LLM without tuning or changing the size of the model.

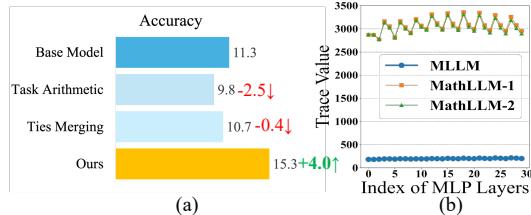


Figure 2: (a) Comparison of different methods of merging MLLM with math LLM on MathVerse. (b) Trace value of task vectors in 30 MLP layers in two math LLMs (MetaMath-Llemma-7B and Tora-code-7B) and one MLLM (LLaVA-v1.5-7B).

2

and adapted to the multimodal context of the MLLM. Our method requires no data or any additional tuning and can be efficiently implemented.

We demonstrate the effectiveness of our method by merging MLLM (e.g., LLaVA series and Qwen series) and different math reasoning LLMs. We validate the performance of our method on MathVista, MathVerse, DynaMath and MathVision for evaluating math reasoning abilities. We further show our method does not interfere with the model’s other abilities by evaluating our method general knowledge datasets, i.e., MMMU [50], TextVQA [31] and MMBench [22]. Our contributions can be summarized as follows:

- We propose the problem of improving the math reasoning abilities of MLLMs by directly absorbing math LLMs without any tuning.
- We reveal two key challenges to answer this question, including the selection of math reasoning-associated parameters and the reduction of gaps between models.
- We propose the IP-merging method, which first identifies the crucial layers and then aligns the selected layers by projecting them into the MLLMs subspace.
- Extensive experimental results validate that the IP-Merging method enhances the math reasoning abilities of MLLMs without compromising other capabilities.

2 Related Works

2.1 Math Reasoning of MLLMs

The community has made significant efforts to improve mathematical reasoning ability, which is regarded as a fundamental capability of MLLMs. In the pre-training stage, previous works focus on enhancing math reasoning of base models by collecting math pre-training data [37, 11], generating synthetic data [5], and optimizing training strategies [18]. Furthermore, in the post-training phase, researchers significantly increase the scale and quality of math reasoning instruction data through data augmentation techniques [8, 12, 30]. The introduction of variant fine-tuning [55], reinforcement learning algorithms [48, 49, 38], and self-evolving frameworks [51, 21] greatly improves the efficiency of data utilization. Recently, O1-like models successfully leverage the deep-thinking chain of thought for inference scaling [6], substantially advancing reasoning capabilities. Different from these cost-intensive works (either training or inference), we aim to improve MLLMs’ math reasoning abilities by directly absorbing them from Math LLMs without any tuning.

2.2 Model Merging

Model merging has emerged as a promising technique for enhancing the capabilities of models without requiring raw training data or intensive computation, which offers a low-cost solution to elevate the abilities of LLMs. Model merging takes off-the-shelf task-specific models and fuses all models into a single model with diverse abilities [43]. Several advanced methods have been developed for model merging, which can be broadly classified into pre-merging and during-merging strategies. Pre-merging methods focus on merging model weights [40, 15, 41], architecture transformations [32, 52], or disentangling weight spaces to create optimal conditions for merging [33, 25]. During-merging methods address task conflicts using basic averaging, weighted strategies, subspace projections, dynamic routing, or post-merging calibrations [46, 45, 44]. Previous methods focus on merging models trained on single modality [43, 17], while our method aims to merge models from different modalities.

3 Model Merging Framework

3.1 Preliminaries of Task Vectors

Let \mathbf{W}_0 denote the parameters of a pre-trained language model, such as Llama-based model [34]. The math reasoning model \mathbf{W}_{Math} is obtained by fine-tuning the pretrained model \mathbf{W}_0 on math reasoning data $\mathcal{D}_{math-txt}^{train}$. Math task vectors are defined as the difference between parameters of LMs before and after finetuning, i.e., $\Delta\mathbf{W}_{Math} = \mathbf{W}_{Math} - \mathbf{W}_0$. Here, the task vectors are

obtained by subtraction at each layer. For example, if the model has N layers, the task vector is $\Delta \mathbf{W}_{\text{Math}} = \{\Delta \mathbf{W}_{\text{Math}}^1, \Delta \mathbf{W}_{\text{Math}}^2, \dots, \Delta \mathbf{W}_{\text{Math}}^N\}$.

For an MLLM such as LLaVA [20], the model is trained by freezing the visual encoder [28] and tuning the projection layers and the LLM using vision and language pairs $\mathcal{D}_{\text{vl}}^{\text{train}}$. Here, we denote the models' task vector of receiving multi-modal input as $\Delta \mathbf{W}_{\text{MLLM}} = \mathbf{W}_{\text{MLLM}} - \mathbf{W}_0$. The task vector of MLLM is computed between the LLM and the pretrained LLM, which does not include the frozen visual encoder and the visual projection layers. During the model merging process, the visual encoder and visual projection layers are not modified, only LLMs in the models are merged.

3.2 Model Merging Framework

Model merging techniques fuse several fine-tuned task-specific models into one comprehensive multi-task model without training the models. In our case, we aim to obtain one math reasoning MLLM $\mathbf{W}_{\text{MathMLLM}}$ by merging math LLM \mathbf{W}_{Math} with the MLLM \mathbf{W}_{MLLM} . For simplicity, we consider the case of merging two models here. We can formulate the general framework for merging the models as

$$\mathbf{W}_{\text{MathMLLM}} = \mathcal{F}(\mathbf{W}_0, \Delta \mathbf{W}_{\text{MLLM}}, \Delta \mathbf{W}_{\text{Math}}; \mathbf{M}). \quad (1)$$

Prevailing approaches, such as Task Arithmetic [15], Ties Merging [41], EMR Merging [14] can be further formulated as

$$\mathbf{W}_{\text{MathMLLM}} = \mathbf{W}_0 + \alpha_1 f_1(\Delta \mathbf{W}_{\text{MLLM}}, \mathbf{M}_1) + \alpha_2 f_2(\Delta \mathbf{W}_{\text{Math}}, \mathbf{M}_2), \quad (2)$$

where α_1 and α_2 are scaling parameters, \mathbf{M}_1 and \mathbf{M}_2 can be regard as alignment matrices. $f_1(\cdot)$ and $f_2(\cdot)$ represent two mapping functions, such as the dot product of the element-wide product. For example, task arithmetic [15] set \mathbf{M}_1 and \mathbf{M}_2 to identity mapping. Ties merging [41] and DARE [46] compute sparse matrices \mathbf{M}_1 and \mathbf{M}_2 , and select parameters by element-wise product. EMR merging computes scaling factors α_1, α_2 based on the absolute values and derives task-specific masks $\mathbf{M}_1, \mathbf{M}_2$. Our method follows a similar model merging framework. After merging the models, the model is then tested on multi-modal math reason dataset $\mathcal{D}_{\text{math-vl}}^{\text{test}}$ to evaluate its performance.

4 Methodology

In this section, we delve into the alignment issue in model merging by identifying parameters associated with math reasoning in section 4.1, and then we quantify the gaps between models in section 4.2. Finally, we describe our proposed IP-merging in section 4.3.

4.1 Identify Math-Reasoning-Associated Parameters

Experimental results in fig. 2 provide one critical observation: though limited, the MLLM already demonstrates an inherent capability for multi-modal mathematical reasoning. As the MLLM is trained to align visual and textual input, the direct addition of task vectors in all layers derived from a math reasoning LLM harms the learned alignment, yielding suboptimal performance. To address this issue, a key question arises: *Which parameters are associated with mathematical reasoning abilities in MLLM, and how can we effectively identify and prioritize them for merging?*

To answer this question, we propose to quantify this correlation by calculating the subspace similarity between the parameters in Math LLMs and MLLM. Recent efforts [26, 24] demonstrate that task-specific competencies, such as mathematical reasoning abilities, reside within particular subspaces of the model's parameter space. If the

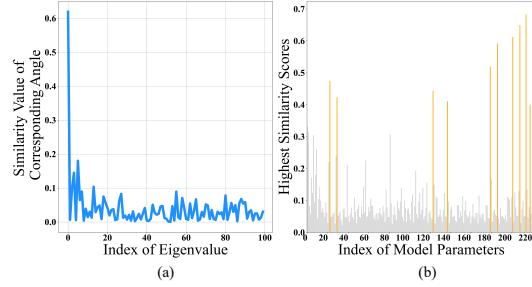


Figure 3: (a) Absolute cosine value of the top 100 corresponding angles in one MLP layer. (b) The highest similarity score distribution among model parameters, orange bars represent the parameters with a high similarity score.

subspace of one parameter in MLLM has higher subspace similarity with math LLM, this parameter can be regarded as crucial for math reasoning abilities. Specifically, given the math reasoning task vector $\Delta \mathbf{W}_{Math}$ and multi-modality task vector $\Delta \mathbf{W}_{MLLM}$ in the layer n , we can first factorize these weights using singular value decomposition (SVD) respectively:

$$\Delta \mathbf{W}_{Math}^n = \mathbf{U}_M^n \Sigma_M^n \mathbf{V}_M^{n \top}, \quad \Delta \mathbf{W}_{MLLM}^n = \mathbf{U}_V^n \Sigma_V^n \mathbf{V}_V^{n \top}, \quad (3)$$

which can be organized into a combination of singular values and orthonormal bases:

$$\Delta \mathbf{W}_{Math}^n = \sum_{i=1}^d \sigma_{M,i}^n \mathbf{u}_{M,i}^n \mathbf{v}_{M,i}^{n \top}, \quad \Delta \mathbf{W}_{MLLM}^n = \sum_{i=1}^d \sigma_{V,i}^n \mathbf{u}_{V,i}^n \mathbf{v}_{V,i}^{n \top}, \quad (4)$$

where $\sigma_{V,i}^n$ and $\sigma_{M,i}^n$ represent the i -th singular value of n -th layer in MLLM and Math-LLM respectively, and d is the number of dimensions. $\sigma_{M,1}^n \geq \sigma_{M,2}^n \dots \geq \sigma_{M,d}^n$, vice versa for $\sigma_{V,i}^n$. $\mathbf{v}_{M,i}^n, \mathbf{v}_{V,i}^n, \mathbf{u}_{M,i}^n, \mathbf{v}_{V,i}^n$ represent corresponding orthonormal bases respectively. If the direction of two sets of orthonormal bases is closely aligned, the similarity between the two subspaces is high. Meanwhile, we consider the singular value as the reference when computing similarity, as the singular values determine the importance of each orthonormal basis. To this end, we propose to use the corresponding angle to measure the similarity between two subspaces [4]:

