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Abstract

Gradient descent for matrix factorization is known to exhibit an implicit bias1

toward approximately low-rank solutions. While existing theories often assume2

the boundedness of iterates, empirically the bias persists even with unbounded3

sequences. We thus hypothesize that implicit bias is driven by divergent dynamics4

markedly different from the convergent dynamics for data fitting. Using this5

perspective, we introduce a new factorization model: X ⇡ UDV >, where U and6

V are constrained within norm balls, while D is a diagonal factor allowing the7

model to span the entire search space. Our experiments reveal that this model8

exhibits a strong implicit bias regardless of initialization and step size, yielding truly9

(rather than approximately) low-rank solutions. Furthermore, drawing parallels10

between matrix factorization and neural networks, we propose a novel neural11

network model featuring constrained layers and diagonal components. This model12

achieves strong performance across various regression and classification tasks13

while finding low-rank solutions, resulting in efficient and lightweight networks.14

1 Introduction15

The Burer–Monteiro (BM) factorization (Burer & Monteiro, 2003) is a classical technique for16

obtaining low-rank solutions in optimization. One can view it as a simple neural network that uses a17

single layer of hidden neurons under linear activation. Indeed, given the factorization X = UV T18

where U 2 Rd⇥r and V 2 Rc⇥r, one can view U and V as the weights of the first and second layers,19

and r as the number of hidden neurons. But despite the similarity suggested by this view, there is a20

clear distinction between BM factorization and neural networks in how the rank r is chosen. In BM,21

r is typically chosen to be small, close to the rank of the desired solution. Neural networks, on the22

other hand, often succeed even in overparametrized settings where r is large.23

Recent findings of implicit regularization in matrix factorization narrow the gap between these two24

perspectives. For instance, Gunasekar et al. (2017) demonstrate that gradient descent (with certain25

parameter selection) on BM factorization tends to converge toward approximately low-rank solutions26

even when r = d. Based on this observation, they conjecture that “with small enough step sizes and27

initialization close enough to the origin, gradient descent on full-dimensional factorization converges28

to the minimum nuclear norm solution.”29

In a follow-up work, Razin & Cohen (2020) present a counterexample demonstrating that implicit30

regularization in BM factorization cannot be explained by minimal nuclear norm, or in fact any31

norm. Specifically, they show that there are instances where the gradient method applied to BM32

factorization yields a diverging sequence, and all norms thus grow toward infinity. Intriguingly,33

despite this divergence, they found that the rank of the estimate decreases toward its minimum.34

Although this phenomenon might seem surprising initially, it is not uncommon for diverging se-35

quences to follow a structured path. A prime example is the Power Method, the fundamental algorithm36
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for finding the largest eigenvalue and eigenvector pair of a matrix. Starting from a random initial point37

x0, the Power Method iteratively updates the estimate by multiplying it with the matrix. This process38

amplifies the component of the vector that aligns with the direction of the dominant eigenvector39

more than the other components, progressively leading xk to align with this eigenvector. In practical40

implementations, xk is scaled after each iteration to avoid numerical issues from divergence.41

This perspective underpins our approach. Specifically, our key insight is that the implicit regularization42

in BM factorization (and neural networks) is driven by divergent dynamical behavior. This is43

markedly different from the standard (convergent) optimization dynamics helping with the data44

fitting. In this context, we hypothesize that these forces do not merely coexist but actively compete,45

influencing model behavior and performance in fundamentally conflicting ways. Our main goal in46

the development of this paper is to devise an approach that unravels these competing forces.47

1.1 Overview of main contributions48

⌅ A novel formulation for matrix factorization. We model X = UDV >, where U and V are49

constrained within Frobenius norm balls. Projection onto this ball results in a scaling step similar50

to the Power Method. The middle term D is a diagonal matrix that allows the model to explore51

the entire search space despite U and V being bounded.152

Through extensive empirics we demonstrate that the gradient method applied to the proposed53

formulation exhibits a pronounced implicit bias toward low-rank solutions. We compare our54

formulation against standard BM factorization with two unconstrained factors. Specifically, we55

investigate key factors such as step size and initialization, which prior work suggests might be56

contributing to implicit bias. We find that our factorization approach largely obviates the need57

to rely on these conditions: it consistently finds truly (rather than approximately) low-rank58

solutions across a wide range of initializations and step-sizes in our experiments. We believe59

these findings should be of broader interest to research on implicit bias.60

⌅ A novel architecture. Motivated by the strong bias for low-rank solutions of the proposed61

factorization, we subsequently extend it to deep neural networks. We do so by adding constrained62

layers and diagonal components. We show that this constrained model performs on par with,63

or even better than, the standard architecture across various regression and classification tasks.64

