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Abstract

Gradient descent for matrix factorization is known to exhibit an implicit bias
toward approximately low-rank solutions. While existing theories often assume
the boundedness of iterates, empirically the bias persists even with unbounded
sequences. We thus hypothesize that implicit bias is driven by divergent dynamics
markedly different from the convergent dynamics for data fitting. Using this
perspective, we introduce a new factorization model: X ~ U DV'T, where U and
V' are constrained within norm balls, while D is a diagonal factor allowing the
model to span the entire search space. Our experiments reveal that this model
exhibits a strong implicit bias regardless of initialization and step size, yielding truly
(rather than approximately) low-rank solutions. Furthermore, drawing parallels
between matrix factorization and neural networks, we propose a novel neural
network model featuring constrained layers and diagonal components. This model
achieves strong performance across various regression and classification tasks
while finding low-rank solutions, resulting in efficient and lightweight networks.

1 Introduction

The Burer—Monteiro (BM) factorization (Burer & Monteiro, 2003) is a classical technique for
obtaining low-rank solutions in optimization. One can view it as a simple neural network that uses a
single layer of hidden neurons under linear activation. Indeed, given the factorization X = UV7T
where U € R4*" and V € R*", one can view U and V as the weights of the first and second layers,
and r as the number of hidden neurons. But despite the similarity suggested by this view, there is a
clear distinction between BM factorization and neural networks in how the rank r is chosen. In BM,
r is typically chosen to be small, close to the rank of the desired solution. Neural networks, on the
other hand, often succeed even in overparametrized settings where 7 is large.

Recent findings of implicit regularization in matrix factorization narrow the gap between these two
perspectives. For instance, Gunasekar et al. (2017) demonstrate that gradient descent (with certain
parameter selection) on BM factorization tends to converge toward approximately low-rank solutions
even when r = d. Based on this observation, they conjecture that “with small enough step sizes and
initialization close enough to the origin, gradient descent on full-dimensional factorization converges
to the minimum nuclear norm solution.”

In a follow-up work, Razin & Cohen (2020) present a counterexample demonstrating that implicit
regularization in BM factorization cannot be explained by minimal nuclear norm, or in fact any
norm. Specifically, they show that there are instances where the gradient method applied to BM
factorization yields a diverging sequence, and all norms thus grow toward infinity. Intriguingly,
despite this divergence, they found that the rank of the estimate decreases toward its minimum.

Although this phenomenon might seem surprising initially, it is not uncommon for diverging se-
quences to follow a structured path. A prime example is the Power Method, the fundamental algorithm
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for finding the largest eigenvalue and eigenvector pair of a matrix. Starting from a random initial point
z¢, the Power Method iteratively updates the estimate by multiplying it with the matrix. This process
amplifies the component of the vector that aligns with the direction of the dominant eigenvector
more than the other components, progressively leading z, to align with this eigenvector. In practical
implementations, xj, is scaled after each iteration to avoid numerical issues from divergence.

This perspective underpins our approach. Specifically, our key insight is that the implicit regularization
in BM factorization (and neural networks) is driven by divergent dynamical behavior. This is
markedly different from the standard (convergent) optimization dynamics helping with the data
fitting. In this context, we hypothesize that these forces do not merely coexist but actively compete,
influencing model behavior and performance in fundamentally conflicting ways. Our main goal in
the development of this paper is to devise an approach that unravels these competing forces.

1.1 Overview of main contributions

= A novel formulation for matrix factorization. We model X = UDV T, where U and V are
constrained within Frobenius norm balls. Projection onto this ball results in a scaling step similar
to the Power Method. The middle term D is a diagonal matrix that allows the model to explore
the entire search space despite U and V being bounded.

Through extensive empirics we demonstrate that the gradient method applied to the proposed
formulation exhibits a pronounced implicit bias toward low-rank solutions. We compare our
formulation against standard BM factorization with two unconstrained factors. Specifically, we
investigate key factors such as step size and initialization, which prior work suggests might be
contributing to implicit bias. We find that our factorization approach largely obviates the need
to rely on these conditions: it consistently finds truly (rather than approximately) low-rank
solutions across a wide range of initializations and step-sizes in our experiments. We believe
these findings should be of broader interest to research on implicit bias.

