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Abstract

Proprietary and closed APIs are becoming increasingly common for large language models
such as GPT4 and ChatGPT, and are impacting the practical applications of natural lan-
guage processing, including few-shot classification. Few-shot classification involves training
a model to perform a new classification task with a handful of labeled data. This paper
presents three contributions. First, we introduce a scenario where a pre-trained model
is served through a gated API with compute-cost and data-privacy constraints. Second,
we propose a transductive inference, a learning paradigm that has been overlooked by the
NLP community. Transductive inference, unlike traditional inductive learning, leverages the
statistics of unlabelled data. We also introduce a new parameter-free transductive regular-
izer based on the Fisher-Rao loss, which can be used on top of the gated API embeddings.
This method fully utilizes unlabelled data, does not share any label with the third-party
API provider and could serve as a baseline for future research. Third, we propose an im-
proved experimental setting and compile a benchmark of eight datasets involving multiclass
classification in four different languages, with up to 151 classes. We evaluate our methods
using eight backbone models, along with an episodic evaluation over 1,000 episodes, which
demonstrate the superiority of transductive inference over the standard inductive setting.

1 Introduction

Recent advances in Natural Language Processing (NLP) have been largely driven by the scaling paradigm
(Kaplan et al., 2020; Rosenfeld et al., 2019), where larger models with increased parameters have been
shown to achieve state-of-the-art results in various NLP tasks (Touvron et al., 2023; Radford et al., 2019).
This approach has led to the development of foundation models such as ChatGPT (Lehman et al., 2023;
Kocoń et al., 2023), GPT-4 (OpenAI, 2023), GPT-3 (Brown et al., 2020), T5 (Raffel et al., 2020), and BERT
(Devlin et al., 2018), which have achieved unprecedented performance in text classification (Liu et al., 2019b),
language modeling, machine translation (Fan et al., 2021), and coding tasks (Chen et al., 2021a).

Despite the success of the scaling paradigm, significant challenges still exist especially when the many
practical constraints of real-world scenarios have to be met: labeled data can be severely limited (i.e.,
few-shot scenario (Song et al., 2022; Ye et al., 2021)), data privacy is critical for many industries and
has become the subject of increasingly many regulatory pieces (Commission, 2020; 2016), compute costs
need to be optimized (Strubell et al., 2019). Furthermore, these challenges are made even more complex
as stronger foundation models are now available only through APIs (e.g., OpenAI’s GPT-3, GPT-4 or
ChatGPT, Anthropic’s Claude or Google’s PaLM (Chowdhery et al., 2022)) which has led to some of their
parameters being concealed, presenting new challenges for model adaptation (Solaiman, 2023). This paper
is centered on the fundamental task of few-shot text classification, specifically focusing on cloud-based/API
access. Specifically, we formulate three requirements for API-based few-shot learning (see Fig. 1):

(R1) Black-box scenario. We focus on learning from models that are opaquely deployed in production to
the end-user, who only has access to the end-point of the encoder, i.e., the resulting text embedding
produced by the final layer of the network.

(R2) Low resources / computation time. AI systems are often required to make rapid predictions at
high frequencies in various real-world applications. Therefore, any few-shot classifier used in such
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Figure 1: API-based few-shot learning scenario. The black-box API providing embeddings from the pre-
trained encoder fθ. The black-box scenario discard existing inductive approaches and in-context learning
methods due to inaccessible of model’s parameters ((R1)) and privacy concerns ((R3)). This scenario,
allows to tune a classification head gϕ (using induction or transduction) at low computational cost (R2),
while retaining all support labels locally.

scenarios should have a low training and inference time, as well as require minimal computational
resources.

(R3) Limited Data Sharing. When utilizing API models, data sharing becomes a major concern. In
the current landscape, providers are increasingly offering less transparent procedures for training
their networks. As a result, users prefer sharing as little information as possible, such as labeling
schema and annotated data, to safeguard their data privacy.

While numerous previous studies have addressed the popular few-shot classification setting, to our knowledge
no existing line of work adequately satisfies the three API requirements described above. In particular,
prompt-based FSL (Schick & Schütze, 2020a) and parameter-efficient fine-tuning FSL (Houlsby et al., 2019)
both require access to the model’s gradients, while in-context learning scales poorly with the task’s size (e.g
number of shots, number of classes) (Chen et al., 2021b; Min et al., 2021; 2022; Brown et al., 2020) and
requires full data sharing. Instead, in this work, we focus on methods that can operate within API-based
constraints.

Under R1, R2, and R3 requirements, the standard inductive learning (Liu et al., 2022) may be quite
limiting. To mitigate the labeled data scarcity while retaining API compliance, we revisit transduction
(Vapnik, 1999) in the context of textual few-shot classification. Specifically, in the context of few-shot
learning, transductive few-shot learning (Liu et al., 2019a) advocates leveraging unlabeled test samples of
a task as an additional source of information on the underlying task’s data distribution in order to better
define decision boundaries. Such additional source essentially comes for free in many offline applications,
including sentiment analysis for customer feedback, legal document classification, or text-based medical
diagnosis.