Importantly, our approach exhibits bias towards low-rank solutions, resulting in a natural pruning65

procedure that delivers compact, lightweight networks without compromising performance.66

1.2 Related Work67

Burer-Monteiro factorization. BM factorization was proposed for solving semidefinite programs68

(Burer & Monteiro, 2003, 2005) and has been recognized for its efficiency in addressing low-rank69

optimization problems (Boumal et al., 2016; Park et al., 2018). Building on the connections between70

matrix factorization and training problems for two-layer neural networks, BM models have served as71

foundational building blocks for understanding implicit bias and developing theoretical insights.72

Implicit regularization. One promising line of research that aims to explain the successful general-73

ization abilities of neural networks is that of ‘implicit regularization’ induced by the optimization74

methods and architectures (Neyshabur et al., 2014, 2017; Neyshabur, 2017). Several studies explore75

matrix factorization to investigate implicit bias (Gunasekar et al., 2017; Arora et al., 2018; Razin &76

Cohen, 2020; Belabbas, 2020; Li et al., 2021). Much of the existing work focuses on gradient flow77

dynamics in the limit of infinitesimal learning rates. Exceptionally, Gidel et al. (2019) examine dis-78

crete gradient dynamics in two-layer linear neural networks, showing that the dynamics progressively79

learn solutions of reduced-rank regression with a gradually increasing rank.80

Constrained neural networks. Regularizers are frequently used in neural network training to prevent81

overfitting and improve generalization, or to achieve structural benefits such as sparse and compact82

network architectures (Scardapane et al., 2017). However, it is conventional to apply these regularizers83

as penalty functions in the objective rather than constraints. This approach is likely favored due to84

the ease of implementation, as pre-built functions are readily available in common neural network85

packages. Regularization in the form of constraints appears to be rare in neural network training.86

One notable exception is in the context of neural network training with the Frank-Wolfe algorithm87

(Pokutta et al., 2020; Zimmer et al., 2022; Macdonald et al., 2022). Recently, Pethick et al. (2025)88

1The reader may notice a “syntactic” similarity with SVD; except using vastly simpler Frobenius norm
constraints on U and V instead of orthogonality.
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revealed parallels between Frank-Wolfe on constrained networks and algorithms that post-process89

update steps, such as Muon (Jordan et al., 2024), which achieves state-of-the-art results on nanoGPT90

by orthogonalizing the update directions before applying them.91

Pruning. Neural networks are overparameterized, which can enhance generalization and avoid poor92

local minima. But such models then suffer from excessive memory and computational demands,93

making them less efficient for deployment in real-world applications (Chang et al., 2021). Pruning94

reduces the number of parameters, resulting in more compact and efficient models that are easier to95

deploy. A comprehensive review on pruning is beyond the scope of this paper due to space limitations96

and the diversity of approaches. We refer to (Reed, 1993; Blalock et al., 2020; Cheng et al., 2024)97

and the references therein for detailed reviews. Pruning by singular value thresholding has recently98

shown promising results, particularly in natural language processing (Chen et al., 2021), and is often99

used along with various enhancements such as importance weights and data whitening for effective100

compression of large language models (Hsu et al., 2022; Yuan et al., 2023; Wang et al., 2024).101

2 Matrix Factorization with a Diagonal Component102

Consider matrix sensing, a problem where we seek to recover a positive semidefinite (PSD) matrix103

X 2 Sd⇥d
+ from a set of linear measurements b = A(X) 2 Rn. We define A : Rd⇥d ! Rn through104

symmetric measurement matrices A1, . . . , An 2 Sd⇥d, such that A(X) = [hA1, Xi · · · hAn, Xi]>105

and A>y =
Pn

i=1 yiAi. We particularly focus on the data-scarce setting where n ⌧ d2. A notable106

example here matrix completion, where one completes a matrix X given a subset of its entries. This107

problem is inherently under-determined; but successful recovery is possible if X is low-rank (Candes108

& Recht, 2012). We focus on recovering a PSD matrix for simplicity; this is without loss of generality,109

as the general case can be be easily reformulated as a PSD matrix sensing problem (Park et al., 2017).110

The problem described above can be cast as the following rank-constrained optimization problem:111

min
X2Sd⇥d

+

f(X) := 1
2kA(X)� bk22 subj. to rank(X)  r. (1)

Although rank-constrained matrix optimization problems are typically NP-hard, various methods have112

been developed to provide practical approximations. One prominent approach is BM factorization,113

which reparametrizes the decision variable X as UU>, where the factor U 2 Rd⇥r, and r is a positive114

integer that controls the rank of the resulting product. Problem (1) can then be reformulated as:115

min
U2Rd⇥r

1
2kA(UU>)� bk22. (2)

