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Abstract
We seek to shed light on language model (LM) saturation from the perspective of learning dynam-
ics. To this end, we define a decomposition of the cross-entropy gradient, which forms a shared
low-dimensional basis for analyzing the training dynamics of models across scales. Intuitively, this
decomposition consists of attractive and repulsive components that increase the logit of the correct
class and decrease the logits of incorrect classes, respectively. Our analysis in this subspace reveals
a phenomenon we term gradient dissent, characterized by gradient components becoming system-
atically opposed such that loss cannot be improved along one component without being degraded
along the other. Notably, we find that complete opposition, which we term total dissent, reliably
occurs in tandem with the saturation of smaller LMs. Based on these results, we hypothesize that
gradient dissent can provide a useful foundation for better understanding and mitigating saturation.

1. Introduction

Understanding how language models (LMs) learn from data promises a foundation for progress
driven by principled approaches. This paper considers the opposite but closely related question of
how LMs fail to learn from data. Specifically, we aim to characterize the phenomenon of saturation,
i.e., when LM validation loss stops improving with additional training data. On one hand, saturation
may arise in smaller LMs due to intrinsic constraints on capacity (e.g., softmax bottleneck [12, 23]
as proposed by Godey et al. [11]). On the other hand, we hypothesize saturation can result from
degenerate but preventable training dynamics which constrain learning, as in gradient starvation [19].

To test this hypothesis, we consider the Pythia suite of LMs [3]. We show that improvement in
validation loss is limited to a subset of tokens which correspond to the Zipfian long tail of the model’s
vocabulary. Surprisingly, smaller models abruptly saturate as performance stops improving for these
tokens specifically. A significant challenge in exploring the learning dynamics of this phenomenon is
the lack of shared interpretable basis along which different model sizes and token frequencies can be
characterized and compared. To overcome this, we define one such low-dimensional latent subspace
based on the linear decomposition of cross-entropy gradients into "attractive" and "repulsive"
components, similar to [13]. Intuitively, these respectively correspond to increasing the logit of the
correct prediction and decreasing the logits of incorrect predictions for a given example. Crucially,
we can measure and compare how learning for different models and tokens aligns with these two
objectives by projecting parameters, activations, or even gradients onto these directions throughout
training. Notably, our analysis reveals a phenomenon which reliably occurs with saturation and
may shed light on how it develops: gradient dissent. Dissent arises when attractive and repulsive
components become systematically opposed such that loss cannot be improved along one component
without being degraded along the other, suggesting a significant but mitigatable role in LM saturation.
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Figure 1: Validation losses on V throughout training, stratified by token frequency and plotted for
14M (left) and 1B (right) Pythia LMs. Highlighted points are improving, while the other are saturated.
The red dotted line corresponds to the approximate overall model saturation threshold.

2. Saturation in Pythia LMs

We start our analysis by characterizing saturation in Pythia LMs [3]. In this work, we use the
checkpoints made publicly available by the authors. In the main text, we provide the results for
two models: a small 14M parameter LM, which exhibits saturation during training, and a large 1B
parameter LM, which does not. The results for other model sizes can be found in Appendices C, D.
We compute all measurements on a consistent set of context-target pairs (c, t) ∈ V, |V| = 221 ≈ 2M
sampled from the validation set of The Pile [10] (see Appendix A for more details).

We informally define saturation as validation loss no longer improving with training. Instead of
looking at the overall loss, we stratify our analysis by token frequency to show a more comprehensive
picture of saturation across tokens. To achieve this, we bin tokens by the base-2 logarithm of their
normalized frequency in the training dataset. In Figure 1, we show the behavior of the validation loss
on the resulting token groups during training, highlighting the points that are still improving in green.
We determine whether the point is improving by comparing it to all the previous points for the same
token group and checking if the current loss value is lower than the best previous one plus 1% (for
stability). We refer to all non-improving points as saturated.

The qualitative behavior of validation loss differs drastically across token frequencies but in
a way that is mostly consistent across model scales. For instance, the most frequent tokens are
characterized by a rapid decrease in validation loss, which remains lower than that of the less frequent
tokens throughout training, but effectively saturates after only a few thousand steps. In contrast, the
rarest tokens just as rapidly increase in loss, converging to a negative log-likelihood of ∼ 16 (i.e., a
probability on the order of one in ten million). However, the main difference between small and large
models lays in the behavior of the loss on the tokens in the Zipfian long-tail (i.e., tokens of medium
frequencies between ∼ 2−12 − 2−20). Large models consistently improve the loss on these tokens
throughout the training process, while small models saturate on them in the middle of training. As a
result, small models stop improving on almost all the data and exhibit the overall model saturation,
which we mark approximately with the dotted red line on the plots. The occurrence and timing of the
model saturation we observe closely match the transitions reported in Godey et al. [11].