Our findings corroborate recent findings in computer vision (Liu et al., 2019a; Ziko et al., 2020;
Lichtenstein et al., 2020; Boudiaf et al., 2020; Hu et al., 2021b), that substantial gains can be obtained
from using transduction over induction, opening new avenue of research for the NLP community. However,
the transductive gain comes at the cost of introducing additional hyperparameters, and carefully tuning
them. Motivated by Occam’s razor principle, we propose a novel hyperparameter-free transductive
regularizer based on Fisher-Rao distances and demonstrate the strongest predictive performances across
various benchmarks and models while keeping hyper-parameter tuning minimal. We believe that this
parameter-free transductive regularizer can serve as a baseline for future research.

Contributions

In this paper, we make several contributions to the field of textual few-shot learning. Precisely, our contri-
butions are threefold:
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• A new textual few-shot scenario: We present a new scenario for few-shot learning using textual API-
based models that accurately captures real-world constraints. Our novel scenario opens up new research
avenues and opportunities to address the challenges associated with few-shot learning using API-based
models, paving the way for improved performance and practical applications in the field.

• A novel transductive baseline. Our paper proposes a transductive few-shot learning algorithm that
utilizes a novel parameter-free Fisher-Rao based loss. By leveraging only the network’s embedding (R1),
our approach enables fast and efficient predictions (R2) without the need to share the labeling schema or
the labels of few-shot examples making it compliant with (R3). This innovative method marks a significant
step forward in the field of few-shot learning, offering improved performance and practicality for real-world
applications.

• A truly improved experimental setting. Previous studies on textual few-shot classification (Schick &
Schütze, 2022; 2020b; Mahabadi et al., 2022; Tam et al., 2021; Gao et al., 2020) have predominantly assessed
their algorithms on classification tasks with a restricted number of labels (typically less than five). We take
a step forward and create a benchmark that is more representative of real-world scenarios. Our benchmark
relies on a total of eight datasets, covering multiclass classification tasks with up to 151 classes, across
four different languages. Moreover, we further enhanced the evaluation process by not only considering 10
classifiers trained with 10 different seeds (Logan IV et al., 2021; Mahabadi et al., 2022), but also by relying
on episodic evaluation on 1,000 episodes (Hospedales et al., 2021). Our results clearly demonstrate the
superiority of transductive methods.

2 Related Work

2.1 Few-shot learning in Natural Language Processing

Numerous studies have tackled the task of few-shot learning in Natural Language Processing (NLP) by
utilizing pre-trained language models (Devlin et al., 2018; Liu et al., 2019b; Radford et al., 2019; Yang et al.,
2019). Theses methods can be classified into three major categories: prompt-based, parameter-efficient
tuning and in-context learning.
Prompt-based Few-shot Learning: Prompt-based few-shot learning involves the use of natural language
prompts or templates to guide the model to perform a specific task (Ding et al., 2021; Liu et al., 2023). For
example, the seminal work (Schick & Schütze, 2020a) proposed a model called PET, which uses a pre-defined
set of prompts to perform various NLP tasks as text classification. They also impose a choice of a verbalizer
which highly impact the classification performances (Cui et al., 2022; Hu et al., 2021a). However, recent
studies have questioned the benefits of prompt-based learning due to the high variability in performance
caused by the choice of prompt (Liu et al., 2022). To address this issue, researchers have proposed prompt
tuning which involves a few learnable parameters in addition to the prompt (Lester et al., 2021). Nevertheless,
these approaches face limitations when learning from API: (i) encoder access for gradient computation is
infeasible (as in R1), (ii) prompting requires to send data and label which raises privacy concerns (as in
R3), and (iii) labeling new points is time-consuming (see in R3) and expensive due to the need to send all
shots for each input token1.
Parameter-efficient fine-tuning. These methods, such as adapters (Houlsby et al., 2019; Pfeiffer et al.,
2020), keep most of the model’s parameters fixed during training and only update small feed-forward networks
that are inserted within the larger model architecture. A recent example is T-FEW (Liu et al., 2022), which
adds learned vectors that rescale the network’s internal activations. Additionally, it requires a set of manually
created prompts for each dataset making it hard to use in practice. Relying on parameter-efficient fine-tuning
methods with an API is not possible due to the need to compute gradients of the encoder (as per R1) and
the requirement to send both the labeling schema and the labels, which violates R3.
In Context Learning. In-context learning models are a unique type of model that utilizes input-to-output
training examples as prompts to make predictions, without any parameter updates Wei et al. (2022). These
models, such as GPT-3 and ChatGPT, rely solely on the provided examples to generate predictions, without
any additional training. However, a significant drawback of this approach is that the user must supply the