Despite the fact that finding the global minimum of (2) remains challenging, a local solution can be116

approximated using gradient descent (Lee et al., 2016). Initializing at U0 2 Rd⇥r, perform:117

Uk+1 = Uk � ⌘rUf(UkU
>
k ), (3)

where ⌘ > 0 is the step-size, and the gradient is computed as rUf(UU>) = 2rf(UU>)U .118

Selecting the factorization rank r is a critical decision. A small r may lead to spurious local119

minima, resulting in inaccurate outcomes (Waldspurger & Waters, 2020). Conversely, a large r might120

weaken rank regularization, rendering the problem underdetermined. Conventional wisdom in BM121

factorization suggests finding a moderate compromise between these two extremes. However, a key122

observation in (Gunasekar et al., 2017) is that the gradient method applied to (2) exhibits a tendency123

towards approximately low-rank solutions even when r = d. Below, we restate their conjecture:124

Conjecture in (Gunasekar et al., 2017). Suppose gradient flow (i.e., gradient descent with an125

infinitesimally small step-size) is initialized at a full-rank matrix arbitrarily close to the origin. If126

the limit of the gradient flow, XGF = UU>, exists and is a global optimum of (1) with A(XGF) = b,127

then XGF is the minimal nuclear-norm solution to (1).128

2.1 The Proposed Factorization129

We propose reparameterizing X = UDU>, where U 2 Rd⇥r is constrained to have a bounded norm,130

and D 2 Rr⇥r is a non-negative diagonal matrix:131

min
U2Rd⇥r

D2Rr⇥r

1

2
kA(UDU>)� bk22 s.t. kUkF  ↵, Dii � 0, Dij = 0, 8i and 8j 6= i, (4)
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where ↵ > 0 is a model parameter. When the problem is well-scaled, for instance through basic132

preprocessing with data normalization, we found that ↵ = 1 is a reasonable choice.133

Placing in multiple factors and with constraints, we perform projected-gradient updates on U and D134

with step-size ⌘ > 0:135

Uk+1 = ⇧U

�
Uk � ⌘rUf(UkDkU

>
k )

�

Dk+1 = ⇧D

�
Dk � ⌘rDf(UkDkU

>
k )

�
,

(5)

where ⇧U and ⇧D are projections for the constraints in (4); while the gradients are136

rUf(UDU>) = 2rf(UDU>)UD and rDf(UDU>) = U>rf(UDU>)U.

2.2 Numerical Experiments on Matrix Factorization137

We present numerical experiments comparing the empirical performance of the proposed approach138

with the classical BM factorization. Specifically, we examine the impact of initialization and139

step-size on the singular value spectrum of the resulting solution. We set up a synthetic matrix140

completion problem to recover a PSD matrix X\ = U\U>
\ , where the entries of U\ 2 R100⇥3 are141

drawn independently from N(0, 1). We randomly sample n = 900 entries of X\ and store them in the142

vector b 2 Rn. The goal is to recover X\ from b by solving problems (2) and (4). For initialization,143

we generate U0 2 Rd⇥d with entries drawn independently from N(0, 1); we rescale U0 to have144

Frobenius norm ⇠ > 0 (we investigate the impact of ⇠). We initialize D0 = I .145

The results are shown in Figure 1. First, we examine the impact of step-size. To this end, we fix146

⇠ = 10�2 and test different values of ⌘. In the left panel, we plot the objective residual as a function147

of iterations. As expected, we observe that a smaller step-size slows down convergence. In the right148

panel, we plot the singular value spectrum of the results attained after 106 iterations. We observe no149

direct connection between step-size and implicit bias in BM factorization.150

Impact of step-size (⌘), in noiseless setting, with fixed initialization.

Impact of initial distance to origin (⇠), in noiseless setting, with fixed step-size.

Figure 1: Impact of step-size and initialization on implicit bias. Solid lines represent our UDU factorization,
while dashed lines denote the classical BM factorization. [Left] Objective residual vs. iterations. [Right]
Singular value spectrum after 106 iterations. In all cases, UDU produces truly low-rank solutions, whereas the
classical approach results in approximate low-rank structures.