Overall, the stratified analysis reveals that saturation in LMs is not a homogeneous phenomenon,
and in fact, is characterized by qualitatively different behaviors across token frequencies. Moreover,
our results suggest that the overall model saturation is primarily attributable to saturation in the
tokens from the Zipfian long tail of the model vocabulary.
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3. Gradient decomposition for training dynamics analysis

Since model saturation is a phenomenon occurring during the training process, we propose to analyze
the dynamics of the training itself to shed more light on how and why the saturation appears. Both
model parameters and gradients are extremely high-dimensional, hence, we can either measure
some general scalar properties during the training process, such as validation loss we looked at in
Section 2, or choose a low-dimensional subspace to project them to. In this Section, we describe the
linear decomposition of the gradient similar to [13], which allows us to analyze the gradient training
dynamics in terms of relative behavior of the overall gradient and its two components.

Generally, an LM is a model which takes context c = (c1, ..., cs), ci ∈ [1, v] indexes the model’s
v-token vocabulary, as an input and outputs the probability distribution p ∈ Rv for the next token
using the following computations on the forward pass:

h = F(c, θ), ℓ = UTh, pi = exp(ℓi)/Z , Z =
∑v

j=1
exp(ℓj), (3.1)

where F is a feature-extracting part of the model, h ∈ Rd is a final hidden representation, ℓ ∈ Rv

is a vector of model logits, θ and U ∈ Rd×v are the learnable model parameters. During training,
the cross-entropy loss L(c, t) = −ℓt + log(Z) averaged over a set of training examples (c, t) ∈ X ,
where t ∈ [1, v] is the true next token observed for c, is usually minimized.

For a given training example, the gradient of the cross-entropy with respect to the logits vector ℓ
can be linearly decomposed into two components, corresponding to the correct token t and to all
other incorrect ones respectively:

∂L(c, t)
∂ℓ

= ∇(+)
ℓ +∇(-)

ℓ = (. . . , 0,∇(+)
ℓt

, 0, . . . ) + (. . . ,∇(-)
ℓt−1

, 0,∇(-)
ℓt+1

, . . . ). (3.2)

Due to the linearity of this decomposition, gradients with respect to any model parameter or hidden
representation can also be decomposed into the same two parts ∇(+) and ∇(-) by the chain rule:

∇(+)
ℓi

= pi − 1; ∇(+)
UT
i
= h∇(+)

ℓi
; ∇(+)

h = UT
i ∇

(+)
ℓi

; ∇(+)
θ = ∂ℓi

∂θ ∇
(+)
ℓi

; for i = t (3.3)

∇(-)
ℓj

= pj ; ∇(-)
UT
j
= h∇(-)

ℓj
; ∇(-)

h =
∑
j ̸=t

UT
j ∇

(-)
ℓj

; ∇(-)
θ =

∑
j ̸=t

∂ℓj
∂θ ∇

(-)
ℓj

; for j ̸= t (3.4)

Intuitively, ∇(+) tries to increase the logit for the correct token prediction, while ∇(-) tries
to decrease all other logits. Doing so, they influence the parameters and hidden representations
differently due to the opposite signs of the ∇(+)

ℓt
and ∇(-)

ℓj
. Component ∇(+) pulls any parameter or

hidden representation towards the corresponding gradient of the logits (Eq. 3.3), therefore, we call it
an attractive gradient. In contrast, we call the second component ∇(-) a repulsive gradient since it
pushes any parameter or hidden representation from the corresponding gradient of the logits (Eq.
3.4). For example, the final hidden representation h and the correct token unembedding vector UT

t

are pulled closer together by their attractive gradients, while h and all other unembedding vectors
UT
j , j ̸= t are pushed away from each other by their repulsive gradients.

We note that our gradient decomposition applies to a single training example. In contrast, prior
works [19, 21] consider gradient decompositions from the perspective of different latent features and
training examples. Also, since the two gradient components have the same meaning for any training
step and any model size, we can compare the checkpoints of models of different sizes at different
training steps in terms of the relation between them and the overall gradient.
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Figure 2: Training dynamics analysis for h for small 14M (top) and large 1B (bottom) models. Red
dotted lines correspond to the approximate overall model saturation threshold from Figure 1.