1The cost of API queries is determined by the number of input tokens that are transmitted.
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input, label examples, and task description, which is both slow (Liu et al., 2022) (R2) and raises data privacy
concerns (as highlighted in R3). Additionally, the inability to reuse text embeddings for new tasks or with
new labels without querying the model’s API limits practicality and scalability, making reusable encoding
unfeasible for in-context learning models2.
Meta-learning. Meta-learning approaches have for quite long stood as the de-facto paradigm for few-shot
learning (Snell et al. (2017); Rusu et al. (2019); Sung et al. (2018b); Lee et al. (2019); Raghu et al. (2019);
Sun et al. (2019a)). In meta-learning, the objective is to provide the model with the intrinsic ability to learn
in a data-efficient manner. For instance, MAML (Finn et al. (2017b); Antoniou et al. (2018)), arguably the
most popular meta-learning method, tries to train a model such that it can be fine-tuned end-to-end using
only a few supervised samples while retaining high generalization ability. Unlike the three previous lines of
work, meta-learning methods operate by modifying the pre-training procedure and therefore assume access
to both the training data and the model, which wholly breaks both R1 and R3.

2.2 Inductive vs transductive few-shot learning

Learning an inductive classifier on embeddings generated by an API-based model, as proposed by (Snell
et al., 2017), is a common baseline for performing few-shot learning. This approach is prevalent in NLP,
where a parametric model is trained on data to infer general rules that are applied to label new, unseen data
(known as inductive learning (Vapnik, 1999)). However, in few-shot learning scenarios with limited labeled
data, this approach can be highly ambiguous and lead to poor generalization.

Transduction offers an attractive alternative to inductive learning (Sain, 1996). Unlike inductive learning,
which infers general rules from training data, transduction involves finding rules that work specifically for
the unlabeled test data. By utilizing more data, such as unlabeled test instances, and aiming for a more
localized rule rather than a general one, transductive learning has shown promise and practical benefits in
computer vision (Boudiaf et al., 2020; 2021; Ziko et al., 2020). Transductive methods yield substantially
better performance than their inductive counterparts by leveraging the statistics of the query set (Dhillon
et al., 2019). However, this approach has not yet been explored in the context of textual data.

3 API based Few-shot Learning

3.1 Problem Statement

Let Ω be the considered vocabulary, we denote Ω∗ its Kleene closure. The Kleene closure corresponds to
sequences of arbitrary size written with tokens in Ω, i.e., Ω∗ =

∞⋃
i=0

Ωi. Given an input space X with X ⊆ Ω∗

and a latent space Z, we consider a pre-trained backbone model fθ : X → Z = Rd, where θ ∈ Θ represents
the parameters of the encoder and d is the embedding dimension size. In the API-based setting, we assume
that we are unable to access the exact structure of fθ as mentioned in R1. However, we do have access to
the last embedding of the encoder which is available for our use (see R1).
The objective of few-shot classification is to learn a classifier from limited labeled data and generalize to
new, unseen tasks or classes. To accomplish this, randomly sampled few-shot tasks are created from a test
dataset Dtest := {(xi, yi)}Ntest

i=1 that has a set of unseen classes Ytest. Each task involves a few labeled
examples from K different classes chosen at random among Ytest. These labeled examples constitute the
support set S = {xi, yi}i∈IS

, with a size of |S| = NS ×K. Additionally, each task has an unlabeled query set
Q = {xi}i∈IQ

composed of |Q| = NQ × K unseen examples from each of the K classes. Pre-trained models
use few-shot techniques and the labeled support sets to adapt to the tasks at hand and are evaluated based
on their performances on the unlabeled query sets.

Remark Setting the values of N and K in textual few-shot learning is not standardized, as discussed in
Sec. 3.1. Therefore, in all of our experiments, we have relied on setting (N, K) ∈ {5, 10}2.

2Furthermore, as the number of considered classes increases, the fixed size of the transformer limits the number of possible
shots that can be fed to the model. Previous studies have often neglected this limitation by focusing on a few number of labels.
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3.2 Proposed Methods and Transductive approaches

NLP few-shot classifiers rely only on inductive inference, while computer vision has shown significant per-
formance improvements using transductive inference for few-shot learning. Transductive inference succeeds
in few-shot learning because it jointly classifies all unlabeled query samples of a single task, leading to more
efficient and accurate classification compared to inductive methods that classify one sample at a time. Let
us begin by introducing some basic notation and definitions before introducing our new transductive loss
based on the Fisher-Rao distance.

In the API-based few-shot classification setting, our goal is to train a classification head gϕ : Z → RK that
maps the feature representations to the posterior distribution space for making predictions. To simplify
the equations for the rest of the paper, we use the following notations for the posterior predictions of each
i ∈ IS ∪ IQ and for the class marginals within Q:

pik = gϕ(fθ(xi))k = P(Y = k|X = xi; θ, ϕ) and p̂k = 1
|Q|

∑
xi∈Q

pik = P(YQ = k; θ, ϕ)

where X and Y are the random variables associated with the raw features and labels, respectively, and where
YQ means restriction of the random variable Y to set Q.