Next, we investigate the impact of initialization. We fix the step-size at ⌘ = 10�2 and evaluate the151

effect of varying ⇠. We observe a correlation between the implicit bias of the BM factorization and ⇠,152
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which determines the initial distance from the origin. Initializing closer to the origin in the classical153

BM factorization yields solutions with a faster spectral decay. Notably, the UDU factorization154

demonstrates a strong implicit bias toward truly low-rank solutions, regardless of the choice of ⌘ or ⇠.155

We provide additional experiments in the Appendices. Specifically, Appendix A.1 considers the156

matrix completion problem with noisy measurements. The results remain consistent with the noiseless157

case: the UDU model exhibits an implicit bias toward truly low-rank solutions, while the classical158

BM factorization yields approximately low-rank solutions. Additionally, we present numerical159

experiments on a matrix sensing problem arising in phase retrieval image recovery in Appendix A.2.160

As before, the UDU framework consistently promotes low-rank solutions, and this structural bias161

significantly enhances the quality of the recovered image.162

2.3 Theoretical Insights into the Inner Workings and Implicit Bias163

A fixed-point analysis of the proposed method provides valuable insights into its inner workings.164

Define the update variables before projection as Ū = U�2⌘rf(X)UD and D̄ = D�⌘U>rf(X)U ,165

with X = UDU>. Suppose (U,D) is a fixed point of the algorithm in (5). Then, the following hold:166

Let uj denote the jth column of U and �j the jth diagonal entry of D.167

(a) If kŪk  ↵, then rf(X)uj�j = 0 for all j,168

(b) If kŪk > ↵, then there exists some � > 0 such that rf(X)uj�j = ��uj for all j.169

At this point, it may seem that choosing a small value of ↵ could promote a fixed point where the170

columns of U align with the negative eigenvectors of rf(X). However, as we will see from the171

analysis of D, there are no valid fixed points that satisfy kŪk > ↵, since172

(c) If �j = 0, then u>
j rf(X)uj � 0, , while (d) If �j > 0, then u>

j rf(X)uj = 0.173

Suppose kŪk > ↵. Then, (b) implies that if �j > 0, then uj must be an eigenvector of rf(X)174

corresponding to a negative eigenvalue; and if �j = 0, then uj must also be zero. However, the175

first statement contradicts (d), while the second statement agrees with (c) only if uj = 0. Since176

these conditions must hold for all j, it follows that U = 0. This, in turn, implies that Ū = 0, which177

contradicts the initial assumption that kŪk > ↵, hence there are no fixed points satisfying kŪk > ↵.178

Considering (a), observe that the fixed point characterization obtained here coincides with the fixed179

points of the BM factorization after the change of variables from U to UD1/2. Thus, incorporating180

constraints on U and adding the factor D does not introduce any new fixed points for X .181

Interestingly, this fixed point analysis also provides insight into the low-rank bias of the algorithm.182

In particular, when U tends to grow and kŪk exceeds ↵, the algorithm appears to temporarily favor183

directions where the columns of U align with the negative eigenvectors of rf(X). To see this more184

concretely, we can express the update rules in terms of the columns of Ū and the diagonal entries of185

D̄ as ūj = uj � 2⌘rf(X)uj�i and �̄j = �j � ⌘u>
j rf(X)uj . These expressions show that both186

ūj and �̄j tend to grow in the directions aligned with the negative eigenvectors of rf(X). However,187

from statement (d), we know that there is no fixed point with �j > 0 unless u>
j rf(X)uj = 0. This188

suggests that: (i) either the algorithm might push uj towards zero, which could happen only through189

the projection steps if another column ūj0 exhibits a faster growth; or (ii) X should evolve such that190

f(X) is minimized in the direction of uj , effectively moving towards a point where rf(X)uj = 0.191

The analysis presented here is a simplified perspective aimed at gaining insight. In reality, the192

alignment or shrinking of the columns of U and the minimization of f(X) along specific directions193

reflected in these columns occur simultaneously and interact in a complex manner. Nevertheless, we194

can clearly observe these effects in our numerical experiments. In Appendix A.3, we present the195

evolution of the column norms of U and the diagonal entries of D over the iterations in our matrix196

completion experiment. Our results show that initially, a few specific columns of U grow, pushing all197

other columns numerically to zero. Once f(X) is effectively minimized with respect to these initial198

columns, some other columns are identified and start to grow. Eventually, the algorithm converges to199

a low-rank solution, where the factorization UDU> is rank-revealing since only a few columns of U200

are nonzero. We further observe that these nonzero columns are orthogonal, effectively demonstrating201

how the algorithm’s specific preference to align uj with the negative eigenvectors of rf(X) along202

the path implicitly induces a structured solution.203
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3 Feedforward Neural Networks with Diagonal Hidden Layers204

This section extends our approach to neural networks. Consider a dataset comprising n data points205

(xi,yi) 2 Rd ⇥ Rc. We first define a three-layer neural network defined as206

�(x) :=
Xm

j=1
vjwju

>
j x ⇡ y. (6)

The first and third layers are fully connected, and the middle is a diagonal layer, as illustrated in207

Figure 2. Drawing parallels between our matrix factorization model in (4) and neural network training,208

we impose Euclidean norm constraints on the weights of the fully connected layers. Under these209

conditions, the training problem can be formulated as follows:210

min
uj ,wj ,vj

1

2n

Xn

i=1
k
Xm

j=1
vj wj u

>
j xi � yik22

subj.to
Xm

j=1
kujk22  1,

Xm

j=1
kvjk22  1, and wj � 0; for all j = 1, . . . ,m.