Definition 1 (Similarity Value of Corresponding Angle). *Given two groups of eigenvectors: $\{\mathbf{v}_{M,1}^{\top}, \dots, \mathbf{v}_{M,d}^{\top}\}$ and $\{\mathbf{v}_{V,1}^{\top}, \dots, \mathbf{v}_{V,d}^{\top}\}$, the corresponding angle represents the angle between two eigenvectors corresponding to the same eigenvalue index. The cosine value of the i -th eigenvector's corresponding angle is*

$$S_i^n = \frac{\langle \mathbf{v}_{M,i}^{n \top}, \mathbf{v}_{V,i}^{n \top} \rangle}{\|\mathbf{v}_{M,i}^{n \top}\| \cdot \|\mathbf{v}_{V,i}^{n \top}\|}. \quad (5)$$

We visualize the distribution of the first 100 corresponding angles in a selected MLP layer in fig. 3(a). We can see that the cosine value of the first corresponding angle is significantly higher than those of the other angles. This observation suggests that the basis associated with the largest singular value represents a subspace in MLLM that is strongly linked to math reasoning capabilities. Consequently, the parameters with high subspace similarity may play a more critical role in math reasoning abilities.

To explore this further, we plot the distribution of the highest similarity value scores across model layers in fig. 3(b). The figure illustrates that parameters have high similarity scores, which can be regarded as crucial to math reasoning. To validate their importance, we perform experiments where we selectively merge the corresponding layers of the LLM into these parameters of the MLLM with a high similarity score in table 1. The gain of performance verifies the critical role of the identified MLLM parameters in facilitating math reasoning. This finding shows that subspace similarity can be one key criterion for selecting and prioritizing math reasoning parameters. More analysis can be found in appendix D.

4.2 Gaps between Models in Parameter Space

As we aim to absorb math reasoning abilities from LLMs to MLLMs, the gap between models emerges as a significant obstacle. While both models are derived from the same foundational LLM (e.g., LLaMA), the parameter changes within MLLMs and math reasoning LLMs can vary significantly. This disparity reflects fundamental differences in their learned representations, task objectives, and domain-specific knowledge. To quantify these differences, we use the distribution of eigenvalues in the model parameters as an intuitive metric for understanding the magnitude and nature of these changes. Specifically, the eigenvalue distribution offers insight into the “scale” of parameter updates. We plot the top 1024 singular value distributions of one MLP layer in the model fig. 4(a), which reveals that LLMs and MLLMs exhibit different eigenvalues, highlighting the inherent gap between LLMs and MLLMs. When combining models of a math reasoning LLM with large eigenvalues and an MLLM with smaller eigenvalues by addition, parameters with larger eigenvalues can overshadow the contributions of parameters with smaller ones. Here, we take task arithmetic as an example:

Table 1: Performance comparison after selecting reasoning-related layers to merge on MathVerse.

Approach	Average Accuracy
Base MLLM	11.3
Task Arithmetic	9.8 <small>-1.5</small>
Task Arithmetic+Param Selection	13.4 <small>+2.1</small>

Proposition 1. Let $\Delta\mathbf{W}_{Math}$ and $\Delta\mathbf{W}_{MLLM}$, be two real matrices. The L2-norm of two matrices is defined by $\|\Delta\mathbf{W}_{Math}\|_2 = \sigma_{\max}(\Delta\mathbf{W}_{Math})$, $\|\Delta\mathbf{W}_{MLLM}\|_2 = \sigma_{\max}(\Delta\mathbf{W}_{MLLM})$, Model merged by task arithmetic satisfies the triangle’s inequality [13]

$$\|\Delta\mathbf{W}_{Math}\|_2 - \|\Delta\mathbf{W}_{MLLM}\|_2 \leq \|\Delta\mathbf{W}_{Math} + \Delta\mathbf{W}_{MLLM}\|_2 \leq \|\Delta\mathbf{W}_{Math}\|_2 + \|\Delta\mathbf{W}_{MLLM}\|_2,$$

If we assume

$$\|\Delta\mathbf{W}_{MLLM}\|_2 \leq \varepsilon \|\Delta\mathbf{W}_{Math}\|_2, \quad 0 < \varepsilon < 1,$$

then,

$$(1 - \varepsilon) \|\Delta\mathbf{W}_{Math}\|_2 \leq \|\Delta\mathbf{W}_{Math} + \Delta\mathbf{W}_{MLLM}\|_2 \leq (1 + \varepsilon) \|\Delta\mathbf{W}_{Math}\|_2.$$

Our proposition demonstrates that if the maximum singular value of the math reasoning parameters in LLM is far larger than the MLLM parameter, i.e., $\sigma_{\max}(\Delta\mathbf{W}_{Math}) \gg \sigma_{\max}(\Delta\mathbf{W}_{MLLM})$, $\varepsilon \rightarrow 0$, the MLLM parameter will be overshadowed by math parameters ($\|\Delta\mathbf{W}_{Math} + \Delta\mathbf{W}_{MLLM}\|_2 \approx \sigma_{\max}(\Delta\mathbf{W}_{Math})$). To validate this point, we further plot the distribution of the maximum singular across model parameters in fig. 4(b), indicating that the Math LLM model may overshadow MLLM during merging. Therefore, it is crucial to align the LLM and MLLM in the parameter space to allow the smooth transfer of math reasoning abilities.

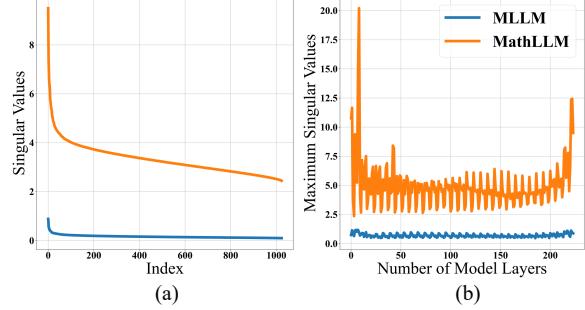


Figure 4: (a) Singular values distribution in one MLP layer. We plot the top 1024 singular values. (b) Maximum singular values across all model parameters.

4.3 IP-Merging

To transfer reasoning abilities from LLMs to MLLMs, we propose a novel merging method called IP-merging. Our method first identifies the crucial parameters in both MLLM and math LLM, then projects the rescaled selected LLM parameters into the MLLM subspace for better alignment. Finally, the aligned parameters are merged with MLLM. In the parameter identification stage, crucial math-reasoning-associated parameters between LLMs and MLLMs are identified and selected based on their similarity in the subspace. In the parameter projection stage, these selected parameters are rescaled, aligned, and projected into the MLLM subspace to minimize the gap between the models. The overall process can be found in algorithm 1 and appendix F.

4.3.1 Parameter Identification

Given that MLLMs share a larger number of layers with LLMs, we restrict the merging process to components shared by both models, such as attention layers and MLP layers, without modifying the visual encoder or projection layer. Let N denote the total number of layers considered for merging. To identify compatible parameters, we compute the corresponding angle for each layer $\{S_1^n, S_2^n, \dots, S_d^n\}$ between the MLLM and Math LLM using a cosine similarity metric (refer to definition 1). Parameters with a similarity score higher than the threshold S_α are selected for merging, while others are excluded. This selection process can be formalized as follows

$$\Delta\bar{\mathbf{W}}_{Math}^n = \begin{cases} \Delta\mathbf{W}_{Math}^n & S_1^n \geq S_\alpha \\ 0 & \text{otherwise} \end{cases}. \quad (6)$$

4.3.2 Parameter Projection

Empirical observations in section 4.2 highlight the importance of aligning parameters across different model modalities. To facilitate the alignment, Ties Merging [41] or EMR Merging [14] offers a straightforward solution by selecting parameters with consistent signs (i.e., both positive or both negative) and discarding the rest. While these works reduce interference between the merged models, they risk discarding critical parameters, leading to a decline in overall performance as shown in fig. 2.

Different from previous works, we aim to merge the parameters of Math LLM into the MLLM without harming other abilities of MLLM. To achieve this, our key idea is to reduce the gap between LLM and MLLM parameter spaces by rescaling and projecting the selected mathematical reasoning parameters from the LLM into the subspace of the MLLM. By rescaling the layers of LLM, we can reduce parameter gaps between the models. We further project the selected LLM layers into the subspace of MLLM, which pushes parameters in LLM to lie close to the MLLM in the parameter space, fostering the alignment between the two models [29].

Rescaling. To normalize the parameter magnitudes between the two models, we compute a rescaling factor λ_n , defined as the ratio of the nuclear norms of the corresponding parameter spaces in the MLLM and LLM

$$\lambda_n = \frac{\sum_{i=1}^d \sigma_{V,i}^n}{\sum_{i=1}^d \sigma_{M,i}^n}, \quad (7)$$

where $\sigma_{V,i}^n$ and $\sigma_{M,i}^n$ are the singular values of the corresponding parameters in the MLLM and LLM, respectively.