= A novel architecture. Motivated by the strong bias for low-rank solutions of the proposed
factorization, we subsequently extend it to deep neural networks. We do so by adding constrained
layers and diagonal components. We show that this constrained model performs on par with,
or even better than, the standard architecture across various regression and classification tasks.
Importantly, our approach exhibits bias towards low-rank solutions, resulting in a natural pruning
procedure that delivers compact, lightweight networks without compromising performance.

1.2 Related Work

Burer-Monteiro factorization. BM factorization was proposed for solving semidefinite programs
(Burer & Monteiro, 2003, 2005) and has been recognized for its efficiency in addressing low-rank
optimization problems (Boumal et al., 2016; Park et al., 2018). Building on the connections between
matrix factorization and training problems for two-layer neural networks, BM models have served as
foundational building blocks for understanding implicit bias and developing theoretical insights.

Implicit regularization. One promising line of research that aims to explain the successful general-
ization abilities of neural networks is that of ‘implicit regularization’ induced by the optimization
methods and architectures (Neyshabur et al., 2014, 2017; Neyshabur, 2017). Several studies explore
matrix factorization to investigate implicit bias (Gunasekar et al., 2017; Arora et al., 2018; Razin &
Cohen, 2020; Belabbas, 2020; Li et al., 2021). Much of the existing work focuses on gradient flow
dynamics in the limit of infinitesimal learning rates. Exceptionally, Gidel et al. (2019) examine dis-
crete gradient dynamics in two-layer linear neural networks, showing that the dynamics progressively
learn solutions of reduced-rank regression with a gradually increasing rank.

Constrained neural networks. Regularizers are frequently used in neural network training to prevent
overfitting and improve generalization, or to achieve structural benefits such as sparse and compact
network architectures (Scardapane et al., 2017). However, it is conventional to apply these regularizers
as penalty functions in the objective rather than constraints. This approach is likely favored due to
the ease of implementation, as pre-built functions are readily available in common neural network
packages. Regularization in the form of constraints appears to be rare in neural network training.
One notable exception is in the context of neural network training with the Frank-Wolfe algorithm
(Pokutta et al., 2020; Zimmer et al., 2022; Macdonald et al., 2022). Recently, Pethick et al. (2025)

'The reader may notice a “syntactic” similarity with SVD; except using vastly simpler Frobenius norm
constraints on U and V instead of orthogonality.
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revealed parallels between Frank-Wolfe on constrained networks and algorithms that post-process
update steps, such as Muon (Jordan et al., 2024), which achieves state-of-the-art results on nanoGPT
by orthogonalizing the update directions before applying them.

Pruning. Neural networks are overparameterized, which can enhance generalization and avoid poor
local minima. But such models then suffer from excessive memory and computational demands,
making them less efficient for deployment in real-world applications (Chang et al., 2021). Pruning
reduces the number of parameters, resulting in more compact and efficient models that are easier to
deploy. A comprehensive review on pruning is beyond the scope of this paper due to space limitations
and the diversity of approaches. We refer to (Reed, 1993; Blalock et al., 2020; Cheng et al., 2024)
and the references therein for detailed reviews. Pruning by singular value thresholding has recently
shown promising results, particularly in natural language processing (Chen et al., 2021), and is often
used along with various enhancements such as importance weights and data whitening for effective
compression of large language models (Hsu et al., 2022; Yuan et al., 2023; Wang et al., 2024).

2 Matrix Factorization with a Diagonal Component

Consider matrix sensing, a problem where we seek to recover a positive semidefinite (PSD) matrix
X € S from a set of linear measurements b = A(X) € R". We define A : R¥*? — R™ through
symmetric measurement matrices Ay, ..., A, € S¥9, such that A(X) = [(A1, X) -+ (4, X)]T
and ATy = Z:’:l y; A;. We particularly focus on the data-scarce setting where n < d2. A notable
example here matrix completion, where one completes a matrix X given a subset of its entries. This
problem is inherently under-determined; but successful recovery is possible if X is low-rank (Candes
& Recht, 2012). We focus on recovering a PSD matrix for simplicity; this is without loss of generality,
as the general case can be be easily reformulated as a PSD matrix sensing problem (Park et al., 2017).