(7)

The norm constraints in our training problem can be interpreted as a stronger form of weight decay,211

one of the most commonly used regularization techniques in neural networks, which lends further212

justification to our formulation. We refer to this neural network structure as UDV.213
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Figure 2: UDV structure. The weights in diagonal layer D are denoted as wj .

3.1 Numerical Experiments on Neural Networks214

In this section, we test the proposed UDV framework on regression and classification tasks, comparing215

it with fully connected two-layer neural networks (denoted as UV in the subsequent text) using both216

linear and ReLU activation functions. This comparison is fair in terms of computational cost, as the217

cost incurred by the diagonal layer —which can also be viewed as a parameterized linear activation218

function— is negligible. We observe a strong empirical bias toward low-rank solutions in all our219

experiments. We also present a proof-of-concept use case of this strong bias, combined with an220

SVD-based pruning strategy, to produce compact networks.221

3.1.1 Implementation Details222

Computing environment. All classification tasks were conducted on an NVIDIA A100 GPU with223

four cores of the AMD Epyc 7742 processor, while regression tasks were conducted on a single core224

of an Intel Xeon Gold 6132 processor. We used Python 3.9.5 and PyTorch 2.0.1.225

Datasets. We used two datasets for the regression tasks: House Prices - Advanced Regression226

Techniques (HPART) (Anna Montoya, 2016) and New York City Taxi Trip Duration (NYCTTD)227

(Risdal, 2017). We allocated 80% of the data for the training and reserved the remaining 20% for228

validation. Following (Huang, 2003), we set the number of hidden neurons in the diagonal layer229

m = round
�p

(c+ 2)d+ 2
p
d/(c+ 2)

�
. This results in a network structure (d-m-c) of 79-26-1230

for HPART, and 12-10-1 for NYCTTD.231

For classification tasks, we used the normalized MNIST dataset (LeCun et al., 2010). We applied232

transfer learning by replacing the classifier layers of three advanced neural networks –MaxViT-T (Tu233
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Table 1: Model performance using different models. M, E, and R represent the transferred models MaxVit-T,
EfficientNet-B0, and RegNetX-32GF, respectively.

Tasks Regression (Test Loss) Classification (Test Accuracy)

Dataset HPART NYCTTD MNIST

UDV 1.304⇥ 10�3

Adam: 10�3
5.248⇥ 10�6

NAdam: 10�4
M: 99.67%

MBGDM: 10�2
E: 99.63%

MBGDM: 10�1
R: 99.74%

MBGDM: 10�2

UV 1.333⇥ 10�3

Adam: 10�3
5.251⇥ 10�6

Adam: 10�3
M: 99.69%

MBGDM: 10�2
E: 99.60%

Adam: 10�3
R: 99.66%

MBGD: 100

UV-ReLU 1.167⇥ 10�3

Adam: 10�3
5.323⇥ 10�6

NAdam: 10�3
M: 99.68%

NAdam: 10�4
E: 99.68%

MBGDM: 10�1
R: 99.73%

MBGD: 100

et al., 2022), EfficientNet-B0 (Tan & Le, 2019), and RegNetX-32GF (Radosavovic et al., 2020)– with234

UDV, while using pre-trained weights from ImageNet-1K (Deng et al., 2009). Specifically, we retained235

all layers up to the first fully connected layer of the classifier and replaced the subsequent layers.236

The number of hidden neurons in the diagonal layer was set to as m = floor( 23d). This results in a237

UDV network structure (d-m-c) of 512-341-10 for MaxViT-T, 1280-853-10 for EfficientNet-B0, and238

2520-1680-10 for RegNetX-32GF.239

Loss function. We used mean squared error for regression and cross-entropy loss for classification.240

Optimization methods. We tested the results using four different optimization algorithms for241

training: Adam (Kingma & Ba, 2014), Mini-Batch Gradient Descent (MBGD) (LeCun et al., 2002),242