Projection. To align the rescaled parameters to the MLLM subspace, we calculate an importance score γ_i^n for the subspace vectors based on their similarity S_i^n . The importance score is defined as

$$\gamma_i^n = \frac{\exp(S_i^n)}{\sum_{i=1}^d \exp(S_i^n)}. \quad (8)$$

Using these importance scores, the selected mathematical reasoning layers from the LLM are projected into the MLLM weighted subspace as

$$\bar{\mathbf{V}}_V^n = \gamma_n \mathbf{V}_V^{n \top}, \quad \Delta \mathbf{W}_{Math-P}^n = \lambda_n \Delta \bar{\mathbf{W}}_{Math}^n \bar{\mathbf{V}}_V^n \bar{\mathbf{V}}_V^{n \top}. \quad (9)$$

This projection emphasizes the subspace basis vectors that are most relevant to mathematical reasoning, thereby ensuring effective alignment of the LLM parameters with the MLLM architecture. After projection, we can obtain the math reasoning MLLM by adding the projected parameter to MLLM as

$$\mathbf{W}_{MathMLLM}^n = \mathbf{W}_0^n + \Delta \mathbf{W}_{MLLM}^n + \lambda_n \Delta \bar{\mathbf{W}}_{Math}^n \bar{\mathbf{V}}_V^n \bar{\mathbf{V}}_V^{n \top}, \quad (10)$$

By referring to eq. (2), our method also fits the general framework, where α_1 is set as 1 and α_2 is set as λ_n , $f_1(\cdot, \mathbf{M}_1)$ is the identity mapping, and $f_2(\cdot, \mathbf{M}_2)$ is the projection matrix in eq. (9), the overall algorithm of the proposed method can be found in appendix F.

5 Experiments

5.1 Experiments Setup

We test our models on six benchmarks, i.e., MathVista [23], MathVerse [53], DynaMath (DM) [59], MathVision [36] and three general QA benchmarks MMMU [50], TextVQA [31] and MMBench [22]. MathVista can be divided into five subsets: Figure Question Answering (FQA), Geometry Problem Solving (GPS), Math Word Problems (MWP), Textbook Question Answering (TQA), and Visual Question Answering (VQA). MathVerse includes a diverse set of math problems that require reasoning over both textual and visual information, such as charts, diagrams, and equations, which can be divided into five subsets, i.e., Text Dominant (T-D), Text Lite (T-L), Vision Intensive (V-I), Vision Dominant (V-D) and Vision Only (V-O). DynaMath (DM) is a dynamic visual math benchmark designed for in-depth assessment of VLMs. MathVision (Math-V) is a collection of high-quality mathematical problems with visual contexts sourced from real math competitions. The MMMU benchmark is suitable for assessing the general knowledge of MLLM. TextVQA evaluates a model's general ability to read and reason about text in images, requiring joint understanding of visual content and language reasoning. MMBench is a comprehensive multimodal benchmark that tests large models across diverse tasks to assess their general multimodal intelligence and robustness. We select the English split for evaluation. We compare our proposed methods with prevailing model merging techniques such as Task Arithmetic [15], Ties Merging [41] and EMR Merging [14]. More details on implementation and hyperparameters can be found in appendix B and appendix B.3, respectively.

Table 2: Comparison with other model merging approaches on the MathVerse and MathVista. **Bold** represents the best performance. We merge LLaVA with Tora-code-7B, Qwen2-VL-7B-Instruct with Qwen-2-Math-7B models, InternVL3-8B-Instruct with DeepSeek-R1-distilled-Qwen-7B, respectively.

Approach	MathVerse						MathVista						DM	Math-V
	T-D	T-L	V-I	V-D	V-O	Overall	TQA	GPS	VQA	FQA	MWP	Overall		
<i>LLaVA-1.5-7B as Base Model</i>														
Base Model	12.4	10.0	12.2	12.8	9.1	11.3	36.1	22.1	37.4	20.8	13.9	25.2	15.4	11.1
Task Arithmetic	12.4	11.0	12.6	11.9	0.9	9.8	31.7	33.6	29.6	21.6	11.3	25.2	13.9	11.0
Ties Merging	13.1	14.0	13.3	13.1	0.1	10.7	39.9	40.4	26.8	23.8	6.5	27.1	14.0	10.6
EMR Merging	10.8	10.7	11.3	12.6	6.7	10.4	36.7	25.9	30.7	21.6	13.9	25.0	13.8	11.6
IP-Merging	16.0	16.1	14.1	15.5	15.0	15.3 ^{4.0↑}	43.7	21.6	40.8	24.9	15.1	28.2 ^{3.0↑}	16.1 ^{0.7↑}	11.8 ^{0.7↑}
<i>Qwen-2-VL-7B-Instruct as Base Model</i>														
Base Model	27.4	26.8	27.3	25.6	16.9	24.8	58.9	33.7	58.7	66.5	57.5	55.4	40.8	16.3
Task Arithmetic	15.7	10.9	10.0	9.8	0.3	9.3	37.3	38.0	32.4	25.3	25.3	31.1	14.8	11.3
Ties Merging	6.9	6.5	7.0	6.2	0.1	5.3	39.9	38.5	32.4	21.6	18.3	29.3	15.1	11.4
EMR Merging	20.9	18.4	18.3	18.4	11.9	17.6	50.6	35.6	44.7	43.1	30.1	40.8	21.8	14.5
IP-Merging	31.0	28.7	29.4	29.7	23.6	28.5 ^{3.7↑}	63.3	41.8	57.5	69.9	66.7	60.2 ^{4.8↑}	41.0 ^{0.2↑}	19.1 ^{2.8↑}
<i>InternVL3-8B-Instruct as Base Model</i>														
Base Model	47.6	40.9	39.1	37.8	27.5	38.5	65.2	70.2	53.1	65.8	75.3	66.1	50.7	24.9
Task Arithmetic	24.9	18.5	15.6	14.1	11.2	16.9	43.0	46.2	26.8	20.1	29.0	32.0	20.1	15.3
Ties Merging	18.8	13.8	14.6	15.0	14.2	15.3	34.8	34.6	25.1	19.7	13.4	25.0	16.1	9.6
EMR Merging	35.9	30.7	29.4	27.3	27.3	30.1	59.5	51.4	42.5	45.0	50.5	49.2	39.2	18.8
IP-Merging	48.1	41.4	39.5	37.6	28.3	39.0 ^{0.5↑}	63.9	74.5	52.5	68.2	76.8	67.6 ^{1.6↑}	51.4 ^{0.7↑}	25.2 ^{0.3↑}

5.2 Experimental Results

We conduct our experiments on MathVista and MathVerse in table 2, and MMMU in table 3. For LLaVA models, we select LLaVA-1.5-7B as the base MLLM and Tora-Code-7B [9] as the math reasoning LLM, as it is trained on logical reasoning-based math problems. For Qwen models, we select Qwen-2VL-7B-Instruct as the base MLLM and Qwen-2-math-7B [42] as the math LLM. For InternVL models, we select InternVL3-8B-Instruct [58] as the base MLLM and DeepSeek-R1-distilled-Qwen-7B as the math LLM.

Compared to existing merging methods, our approach consistently improves performance across all sub-tasks. Notably, it achieves at least a 3.7% average gain over the original model on MathVerse, demonstrating its effectiveness in enhancing general math reasoning capabilities. For MathVista, the biggest improvement for LLaVA models lies in the task of the TQA subset, where science and math knowledge are highly demanded, improving the base model by 7.6%. The LLaVA model does not achieve a performance gain in GPS after merging, where the multiple steps of geometry reasoning are required. On the other hand, the ties merging boost the LLaVA performance in GPS, owing to its ability to resolve model conflicts by selecting parameters with the same sign. The consistent sign may indicate shared abilities across models. In this case, the visual reasoning ability is retained and enhanced by merging with the text-based reasoning ability in the Math LLM, but other general abilities deteriorate (a drop of 6.9% in MMMU) or VQA tasks (a drop of 6.7%). The Qwen model obtains the performance gain of 4.8% on average, with the most notable performance gain in MWP, where task-specific reasoning skills are highly demanded, improving the model by 9.2%.

We also conduct experiments by merging larger models in appendix C.1, and merging multiple models in appendix C.2, demonstrating the effectiveness of our approach. Our method can further improve the performance of math MLLM, and is effective when merging larger or multiple models.

Table 3: Comparison with other merging approaches on three general benchmarks. IP-merging preserves general abilities.

Approach	MMMU	TextVQA	MMBench
<i>LLaVA-1.5-7B as Base Model</i>			
Base Model	34.2	47.5	62.7
Task Arithmetic	30.2	23.5	17.4
Ties Merging	27.3	1.1	8.2
EMR Merging	34.8	48.0	57.1
IP-Merging	34.4	47.6	63.1
<i>Qwen-2-VL-7B-Instruct as Base Model</i>			
Base Model	50.7	83.8	80.3
Task Arithmetic	32.6	37.9	54.1
Ties Merging	30.8	4.3	43.7
EMR Merging	41.8	73.2	74.8
IP-Merging	50.7	84.0	80.8
<i>InternVL3-8B-Instruct as Base Model</i>			
Base Model	61.6	81.9	84.4
Task Arithmetic	32.6	18.9	31.3
Ties Merging	30.1	9.1	38.7
EMR Merging	47.0	67.6	67.8
IP-Merging	61.9	82.3	84.6

To validate that our approach does not harm other abilities in the MLLMs, we further conduct experiments on evaluating the models on the general QA benchmarks in table 3. Compared to the baseline model, our approach is able to maintain stable model performance across the general benchmarks, while other methods (e.g., Task Arithmetic and Ties Merging) decrease the performance. As our method only selects the crucial parameters related to math reasoning, our approach does not interfere with parameters that are important to other general abilities. Hence, our method improves the math reasoning abilities without interfering with the general abilities.

5.3 Merging Math MLLM with Math LLM

We conduct the experiments of merging fine-tuned math MLLM (TableLLaVA-1.5-7B [56], G-LLaVA-7B [8]) and the Tora model using our proposed merging method, validating the effectiveness of improving fine-tuned math MLLM further. G-LLaVA is obtained by further fine-tuning the LLaVA using geometry reasoning data. After merging the math LLM, the geometry reasoning ability is further enhanced, which is validated by the 2.8% and 1.5% improvement on GPS and FQA tasks. TableLLaVA is obtained by further fine-tuning the LLaVA using table reasoning data. By merging math reasoning LLM, our method can further improve the model’s performance on table reasoning tasks such as FQA by 3.7%. VL-Rthinker-7B [35] is one recent reasoning model that was tuned from Qwen2.5-7B via reinforcement learning. By merging the Qwen2.5-Math model, the reasoning performance is further enhanced by 2.5 on MathVista, with noticeable improvement of 5.4% on the MWP subset. All of these demonstrate that our method can further improve the math reasoning abilities of both base MLLM and fine-tuned math MLLM.