For training the classification head in the transductive setting, prior research aims at finding ϕ such that
ϕ = arg min CE − λ × RQ

3, with CE:= − 1
|S|
∑

i∈S

∑K
k=1 yik log(pik) being the cross-entropy supervision on

the support set (in which yik is the kth coordinate of the one-hot encoded label vector associated to sample
i) and RQ being a transductive loss on the query set Q.

Note that this transductive regularization has been proposed in the literature based on the InfoMax principle
(Cardoso, 1997; Linsker, 1988) and the inductive loss can be found by setting λ = 0. In what follows, we
review the regularizers introduced in previous work.

Entropic Minimization (H) An effective regularizer for transductive few-shot learning can be derived
from the field of semi-supervised learning, drawing inspiration from the approach introduced in (Grandvalet
& Bengio, 2004). This regularizer, proposed in (Dhillon et al., 2019), utilizes the conditional Shannon
Entropy (Cover, 1999) of forecast results from query samples during testing to enhance model generalization.
Formally:

RH
Q = 1

|Q|
∑
i∈Q

K∑
k=1

pik log(pik). (1)

Mutual Information Maximization (I) A promising alternative to the entropic minimization for ad-
dressing the challenges of transductive few-shot learning is to adopt the Info-max principle. (Boudiaf et al.,
2020) extended this idea, introduced in (Hu et al., 2017), and propose as regularizer a surrogate of the
mutual-information RI

Q(α):

RI
Q(α) := −

K∑
k=1

p̂k log p̂k + α
1

|Q|
∑
i∈Q

K∑
k=1

pik log(pik). (2)

Limitation of existing strategies: Despite its effectiveness, the previous method has a few limitations
that should be taken into account. One of these limitations is the need to fine-tune the weight of different
entropies using the hyperparameter α. This parameter tuning process can be time-consuming and may
require extensive experimentation to achieve optimal results. Additionally, recent studies have shown that
relying solely on the first Entropic term, which corresponds to the Entropic minimization scenario in Equation
1, can lead to suboptimal performance in few-shot learning.

3λ is set to 1 in all the experiements.
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3.3 A Fisher-Rao Based Regularizer

In the few-shot learning scenario, minimizing parameter tuning is crucial. Motivated by this, in this section
we introduce a new parameter-free transductive regularizer which fits into the InfoMax framework. Addi-
tionally, our loss inherits the attractive properties of the recently introduced Fisher-Rao distance between
soft-predictions q := (q1, ,̇qK) and p := (p1, ,̇pK), which is given by (Picot et al., 2023):

dFR(q, p) := 2 arccos
(

K∑
k=1

√
qk × pk

)
. (3)

The proposed transductive regularizer denoted by RFR
Q , for each single few-shot task, can be described as

measuring the Fisher-Rao distance between pairs of query samples:

RFR
Q := 1

|Q|
∑
i∈Q

− log
∑
j∈Q

K∑
k=1

√
pik × pjk = 1

|Q|
∑
i∈Q

− log
∑
j∈Q

cos
(

dFR(pi, pj)
2

)
, (4)

where dFR(pi, pj) is the Fisher-Rao distance between pairs of soft-predictions (pi, pj). Furthermore, it is
shown that expression (4) yields a surrogate of the Mutual Information as shown by the following proposition.
This result to the best of our knowledge is new, as far as we can tell.

Proposition 1 (Fisher-Rao as a surrogate to maximize Mutual Information) Let (qi)i∈Q be a collection of
soft-predictions corresponding to the query samples. Then, it holds that:

RFR
Q + log |Q| ≤ RI

Q(1) ≤ RI
Q(α), ∀ 0 ≤ α ≤ 1. (5)

Proof: Further details are relegated to Ap. A.

Advantage of RFR
Q over RI

Q(α): Similarly to RI
Q(α), RFR

Q can be exploited to maximize the Mutual Infor-
mation. However, RFR

Q is parameter free and thus, it does not require to tune α.

3.4 Additional Few-shot Inductive Baseline

In addition to the transductive methods of Sec. 3.2, we will explore two additional inductive methods for
few-shot classification: prototypical networks and linear probing.

Prototypical Networks (PT) Prototypical Networks learn a metric space where the distance between two
points corresponds to their degree of similarity. During inference, the distance between the query example and
each class prototype is computed, and the predicted label is the class with the closest prototype. Prototypical
networks have been widely used in NLP and are considered as a strong baseline (Snell et al., 2017; Sun et al.,
2019b; Gao et al., 2019).

Linear Probing (CE) Fine-tuning a linear head on top of a pretrained model is a popular approach to
learn a classifier for various classification tasks and was originally propose in (Devlin et al., 2018).
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4 An Enhanced Experimental Setting

4.1 Datasets
Benchmarking the performance of few-shot learning
methods on diverse set of datasets is critical to eval-
uate their generalization capabilities in a robust man-
ner as well as their potential on real-world applica-
tions. Previous work on few-shot learning (Karimi Ma-
habadi et al., 2022; Perez et al., 2021) mainly focuses
on datasets with a reduced number of classes (i.e.,
K < 5). Motivated by practical considerations we
choose to build a new benchmark composed of datasets
with a larger number of classes.

