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Abstract

A primary goal of statistical precision medicine is to learn optimal individual-
ized treatment rules (ITRs). Outcome weighted learning (OWL) introduced a
classification-based approach to this task. Here, we introduce the first Bayesian
formulation of OWL. Starting from the OWL objective function, we generate a
pseudo-likelihood which can be expressed as the sum of a scale mixture of nor-
mal distributions. Gibbs sampling is used to sample the posterior distribution of
the parameters. In addition to providing a strategy for learning an optimal ITR,
Bayesian OWL provides a natural, probabilistic approach to estimate uncertainty
in ITR treatment recommendations themselves.

1 Introduction

Statistical precision medicine uses data to match patients to treatments to improve health outcomes
[Kosorok and Laber, 2019]. This can be achieved through individualized treatment regimes (ITRs),
functions mapping patient characteristics to treatment recommendations. One goal is to learn optimal
ITRs that, when implemented, result in better outcomes on average in the target population compared
to other strategies, such as a one-size-fits-all approach [Kosorok and Laber, 2019, Murphy, 2003].

Machine learning-based approaches for optimal ITR learning, such as outcome weighted learning
(OWL) introduced by Zhao et al. [2012], convert the statistical ITR-learning problem into a classifi-
cation problem, bypassing the need to estimate ancillary functions like the conditional mean of the
outcome and uncoupling the quality of the estimated ITR from the quality of the ancillary function
estimates. In contrast, OWL enables direct learning the optimal ITR. Because of its flexibility, many
extensions to OWL have been developed [Zhao et al., 2015, Zhou et al., 2017, Liu et al., 2018, Fu
et al., 2019, Zhao et al., 2019].

Bayesian approaches for learning optimal ITRs have also been proposed, including Bayesian machine
learning (BML) [Murray et al., 2018] which employs a variant of approximate dynamic programming
and likelihood-based methods that model both the distribution of final and intermediate outcomes
within the Bayesian framework [Thall et al., 2002, 2007, Arjas and Saarela, 2010, Zajonc, 2012, Xu
et al., 2016, Yu and Bondell, 2023].

Here we focus on the classification-based perspective for learning optimal ITRs. While these
approaches are powerful in terms of predictive power, they do not have a natural mechanism for
inference or for quantifying the uncertainty in the learned ITR’s treatment recommendations. Yet
capturing this kind of uncertainty is crucial for healthcare decision-making. To address this, we
introduce Bayesian outcome weighted learning (Bayesian OWL), the first optimal ITR-learning
method to directly learn optimal ITRs from the classification perspective. By transforming the OWL
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framework into a probabilistic model, we generate a posterior distribution that enables inference and
uncertainty quantification for the treatment recommendations themselves.

2 Background

2.1 Setting

We let A ∈ A = {−1, 1} denote the action, or treatment, and assume that observed treatments are
assigned randomly as in a clinical trial with P (A = 1) = ρ known. Let Xi = (Xi,1, . . . , Xi,p)

⊤ ∈ X
denote the p-dimensional biomarker and prognostic information vector, and let R denote the outcome
(bigger is better). We further assume that the reward can be rescaled so that R > 0. Then, the
observed data is iid replicates of (Ai, Xi, Ri) for i = 1, . . . , n.

An ITR is a function d that maps from patient features X to a recommended treatment in A. For
a given ITR d, the value of d is V (d) = E[R(d)], where R(d) is the reward we would observe if
treatments were allocated according to rule d. An optimal ITR dopt satisfies V (dopt) ≥ V (d) for all
d ∈ D, where D is a class of ITRs. Our goal is to learn an optimal ITR dopt. Under the assumptions
of causal consistency, the stable unit treatment value assumption, no unmeasured confounding, and
positivity, V (d) can be identified from the observed data and V (d) = EX {E[R|A = d(x), X = x]}.