4. Analysis of training dynamics of Pythia LMs

In this section, we focus our analysis on learning dynamics in final hidden representations h,
discussing how these results propagate to other model parameters in Appendix E. In Figure 2,
we show how the overall gradient ∇h and the final hidden representation h itself progress in the
attractive-repulsive space during training of a saturating 14M and non-saturating 1B parameter LMs,
with similar plots shown in Appendix D for other model sizes. Consistent with Section 2, we stratify
our analysis by token frequency to account for systematic differences in ∇(+)

h and ∇(-)
h which may

arise due to frequency biases in token representations UT
i (see Appendix B).

For the large model, the overall gradient is partially aligned with both components throughout
training, hence, the optimization process can simultaneously increase and decrease the magnitude
of correct and incorrect logits respectively. However, a much higher alignment with the attractive
component indicates that optimization is dominated by the former at the expense of the latter. As a
result, by going in the direction of the anti-gradient, optimization makes hidden representations h
more opposed to the attractive gradient and more aligned with the repulsive gradient.

For the smaller model, initial training dynamics are similar but present a more pronounced
difference between the attractive and repulsive components. Notably, there is less alignment between
the overall gradient and its repulsive component, and even slight opposition for some token frequency
groups. This structure in the gradient suggests that, in the case of limited model capacity, there is
some level of opposition between attractive and repulsive gradients, which results in destructive
interference between them. Strikingly, at some point, we observe a transition as the overall gradient
loses its alignment with the attractive component too, and the hidden representation become strongly
aligned with the attractive gradient and strongly opposed with the repulsive one. This alignment
and opposition between hidden representations and their two gradient components increases our
confidence in the possibility that opposition between attractive and repulsive gradients results in
destructive interference. Moreover, the timing of the transition correlates well with the saturation
transition previously identified in Section 2 for all model sizes (see Appendix D). Altogether, these
observations lead us to the gradient dissent hypothesis, which we discuss in the next section in detail.
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Figure 3: Gradient dissent for h: for small models, attractive and repulsive gradients become large
and completely opposed without the significant change in the norm of the overall gradient.

5. Gradient dissent hypothesis

The learning dynamics identified in Section 4 and Appendix D suggest that attractive and repulsive
gradients ∇(+)

h and ∇(-)
h become systematically and fully opposed in smaller models, at the same

points where the models saturate (see Section 2 and Appendix C). In light of these results, we define
gradient dissent as a phenomenon where additive components of a gradient become systematically
opposed during training and interfere destructively with one another. In the case of complete
opposition, which we term total dissent, this can cause the overall gradient to approach zero despite
individual components being non-zero and potentially even quite large. Intuitively, this corresponds
to a suboptimal minimum where the loss cannot be improved along one gradient component without
being degraded along another, similar to [19, 21].

In Figure 3, we confirm that total dissent arises simultaneously with saturation, characterized
by ∇(+)

h and ∇(-)
h becoming fully opposed and exploding in norm while the overall gradient ∇h

norm shrinks. As model size increases, saturation and total dissent are consistently delayed and do
not appear for larger non-saturing LMs. Furthermore, in Appendix E, we show that total dissent
simultaneously occurs in model parameters through backpropagation. However, the opposition
between attractive and repulsive gradients (for both hidden states and parameters) remains surprisingly
stable and negative for unsaturated models, suggesting that moderate degrees of gradient dissent are
not always indicative of degenerate training dynamics. Whether learning in LMs occurs despite or
on account of gradient dissent remains an open question. Based on these preliminary findings, we
hypothesize that directly mitigating gradient dissent may reduce constraints on learning dynamics and
delay saturation in smaller LMs, potentially even improving LM performance and training efficiency
across scales.

6. Conclusion and future work

By decomposing LM gradients into interpretable additive terms, we create a unified low-dimensional
latent subspace to study and compare LM learning dynamics across scales. In the resulting analysis,
we uncover a phenomenon we term gradient dissent, which we hypothesize can lead to degenerate
learning dynamics. We show that gradient dissent occurs systematically across training and model
scales in Pythia LMs but that, in its most extreme form, it is strongly associated with the emergence
of saturation in smaller LMs. While we characterize how dissent and saturation co-occur, why it
happens remains an open question. Furthermore, our work provides a foundation for future work on
mitigating saturation and studying training dynamics from the perspective of gradient dissent.
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Appendix A. Experimental setup details
Pythia LMs We use model checkpoints made publicly available by Biderman et al. [3] through
the transformers library [22] and under the MIT License [2]. Specifically, we consider 14m,
31m, 70m, 160m parameter LMs which exhibit saturation during training, as well as 410m and 1b
parameter LMs which do not. Each model shares the same vocabulary size v = 50, 254 and have
hidden state dimension d = 128, 256, 512, 768, 1024, 2048 respectively.