Dataset Classes (K)
Tweet Eval (Tweet) 20

Go Emotion (Emotion) 25
Amazon Review (Amazon) 30

Banking (B77) 77
Clinc 151

Table 1: Statistics of the considered datasets.

Specifically, we choose Go Emotion (Demszky et al., 2020), Tweet Eval (Barbieri et al., 2020), Clinc (Larson
et al., 2019), Banking (Casanueva et al., 2020) and the Multilingual Amazon Reviews Corpus (Keung et al.,
2020). These datasets cover a wide range of text classification scenarios and are of various difficulty4. A
summary of the datasets used can be found in Tab. 1.

4.2 Model Choice

The selection of an appropriate backbone model is a critical factor in achieving high performance in few-
shot NLP tasks. To ensure the validity and robustness of our findings, we have included a diverse range of
transformer-based backbone models in our study, including:

• Three different sizes of RoBERTa based models (Liu et al., 2019b). Similar to BERT, RoBERTa is
pretrained using the closed task (Taylor, 1953). We consider two different sizes of the RoBERTa model,
namely RoBERTa (B) with 124M parameters and RoBERTa (L) with 355M parameters and DistilRoBERTa,
a lighter version of RoBERTa trained through a distillation process (Hinton et al., 2015), for a total of 82M
parameters.

• Three sentence-transformers encoder (Reimers & Gurevych, 2019). Following the recommendation of
(Muennighoff et al., 2022), we consider MPNET-base (Song et al., 2020) (109M parameters), MiniLM (33M
parameters) (Wang et al., 2020), and Albert Small V2 (11M parameters) (Lan et al., 2019).

• Multilingual models. To address realistic scenarios, we do not restrict our study to the English language.
We rely on three sizes of XLM-RoBERTa (Conneau et al., 2020; 2019): base (B) with 124M, large with 355M
(L) and XL (XL) with 3.5B of parameters.

• GPT-3 model: to mimic the typical setting of API-based models, we also conduct experiments on GPT-3
(Brown et al., 2020), only accessible through OpenAI’s API.

Preliminary Experiment. In our experi-
ments, the backbone models are of utmost im-
portance. Our objective in this preliminary ex-
periment is to assess the efficacy of these models
when fine-tuning only the model head across a
variety of datasets. Through this evaluation, we
aim to gain insight into their generalization abili-
ties and any dataset-specific factors that may in-
fluence their performance. This information will
be

Model Params Emotion Twitter Clinic Banking Amazon
en en en en en fr es de

Albert Small V2 (XS) 11M 25.2 18.3 67.0 88.1 33.5 X X X
MiniLM (S) 33M 30.2 19.3 67.1 92.3 39.5 X X X

MPNET-base (B) 109M 30.2 22.5 67.4 94.3 41.3 X X X
DistilRoBERTa (S) 82M 23.3 26.0 68.5 90.9 40.0 X X X

RoBERTa (B) 124M 21.0 25.5 66.7 91.4 39.2 X X X
RoBERTa (L) 355M 15.0 23.0 64.5 90.0 38.1 X X X

XLM-RoBERTa (B) 278M 21.0 22.1 66.5 87.0 40.1 19.2 17.5 18.3
XLM-RoBERTa (L) 559M 14.0 18.0 64.5 86.2 38.2 17.5 15.6 18.1

XLM-RoBERTa (XL) 3.48B 25.4 19.0 68.9 95.0 41.0 18.9 17.9 22.0
GPT-3.5 175B 38.9 35.3 70.4 98.7 48.4 30.4 34.0 33.5

Table 2: Preliminary experiment results. Accuracy of
the different backbone trained on each training set.

utilized to analyze the performance of different models in the few-shot scenario, as described in Sec. 5. We
present the results of this experiment in Tab. 2, noting that all classes were considered, which differs from
the episodic training approach detailed in Sec. 5.

4These datasets are available in Dataset (Lhoest et al., 2021)
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4.3 Evaluation Framework

Prior research in textual few-shot learning typically involves sampling a low number of tasks, typically less
than 10, of each dataset. In contrast, we utilize an episodic learning framework that generates a large number
of N-ways K-shots tasks. This framework has gained popularity through inductive meta-learning approaches,
such as those proposed by (Finn et al., 2017a; Snell et al., 2017; Vinyals et al., 2016; Sung et al., 2018a; Mishra
et al., 2017; Rusu et al., 2019; Oreshkin et al., 2018), as it mimics the few-shot environment during evaluation
and improves model robustness and generalization. In this context, episodic training implies that a different
model is initialized for each generated few-shot task, and all tasks are compiled independently in parallel. This
approach allows to compute more reliable performance statistics by evaluating the generalization capabilities
of each method on a more diverse set of tasks. To account for the model’s generalization ability, we average
the results for each dataset over 1000 episodes, with the N considered classes varying in every episode. For
each experiment, we consider the F1 Score.