5.4 Ablation Studies

We conduct the ablation experiments of the proposed method using the LLaVA model on MathVista in table 5. By selecting the parameters and applying our method individually, the performance is elevated by 3.3%, 3.7%, and 3.1%, respectively. More parameter selection analysis can be found in appendix D. Combining Parameter Selection and Projection increases accuracy to 26.3%, suggesting that projecting the selected parameters into the subspace provides better alignment. The combination of parameter selection and rescaling demonstrates that rescaling improves the utilization of selected parameters. The combination of rescaling and projection achieves 26.7%, highlighting the complementary benefits of parameter adjustment and alignment in improving performance. When all three components are applied together, the model achieves the highest accuracy. This improvement demonstrates the necessity of carefully selecting, rescaling, and aligning reasoning-related parameters.

5.5 Selected Parameter Analysis

We visualize the selected parameters for merging in fig. 5. Most of the selected layers are MLP components located in the middle and latter parts of the model, while only a few attention layers in the early stages are chosen. This pattern aligns with recent findings that knowledge and reasoning skills in LLMs are mainly encoded in deeper MLP layers [7, 3]. The selected layers in layers 17–31, and a few in layers 3–4 indicate that our merging primarily operates on high-level semantic representations while preserving early-layer perceptual alignment. This supports the view that reasoning transfer mainly benefits from modifying deeper MLP pathways rather than early attention dynamics. We further analyze selected layers in MLLM before and after math reasoning in appendix D.

Table 4: We merge Math MLLM with the math LLM model. **Bold** represents the best performance. “Avg” is the average performance.

Approach	MathVista					
	TQA	GPS	VQA	FQA	MWP	Avg
<i>G-LLaVA-7B as Base Model</i>						
Base Model	29.1	48.6	33.5	19.3	11.3	28.0
+IP Merging	32.9	51.4	31.8	20.8	12.9	29.6 ^{1.6↑}
<i>TableLLaVA-1.5-7B as Base Model</i>						
Base Model	34.2	27.4	29.6	24.9	41.9	30.9
+IP Merging	41.8	27.9	30.2	28.6	43.6	34.0 ^{3.1↑}
<i>VL-Rthinker-7B as the Base Model</i>						
Base Model	70.9	76.0	54.2	78.1	80.6	72.7
+IP Merging	71.5	79.3	58.7	77.7	86.0	75.2 ^{2.5↑}

Table 5: Ablation results.

Selection	Components		Acc.
	Rescale	Projection	
✓		✓	25.8
	✓		26.2
✓		✓	25.6
✓	✓		26.3
✓	✓	✓	26.3
✓	✓	✓	26.7
✓	✓	✓	28.2

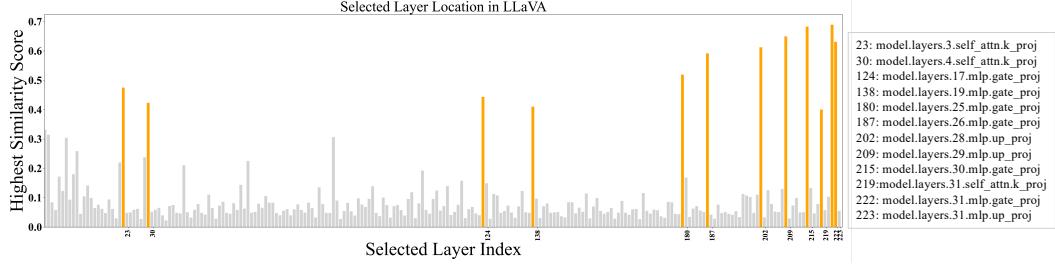


Figure 5: Selected layers in the LLaVA model for merging.

5.6 Case Analysis

We demonstrate two examples that the merged model improves reasoning ability compared to the base model in fig. 6. In the first example, the base model fails to read the table and outputs meaningless text, showing that it cannot handle structured data. In contrast, the merged model correctly reads the numbers, clearly explaining the rate of change. This shows that merging helps the model understand tables and perform basic numerical reasoning. In the second example, the task involves a geometry problem. The base model guesses the answer without any explanation, while the merged model reasons step by step. This reasoning is both correct and interpretable. See more cases in appendix E.

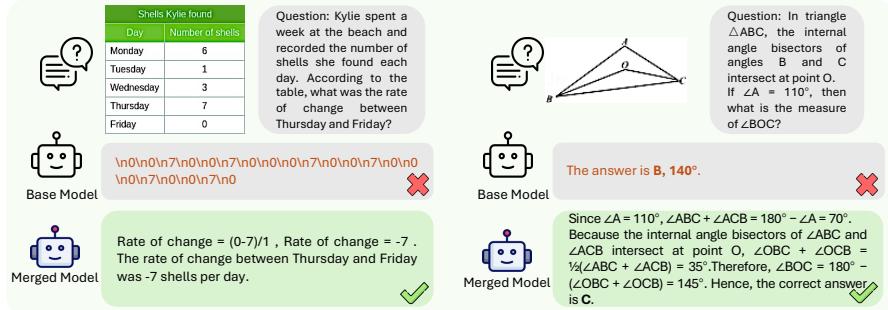


Figure 6: Case study of examples are correctly answered after merging the math LLM.

6 Conclusion

In this paper, we aim to enhance the math reasoning abilities of MLLMs by directly absorbing them from Math LLMs without tuning. However, it is challenging to merge models with different modalities due to the large gap in parameter spaces between models. To this end, we propose a model merging method, namely **IP-merging**, which mainly consists of two parts: i.e., parameter Selection and Projection. Parameter selection identifies crucial parameters associated with math reasoning, while parameter projection aligns the MLLM and math LLM by rescaling parameters and projecting the parameters into the subspace of the MLLM. The proposed approach is tune-free and efficient to implement. Experimental results demonstrate the IP-merging method can successfully enhance the math reasoning abilities of MLLMs without harming their other abilities. In the future, we will extend the method to merge models with different foundation LLM architectures.

Limitation: Our proposed method is effective for merging the MLLM and math LLM with the same size and sharing the same foundation LLM architecture (e.g., LLaMA-2). Otherwise, it is challenging to find those associated layers to merge.

7 Acknowledgments

The work was partially supported by the following: National Natural Science Foundation of China under No. 92370119, 62436009, 62276258 and 62376113.

References

- [1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.
- [2] Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang Zhou, and Jingren Zhou. Qwen-vl: A frontier large vision-language model with versatile abilities. *arXiv preprint arXiv:2308.12966*, 2023.
- [3] Shiqi Chen, Jinghan Zhang, Tongyao Zhu, Wei Liu, Siyang Gao, Miao Xiong, Manling Li, and Junxian He. Bring reason to vision: Understanding perception and reasoning through model merging. *arXiv preprint arXiv:2505.05464*, 2025.
- [4] Xinyang Chen, Sinan Wang, Mingsheng Long, and Jianmin Wang. Transferability vs. discriminability: Batch spectral penalization for adversarial domain adaptation. In *International conference on machine learning*, pages 1081–1090. PMLR, 2019.
- [5] Linger Deng, Yuliang Liu, Bohan Li, Dongliang Luo, Liang Wu, Chengquan Zhang, Pengyuan Lyu, Ziyang Zhang, Gang Zhang, Errui Ding, et al. R-cot: Reverse chain-of-thought problem generation for geometric reasoning in large multimodal models. *arXiv preprint arXiv:2410.17885*, 2024.
- [6] Yuhao Dong, Zuyan Liu, Hai-Long Sun, Jingkang Yang, Winston Hu, Yongming Rao, and Ziwei Liu. Insight-v: Exploring long-chain visual reasoning with multimodal large language models. *arXiv preprint arXiv:2411.14432*, 2024.
- [7] Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Xiang Wang, Xiangnan He, and Tat-seng Chua. Alphaedit: Null-space constrained knowledge editing for language models. *arXiv preprint arXiv:2410.02355*, 2024.
- [8] Jiahui Gao, Renjie Pi, Jipeng Zhang, Jiacheng Ye, Wanjun Zhong, Yufei Wang, Lanqing Hong, Jianhua Han, Hang Xu, Zhenguo Li, et al. G-llava: Solving geometric problem with multi-modal large language model. *arXiv preprint arXiv:2312.11370*, 2023.
- [9] Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen, Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu Chen. Tora: A tool-integrated reasoning agent for mathematical problem solving. *arXiv preprint arXiv:2309.17452*, 2023.
- [10] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.
- [11] Xiaotian Han, Yiren Jian, Xuefeng Hu, Haogeng Liu, Yiqi Wang, Qihang Fan, Yuang Ai, Huaibo Huang, Ran He, Zhenheng Yang, et al. Infimm-webmath-40b: Advancing multimodal pre-training for enhanced mathematical reasoning. *arXiv preprint arXiv:2409.12568*, 2024.
- [12] Yucheng Han, Chi Zhang, Xin Chen, Xu Yang, Zhibin Wang, Gang Yu, Bin Fu, and Hanwang Zhang. Chartllama: A multimodal llm for chart understanding and generation. *arXiv preprint arXiv:2311.16483*, 2023.
- [13] Roger A Horn and Charles R Johnson. *Matrix analysis*. Cambridge university press, 2012.
- [14] Chenyu Huang, Peng Ye, Tao Chen, Tong He, Xiangyu Yue, and Wanli Ouyang. Emr-merging: Tuning-free high-performance model merging. *arXiv preprint arXiv:2405.17461*, 2024.
- [15] Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. In *ICLR*, 2023.
- [16] Ming Li, Yanhong Li, and Tianyi Zhou. What happened in llms layers when trained for fast vs. slow thinking: A gradient perspective. *arXiv preprint arXiv:2410.23743*, 2024.
- [17] Derek Lim, Moe Puterman, Robin Walters, Haggai Maron, and Stefanie Jegelka. The empirical impact of neural parameter symmetries, or lack thereof. *arXiv preprint arXiv:2405.20231*, 2024.