2.2 Outcome weighted learning

If we let P denote the distribution of (X,A,R), and P d denote the distribution of (X,A,R) when
A = d(X), then the reward we would expect if ITR d(X) were followed is given by

Ed(R) =

∫
RdP d =

∫
R
dP d

dP
dP = E

[
1(A = d(X))

Aρ+ (1−A)/2
R

]
. (1)

Zhao et al. [2012] showed that maximizing Equation (1) is equivalent to minimizing a weighted
classification problem with the 0-1 loss function. By replacing the 0-1 loss with a confex surrogate
loss, they formulated an objective function that can be efficiently minimized using machine learning
techniques. To learn optimal ITRs, they proposed the OWL which minimizes

QOWL
n (β) =

1

n

n∑
i=1

ri
aiρ+ (1− ai)/2

(1−i h(xi,β))+ (2)

where the empirical measure replaces the true measure, (z)+ = max(z, 0) denotes the hinge loss
function, and h(·) is the ITR parameterized by β. Song et al. [2015] introduced a penalized variant
of OWL that included a regularization term pλ(β) for the ITR parameters. POWL minimizes the
objective function

QPOWL
n (β)

1

n

n∑
i=1

ri
aiρ+ (1− ai)/2

(1− aih(xi,β))+ +

p∑
j=1

pλ(|βj |) (3)

where pλ(β) is a penalty function and λ is a tuning parameter.

2.3 Bayesian support vector machines

Although the pure machine learning framework is powerful, it is limited in its ability to capture and
model uncertainty as in a statistical framework. Polson and Scott [2011] bridged this gap between
pure machine learning and statistical modeling for SVMs by showing how to cast SVM into a
Bayesian framework. They considered the Lα-norm regularized support vector classifier that chooses
β to minimize

dα(β, ν) =

n∑
i=1

max(1− rix
⊤
i β, 0) + ν−α

p∑
j=1

|βj/σj |α (4)

where σj is the standard deviation of the j-th element of x and ν is a tuning parameter. For
this objective function, the learned classifier is a linear classifier. Polson and Scott [2011] shows
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that minimizing Equation (4) is equivalent to finding the mode of the pseudo-posterior distribu-
tion p(β|ν, α, r) ∝ exp(−dα(β, ν)) ∝ Cα(ν)L(r|β)p(β|ν, α), where Cα is a pseudo-posterior
normalization constant. The main theoretical result from Polson and Scott [2011] is that the pseudo-
likelihood contribution Li(ri|β) is a location-scale mixture of normals (Polson and Scott [2011],
Theorem 1).

3 Our approach

We follow the strategy employed by Polson and Scott [2011] to cast the OWL objective function
into a probabilistic Bayesian learning framework. The conversion is not one-to-one since Polson and
Scott [2011] constructed a Bayesian model for a standard SVM whereas the objective function for
OWL Equation (2) is a weighted SVM problem. Throughout, we will assume R > 0. When this is
not the case, a distance-preserving transformation of R from R to R+ can be used. Assuming that h
is linear, i.e., h(xi,β) = x⊤

i β and following the strategy taken in Theorem 1 of Polson and Scott
[2011], the contribution of a single observation to the pseudo-likelihood is given by

Li(ai|ri,xi,β) = exp

{
−2

ri
aiρ+ (1− ai)/2

max(1− aix
⊤
i β, 0)

}
=

∑
{k=1,−1}

1(ai = k)

∫ ∞

0

1√
2πλi

exp

{
− 1

2λi

(
ri
ρ
+ λi −

ri
ρ
aix

⊤
i β

)2
}
dλi

(5)

or in other words that Li(ai, λi|ri,xi,β) is a scale mixture of Gaussians.

3.1 Prior specification for the ITR parameters

In their formulation of Bayesian SVM, Polson and Scott [2011] use the exponential power prior
for β, a prior that can be show to be equivalent to L1-regularization of the regression parameters.
Regularization of the OWL parameters has been explored as in Song et al. [2015]. In this paper, we
first construct our method as an analogy to the original formulation of OWL without penalization.
We make this choice because (1) our primary aim is to develop a Bayesian classification-based ITR
learning approach, and because (2) L1-regularization does not necessarily yield sparse rules (see the
discussion in Section 4.1 of Polson and Scott [2011]). However, regularization helps avoid overfitting,
a common problem in machine learning. Thus, we also explore penalty priors for β, including the
exponential power prior distribution and the spike-and-slab prior distribution Table 1.