5 Experiments

5.1 Overall Results

Global results: To evaluate the effectiveness of vari-
ous few-shot methods, we conducted a comprehensive
analysis of their classification performance across all
datasets, all backbones, and all considered N-way/K-
shot scenarios. Results are reported in Tab. 3.
An interesting observation is that transductive ap-
proaches I and FR outperform their inductive coun-
terparts (CE and PT). Notably, we found that vanilla
entropy minimization, which solely relies on H, consis-
tently underperforms in all considered scenarios. Our

K-shots 10 5
N-ways 10 5 10 5
FR 52.09 61.99 48.71 56.55
I 50.07 59.17 46.42 55.74
H 15.07 27.39 15.33 25.84
CE 48.31 56.87 45.27 53.94
PT 47.29 56.05 44.32 53.20

Table 3: Aggregated performance over K,N, the
different datasets and considered backbone.

analysis revealed that FR surpasses traditional fine-tuning based on cross-entropy by a margin of 3.7%.
Mono-lingual experiment: In order to thoroughly
analyze the performance of each method, we con-
ducted a per-dataset study, beginning with a focus
on the mono-lingual datasets. Fig. 2 reveals that the
global trends observed in Tab. 3 remain consistent
across datasets of varying difficulty levels. Notably, we
observed consistent improvements achieved by trans-
ductive regularizers (such as I or FR) over CE. How-
ever, the relative improvement is highly dependent on
the specific dataset being evaluated. Specifically, FR
achieves +6.5% F1-score on Banking, but only a shy
+1.5% on Tweet. A strong baseline generally suggests
highly discriminative features for the task, and there-
fore a strong upside in leveraging additional unlabeled
features, and vice versa. Therefore, we hypothesize
that the potential gains to be obtained through trans-
duction correlate with the baseline’s performance.

25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Cl
in

c CEPTH I FR

88.092.3
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Figure 2: Performance of different pretrained en-
coder on the monolingual datasets.

Additional results can be found on Sec. B.2 multilingual experiments (i.e., on es, de, fr) which exhibit the
same behavior.

5.2 Study Under Different Data-Regime

In this experiment, we investigated the performance of different loss functions under varying conditions of
’ways’ and ’shots’. As shown in Fig. 3, we observed that increasing the number of classes (’ways’) led to
a decrease in F1 while increasing the number of examples per class (’shots’) led to an improvement in F1.
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Figure 3: The effect of different ways and shots on test performance. Monolingual experiments are shown
on the left, and multilingual experiments on the right.

This can be explained by the fact that having more data enables the classifier to better discern the unique
characteristics of each class.

Interestingly, the relationship between the number of shots and classification F1 may not be the same for
all classes or all loss functions. Fig. 3 shows that different loss functions (e.g. FR on banking) benefited
greatly from adding a few shots, while others did not show as much improvement. However, this variability
is dependent on the specific dataset and language being used, as different classes may have different levels
of complexity and variability, and some may be inherently easier or harder to classify than others.

5.3 Ablation Study On Backbones

In this experiment, we examined how different loss
functions perform when increasing the number of pa-
rameters in various models. The results, presented in
Fig. 4, show the average performance across the ex-
periments and are organized by loss function. We ob-
served an inverse scaling law for both the RoBERTa
and XLM-RoBERTa family of models, where increas-
ing the number of parameters led to a decrease in per-
formance for the losses tested. However, within the
same family, we observe that the superiority of FR

CE FR H I
PT

0.2

0.3

0.4

0.5

0.6

A
cc

ur
ac

y

model
GPT-3.5
xlm-roberta-base
xlm-roberta-large
xlm-roberta-xl
params
XXL
M
L
XL

CE FR H I
PT

0.2

0.3

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

model
GPT-3.5
distilroberta-base
roberta-base
roberta-large
params
XXL
S
M
L

Figure 4: Impact of model size.

remains consistent. An interesting finding from Fig. 4 is that the transductive regularization technique
using FR outperforms other methods on GPT-3.5. This highlights the effectiveness of FR in improving the
performance of the model and suggests that transductive regularization may be a promising approach for
optimizing language models.

5.4 Practical Considerations

In this experiment, we adopt a practical standpoint and aim to evaluate the
effectiveness of an API model, specifically GPT-3.5. In Sec. 5.4, we report
the training speed of one episode on a MAC with CPU. Overall, we observed
that the transductive loss is slower as it necessitates the computation of
the loss on the query set, whereas PT is faster as it does not involve any
optimization. Furthermore, we note that FR is comparable in speed to I. To
provide a better understanding of these results, we can compare our method
with existing approaches (in the light of R2). For instance, PET (Schick
& Schütze, 2020a) entails a training time of 20 minutes on A100, while
ADAPET (Tam et al., 2021) necessitates 10 minutes on the same hardware.