- [18] Zhenghao Lin, Zhibin Gou, Yeyun Gong, Xiao Liu, Ruochen Xu, Chen Lin, Yujiu Yang, Jian Jiao, Nan Duan, Weizhu Chen, et al. Not all tokens are what you need for pretraining. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024.
- [19] Deyuan Liu, Zecheng Wang, Bingning Wang, Weipeng Chen, Chunshan Li, Zhiying Tu, Dianhui Chu, Bo Li, and Dianbo Sui. Checkpoint merging via bayesian optimization in llm pretraining. *arXiv preprint arXiv:2403.19390*, 2024.
- [20] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. *Advances in neural information processing systems*, 36, 2024.
- [21] Wei Liu, Junlong Li, Xiwen Zhang, Fan Zhou, Yu Cheng, and Junxian He. Diving into self-evolving training for multimodal reasoning. *arXiv preprint arXiv:2412.17451*, 2024.
- [22] Yuan Liu, Haodong Duan, Yuanhan Zhang, Bo Li, Songyang Zhang, Wangbo Zhao, Yike Yuan, Jiaqi Wang, Conghui He, Ziwei Liu, et al. Mmbench: Is your multi-modal model an all-around player? In *European conference on computer vision*, pages 216–233. Springer, 2024.
- [23] Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of foundation models in visual contexts. *arXiv preprint arXiv:2310.02255*, 2023.
- [24] Zhenyi Lu, Chenghao Fan, Wei Wei, Xiaoye Qu, Dangyang Chen, and Yu Cheng. Twin-merging: Dynamic integration of modular expertise in model merging. *arXiv preprint arXiv:2406.15479*, 2024.
- [25] Michael S Matena and Colin A Raffel. Merging models with fisher-weighted averaging. *NeurIPS*, 35:17703–17716, 2022.
- [26] Guillermo Ortiz-Jimenez, Alessandro Favero, and Pascal Frossard. Task arithmetic in the tangent space: Improved editing of pre-trained models. *NeurIPS*, 2023.
- [27] Yiwei Qin, Xuefeng Li, Haoyang Zou, Yixiu Liu, Shijie Xia, Zhen Huang, Yixin Ye, Weizhe Yuan, Hector Liu, Yuanzhi Li, et al. O1 replication journey: A strategic progress report–part 1. *arXiv preprint arXiv:2410.18982*, 2024.
- [28] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pages 8748–8763. PMLR, 2021.
- [29] Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning. *arXiv preprint arXiv:2103.09762*, 2021.
- [30] Wenhao Shi, Zhiqiang Hu, Yi Bin, Junhua Liu, Yang Yang, See Kiong Ng, Lidong Bing, and Roy Lee. Math-llava: Bootstrapping mathematical reasoning for multimodal large language models. In *Findings of the Association for Computational Linguistics: EMNLP 2024*, pages 4663–4680, 2024.
- [31] Amanpreet Singh, Vivek Natarajan, Meet Shah, Yu Jiang, Xinlei Chen, Dhruv Batra, Devi Parikh, and Marcus Rohrbach. Towards vqa models that can read. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 8317–8326, 2019.
- [32] George Stoica, Daniel Bolya, Jakob Bjorner, Taylor Hearn, and Judy Hoffman. Zipit! merging models from different tasks without training. *ICLR*, 2024.
- [33] Norman Tattro, Pin-Yu Chen, Payel Das, Igor Melnyk, Prasanna Sattigeri, and Rongjie Lai. Optimizing mode connectivity via neuron alignment. *NeurIPS*, 33:15300–15311, 2020.
- [34] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023.

- [35] Haozhe Wang, Chao Qu, Zuming Huang, Wei Chu, Fangzhen Lin, and Wenhui Chen. Vi-rethinker: Incentivizing self-reflection of vision-language models with reinforcement learning. *arXiv preprint arXiv:2504.08837*, 2025.
- [36] Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan, and Hongsheng Li. Measuring multimodal mathematical reasoning with math-vision dataset. *Advances in Neural Information Processing Systems*, 37:95095–95169, 2024.
- [37] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024.
- [38] Weiyun Wang, Zhe Chen, Wenhai Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Jinguo Zhu, Xizhou Zhu, Lewei Lu, Yu Qiao, et al. Enhancing the reasoning ability of multimodal large language models via mixed preference optimization. *arXiv preprint arXiv:2411.10442*, 2024.
- [39] Lai Wei, Zhiqian Tan, Chenghai Li, Jindong Wang, and Weiran Huang. Diff-erank: A novel rank-based metric for evaluating large language models. *arXiv preprint arXiv:2401.17139*, 2024.
- [40] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time. In *ICML*, pages 23965–23998. PMLR, 2022.
- [41] Prateek Yadav, Derek Tam, Leshem Choshen, Colin Raffel, and Mohit Bansal. Resolving interference when merging models. *NeurIPS*, 2023.
- [42] An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, Bowen Yu, Chengpeng Li, Dayiheng Liu, Jianhong Tu, Jingren Zhou, Junyang Lin, et al. Qwen2. 5-math technical report: Toward mathematical expert model via self-improvement. *arXiv preprint arXiv:2409.12122*, 2024.
- [43] Enneng Yang, Li Shen, Guibing Guo, Xingwei Wang, Xiaochun Cao, Jie Zhang, and Dacheng Tao. Model merging in llms, mllms, and beyond: Methods, theories, applications and opportunities. *arXiv preprint arXiv:2408.07666*, 2024.
- [44] Enneng Yang, Li Shen, Zhenyi Wang, Guibing Guo, Xiaojun Chen, Xingwei Wang, and Dacheng Tao. Representation surgery for multi-task model merging. *ICML*, 2024.
- [45] Enneng Yang, Zhenyi Wang, Li Shen, Shiwei Liu, Guibing Guo, Xingwei Wang, and Dacheng Tao. Adamerging: Adaptive model merging for multi-task learning. *ICLR*, 2024.
- [46] Le Yu, Bowen Yu, Haiyang Yu, Fei Huang, and Yongbin Li. Language models are super mario: Absorbing abilities from homologous models as a free lunch. In *Forty-first International Conference on Machine Learning*, 2024.
- [47] Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for large language models. *arXiv preprint arXiv:2309.12284*, 2023.
- [48] Tianyu Yu, Yuan Yao, Haoye Zhang, Taiwen He, Yifeng Han, Ganqu Cui, Jinyi Hu, Zhiyuan Liu, Hai-Tao Zheng, Maosong Sun, et al. Rlhf-v: Towards trustworthy mllms via behavior alignment from fine-grained correctional human feedback. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 13807–13816, 2024.
- [49] Tianyu Yu, Haoye Zhang, Yuan Yao, Yunkai Dang, Da Chen, Xiaoman Lu, Ganqu Cui, Taiwen He, Zhiyuan Liu, Tat-Seng Chua, et al. Rlaif-v: Aligning mllms through open-source ai feedback for super gpt-4v trustworthiness. *arXiv preprint arXiv:2405.17220*, 2024.
- [50] Xiang Yue, Yuansheng Ni, Kai Zhang, Tianyu Zheng, Ruoqi Liu, Ge Zhang, Samuel Stevens, Dongfu Jiang, Weiming Ren, Yuxuan Sun, et al. Mmmu: A massive multi-discipline multimodal understanding and reasoning benchmark for expert agi. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 9556–9567, 2024.

- [51] Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with reasoning. *Advances in Neural Information Processing Systems*, 35:15476–15488, 2022.
- [52] Frederic Z Zhang, Paul Albert, Cristian Rodriguez-Opazo, Anton van den Hengel, and Ehsan Abbasnejad. Knowledge composition using task vectors with learned anisotropic scaling. *arXiv preprint arXiv:2407.02880*, 2024.
- [53] Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou, Pan Lu, Kai-Wei Chang, Yu Qiao, et al. Mathverse: Does your multi-modal lilm truly see the diagrams in visual math problems? In *European Conference on Computer Vision*, pages 169–186. Springer, 2024.
- [54] Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou, Pan Lu, Kai-Wei Chang, Yu Qiao, et al. Mathverse: Does your multi-modal lilm truly see the diagrams in visual math problems? In *European Conference on Computer Vision*, pages 169–186. Springer, 2025.
- [55] Wenqiao Zhang, Tianwei Lin, Jiang Liu, Fangxun Shu, Haoyuan Li, Lei Zhang, He Wanggui, Hao Zhou, Zheqi Lv, Hao Jiang, et al. Hyperllava: Dynamic visual and language expert tuning for multimodal large language models. *arXiv preprint arXiv:2403.13447*, 2024.
- [56] Mingyu Zheng, Xinwei Feng, Qingyi Si, Qiaoqiao She, Zheng Lin, Wenbin Jiang, and Weiping Wang. Multimodal table understanding. *arXiv preprint arXiv:2406.08100*, 2024.
- [57] Zihao Zhou, Shudong Liu, Maizhen Ning, Wei Liu, Jindong Wang, Derek F Wong, Xiaowei Huang, Qiufeng Wang, and Kaizhu Huang. Is your model really a good math reasoner? evaluating mathematical reasoning with checklist. *arXiv preprint arXiv:2407.08733*, 2024.
- [58] Jinguo Zhu, Weiyun Wang, Zhe Chen, Zhaoyang Liu, Shenglong Ye, Lixin Gu, Hao Tian, Yuchen Duan, Weijie Su, Jie Shao, et al. Internvl3: Exploring advanced training and test-time recipes for open-source multimodal models. *arXiv preprint arXiv:2504.10479*, 2025.
- [59] Chengke Zou, Xingang Guo, Rui Yang, Junyu Zhang, Bin Hu, and Huan Zhang. Dynamath: A dynamic visual benchmark for evaluating mathematical reasoning robustness of vision language models. *arXiv preprint arXiv:2411.00836*, 2024.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research, addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove the checklist: **The papers not including the checklist will be desk rejected.** The checklist should follow the references and follow the (optional) supplemental material. The checklist does NOT count towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For each question in the checklist:

- You should answer **[Yes]** , **[No]** , or **[NA]** .
- **[NA]** means either that the question is Not Applicable for that particular paper or the relevant information is Not Available.
- Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it (after eventual revisions) with the final version of your paper, and its final version will be published with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation. While "**[Yes]**" is generally preferable to "**[No]**", it is perfectly acceptable to answer "**[No]**" provided a proper justification is given (e.g., "error bars are not reported because it would be too computationally expensive" or "we were unable to find the license for the dataset we used"). In general, answering "**[No]**" or "**[NA]**" is not grounds for rejection. While the questions are phrased in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your best judgment and write a justification to elaborate. All supporting evidence can appear either in the main paper or the supplemental material, provided in appendix. If you answer **[Yes]** to a question, in the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

- **Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist”.**
- **Keep the checklist subsection headings, questions/answers and guidelines below.**
- **Do not modify the questions and only use the provided macros for your answers.**

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s contributions and scope?