The problem described above can be cast as the following rank-constrained optimization problem:

min _ f(X) = 1| A(X) — |3 subj.to rank(X) <. (1)

Xest

Although rank-constrained matrix optimization problems are typically NP-hard, various methods have
been developed to provide practical approximations. One prominent approach is BM factorization,
which reparametrizes the decision variable X as UUT, where the factor U € R4*"_ and ris a positive
integer that controls the rank of the resulting product. Problem (1) can then be reformulated as:
. 1 T 2
s AUU ") —bl5. 2

yuin - 3llAUTT) - bll; )
Despite the fact that finding the global minimum of (2) remains challenging, a local solution can be
approximated using gradient descent (Lee et al., 2016). Initializing at Uy € R%*", perform:

U1 = U = Vo f(UU), 3)
where 77 > 0 is the step-size, and the gradient is computed as Vi f(UU ") = 2V f(UU T)U.

Selecting the factorization rank 7 is a critical decision. A small r may lead to spurious local
minima, resulting in inaccurate outcomes (Waldspurger & Waters, 2020). Conversely, a large r might
weaken rank regularization, rendering the problem underdetermined. Conventional wisdom in BM
factorization suggests finding a moderate compromise between these two extremes. However, a key
observation in (Gunasekar et al., 2017) is that the gradient method applied to (2) exhibits a tendency
towards approximately low-rank solutions even when r = d. Below, we restate their conjecture:

Conjecture in (Gunasekar et al., 2017). Suppose gradient flow (i.e., gradient descent with an
infinitesimally small step-size) is initialized at a full-rank matrix arbitrarily close to the origin. If
the limit of the gradient flow, Xgp = UU T, exists and is a global optimum of (1) with A(Xgg) = b,
then Xgf is the minimal nuclear-norm solution to (1).

2.1 The Proposed Factorization

We propose reparameterizing X = UDU T, where U € R?*" is constrained to have a bounded norm,
and D € R"™" is a non-negative diagonal matrix:

1
min §HA(UDUT) —b3 st. |Ullp<a, Di;>0, Dij=0, ViandVj #i, (4)
UeR**"
DERT'XT'
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where a > 0 is a model parameter. When the problem is well-scaled, for instance through basic
preprocessing with data normalization, we found that o = 1 is a reasonable choice.

Placing in multiple factors and with constraints, we perform projected-gradient updates on U and D
with step-size > 0:
Uks1 =y (Uy, —nVu f(ULDRU))
Dyi1 = p (D =0V f(UrDUY))
where Iy and IIp are projections for the constraints in (4); while the gradients are
Vof(UDUT)=2Vf(UDU")UD and Vpf(UDU')=U'Vf(UDU")U.

&)

2.2 Numerical Experiments on Matrix Factorization

We present numerical experiments comparing the empirical performance of the proposed approach
with the classical BM factorization. Specifically, we examine the impact of initialization and
step-size on the singular value spectrum of the resulting solution. We set up a synthetic matrix
completion problem to recover a PSD matrix X = U,U,", where the entries of U, € R%0%3 are
drawn independently from N (0, 1). We randomly sample n = 900 entries of X}, and store them in the
vector b € R"™. The goal is to recover X} from b by solving problems (2) and (4). For initialization,
we generate Uy € R4*? with entries drawn independently from N (0, 1); we rescale Uy to have
Frobenius norm £ > 0 (we investigate the impact of £). We initialize Dy = 1.

The results are shown in Figure 1. First, we examine the impact of step-size. To this end, we fix
&€ = 1072 and test different values of 7. In the left panel, we plot the objective residual as a function
of iterations. As expected, we observe that a smaller step-size slows down convergence. In the right
panel, we plot the singular value spectrum of the results attained after 10° iterations. We observe no
direct connection between step-size and implicit bias in BM factorization.
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Figure 1: Impact of step-size and initialization on implicit bias. Solid lines represent our UDU factorization,
while dashed lines denote the classical BM factorization. [Left] Objective residual vs. iterations. [Right]
Singular value spectrum after 10 iterations. In all cases, UDU produces truly low-rank solutions, whereas the
classical approach results in approximate low-rank structures.