Table 1: Priors for β

Prior for β p(β)

Normal distribution
∏p

j=1
1√
2πσ2

0

exp
{
− 1

2
(βj−µ0,j)

2

σ2
0

}
, where µ0 and σ2

0 are

hyperparameters of the Normal distribution

Exponential power distribution
∏p

j=1 ω
− 1

2
j · exp

{
− 1

2ν2

∑p
j=1

β2
j

σ2
jωj

}
·
∏p

j=1 p(ωj |α),
where ω and α are hyperparameters and when α = 1
p(ωj |α) ∼ Exponential(2)

Spike-and-slab distribution
∏p

j=1

[
(γjN(0, ν2σ2

j ) + (1− γj)δ0(βj))π
γj (1− π)1−γj

]
where π and γj are hyperparameters and δ0 is the Dirac
measure

3.2 Estimation

To draw from the pseudo-posterior distribution, Polson and Scott [2011] employed two algorithms,
an expectation-minimization (EM) approach and a Gibbs sampling approach. The approach we
take is the latter. Although sampling the pseudo-posterior is likely to be more time intensive than
estimation via the EM algorithm, the rationale for a fully Bayesian approach is to enable uncertainty
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quantification (Section 3.3). Because of conjugacy, derivation of the Gibbs sampling algorithms is
straightforward and is not presented here (see Yazzourh and Freeman [2024] for details).

3.3 Prediction and uncertainty quantification

Using the posterior predictive distribution, we can make treatment recommendations for a new patient
and quantify our uncertainty in our recommendation. Let Θ = {β,λ} and ã denote the recommended
treatment for a new patient with features x̃. Then

p(ã = 1|x̃,X, r,a) =

∫
Θ

p(ã = 1|x̃,X, r,a,β,λ)p(β,λ|x, r,a)dθ.

For the class predictions, we can use the probit model which has the form p(a = 1|x) = Φ(x⊤β)
where Φ is the cumulative distribution function of the standard normal distribution. Thus we can
write the posterior predictive distribution as

p(ã = 1|x̃,X, r,a) =

∫
Θ

Φ(x̃⊤β)p(β,λ|x, r,a)dθ. (6)

4 Simulation study

4.1 Classification performance

We conducted simulation studies to assess the classification performance of the proposed method,
following Zhao et al. [2012] and Song et al. [2015]. We compared the performance of OWL,
Bayesian OWL with normal priors for β, Bayesian OWL with exponential power prior for β,
and Bayesian OWL with spike-and-slab prior for β. For each simulated patient, we generated
a 10-dimensional vector of patient features, X1, . . . , X10, drawn independently and uniformly
distributed on [−1, 1]. Treatment A was drawn from {−1, 1} independently of the prognostic
variables with P(A = 1) = 1/2. The outcome variable R was normally distributed with mean
Q0 = 1 + 2X1 + X2 + 0.5X3 + T0(X,A) and standard deviation 1, where T0(X,A) was the
interaction term between treatment and patient features. We examined two scenarios for the treatment-
feature interaction term: Scenario 1 : T0(A,X) = (X1 + X2)A and Scenario 2 : T0(A,X) =
0.442(1−X1 −X2)A

Both scenarios 1 and 2 had linear decision boundaries determined by X1 and X2. For scenario 1, the
true optimal rule was given by 1(X1 +X2 > 0), while for scenario 2, it was 1(1−X1 −X2 > 0).
OWL was implemented with a linear kernel. For Bayesian OWL, Gibbs sampling was used to draw
from the posterior distributions of the parameters 500 times. The first 150 draws were discarded as
"burn-in" and point estimates of β were computed by taking the mean of the draws from the posterior
distribution. Throughout, we set the hyperparameter ν = 0.8.

For each scenario, we varied the training dataset from 100 to 200, 400 and 800 and tested on 1000
patients. For each training set size, we conducted 200 simulation runs. We evaluated classification
performance using the misclassification rate, Number of patients misclassified

Total number of patients . The simulation results are
presented in Table 2.