NAdam (Dozat, 2016), and Mini-Batch Gradient Descent with Momentum (MBGDM) (Sutskever243

et al., 2013). For classification, we used different batch sizes for different models: 128 for MaxViT-T244

and RegNetX-32GF, and 384 for EfficientNet-B0.245

We tuned the step size for all models and optimization algorithms: For regression tasks, we tested246

step sizes 10�4, 10�3, 10�2, 10�1, 1, 2, 3. Larger step sizes (1, 2, 3) were often excluded for the247

UV model due to divergence. For classification we tested LRs 10�6, 10�5, 10�4, 10�3, 10�2, 10�1,248

1 with Adam and NAdam; and we tested 10�3, 10�2, 10�1, 1, 2, 3, 5 with MBGD and MBGDM.249

Training Procedure. UV and UDV models were initialized identically, with the diagonal elements250

of D initialized using Kaiming Uniform Initialization, consistent with the default initialization for251

fully connected layers in PyTorch. The models were trained for 200 epochs on HPART, 50 epochs252

on NYCTTD, and 70 epochs on MNIST; and results were averaged over 1000 random seeds for253

HPART, 100 for NYCTTD, and 1 for MNIST to ensure robustness. The validation loss, used as a254

generalization metric in regression, was averaged over the final 20 epochs for the HPART dataset and255

the final 5 epochs for the NYCTTD dataset. Similarly, validation accuracy for classification tasks256

was averaged over the last 5 epochs to ensure stability in the reported values.257

3.1.2 Low-rank Bias in Neural Network Training258

Table 1 presents the validation loss (for regression) or validation accuracy (for classification) of the259

UDV model compared to the classical UV model with linear and ReLU activation functions. For260

each configuration (dataset and model architecture), the results are obtained by selecting the best261

algorithm and learning rate pair. Moreover, Figure 3 illustrates the singular value spectrum of the262

solutions corresponding to each entry in these tables. We focus on the singular values from the U263

and UD layers, as they generate the primary data representation, while omitting the V layer, which264

serves as the feature selection layer and is a tall matrix by definition, given that c ⌧ m in most cases.265

Collectively, these results show that the UDV framework achieves competitive prediction accuracy266

while exhibiting a strong implicit bias toward low-rank solutions, as indicated by the faster decay in267

the singular value spectrum.268

3.1.3 Reducing Network Size with SVD-based Pruning269

Efficient and lightweight feed-forward layers are crucial for real-world applications. For instance, the270

Apple Intelligence Foundation Models (Gunter et al., 2024) recently reported that pruning hidden271

dimensions in feed-forward layers yields the most significant gains in their foundation models.272
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Figure 3: Singular value spectrum corresponding to the solutions reported in Table 1.
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SVD-based pruning demonstrates that the UDV leads to a compact model without performance degradation,
while retraining shows that the UDV achieves better generalization in a compact model.

Building on this insight, we leverage the inherent low-rank bias of the UDV architecture through an273

SVD-based pruning strategy to produce compact networks without sacrificing performance.274

A low-rank solution was observed when applying SVD to UD layers:275

UD = USV>, U 2 Rd⇥m, S 2 Rm⇥m, V> 2 Rm⇥m. (8)

By dropping small singular values in S, these matrices can be truncated to Ū 2 Rd⇥r, S̄ 2 Rr⇥r and276

V̄> 2 Rr⇥m, where 0 < r < m. Consequently, (m � r) neurons can be pruned, and new weight277

matrices are assigned:278

Ū = Ū 2 Rd⇥r, D̄ = S̄ 2 Rr⇥r, V̄ = V̄TV 2 Rr⇥c. (9)

We applied this pruning strategy on the models from Table 1. The left part of Figure 4 presents an279

example comparing the generalization capability of pruned models. For comparison, we created280

compact models by training from scratch with a reduced number of neurons m in the hidden layer.281

The performance change for these models is shown in the right panel of Figure 4. Although our282

pruned networks derived from UDV demonstrate that models with significantly fewer parameters283

can still achieve strong generalization, these compressed architectures are often more challenging284

to optimize directly within the reduced space, consistent with prior findings in the literature (Arora285

et al., 2018; Chang et al., 2021). We omit the results for retraining with the UV model, as they show286

similar trends to UDV in this context, though UDV generally exhibits superior generalization.287
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3.1.4 Further Details and Discussions288

Our findings in experiments on neural networks align with the results observed in matrix factorization.289

A key distinction, however, was the use of different optimization algorithms, including stochastic290

gradients and momentum steps, in neural network experiments. Despite these differences, the291

UDV architecture consistently demonstrated a strong bias toward low-rank solutions. Additional292

experiments and details can be found in the Appendices, with key results summarized below:293