Next, we investigate the impact of initialization. We fix the step-size at n = 10~2 and evaluate the
effect of varying £&. We observe a correlation between the implicit bias of the BM factorization and &,
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which determines the initial distance from the origin. Initializing closer to the origin in the classical
BM factorization yields solutions with a faster spectral decay. Notably, the UDU factorization
demonstrates a strong implicit bias toward truly low-rank solutions, regardless of the choice of 7 or €.

We provide additional experiments in the Appendices. Specifically, Appendix A.l considers the
matrix completion problem with noisy measurements. The results remain consistent with the noiseless
case: the UDU model exhibits an implicit bias toward truly low-rank solutions, while the classical
BM factorization yields approximately low-rank solutions. Additionally, we present numerical
experiments on a matrix sensing problem arising in phase retrieval image recovery in Appendix A.2.
As before, the UDU framework consistently promotes low-rank solutions, and this structural bias
significantly enhances the quality of the recovered image.

2.3 Theoretical Insights into the Inner Workings and Implicit Bias

A fixed-point analysis of the proposed method provides valuable insights into its inner workings.
Define the update variables before projectionas U = U—2nV f(X)UD and D = D—qU "V f(X)U,
with X = UDU". Suppose (U, D) is a fixed point of the algorithm in (5). Then, the following hold:

Let u; denote the j™ column of U and ); the j™ diagonal entry of D.
(a) If |U]| < a, then V f(X)u;\; = 0 for all 4,
(b) If ||U| > «, then there exists some 3 > 0 such that V f(X)u;\; = —Bu; for all j.

At this point, it may seem that choosing a small value of a could promote a fixed point where the
columns of U align with the negative eigenvectors of V f(X). However, as we will see from the
analysis of D, there are no valid fixed points that satisfy ||U]| > «, since

(¢) If A; =0, then ujTVf(X)uj >0, ,while (d) If\; >0, then ujTVf(X)uj =0.

Suppose |U]| > a. Then, (b) implies that if A\; > 0, then u; must be an eigenvector of V f(X)
corresponding to a negative eigenvalue; and if A; = 0, then u; must also be zero. However, the
first statement contradicts (d), while the second statement agrees with (¢) only if u; = 0. Since
these conditions must hold for all j, it follows that U = 0. This, in turn, implies that U= 0, which
contradicts the initial assumption that ||U|| > «, hence there are no fixed points satisfying ||U|| > a.

Considering (a), observe that the fixed point characterization obtained here coincides with the fixed

points of the BM factorization after the change of variables from U to U D'/2. Thus, incorporating
constraints on U and adding the factor D does not introduce any new fixed points for X.

Interestingly, this fixed point analysis also provides insight into the low-rank bias of the algorithm.
In particular, when U tends to grow and ||U|| exceeds «, the algorithm appears to temporarily favor
directions where the columns of U align with the negative eigenvectors of V f(X). To see this more
concretely, we can express the update rules in terms of the columns of U and the diagonal entries of
D as ii; = u; — 20V f(X)ujA; and \j = Aj — nu] V f(X)u;. These expressions show that both
1, and S\j tend to grow in the directions aligned with the negative eigenvectors of V f(X). However,
from statement (d), we know that there is no fixed point with A; > 0 unless u; V f(X )u; = 0. This
suggests that: (i) either the algorithm might push u; towards zero, which could happen only through
the projection steps if another column #;, exhibits a faster growth; or (ii) X should evolve such that
f(X) is minimized in the direction of u;, effectively moving towards a point where V f(X)u; = 0.

The analysis presented here is a simplified perspective aimed at gaining insight. In reality, the
alignment or shrinking of the columns of U and the minimization of f(X) along specific directions
reflected in these columns occur simultaneously and interact in a complex manner. Nevertheless, we
can clearly observe these effects in our numerical experiments. In Appendix A.3, we present the
evolution of the column norms of U and the diagonal entries of D over the iterations in our matrix
completion experiment. Our results show that initially, a few specific columns of U grow, pushing all
other columns numerically to zero. Once f(X) is effectively minimized with respect to these initial
columns, some other columns are identified and start to grow. Eventually, the algorithm converges to
a low-rank solution, where the factorization U DU T is rank-revealing since only a few columns of U
are nonzero. We further observe that these nonzero columns are orthogonal, effectively demonstrating
how the algorithm’s specific preference to align u; with the negative eigenvectors of V f(X) along
the path implicitly induces a structured solution.
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3 Feedforward Neural Networks with Diagonal Hidden Layers