Loss CPU Time
CE 0.45s
FR 0.83s
H 0.75s
I 0.83s

PT 0.01s

Table 4: Training time for
1 episode on a M1-CPU.
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6 Conclusions

This paper presents a novel few-shot learning framework that utilizes API models while meeting critical
constraints of real world applications (i.e., R1, R2, R3). This approach is particularly appealing as it shifts
the computational requirements (R2), eliminating the need for heavy computations for the user. This opens
up new possibilities, such as training classifiers on-the-fly in web browsers without sharing labels of the data
(R3). Furthermore, the use of an API setting is highly advantageous as it significantly reduces the cost of
embedding. To provide a better understanding, embedding over 400k sequences cost as low as 7 dollars.
In this scenario, our research highlights the potential of transductive losses, which have previously been
disregarded by the NLP community. A candidate loss is the Fisher-Rao distance which is parameter-free
and could serve as a simple baseline in the future.

Broader Impact Statement
We are optimistic that our research will have a positive impact on society. Nonetheless, it is essential to
acknowledge the limitations of API-based few-shot classification models despite their promising results in
various tasks. Firstly, the performance of the introduced methods is heavily dependent on the quality of
available API models. If the API models do not provide sufficient information or lack diversity, the introduced
methods may struggle to accurately classify input texts. Secondly, the black-box nature of the backbone
limits the interpretability of API-based few-shot classification methods, which may hinder their adoption.
Ultimately, the aim of this work is to establish a baseline for future research on transductive inference. As
a result, not all existing transductive methods are compared in this study.
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A Proof of Proposition 1

In this Appendix, we prove the inequality (Eq. 5) provided in Proposition 1. The right-hand side of (Eq. 5)
follows straightforwardly from the definition of RI

Q(α) and the non-negativity of the Shannon entropy. In
order to prove the first inequality, we need to introduce the following intermediate result.

For any arbitrary random variable X and countable random variable Y , and any real number β, let

Iβ(X; Y ) := −EX⋆Y logEX

[
P (Y |X)
P (Y |X⋆)

]β

,

where the random variable X⋆ follows the same distribution than X. Notice that it is obvious that I1(X; Y ) =
I(X; Y ), where I(X; Y ) is Shannon Mutual Information.

Lemma 1 For any arbitrary random variable X and countable random variable Y , we have

I(X; Y ) ≥ Iβ(X; Y ), for 0 ≤ β ≤ 1.

Proof of the lemma: We must show that the different of I(X; Y ) − Iβ(X; Y ) is nonnegative. To this end, we
write this difference as:

I(X; Y ) − Iβ(X; Y ) = −EX⋆Y log P 1−β(Y |X⋆)EXP (Y |X)
EXP β(Y |X) (6)

≥ − logEX⋆Y
P 1−β(Y |X⋆)EXP (Y |X)

EXP β(Y |X) (7)

= − log
∑
y∈Y

EX⋆P (y|X⋆)P 1−β(y|X⋆)EXP (y|X)
EXP β(y|X) (8)

= − log
∑
y∈Y

EX⋆P β(y|X⋆)EXP (y|X)
EXP β(y|X) (9)

= − log
∑
y∈Y

EXP (y|X) (10)

= 0, (11)

where the first inequality follows by applying Jensen’s inequality to the function t 7→ − log(t).

Proof of Proposition 1: From Lemma 1, using Jensen’s inequality, we have

I(X; Y ) = −EX⋆Y logEX

[
P (Y |X)
P (Y |X⋆)

]
, (12)

≥ −EX⋆Y logEX

[
P (Y |X)
P (Y |X⋆)

]β

(13)

≥ −EX⋆ logEXEY |X⋆

[
P (Y |X)
P (Y |X⋆)

]β

(14)

= −EX⋆ logEX

∑
y∈Y

P β(Y |X)P 1−β(Y |X⋆), (15)

where inequality (13) follows by applying Lemma 1 and inequality (14) follows by exploiting the convexity
of the function t 7→ − log(t) for any 0 ≤ β ≤ 1. Finally, it is not difficult to check from the definition of the
Fisher-Rao distance given by expression (3) that

cos
(

dFR(P (y|X = x), P (y|X = x⋆))
2

)
=
∑
y∈Y

√
P (y|X = x)P (y|X = x⋆). (16)
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Using the identity given by (16) in expression (15) setting β = 1/2, we obtain the desired inequality

I(X; Y ) ≥ −EX⋆ logEX cos
(

dFR(P (y|X), P (y|X⋆))
2

)
. (17)

The inequality (5) immediately follows by replacing the distribution of the random variable X with the
empirical distribution on the query and P (y|x) with the soft-prediction corresponding to the feature x,
which concludes the proof of the proposition.