• In the early stages of this research, we explored four variants of UDV, each differing slightly294

in their constraints. We selected the version presented in (7), as it generally exhibits the most295

pronounced decay in the singular value spectrum. For completeness, details of the other three296

variants are provided in Appendix B.1.297

• Appendix B.2 provides additional results for the experiment described in Section 3.1.2. Specif-298

ically, we present results analogous to those in Table 1 and Figure 3, but focusing exclusively299

on the MBGDM algorithm. These results exhibit similar trends, reinforcing consistency across300

different methods. Additionally, comprehensive performance comparisons across all algorithms301

and models are provided in Tables SM2 to SM5 in the Appendices.302

• Additional results on SVD-based pruning are provided in Appendix B.3. We demonstrate that the303

UDV framework consistently achieves low-rank solutions across various problem configurations.304

Furthermore, we analyze the effect of learning rate on the singular value spectrum, similar to the305

analysis in Figure 1, but applied to neural network experiments. This analysis confirms that the306

UDV framework produces low-rank solutions across a broad range of learning rates.307

• Appendix B.4 extends the UDV framework by incorporating ReLU activation. Preliminary308

experiments with the UDV-ReLU model indicate that it also tends to yield low-rank solutions,309

similar to those observed in the original UDV framework.310

• Prior work on implicit bias in neural networks suggests that increasing depth enhances the311

tendency toward low-rank solutions (Arora et al., 2019; Feng et al., 2022), raising the question of312

whether the pronounced bias in the UDV framework is just a consequence of adding a diagonal313

layer. To investigate this, we conducted experiments comparing the UDV model to fully connected314

three-layer networks, as detailed in Appendix B.5. Additionally, we included a UDV model315

without constraints in these comparisons. The results indicate that this bias cannot be attributed316

solely to depth, highlighting the critical role of explicit constraints.317

• Appendix B.6 compares the spectral decay of the UDV network to that induced by classical318

weight decay regularization in two- and three-layer networks. While weight decay promotes319

singular value decay, it can not reproduce the strong decay observed in the UDV model.320

• Appendix B.7 presents a toy example demonstrating the application of the UDV structure within321

the LoRA framework to fine-tune a pre-trained LLaMA-2 model on a causal language modeling322

task. The pruning results highlight the potential of the proposed UDV block to replace linear323

layers in a wide range of models, demonstrating promising performance under compression.324

4 Conclusions325

We proposed a new matrix factorization framework, inspired by the observation that implicit bias is326

driven by dynamics that are distinct from those leading to convergence of the objective function. This327

framework constrains the factors within Euclidean norm balls and introduces a middle diagonal factor328

to ensure the search space is not restricted. Numerical experiments demonstrate that this approach329

significantly strengthens the low-rank bias in the solution.330

To explore the broader applicability of our findings, we designed an analogous neural network331

architecture with three layers, constraining the fully connected layers and adding a diagonal hidden332

layer, referred to as UDV. Extensive experiments show that the proposed UDV architecture achieves333

competitive performance compared to standard fully connected networks, while inducing a structured334

solution with a strong bias toward low-rank representations. Additionally, we explored the utility335

of this low-rank structure by applying an SVD-based pruning strategy, illustrating how it can be336

leveraged to construct compact networks that are more efficient for downstream tasks.337

The proposed model exhibits reduced rank regression behavior, where the training process gradually338

increases the model rank. While this promotes a low-rank structure, it can also slow convergence.339

Although we provide some theoretical insights, developing a more complete theory and designing al-340

gorithms that fully exploit the model’s regularization capabilities, especially for large-scale problems,341

remain important directions for future work.342
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Justification: Justification: This research is related to neural network optimization and does673

not have direct societal impacts.674

Guidelines:675

• The answer NA means that there is no societal impact of the work performed.676

• If the authors answer NA or No, they should explain why their work has no societal677

impact or why the paper does not address societal impact.678

• Examples of negative societal impacts include potential malicious or unintended uses679

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations680

(e.g., deployment of technologies that could make decisions that unfairly impact specific681

groups), privacy considerations, and security considerations.682

• The conference expects that many papers will be foundational research and not tied683

to particular applications, let alone deployments. However, if there is a direct path to684

any negative applications, the authors should point it out. For example, it is legitimate685

to point out that an improvement in the quality of generative models could be used to686

generate deepfakes for disinformation. On the other hand, it is not needed to point out687

that a generic algorithm for optimizing neural networks could enable people to train688

models that generate Deepfakes faster.689

• The authors should consider possible harms that could arise when the technology is690

being used as intended and functioning correctly, harms that could arise when the691

technology is being used as intended but gives incorrect results, and harms following692

from (intentional or unintentional) misuse of the technology.693

• If there are negative societal impacts, the authors could also discuss possible mitigation694

strategies (e.g., gated release of models, providing defenses in addition to attacks,695