This section extends our approach to neural networks. Consider a dataset comprising n data points
(xi,y:) € R? x R®. We first define a three-layer neural network defined as

P(x) 1= Zj 1v]wju;'—x ~y. (6)

The first and third layers are fully connected, and the middle is a diagonal layer, as illustrated in
Figure 2. Drawing parallels between our matrix factorization model in (4) and neural network training,
we impose Euclidean norm constraints on the weights of the fully connected layers. Under these
conditions, the training problem can be formulated as follows:

Jmin Z LI vl yil3

subj.to Zj:l ;I3 <1, Zj:l [vill3 <1, and w; >0; forall j=1,...,m

(N

The norm constraints in our training problem can be interpreted as a stronger form of weight decay,
one of the most commonly used regularization techniques in neural networks, which lends further
justification to our formulation. We refer to this neural network structure as UDV.

{u € ]Rd}y,n,l {w € R}m {v e RC},m,l

Wi

X1 Y1

Xa Ye

d Inputs ¢ Outputs

U e RIxm DeR™ V e RmX¢
Fully Connected Layer (U) Diagonal Layer (D) Fully Connected Layer (V)

____________________________________________________________________________________

Figure 2: UDV structure. The weights in diagonal layer D are denoted as w;.

3.1 Numerical Experiments on Neural Networks

In this section, we test the proposed UDV framework on regression and classification tasks, comparing
it with fully connected two-layer neural networks (denoted as UV in the subsequent text) using both
linear and ReL.U activation functions. This comparison is fair in terms of computational cost, as the
cost incurred by the diagonal layer —which can also be viewed as a parameterized linear activation
function— is negligible. We observe a strong empirical bias toward low-rank solutions in all our
experiments. We also present a proof-of-concept use case of this strong bias, combined with an
SVD-based pruning strategy, to produce compact networks.

3.1.1 Implementation Details

Computing environment. All classification tasks were conducted on an NVIDIA A100 GPU with
four cores of the AMD Epyc 7742 processor, while regression tasks were conducted on a single core
of an Intel Xeon Gold 6132 processor. We used Python 3.9.5 and PyTorch 2.0.1.

Datasets. We used two datasets for the regression tasks: House Prices - Advanced Regression
Techniques (HPART) (Anna Montoya, 2016) and New York City Taxi Trip Duration (NYCTTD)
(Risdal, 2017). We allocated 80% of the data for the training and reserved the remaining 20% for
validation. Following (Huang, 2003), we set the number of hidden neurons in the diagonal layer
m = round(y/(c + 2)d + 21/d/(c + 2)). This results in a network structure (d-m-c) of 79-26-1
for HPART, and 12-10-1 for NYCTTD.

For classification tasks, we used the normalized MNIST dataset (LeCun et al., 2010). We applied
transfer learning by replacing the classifier layers of three advanced neural networks -MaxViT-T (Tu
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Table 1: Model performance using different models. M, E, and R represent the transferred models MaxVit-T,
EfficientNet-B0, and RegNetX-32GF, respectively.

Tasks Regression (Test Loss) Classification (Test Accuracy)
Dataset HPART NYCTTD MNIST
UDV 1.304 x 1073 5.248 x 1076 M: 99.67% E: 99.63% R: 99.74%
Adam: 1073 NAdam: 10~* MBGDM: 10~2 MBGDM: 10~! MBGDM: 102
uv 1.333 x 1073 5.251 x 1076 M: 99.69% E: 99.60% R: 99.66%
Adam: 1073 Adam: 103 MBGDM: 102  Adam: 1073 MBGD: 10°
-3 —6 . . .
UV-ReLU 1.167 x 10 5.323 x 10 M: 99.68% E: 99.68% R:99.73%

Adam: 103 NAdam: 107>  NAdam: 10~* MBGDM: 10! MBGD: 10°

et al., 2022), EfficientNet-BO (Tan & Le, 2019), and RegNetX-32GF (Radosavovic et al., 2020)— with
UDV, while using pre-trained weights from ImageNet-1K (Deng et al., 2009). Specifically, we retained
all layers up to the first fully connected layer of the classifier and replaced the subsequent layers.
The number of hidden neurons in the diagonal layer was set to as m = £ 1oor(%d). This results in a
UDV network structure (d-m-c) of 512-341-10 for MaxViT-T, 1280-853-10 for EfficientNet-B0, and
2520-1680-10 for RegNetX-32GF.