Answer: **[Yes]**

Justification: The claims made in the abstract and introduction accurately reflect the paper’s contributions and scope.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: **[Yes]**

Justification: The limitations of the work are discussed in the Conclusion Section.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [\[Yes\]](#)

Justification: The theoretical proposition is given complete proof and analysis.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [\[Yes\]](#)

Justification: We provide the experimental details, and the anomalous link to our code with guidelines for reproduction.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
 - (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [\[Yes\]](#)

Justification: The paper provides uses open-source data and open access to the code. The anonymous code link is provided in the paper.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.

- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-parameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: **[Yes]**

Justification: Yes, this paper specifies all the training and test details in the Experiments Section and the appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: **[No]**

Justification: We follow previous work when reporting results for fair comparsion, which does not report error bias.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: **[Yes]**

Justification: Yes, we give the details of computational requirements in the appendix.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

Answer: [Yes]

Justification: Yes, the research conducted in the paper conforms, in every respect, with the NeurIPS Code of Ethics.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: Our work does not have negative societal impacts. To support this, we discuss the impact statement in the appendix.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The datasets and models are open-sourced and have been widely used and researched, which does not pose such a risk.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All assets (e.g., code, data, models) used in the paper are properly credited, the term of use are properly respected.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [Yes]

Justification: New assets introduced in the paper are documented, and details are given in the supplementary material.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing or research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: This paper does not involve research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorosity, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLM is used only for writing, editing, or formatting purposes in the paper.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>) for what should or should not be described.

A Border Impact

This work presents IP-Merging, a novel tuning-free method that effectively transfers mathematical reasoning capabilities from specialized math LLMs to multi-modal LLMs (MLLMs). Our approach does not pose any potential societal impacts or ethical concerns. We rely solely on publicly available models and datasets, none of which require specific acknowledgment.

B Detailed Experimental Settings

B.1 Datasets

We test our models math reasoning benchmarks MathVista [23], MathVerse [53], DynaMath [59] and MathVision [36], general QA benchmarks MMMU [50], TextVQA [31] and MMBench [22].:

- **MathVista** assesses the MLLMs’ multimodal mathematical skills, the testing data can be divided into five subsets: Figure Question Answering (FQA), Geometry Problem Solving (GPS), Math Word Problems (MWP), Textbook Question Answering (TQA), and Visual Question Answering (VQA). For evaluation, following [23, 30], we first employ GPT-4 to extract the predicted choices or answers from responses, then report the answer accuracy, which determines whether the final answer matches the ground truth.
- **MathVerse** includes a diverse set of math problems that require understanding and reasoning over both textual and visual information, such as charts, diagrams, and equations. The testing data can be divided into five subsets, i.e., Text Dominant, Text Lite, Vision Intensive, Vision Dominant and Vision Only.
- **DynaMath** is a dynamic visual mathematics benchmark developed for comprehensive evaluation of vision-language models. It consists of 501 carefully curated seed problems, each implemented as a Python program, enabling the assessment of a model’s generalization capability by measuring its robustness across multiple input variations derived from the same underlying seed question.
- **MathVision** is a carefully constructed dataset comprising 3,040 high-quality visual mathematics problems collected from real-world math competitions. Covering 16 mathematical domains and organized into 5 difficulty levels, it offers a broad and balanced benchmark for assessing the visual mathematical reasoning capabilities of MLLMs.
- **MMMU** includes 900 evaluation samples and covers six core disciplines: Art & Design, Business, Science, Health & Medicine, Humanities & Social Science, and Technology & Engineering, making it suitable for assessing the general knowledge of MLLM.
- **TextVQA** evaluates a model’s ability to read and reason over textual information embedded within images. It requires integrating visual understanding with text recognition to answer questions grounded in image content. The dataset comprises 45,336 questions spanning 28,408 images sourced from the OpenImages dataset, providing a large-scale benchmark for visual-text reasoning.
- **MMBench** provides multiple-choice questions in both English and Chinese, facilitating direct and fair comparisons of MLLM performance across languages. Overall, it serves as a systematically constructed and objective benchmark for comprehensive and reliable evaluation of MLLM models. We use English dev set in the experiments.

B.2 Models and Comparison Methods

We employ the LLaVA series [20], Qwen 2 series [37] and InternVL3 [58] series as our base model. We use other fine-tuned Math LLMs such as Tora series models, MetaMath models [9, 47] and Qwen2-Math models [42]. The pretrained foundation LLM of LLaVA models, Tora models and Metamath is the LLaMA-2 [34] model. The pretrained foundation of Qwen series models is the Qwen-2 model [37]. The InternVL model is trained based on the Qwen2.5 models. We use RTX 3090 GPUs for all of our experiments. We compare our proposed methods with prevailing model merging techniques:

- **Base Model** The performance of base MLLM on three tasks, we reproduce the results with the officially released code.
- **Task Arithmetic [15]** combines all the task vectors extracted from the models into one multi-task model.
- **Ties Merging [41]** addresses task inference by pruning redundant parameters. The process involves three steps: Trim, Elect Sign, and Disjoint Merge.
- **EMR Merging [14]** computes one unified task vector and computes task-specific masks based on a unified task vector. The final task vector is computed by combining all the masked task vectors and weighting all the task vectors by rescale parameters.

Table 6: List of MLLMs and LLMs.

Models	Type	Pretrained Base Model	Source LLM
LLaVA-V1.5-7B	MLLM	Vincuna-v1.5-7B	Llama-2-7B
Table-LLaVA-V1.5-7B	MLLM	Vincuna-v1.5-7B	Llama-2-7B
LLaVA-Next-7B	MLLM	Vincuna-v1.5-7B	Llama-2-7B
LLaVA-V1.6-7B-Llama3-8B	MLLM	Llama-3-8B	Llama-3-8B
LLaVA-V1.5-13B	MLLM	Vincuna-v1.5-13B	Llama-2-13B
InternVL3-8B-Instruct	MLLM	Qwen2.5-7B	Qwen2.5-7B
VL-Rethinker	MLLM	Qwen2.5-7B	Qwen2.5-7B
Qwen2-VL-7B-Instruct	MLLM	Qwen2-7B	Qwen2-7B
Qwen2-Math-7B-base	LLM	Qwen2-7B	Qwen2-7B
Tora-7b	LLM	Llama-2-7B	Llama-2-7B
Tora-Code-7B	LLM	CodeLLaMA-7B	Llama-2-7B
Tora-Code-13B	LLM	CodeLLaMA-13B	Llama-2-7B
WizardMath-7B-V1.0	LLM	Llama-2-7B	Llama-2-7B
Tora-7b	LLM	Llama-2-7B	Llama-2-7B
MetaMath-7B	LLM	Llama-2-7B	Llama-2-7B
OpenO1-Llama3-8B	LLM	Llama-3-8B	Llama-3-8B
DeepSeek-R1-distilled-Qwen-7B	LLM	Qwen2.5-Math-7B	Qwen2.5-7B
DeepSeek-R1-distilled-Llama-3-8B	LLM	Llama-3-8B	Llama-3-8B

We list the models used in the experiments in table 6.

B.3 Details of Hyperparameter Selection

Following previous works in model merging [41, 14], we adopt the grid search for hyperparameters for the baseline methods, specifically, we set the hyperparameters based on the following range:

- **Task Arithmetic [15]** involves the scaling coefficients for merged task vectors, which are set ranging from [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9].
- **Ties Merging [41]** involves the scaling coefficient and ratio to retain large parameters, the scaling coefficients are set ranging from [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9], ratio to retain parameters with largest-magnitude values: [0.1, 0.2, 0.3].
- **EMR Merging [14]** does not involve specific hyperparameters.
- **IP Merging** involves the similarity threshold to determine whether the layer should be selected for merging.

C Further Experiments

C.1 Merge Larger Models

We conduct experiments on merging larger models in table 7. The experiments are conducted using models with 13B parameters. When dealing with larger models, our approach can also boost the performance compared to other model merging methods by 2.8% on average. In subtasks such as VQA, where math-related knowledge is highly demanded, our method achieves a 3.3% performance gain.

Table 7: Experiments of merging 13B models. We merge LLaVA-13B with Tora-code-13B using different merging methods. **Bold** represents the best performance.“Avg” is the average performance.

Approach	MathVista						
	Param	TQA	GPS	VQA	FQA	MWP	Avg
Base Model	13B	41.1	25.0	34.1	21.9	16.1	26.7
Task Arithmetic	13B	39.9	34.6	29.1	22.3	7.0	26.0
Ties Merging	13B	38.6	29.3	34.1	22.3	17.2	25.9
IP-Merging	13B	42.4	26.0	37.4	23.1	18.8	28.5 +1.8 ↑

C.2 Merge Multiple Models

We conduct experiments on merging multiple models to verify the scalability of our method in table 8. We use LLaVA-Next-7B as the foundation MLLM, then merge multiple LLMs, such as the Tora Model and MetaMath-based models. As is shown in the table 8, by merging more math reasoning models, the performance of math reasoning MLLM can be further improved.