Figure 4: Frequency distribution of to-
kens in the pile-train dataset and
validation set sample V .

Data sampling and distributional properties Measure-
ment throughout this work are computed on a consistent
set of context-target pairs (c, t) ∈ V, |V| = 221 ≈ 2M
sampled from the validation set of The Pile [10], made
available through the datasets library [14] and under
the MIT License [2].

In Figure 4, we measure the frequency distribution of
tokens in V relative to the pile-train dataset on which
Pythia LMs were trained. We find that just over 90% of to-
kens are represented in V , with unsampled tokens largely
belonging to a long tail of rare tokens (with less than
0.001% occurrence frequency throughout training). In-
terestingly, we find that while tokens initially follow a
long-tailed Zipfian distribution typical of word occurrence
in language [20], the use of byte-pair encoding tokeniza-
tion [5] seems to result in a markedly increased rate of
frequency decay for the bottom ∼ 5% of tokens with nor-
malized frequency ≤ 2−20.
Token groups by frequency To account for the distributional properties highlighted in the previous
section, we stratify our measurements and analysis by token frequency, binning tokens by the base-
2 logarithm of their normalized frequency in the training dataset (Figure 4). This enables us to
distinguish trends in saturation and learning dynamics for tokens which are frequent, in the Zipfian
long-tail, or part of the non-Zipfian outlier subset of rarest tokens. Furthermore, based on prior work
on representation degeneration other frequency biases in LM unembeddings (see Appendix B.2), we
expect qualitatively different behavior for rare and frequent tokens, driven primarily by systematic
differences in their unembedding vectors UT

i .
Computing gradient components To compute attractive and repulsive gradients, we use py-
torch [18], injecting a hook in the backward pass of the cross-entropy loss which masks logit
gradients ∇(+)

ℓt
and ∇(-)

ℓj
, j ̸= t respectively. Regular gradients are computed as usual using an unal-

tered cross-entropy loss. Hidden state gradients are computed and cached for each token individually,
with associated measurements performed on the gradient of each token individually unless otherwise
specified. In contrast and for reasons of tractability, parameter gradients are computed and averaged
once over all tokens before caching, with associated measurements performed on the final gradient
of individual parameter tensors unless otherwise specified.
Resources We use a single A100 GPU with experiments taking on average between 5 minutes and
2-3 days for one line on the plot for the smallest 14m and the largest 1b models respectively.
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Appendix B. Related works

B.1. Softmax bottleneck

Since hidden size d is generally smaller than the vocabulary size v, the rank of U is at most d and
bottlenecks the degrees of freedom in logits ℓ. Yang et al. [23] and Kanai et al. [12] show that
the corresponding log probabilities log(p) = ℓ − log(Z) · 1 share the same low-rank bottleneck
despite the non-linearity of softmax; preventing LMs from accurately representing the presumably
high-rank matrix of "true" log probability distributions P ∗

t,i = p(t|ci), P ∗ ∈ Rv×|c| over all possible
contexts c. While several methods have been proposed to address this issue and increase the rank of
LM log-probabilities, Parthiban et al. [17] show in extensive experiments that this increased rank
is not sufficient nor necessary for previously reported performance improvements, attributing these
to implicit regularization instead. Nevertheless, recent work has also linked the softmax bottleneck
to more specific limitations, including the inability to model multi-mode token distributions [6], a
propensity for neural text degeneration [8], and notably saturation in small language models [11].

B.2. Frequency bias in token representations

Arora et al. [1], Mu and Viswanath [16] found that word embedding models [e.g. 15] learn frequency-
biased representations. Specifically, their first principal components are found to minimize the
training objective by encoding frequency, but actually harm performance on downstream tasks. Gao
et al. [9] identify a similar "representation degeneration" problem in LMs, whereby cross-entropy
loss is minimized when output layer embeddings of rare tokens cluster in a narrow cone, limiting their
representational capacity. Similarly, Biś et al. [4], Yu et al. [24] show that cross-entropy gradients in
LMs lead to output layer embeddings clustering together for rare tokens.