Loss function. We used mean squared error for regression and cross-entropy loss for classification.

Optimization methods. We tested the results using four different optimization algorithms for
training: Adam (Kingma & Ba, 2014), Mini-Batch Gradient Descent (MBGD) (LeCun et al., 2002),
NAdam (Dozat, 2016), and Mini-Batch Gradient Descent with Momentum (MBGDM) (Sutskever
et al., 2013). For classification, we used different batch sizes for different models: 128 for MaxViT-T
and RegNetX-32GF, and 384 for EfficientNet-B0.

We tuned the step size for all models and optimization algorithms: For regression tasks, we tested
step sizes 1074, 1073, 1072, 1071, 1, 2, 3. Larger step sizes (1, 2, 3) were often excluded for the
UV model due to divergence. For classification we tested LRs 1076,1075,107%,1073,1072, 1071,
1 with Adam and NAdam; and we tested 1073, 1072, 1071, 1, 2, 3, 5 with MBGD and MBGDM.

Training Procedure. UV and UDV models were initialized identically, with the diagonal elements
of D initialized using Kaiming Uniform Initialization, consistent with the default initialization for
fully connected layers in PyTorch. The models were trained for 200 epochs on HPART, 50 epochs
on NYCTTD, and 70 epochs on MNIST; and results were averaged over 1000 random seeds for
HPART, 100 for NYCTTD, and 1 for MNIST to ensure robustness. The validation loss, used as a
generalization metric in regression, was averaged over the final 20 epochs for the HPART dataset and
the final 5 epochs for the NYCTTD dataset. Similarly, validation accuracy for classification tasks
was averaged over the last 5 epochs to ensure stability in the reported values.

3.1.2 Low-rank Bias in Neural Network Training

Table 1 presents the validation loss (for regression) or validation accuracy (for classification) of the
UDV model compared to the classical UV model with linear and ReL.U activation functions. For
each configuration (dataset and model architecture), the results are obtained by selecting the best
algorithm and learning rate pair. Moreover, Figure 3 illustrates the singular value spectrum of the
solutions corresponding to each entry in these tables. We focus on the singular values from the U
and U D layers, as they generate the primary data representation, while omitting the V' layer, which
serves as the feature selection layer and is a tall matrix by definition, given that ¢ < m in most cases.
Collectively, these results show that the UDV framework achieves competitive prediction accuracy
while exhibiting a strong implicit bias toward low-rank solutions, as indicated by the faster decay in
the singular value spectrum.

3.1.3 Reducing Network Size with SVD-based Pruning

Efficient and lightweight feed-forward layers are crucial for real-world applications. For instance, the
Apple Intelligence Foundation Models (Gunter et al., 2024) recently reported that pruning hidden
dimensions in feed-forward layers yields the most significant gains in their foundation models.
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Figure 4: Comparison of SVD-based pruning and re-trairlling compact networks on the HPART dataset using the
NAdam algorithm with a learning rate of 10~3. Negative percentages indicate improvements over the baseline.
SVD-based pruning demonstrates that the UDV leads to a compact model without performance degradation,
while retraining shows that the UDV achieves better generalization in a compact model.

Building on this insight, we leverage the inherent low-rank bias of the UDV architecture through an
SVD-based pruning strategy to produce compact networks without sacrificing performance.

A low-rank solution was observed when applying SVD to U D layers:
UD=Usv', UeR¥™™ geR™™ vl eR™™, (8)

By dropping small singular values in S, these matrices can be truncated to U € R*", S € R"*" and

Ve R"™*"™ where 0 < r < m. Consequently, (m — r) neurons can be pruned, and new weight
matrices are assigned:

U=0eR™>" D=SeR™>, V=V'VeR*. )