Scenario 1
Bayesian OWL Bayesian OWL Bayesian OWL

n OWL Normal Prior Exponential Power Prior Spike and Slab

100 0.24 0.38 0.38 0.39
200 0.18 0.34 0.34 0.34
400 0.13 0.29 0.29 0.30
800 0.10 0.24 0.24 0.26

Scenario 2
Bayesian OWL Bayesian OWL Bayesian OWL

n OWL Normal Prior Exponential Power Prior Spike and Slab

100 0.22 0.38 0.38 0.39
200 0.15 0.34 0.34 0.34
400 0.13 0.31 0.31 0.30
800 0.10 0.25 0.25 0.22

Table 2: Misclassification rates for different methods and
sample sizes.

As expected, the classification per-
formance improved among all the
ITR learning methods evaluated as
the sample size increased. How-
ever, OWL consistently outperformed
Bayesian OWL in all sample sizes and
in both scenarios. We hypothesize
that, with additional hyperparameter
tuning, the performance of Bayesian
OWL can be improved. Ordinarily,
one would be hesitant to propose a
method that is dominated by an exist-
ing method. However, the dominance
of OWL is with respect to the misclas-
sification rate. OWL, even with 800

4



samples in our simulation, has a 10%
misclassification rate, and there is no way to determine which of the 10% of the simulated patients
are likely misclassified (given a non-optimal treatment recommendation). In contrast, Bayesian OWL
yields the entire posterior distribution of the estimated optimal ITR and thereby allows for immediate
uncertainty quantification of individual-level treatment recommendations. In essence, Bayesian OWL
can inform us of which treatment recommendations it is less certain about whereas OWL cannot. We
demonstrate this in Section 4.2.

4.2 Treatment recommendation uncertainty

To highlight the utility of quantifying the uncertainty of individual-level treatment recommendations,
we trained Bayesian OWL model using simulated data as in Scenario 1 and the exponential power
prior. Then, we simulated another 1000 patients using the same generative approach, creating a fine
grid for the key variables X1 and X2, which are part of the true optimal rule. This allowed us to
estimate uncertainty across the domain of the true optimal ITR for all combinations of X1 and X2

within [−1, 1]2.

Figure 1: Heatmap of uncertainty quantification

Figure 1 shows how Bayesian OWL quantifies
uncertainty in its treatment recommendations.
The true optimal ITR assigns treatment A = 1 to
patients in the upper-right (where X1+X2 > 0)
and treatment A = −1 to those in the lower-
left. Using the posterior predictive distribution
(Section 3.3), we calculated the uncertainty for
each treatment recommendation individually for
the 1000 patients in our test set. The heat map
in Figure 1 visualizes this uncertainty across
the ITR domain, with lighter colors (yellow and
light green) indicating higher certainty (close
to 1) and darker colors (purple and dark blue)
indicating lower certainty (close to 0). As ex-
pected, Bayesian OWL shows greater certainty
for patients with features far from the decision
boundary and less certainty for those near it. Fur-
thermore, in Figure 1, misclassified individuals
are shown as red points for those incorrectly recommended treatment −1 instead of 1 and orange
points for those incorrectly recommended treatment 1 instead of −1. As expected, these misclassified
patients are near the decision boundary, particularly in regions where the model has the greatest
uncertainty (indicated by purple shading).

5 Discussion

We introduce a Bayesian formulation of OWL, the first Bayesian strategy for directly learning an
ITR from the classification perspective. Like OWL, our approach directly models the decision rule
without relying on conditional mean models. It also allows us to quantify uncertainty in treatment
recommendations at the individual level, unlike typical approaches focused on population-level
uncertainty. This insight can enhance clinical study design by identifying patient types where
treatment recommendations are confident and those needing further sampling.

Our work has some limitations. We only consider linear rules, but nonlinear rules may sometimes be
more appropriate or offer significant clinical improvements. Henao et al. [2014] proposed a Bayesian
SVM for nonlinear decision boundaries, which could be adapted for this purpose. Additionally, we
have not fully explored variable selection as in Song et al. [2015], limiting its use in high-dimensional
settings.

The classification approach for optimal ITRs is powerful, but it struggles with inference and uncer-
tainty quantification. Bayesian OWL addresses this by combining the strengths of direct learning
with a probabilistic framework, expanding inferential potential and improving precision medicine
evidence.
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