Table 8: Experiments of merging multiple models on MathVista.

Models	MathVista								
	Params	Approach	Merged LLM	TQA	GPS	VQA	FQA	MWP	Avg
MLLM	7B	Base Model	None	44.9	26.9	33.5	32.3	17.8	30.7
MLLM+ 1 LLM	7B	IP-Merging	Tora-code-7B	46.2	32.2	30.2	33.8	18.3	31.9 +1.2 ↑
MLLM+ 2 LLMs	7B	IP-Merging	Tora-code-7B MetaMath-7B	47.5	26.0	32.4	35.7	23.7	32.7 +2.0 ↑

C.3 Merge Different System-1 LLMs and System-2 LLMs

By employing the proposed method, we conduct experiments on merging different reasoning pattern LLMs with base MLLM LLaVA-7B in table 9. We compare system-1 thinking LLMs such as WizardMath, MetaMath, Tora and Tora-code models. Merging Tora-code yields the best performance. Different from other models, Tora-code uses the high-quality reasoning data involved with the critique process. We believe Tora outperforms others for two main reasons: (1) CoT & PoT Collaboration: Tora employs a collaborative reasoning approach that integrates CoT and PoT to solve problems. In contrast, WizardMath and MetaMath rely solely on CoT. (2) Reflection Mechanism: Tora’s training data incorporates a reflection-based correction process, where incorrect responses are analyzed and revised, contributing to improved reasoning abilities. Others merely filter incorrect reasoning data. By further fine-tuning the code llama, Tora-code is able to perform code-like reasoning on math problems, which exhibits strong performance compared to other math LLM on text-based math reasoning datasets such as GSM8K and Math. This experiment also reveals one interesting observation: math reasoning abilities obtained by Tora series models are more transferable to MLLM. We further conduct experiments on merging system-2 thinking LLMs such as OpenO1 [27] and the DeepSeek-R1-distilled-LLaMA3 model [10], demonstrating the effectiveness of our method. Our method further improves the model performance by merging the long CoT LLMs, obtaining a 2.3% performance gain on average.

Table 9: Experiments of merging different System-1 LLMs and System-2 LLMs on MathVista.

MathLLM	MathVista						
	Params	TQA	GPS	VQA	FQA	MWP	Avg
LLaVA-1.5-7B with System-1 LLMs							
Base Model	7B	36.1	22.1	37.4	20.8	14.0	25.2
MetaMath-V1.0-7B	7B	36.1	22.6	34.1	23.4	15.6	25.7 +0.5 ↑
WizardMath-7B	7B	41.4	25.0	34.1	23.4	13.4	26.6 +1.4 ↑
Tora-V1.0-7B	7B	39.9	26.9	34.6	26.7	12.9	27.4 +2.2 ↑
Tora-code-V1.0-7B	7B	43.7	21.6	40.8	24.9	15.1	28.2 +3.0 ↑
LLaVA-1.6-LLaMA3-8B with System-2 LLMs							
Base Model	8B	50.6	29.3	38.6	46.5	23.1	37.8
OpenO1-LLaMA3-8B	8B	51.9	29.8	40.2	46.5	24.7	38.7 +0.9 ↑
DeepSeek-R1-distilled-LLaMA3	8B	51.9	32.7	40.8	45.7	29.6	40.1 +2.3 ↑

C.4 Similarity Threshold and Time Cost Analysis

We compare the time cost of different model merging algorithms in fig. 7(a). We conduct this experiment of merging 7B MLLM and one math reasoning LLM on a GPU server with 8-card Nvidia RTX 3090. As task arithmetic does not involve operations that modify the models, this method takes the least time. Ties merging and EMR merging involve comparing the sign of each parameter. Thus, they go through all parameters, which can be time-consuming. Since our method directly operates parameters of each layer (formatting as matrix), our method can be accelerated by GPUs and takes less time to merge the models.

We show the results of different similarity thresholds in fig. 7(b), see more results in appendix C.5. The performance fluctuates within a small range with higher similarity. We further compare the time cost of different model merging algorithms in fig. 7(a). Task arithmetic is the fastest since it doesn't change the models. Ties and EMR merging are slower because they process all parameters. Our method is faster as it works on each layer's parameters and can be accelerated by GPUs and takes less time to merge the models.

C.5 Results of Hyperparameter Experiments

We conduct ablation experiments for the hyperparameters in table 10. We show the results of different scaling coefficients in the task vector, the proportion of the retained parameters and the scaling coefficients in ties merging, and similarity thresholds (i.e., S_α in eq. (6)) in our method. We can see that for the Llava models, the threshold around 0.3 and 0.4 provides the best performance, balancing the number of layers associated with math reasoning to be merged and the importance of the layers to math reasoning. For the Qwen model, 0.6 is the optimal choice. We can also see that with higher thresholds, the performance fluctuates within a small range. We also show the comparative methods of ties merging and task vector, the performance is sensitive to the different scaling coefficients or the rate of the retained parameters.

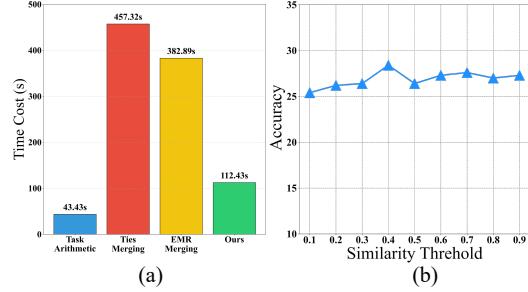


Figure 7: (a) Time cost of our method compared to other methods. (b) The results of different similarity thresholds.

Table 10: Results of different hyperparameters. **Bold** represents the best performance.

Methods	LLaVA-1.5-7B			Qwen-2-VL		
	MathVista	MathVerse	MMMU	MathVista	MathVerse	MMMU
Base Model	25.2	11.3	34.2	55.4	24.8	50.7
Task Vector						
scale=0.1	21.0	6.5	24.4	25.8	6.0	29.3
scale=0.2	25.2	7.9	25.6	27.8	5.9	32.6
scale=0.3	22.2	8.5	26.6	30.8	8.8	29.1
scale=0.4	24.5	3.6	26.3	31.1	9.3	31.0
scale=0.5	23.1	4.4	30.2	28.9	7.6	26.0
scale=0.6	24.8	5.4	25.8	28.1	4.9	26.9
scale=0.7	23.3	6.2	26.2	28.5	1.4	24.9
scale=0.8	23.9	8.0	24.4	29.2	0.0	25.2
scale=0.9	20.9	9.8	25.6	24.1	0.0	23.9
Ties Merging						
retain=0.3,scale=0.1	22.9	5.9	25.8	24.9	1.5	27.6
retain=0.3,scale=0.2	22.9	4.8	24.2	26.5	1.2	27.0
retain=0.3,scale=0.3	24.8	7.3	25.8	26.2	2.3	27.2
retain=0.3,scale=0.4	23.1	6.9	25.6	27.9	0.6	26.4
retain=0.3,scale=0.5	26.1	1.9	22.6	27.6	0.6	26.2
retain=0.3,scale=0.6	25.7	1.8	26.2	26.7	0.4	27.1
retain=0.3,scale=0.7	26.6	0.0	25.7	26.8	0.1	25.7
retain=0.3,scale=0.8	26.6	0.0	22.6	27.0	0.0	24.8
retain=0.3,scale=0.9	25.0	0.0	25.8	24.6	0.0	26.2
retain=0.2,scale=0.1	23.6	6.4	25.3	26.3	2.1	28.1
retain=0.2,scale=0.2	23.6	4.6	24.0	29.2	2.3	26.0
retain=0.2,scale=0.3	24.1	5.3	26.0	28.5	1.9	29.2
retain=0.2,scale=0.4	25.6	7.1	26.0	27.9	1.2	26.9
retain=0.2,scale=0.5	26.1	0.5	21.0	27.5	3.4	25.2
retain=0.2,scale=0.6	26.8	0.0	27.3	27.2	0.3	23.9
retain=0.2,scale=0.7	24.9	0.0	21.4	25.0	0.3	23.1
retain=0.2,scale=0.8	24.8	0.0	24.1	24.8	0.0	28.3
retain=0.2,scale=0.9	23.3	0.0	23.9	24.8	0.0	25.8
retain=0.1,scale=0.1	23.2	6.2	25.7	27.5	1.5	30.0
retain=0.1,scale=0.2	22.9	5.7	25.0	27.5	3.5	30.6
retain=0.1,scale=0.3	23.6	6.4	24.4	27.5	3.4	30.8
retain=0.1,scale=0.4	22.6	10.7	23.4	29.3	5.3	28.8
retain=0.1,scale=0.5	24.3	6.7	25.0	27.0	2.9	27.3
retain=0.1,scale=0.6	24.8	0.3	24.3	25.0	0.9	27.3
retain=0.1,scale=0.7	27.1	0.0	26.9	26.3	0.5	24.4
retain=0.1,scale=0.8	27.1	0.0	20.4	25.8	0.3	27.1
retain=0.1,scale=0.9	24.8	0.0	25.8	26.1	0.2	29.1
EMR Merging	25.0	10.4	34.8	40.8	17.6	41.8
IP Merging						
Sim threshold=0.1	25.4	14.5	34.0	59.3	27.8	50.2
Sim threshold=0.2	26.2	14.8	34.2	59.7	28.0	50.2
Sim threshold=0.3	26.4	15.3	34.4	59.8	27.9	49.8
Sim threshold=0.4	28.4	14.7	33.9	59.7	28.0	49.8
Sim threshold=0.5	26.4	14.9	34.2	59.7	27.9	49.8
Sim threshold=0.6	27.3	14.6	34.2	60.2	28.5	50.7
Sim threshold=0.7	27.6	14.4	34.2	60.1	28.5	50.7
Sim threshold=0.8	27.0	14.4	34.2	60.1	28.4	50.7
Sim threshold=0.9	27.3	14.3	34.2	60.1	28.4	50.7

D Analysis of Selected Parameters

We visualize the proportion and composition of the selected parameters in fig. 8. As shown in the figure, the selected layers account for less than 10% of the total model parameters, with the majority concentrated in the MLP layers. This observation aligns with recent studies on knowledge storage in LLMs, which suggest that most knowledge and skills are encoded within the MLP layers [7, 52]. Since Table-LLaVA is fine-tuned on math reasoning datasets, it has already acquired a certain level of mathematical reasoning ability. Consequently, our selection process identifies a higher proportion of reasoning-related layers in Table-LLaVA compared to the base model, LLaVA. To further analyze the distribution of these selected layers, we plot their locations in fig. 8(c) and (d). The visualization reveals that most reasoning-associated layers are concentrated in the latter part of the model, suggesting that deeper layers play a crucial role in encoding mathematical reasoning skills.