We applied this pruning strategy on the models from Table 1. The left part of Figure 4 presents an
example comparing the generalization capability of pruned models. For comparison, we created
compact models by training from scratch with a reduced number of neurons m in the hidden layer.
The performance change for these models is shown in the right panel of Figure 4. Although our
pruned networks derived from UDV demonstrate that models with significantly fewer parameters
can still achieve strong generalization, these compressed architectures are often more challenging
to optimize directly within the reduced space, consistent with prior findings in the literature (Arora
et al., 2018; Chang et al., 2021). We omit the results for retraining with the UV model, as they show
similar trends to UDV in this context, though UDV generally exhibits superior generalization.
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3.1.4 Further Details and Discussions

Our findings in experiments on neural networks align with the results observed in matrix factorization.
A key distinction, however, was the use of different optimization algorithms, including stochastic
gradients and momentum steps, in neural network experiments. Despite these differences, the
UDV architecture consistently demonstrated a strong bias toward low-rank solutions. Additional
experiments and details can be found in the Appendices, with key results summarized below:

* In the early stages of this research, we explored four variants of UDV, each differing slightly
in their constraints. We selected the version presented in (7), as it generally exhibits the most
pronounced decay in the singular value spectrum. For completeness, details of the other three
variants are provided in Appendix B.1.

* Appendix B.2 provides additional results for the experiment described in Section 3.1.2. Specif-
ically, we present results analogous to those in Table 1 and Figure 3, but focusing exclusively
on the MBGDM algorithm. These results exhibit similar trends, reinforcing consistency across
different methods. Additionally, comprehensive performance comparisons across all algorithms
and models are provided in Tables SM2 to SM5 in the Appendices.

* Additional results on SVD-based pruning are provided in Appendix B.3. We demonstrate that the
UDV framework consistently achieves low-rank solutions across various problem configurations.
Furthermore, we analyze the effect of learning rate on the singular value spectrum, similar to the
analysis in Figure 1, but applied to neural network experiments. This analysis confirms that the
UDV framework produces low-rank solutions across a broad range of learning rates.

* Appendix B.4 extends the UDV framework by incorporating ReLU activation. Preliminary
experiments with the UDV-ReLLU model indicate that it also tends to yield low-rank solutions,
similar to those observed in the original UDV framework.

* Prior work on implicit bias in neural networks suggests that increasing depth enhances the
tendency toward low-rank solutions (Arora et al., 2019; Feng et al., 2022), raising the question of
whether the pronounced bias in the UDV framework is just a consequence of adding a diagonal
layer. To investigate this, we conducted experiments comparing the UDV model to fully connected
three-layer networks, as detailed in Appendix B.5. Additionally, we included a UDV model
without constraints in these comparisons. The results indicate that this bias cannot be attributed
solely to depth, highlighting the critical role of explicit constraints.

* Appendix B.6 compares the spectral decay of the UDV network to that induced by classical
weight decay regularization in two- and three-layer networks. While weight decay promotes
singular value decay, it can not reproduce the strong decay observed in the UDV model.

* Appendix B.7 presents a toy example demonstrating the application of the UDV structure within
the LoRA framework to fine-tune a pre-trained LLaMA-2 model on a causal language modeling
task. The pruning results highlight the potential of the proposed UDV block to replace linear
layers in a wide range of models, demonstrating promising performance under compression.

4 Conclusions

We proposed a new matrix factorization framework, inspired by the observation that implicit bias is
driven by dynamics that are distinct from those leading to convergence of the objective function. This
framework constrains the factors within Euclidean norm balls and introduces a middle diagonal factor
to ensure the search space is not restricted. Numerical experiments demonstrate that this approach
significantly strengthens the low-rank bias in the solution.

To explore the broader applicability of our findings, we designed an analogous neural network
architecture with three layers, constraining the fully connected layers and adding a diagonal hidden
layer, referred to as UDV. Extensive experiments show that the proposed UDV architecture achieves
competitive performance compared to standard fully connected networks, while inducing a structured
solution with a strong bias toward low-rank representations. Additionally, we explored the utility
of this low-rank structure by applying an SVD-based pruning strategy, illustrating how it can be
leveraged to construct compact networks that are more efficient for downstream tasks.

The proposed model exhibits reduced rank regression behavior, where the training process gradually
increases the model rank. While this promotes a low-rank structure, it can also slow convergence.
Although we provide some theoretical insights, developing a more complete theory and designing al-
gorithms that fully exploit the model’s regularization capabilities, especially for large-scale problems,
remain important directions for future work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Main claims in abstract and introduction section can reflect the contributions
which are also mentioned in the introduction section.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations in the conclusions section, along with future
directions.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: Theory assumptions and proofs are provided in the section "Matrix Factoriza-
tion with a Diagonal Component".