B.3. Gradient starvation and opposition

Pezeshki et al. [19] introduce the concept of gradient starvation, whereby spurious features which
correctly classify many examples are learned rapidly, limiting gradient signal and the model’s ability
to learn new more generalizable features on these examples. Similarly, Rosenfeld and Risteski [21]
identify "opposing signals" as a phenomenon where groups of outlier examples have gradients which
point in opposite directions, leading to oscillations as the model alternates between optimizing one
group at the expense of another, eventually leading to loss spikes. In contrast to these works, gradient
dissent is a fundamentally different phenomenon which considers an input-invariant decomposition
of the gradient for a single example but generalizes to batch gradients as shown in Appendix E.

Appendix C. Saturation in Pythia LMs: all model sizes

In Figure 5, we show the behavior of validation loss on different frequency token groups for Pythia
LMs of all considered model sizes, complementing Figure 1 from the main text. The main results,
such as 1) variation of the loss behavior for the frequency token groups, and 2) the main role of the
middle frequencies for the model saturation, are valid for all model sizes. The largest two models,
410M and 1B parameter ones, do not saturate. In contrast, all smaller models, 14M, 31M, 70M, and
160M parameter ones, exhibit saturation during training. Moreover, the larger the model, the later
this transition occurs, closely matching the transition timings reported in Godey et al. [11].

10
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14M model 31M model 70M model

160M model 410M model 1B model

Figure 5: Validation losses on V throughout training, stratified by token frequency and plotted for
Pythia LMs of different sizes. Highlighted points are improving, while the other are saturated. Red
dotted lines correspond to the approximate overall model saturation threshold.

Appendix D. Gradient analysis for final hidden representations: all model sizes

In Figure 6, we show how the full gradient ∇h and the final hidden representations h evolve during
training in the attractive-repulsive space for models of all considered sizes, complementing Figure 2
from the main text. The main differences between the small and large models behaviors described
in the main text occur gradually with increasing model size. Notably, the transition in the gradient
behavior appears only for the models which saturate (14M - 160M models). Moreover, the timing of
the transition is closely related to the saturation threshold for the corresponding models in Figure 5.

Appendix E. Gradient analysis for model parameters

In the main text, we show that the attractive and repulsive gradients w.r.t. the final hidden represen-
tation h are opposed to some extend during training, with the emergence of total gradient dissent
for small models. Intuitively, if the gradient dissent emerges in the final hidden states, then any
parameter or activation θ of which h is a function of will have its gradient similarly affected via the
chain rule:

∂L
∂θ = ∇(+)

θ +∇(-)
θ = ∂h

∂θ∇
(+)
h + ∂h

∂θ∇
(-)
h , s.t. ∇(+)

h ≈ −∇(-)
h =⇒ ∇(+)

θ ≈ −∇(-)
θ . (E.1)

In Figure 7 we show that dissent in hidden states h indeed propagates to and in fact seems to
become amplified in model parameters θ, with all models rapidly converging to almost complete
opposition within the first thousand steps. Nevertheless, we observe the same transition as in hidden
states with gradients in smaller saturating models becoming truly completely opposed with increasing
norms relative to the overall gradient, again co-occurring with previous transitions in hidden states
and in validation loss.

One key difference which may explain the discrepancy in magnitudes between hidden states
and model parameters is the fact that hidden state gradients are computed individually for different
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Figure 6: Training dynamics analysis for h for models of different sizes. Red dotted lines correspond
to the approximate overall model saturation threshold form Figure 5.

12



GRADIENT DISSENT IN LANGUAGE MODEL TRAINING AND SATURATION

Figure 7: Gradient dissent for model parameters θ: the gradient opposition is even more pronounced
than for the final hidden representation h.

predictions, while model parameter gradients are pooled across all ∼ 2M examples in our validation
set. In addition, the multiplicative contributions of parameter gradients during backpropagation may
be magnifying gradients along these directions. However, the sheer magnitude of the opposition
observed in gradients even for larger non-saturating models suggests that models can still learn
despite having effectively dissenting gradients. Whether or not learning would improve or suffer from
mitigating dissent in these cases is not clear and remains an open question for future work. Intuitively,
dissenting gradients mean that the model cannot learn features which improve the loss along one
gradient without harming the loss along the other. As a result, we hypothesize that gradient dissent
induces training dynamics similar to the edge-of-stability phenomena identified by Cohen et al. [7]
with learning defined by local instability as gradient dissent makes overall gradients inherently noisy;
but global convergence as optimization still finds gradient signal in the noise.
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