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from696

feedback over time, improving the efficiency and accessibility of ML).697

11. Safeguards698

Question: Does the paper describe safeguards that have been put in place for responsible699

release of data or models that have a high risk for misuse (e.g., pretrained language models,700

image generators, or scraped datasets)?701

Answer: [NA]702

Justification: There is no high risk of misuse associated with this research.703

Guidelines:704

• The answer NA means that the paper poses no such risks.705

• Released models that have a high risk for misuse or dual-use should be released with706

necessary safeguards to allow for controlled use of the model, for example by requiring707

that users adhere to usage guidelines or restrictions to access the model or implementing708

safety filters.709

• Datasets that have been scraped from the Internet could pose safety risks. The authors710

should describe how they avoided releasing unsafe images.711

• We recognize that providing effective safeguards is challenging, and many papers do712

not require this, but we encourage authors to take this into account and make a best713

faith effort.714

12. Licenses for existing assets715

Question: Are the creators or original owners of assets (e.g., code, data, models), used in716

the paper, properly credited and are the license and terms of use explicitly mentioned and717

properly respected?718

Answer: [Yes]719

Justification: All datasets and models based on transfer learning were appropriately cited in720

this research.721

Guidelines:722

• The answer NA means that the paper does not use existing assets.723

• The authors should cite the original paper that produced the code package or dataset.724
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• The authors should state which version of the asset is used and, if possible, include a725

URL.726

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.727

• For scraped data from a particular source (e.g., website), the copyright and terms of728

service of that source should be provided.729

• If assets are released, the license, copyright information, and terms of use in the package730

should be provided. For popular datasets, paperswithcode.com/datasets has731

curated licenses for some datasets. Their licensing guide can help determine the license732

of a dataset.733

• For existing datasets that are re-packaged, both the original license and the license of734

the derived asset (if it has changed) should be provided.735

• If this information is not available online, the authors are encouraged to reach out to736

the asset’s creators.737

13. New assets738

Question: Are new assets introduced in the paper well documented and is the documentation739

provided alongside the assets?740

Answer: [NA]741

Justification: We do not refer to the proposed methods as new assets since the datasets and742

basic models are existing assets and are properly cited.743

Guidelines:744

• The answer NA means that the paper does not release new assets.745

• Researchers should communicate the details of the dataset/code/model as part of their746

submissions via structured templates. This includes details about training, license,747

limitations, etc.748

• The paper should discuss whether and how consent was obtained from people whose749

asset is used.750

• At submission time, remember to anonymize your assets (if applicable). You can either751

create an anonymized URL or include an anonymized zip file.752

14. Crowdsourcing and research with human subjects753

Question: For crowdsourcing experiments and research with human subjects, does the paper754

include the full text of instructions given to participants and screenshots, if applicable, as755

well as details about compensation (if any)?756

Answer: [NA]757

Justification: The paper does not involve crowdsourcing nor research with human subjects.758

Guidelines:759

• The answer NA means that the paper does not involve crowdsourcing nor research with760

human subjects.761

• Including this information in the supplemental material is fine, but if the main contribu-762

tion of the paper involves human subjects, then as much detail as possible should be763

included in the main paper.764

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,765

or other labor should be paid at least the minimum wage in the country of the data766

collector.767

15. Institutional review board (IRB) approvals or equivalent for research with human768

subjects769

Question: Does the paper describe potential risks incurred by study participants, whether770

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)771

approvals (or an equivalent approval/review based on the requirements of your country or772

institution) were obtained?773

Answer: [NA]774

Justification: The paper does not involve crowdsourcing nor research with human subjects775

Guidelines:776
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• The answer NA means that the paper does not involve crowdsourcing nor research with777

human subjects.778

• Depending on the country in which research is conducted, IRB approval (or equivalent)779

may be required for any human subjects research. If you obtained IRB approval, you780

should clearly state this in the paper.781

• We recognize that the procedures for this may vary significantly between institutions782

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the783

guidelines for their institution.784

• For initial submissions, do not include any information that would break anonymity (if785

applicable), such as the institution conducting the review.786

16. Declaration of LLM usage787

Question: Does the paper describe the usage of LLMs if it is an important, original, or788

non-standard component of the core methods in this research? Note that if the LLM is used789

only for writing, editing, or formatting purposes and does not impact the core methodology,790

scientific rigorousness, or originality of the research, declaration is not required.791

Answer: [NA]792

Justification: LLM is only used for polishing language.793

Guidelines:794

• The answer NA means that the core method development in this research does not795

involve LLMs as any important, original, or non-standard components.796

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)797

for what should or should not be described.798
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