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The experiments are fully reproducible. The datasets we used are properly
cited and publicly available, and the code with sufficient instructions is included in the
supplemental material.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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572 Question: Does the paper provide open access to the data and code, with sufficient instruc-
573 tions to faithfully reproduce the main experimental results, as described in supplemental
574 material?

575 Answer: [Yes]

576 Justification: The datasets we used are properly cited and publicly available, and the
577 code with sufficient instructions (including the pre-process of datasets) is included in the
578 supplemental material.

579 Guidelines:

580 * The answer NA means that paper does not include experiments requiring code.

581 ¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/pu
582 blic/guides/CodeSubmissionPolicy) for more details.

583 * While we encourage the release of code and data, we understand that this might not be
584 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
585 including code, unless this is central to the contribution (e.g., for a new open-source
586 benchmark).

587 * The instructions should contain the exact command and environment needed to run to
588 reproduce the results. See the NeurIPS code and data submission guidelines (https:
589 //nips.cc/public/guides/CodeSubmissionPolicy) for more details.

590  The authors should provide instructions on data access and preparation, including how
591 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
592 * The authors should provide scripts to reproduce all experimental results for the new
593 proposed method and baselines. If only a subset of experiments are reproducible, they
594 should state which ones are omitted from the script and why.

595 * At submission time, to preserve anonymity, the authors should release anonymized
596 versions (if applicable).

597  Providing as much information as possible in supplemental material (appended to the
598 paper) is recommended, but including URLSs to data and code is permitted.

599 6. Experimental setting/details

600 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
601 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
602 results?

603 Answer: [Yes]

604 Justification: We have specified the above details in the main paper (see section "Numerical
605 experiments on matrix factorization" and the section "Numerical experiments on neural
606 networks"), and the submitted code includes full details with instructions.

607 Guidelines:

608 * The answer NA means that the paper does not include experiments.

609 » The experimental setting should be presented in the core of the paper to a level of detail
610 that is necessary to appreciate the results and make sense of them.

611 ¢ The full details can be provided either with the code, in appendix, or as supplemental
612 material.

613 7. Experiment statistical significance

614 Question: Does the paper report error bars suitably and correctly defined or other appropriate
615 information about the statistical significance of the experiments?

616 Answer:

617 Justification: Results, especially the neural networks with UDV, were averaged sufficient
618 random initialization seeds. We introduced how we get robust results in the subsection
619 "Implementation details"

620 Guidelines:

621 » The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We specify the computer resources in the subsection "Implementation details",
where there is a paragraph beginning with "Computing environment ...". Wall time is 7 days
for CPU works and 3 days for GPU works.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research respects the NeurIPS code of ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
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Justification: Justification: This research is related to neural network optimization and does
not have direct societal impacts.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: There is no high risk of misuse associated with this research.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All datasets and models based on transfer learning were appropriately cited in
this research.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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15.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We do not refer to the proposed methods as new assets since the datasets and
basic models are existing assets and are properly cited.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects

Guidelines:
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777 * The answer NA means that the paper does not involve crowdsourcing nor research with
778 human subjects.

779 * Depending on the country in which research is conducted, IRB approval (or equivalent)
780 may be required for any human subjects research. If you obtained IRB approval, you
781 should clearly state this in the paper.

782 * We recognize that the procedures for this may vary significantly between institutions
783 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
784 guidelines for their institution.

785 * For initial submissions, do not include any information that would break anonymity (if
786 applicable), such as the institution conducting the review.

787 16. Declaration of LLM usage

788 Question: Does the paper describe the usage of LLMs if it is an important, original, or
789 non-standard component of the core methods in this research? Note that if the LLM is used
790 only for writing, editing, or formatting purposes and does not impact the core methodology,
791 scientific rigorousness, or originality of the research, declaration is not required.

792 Answer: [NA]

793 Justification: LLM is only used for polishing language.

794 Guidelines:

795 * The answer NA means that the core method development in this research does not
796 involve LLMs as any important, original, or non-standard components.

797 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
798 for what should or should not be described.
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