B Additional Experimental Results

B.1 A Dive Into GPT-3.5 results

GPT-3.5 appears to be the backbone providing the
most informative a priori embeddings in Tab. 2 and
could be considered as the prime model for API-
based Few-shot learning, showcasing the current re-
quirements in this area. It is thus a typical candidate
for application uses that must meet the following crite-
ria (R1) - (R3). Therefore, we put a special emphasis
on its related results.
Fig. 5 (top) details the GPT-3.5 results of the ex-
periments conducted on the mono-lingual datasets.
These plots highlight the consistency of the tenden-
cies emerged in Tab. 2, Tab. 3 and Fig. 2, namely:
the superiority of transductive approaches (FR and
I) over inductive ones (CE and PT ), the underper-
formance of the entropic-minimization-based strategy
(H), and the higher amount of information conveyed
by GPT-3.5 learned embeddings over other backbones,
resulting in higher F1 scores on all datasets.
These phenomena still occur in the multi-lingual set-
ting, as illustrated in Fig. 5 (bottom), stressing the
superiority of transductive (and especially FR) over
other approaches for presumably universal tasks, be-
yond english-centered ones, and without the need of
using language-specific engineering as for prompting-
based strategies.
Note that for both of these settings, the entropic-
minimization-based strategy (H) seems to be capped
at a 15% F1 score, thus with no improvement over
other backbones embeddings, and independently of the
dataset difficulty.
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Figure 5: The different losses when training a on
GPT3.5 embeddings.
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B.2 Multilingual Experiment

To provide an exhaustive analysis, we report the same
experiment that is made in Sec. B.2 for multi-lingual
model on Amazon. The observations made in Sec. B.1
are not specific to GPT-3.5 backbone and extend
to the other multi-lingual encoders (that is XLM-
RoBERTa-based ones). While both latin languages
(French and Spanish) share almost identical results,
with a trend very similar to the one of English lan-
guage (an F1 gain of around 4% for FR over CE), the
results on German language exhibit an F1 increased by
more than 6% when switching from inductive CE to
transductive FR, flirting with performances obtained
on English tasks.

13 18 23 28 33 38 43 48 53 58

en

CEIPT H FR

50.953.9

13 18 23 28 33

es

CEIPT H FR

26.2 28.5

13 18 23 28 33

FR

CEIPT H FR

27.1 29.4

13 18 23 28 33 38

de

CEIPT H FR

30.2 34.0

Figure 6: Performance of the different losses on
multilingual datasets.

B.3 Importance of Model Backbones on Monolingual Experiment

In this section, we report the results of our experiment aggregated per backbone. The goal is to understand
how the different losses behave on the different backbone. The results are presented in Fig. 8. While the
trends observed in the previous charts are retrieved for the majority of backbones, some of these models are
exceptions. For example, while transductive methods perform generally better than inductive methods, the
CE-based method seems to perform slightly better than I for XLM-RoBERTa-xl. Additionally, while FR is
the most effective method for the majority of backbones, it is surpassed by I for the all-distilroberta-v1 model.
Furthermore, the inverse-scaling-law details are found for the RoBERTa(B/L) and XLM-RoBERTa (B/L)
models per dataset. In general, it is interesting to note that although model performance is constrained by
dataset difficulty, the performance order of each method is consistent across all 4 datasets for each considered
backbone.

B.4 Importance of Model Backbones on Multilingual Experiment

In this experiment, we report the performance of different losses on the Amazon dataset by averaging the
results over the number of shots, ways for the different losses. The results are presented in Fig. 10. Our
observations indicate that the transductive regularization, both for I and FR, consistently improves the
results for different models, including base and large models, as well as GPT-3.5. Similar to the findings
reported in the main paper, we observe an inverse scaling law, with XLM-RoBERTa-base outperforming the
larger versions.

B.4.1 Results Per Language

In this experiment, we report the performance of different losses on the Amazon dataset by averaging
the results over the number of shots, ways, and model backbones. The results are presented in Tab. 5.
Our observations indicate that the transductive regularization improves the results for two languages over
the inductive baseline (i.e., CE). Additionally, we note that the observed improvements for FR are more
consistent. This further demonstrates that the transductive loss can be useful in few-shot NLP.
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Figure 8: Performance of different pretrained encoder on the monolingual datasets.
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Figure 10: Performance of different pretrained backbone on multilingual Amazon.

fr de en es
FR 29.36 33.98 53.89 28.47
I 27.74 31.41 51.75 26.79
H 15.04 15.13 15.04 15.04
CE 27.15 30.24 50.89 26.21
PT 26.37 29.16 50.34 25.44

Table 5: Global Results for multilingual Amazon

20


	Introduction
	Related Work
	Few-shot learning in Natural Language Processing
	Inductive vs transductive few-shot learning

	API based Few-shot Learning
	Problem Statement
	Proposed Methods and Transductive approaches
	A Fisher-Rao Based Regularizer
	Additional Few-shot Inductive Baseline

	An Enhanced Experimental Setting
	Datasets
	Model Choice
	Evaluation Framework

	Experiments
	Overall Results
	Study Under Different Data-Regime
	Ablation Study On Backbones
	Practical Considerations

	Conclusions
	Proof of Proposition 1
	Additional Experimental Results
	A Dive Into GPT-3.5 results
	Multilingual Experiment
	Importance of Model Backbones on Monolingual Experiment
	Importance of Model Backbones on Multilingual Experiment
	Results Per Language