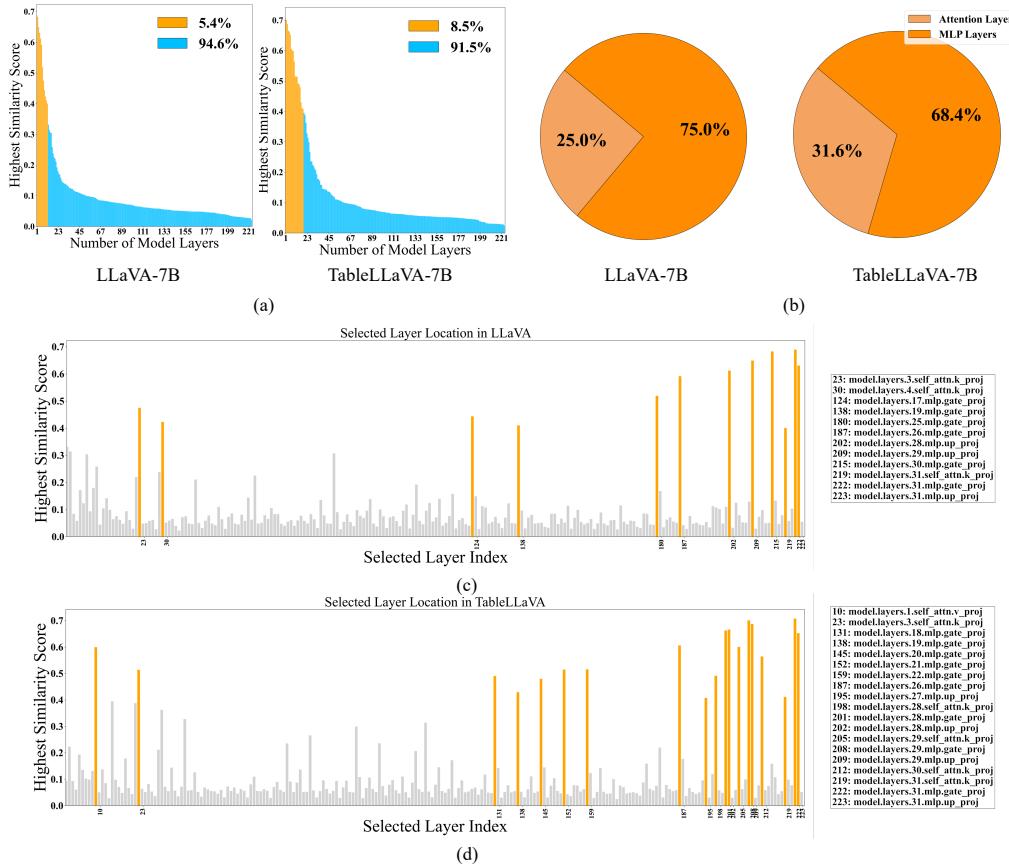


Figure 8: (a) The proportion of selected layer in two MLLMs. (b) The proportion of attention layers and MLP layers in selected layers.(c) Selected layers’ location in LLaVA. (d) Selected layers’ location in Table-LLaVA.

E User Case Analysis

As illustrated in fig. 9, the merged model effectively solved a symbolic reasoning problem by following logical steps to infer intermediate relations and reach the correct answer, showing that mathematical reasoning knowledge from the text-based LLM was successfully transferred and integrated into the multimodal model. This demonstrates that our merging strategy not only enhances reasoning depth but also improves consistency across steps, leading to more interpretable and reliable outputs. In contrast, the failure case occurred in a geometric reasoning scenario where the merged model predicted an incorrect angle despite the visual clues being straightforward. This reveals that while the merged model excels at structured symbolic inference, it still struggles to align textual reasoning with precise spatial understanding.

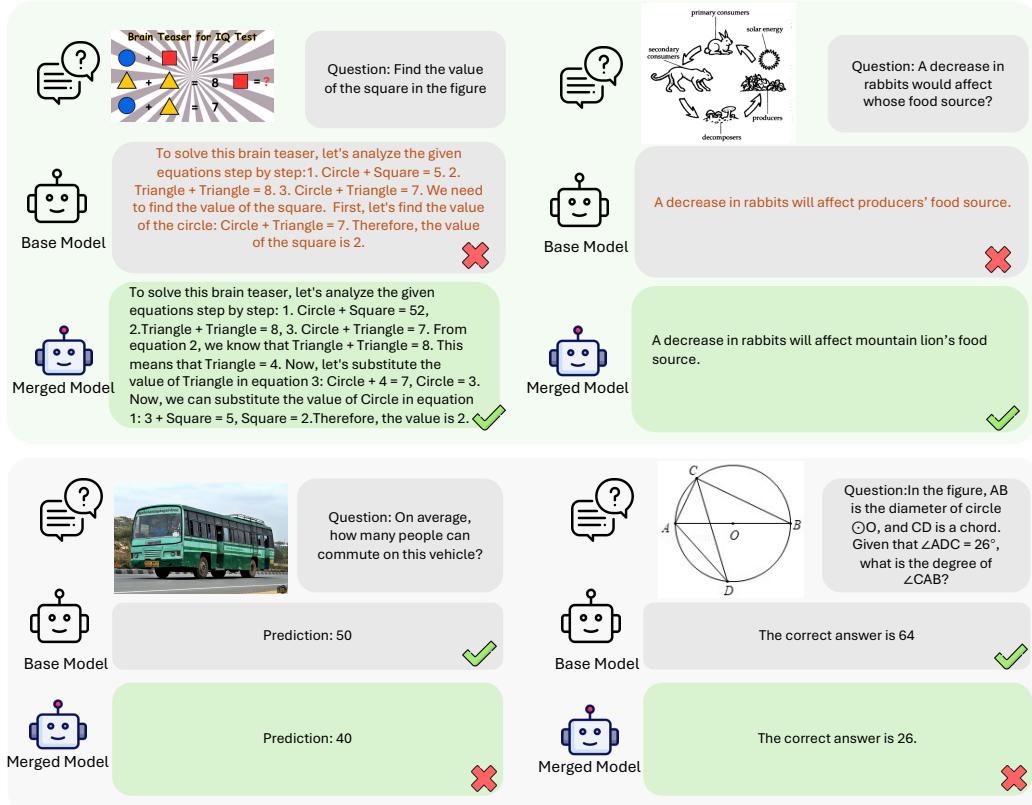


Figure 9: Successful cases and failure cases studies.

F Method Overview

IP merging firstly identifies key parameters in both the MLLM and the math LLM. It then projects the rescaled, selected parameters from the LLM into the subspace of the MLLM to achieve better alignment. Finally, the aligned parameters are merged into the MLLM. During the parameter identification phase, reasoning-related parameters are selected based on their similarity within a shared subspace. In the projection phase, these parameters are rescaled and aligned to minimize the discrepancy between the two models. The complete procedure is illustrated in fig. 10. We visualize the process of IP-Merging as follows:

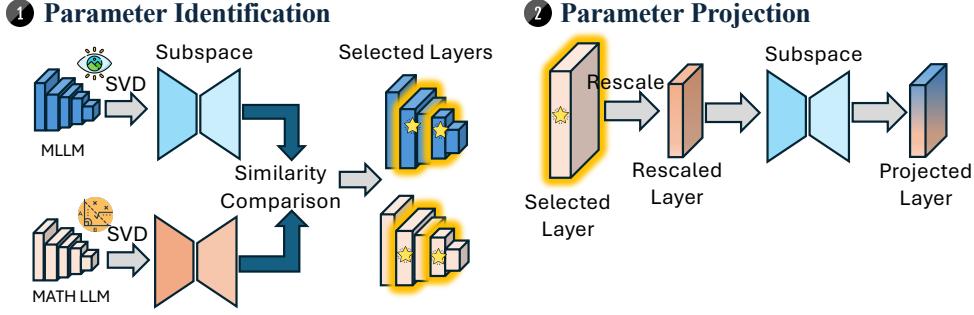


Figure 10: The general process of IP merging.

Algorithm 1 IP-Merging

Input: Parameters of MLLM \mathbf{W}_{MLLM} and Math LLM \mathbf{W}_{Math} , Pretrained Model \mathbf{W}_0 ; Threshold S_α ; Number of layers N .
Output: Math reasoning model $\mathbf{W}_{MathMLLM}$.
Compute task vectors: $\Delta\mathbf{W}_{MLLM}$ and $\Delta\mathbf{W}_{Math}$.
for $n = 1$ to N **do**
 Compute SVD decomposition of $\Delta\mathbf{W}_{MLLM}^n$ and $\Delta\mathbf{W}_{Math}^n$ using Equation 3.
 Compute the similarity scores $\{S_1^n, S_2^n, \dots, S_d^n\}$ for the n -th layer using definition 1.
 if $S_1^n > S_\alpha$ **then**
 Compute the scaling factor λ_n using Equation 7.
 Compute the importance score γ_n using Equation 8.
 Project $\Delta\mathbf{W}_{Math}^n$ into the subspace to obtain $\Delta\mathbf{W}_{Math-P}^n$ using Equation 9.
 return $\mathbf{W}_0 + \Delta\mathbf{W}_{MLLM}^n + \Delta\mathbf{W}_{Math-P}^n$
 else
 return $\mathbf{W}_0 + \Delta\mathbf{W}_{MLLM}^n$
 end if
end for
