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Abstract
We present any4, a learned 4-bit weight quantiza-
tion solution for large language models (LLMs)
providing arbitrary numeric representations with-
out requiring pre-processing of weights or activa-
tions. any4 yields higher accuracy compared to
other related 4-bit numeric representation types:
int4, fp4 and nf4, as evaluated on a range of
model sizes, generations and families (Llama
2, Llama 3, Mistral and Mixtral). While any4
does not require preprocessing of weights or
activations, it is also competitive with orthogo-
nal techniques that require such preprocessing
(e.g., AWQ and GPTQ). We also experiment
with any3 and any2 and show competitiveness
at lower bits. Additionally, we show that we can
calibrate using a single curated diverse sample
rather than hundreds of samples from a dataset
as done in most quantization approaches. We
also open source tinygemm, a latency optimized
GPU matrix multiplication library for LLMs, that
implements any4 using a GPU-efficient lookup
table strategy along with other common quan-
tization methods. We open source our code at
https://github.com/facebookresearch/any4.

1. Introduction
Reduced neural network parameter sizes are important for
efficient inference, whether at datacenter scale, where ac-
celerators can be provisioned based more upon arithmetic
throughput rather than memory requirements, or with edge
devices, where smaller, slower memories could be used
improving battery lifetime while meeting performance con-
straints. Given training is typically done in high dynamic
range floating point arithmetic, techniques to lossily com-
press weights must deal with the possibility of varying scale
factors and outliers. Various weight numeric formats, such
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Figure 1: Perplexity by quantizing various Llama3 model
sizes. Our proposed any4 is the most accurate across nu-
meric formats.

as 4-bit integer (int4), floating point (fp4), or custom distri-
butions such as NormalFloat4 (nf4) (Dettmers et al., 2023))
along with quantization grouping (Dai et al., 2021) are used
to increase accuracy. Pre-processing weights and/or activa-
tions (e.g., AWQ (Lin et al., 2024), GPTQ (Frantar et al.,
2023), or weight Hadamard transforms (Ashkboos et al.,
2024b; Liu et al., 2024) can aid with accuracy as well. In
this paper, we present a new learned numeric representation,
any4, that does not require online or offline modification of
weights or activations. any4 quantization accuracy outper-
forms other numeric representation types, and is compet-
itive with orthogonal quantization algorithms that prepro-
cess weights and/or activations (orthogonality implying that
some of these techniques can be applied together with any4
representation). Accuracy was evaluated on a wide range of
model sizes, generations and families.

2. Background
Trained neural network weights tend to be roughly Gaussian
in nature but with heavier tails (Goodfellow et al., 2016).
In attempting to lossily compress weights via quantization
(yielding fewer reproduction values than the original do-
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main), being able to closely match the weight distribution
with post-quantization possible reproduction values is im-
portant for accuracy.

2.1. Uniform Integer Quantization

Some of the first neural network quantization works con-
cerned uniform integer quantization (Jacob et al., 2018).
Given a set of values to quantize, we obtain the maximum
absolute value, and set that to the extreme value (e.g., -128 /
+127 for int8 and -8 / +7 for int4 quantization), with zero be-
ing preserved (int8/int4 zero dequantizes to original domain
zero). Each increment between int8/int4 values corresponds
to a fixed increment (scale) in the original floating point
domain.

This allows for more efficient (chip area and power) hard-
ware circuits, as integer multiply-add is much simpler than
floating point multiply-add. However, uniform integer quan-
tization is best suited to representing samples from a uni-
form distribution, which is a mismatch with neural network
properties. Increased bitwidth (more dense uniform sam-
ples) is needed for accuracy due to the expected distribution
mismatch, indicating that there is waste in memory storage.

2.2. Floating Point Quantization

Floating point quantization (reducing fractional precision
and dynamic range via rounding) is another mechanism.
Unlike integer quantization, reproduction values are now
non-uniformly spaced. Floating point arithmetic is a piece-
wise linear distribution of values: the steps between floating
point exponents are geometric in nature (multiply or divide
by 2 each increment), but within a given exponent value,
the spacing of reproduction values is linear (as given by
the significand bits). This is slightly closer mapping as a
Gaussian distribution with zero mean has most of the mass
of the distribution at smaller exponent values more densely
sampled by floating point than linear distributions on the
number line, while within an exponent the spacing of values
is still linear.

Such quantization makes sense with hardware support for
reduced bit width floating point types (e.g., fp8 formats with
Nvidia’s H100 GPU and fp4 with Nvidia’s B100 GPU). In
lieu of native conversion instructions, bit manipulation can
usually convert or round a n-bit fpn value to the nearest
standard fp16/bf16 value (thus, fp4 can be emulated on
devices with higher bit width floating point support).

2.3. Grouped Quantization

As the bitwidth (and thus the number of possible quanti-
zation reproduction values) decreases, it can be useful to
introduce metadata pertaining to groups of values to the
quantization to improve accuracy, with metadata storage

cost amortized across many values (Darvish Rouhani et al.,
2020). Grouped quantization is an attempt at this. Instead of
forcing a single scalar value itself to be the entire representa-
tion, we can define groups of contiguous values along a row
or column of the matrix. A common offset and scale factor
is defined for a group of values such that the reconstruc-
tion error is improved, with typical group sizes in practice
being 32 - 256. Other variants include Shared Microexpo-
nents (Rouhani et al., 2023), providing a group-wise shared
exponent value (multiplicative scale) to adjust per-scalar 4
bit floating point values (MX4) in lieu of a scale and offset.

2.4. Non-Uniform Quantization

Thus far we have discussed uniform (linear) and floating-
point (log/linear) distributions. But we can go further and
have quantization reproduction values match the seen distri-
butions more closely.

NormalFloat4 (nf4) (Dettmers et al., 2023) attempts to do
exactly this by having the reproduction values (fixed ahead
of time) match a Gaussian distribution exactly. However,
with an even number of reproduction values (e.g., 2n for
n bits), we cannot represent a Gaussian symmetrically if
we wish to preserve zero. So nf4 is asymmetric, using one
of the 16 values to represent zero. This results in higher
accuracy, especially for partially sparse matrices.

AbnormalFloat4 (af4) (Yoshida, 2023) is a variant of nf4
which adjusts the distribution based on quantization group
size. The larger the quantization group, the larger the ex-
pected maximum absolute value of Gaussian distribution
samples, but the mass of the distribution would still be close
to 0. Mapping the nf4 distribution based on the seen ab-
solute maximum value would result in much of the mass
of the distribution (values closer to the mean) not being as
accurately represented. af4 adjusts the distribution based on
group size to take this into account.

2.4.1. ARBITRARY NON-UNIFORM QUANTIZATION:
ANY4

Instead of trying to match an a priori data distribution
as nf4/af4 do, we can instead learn the distribution from
the seen data itself. This was explored in signal process-
ing (Lloyd, 1982a; Max, 1960) and any4 explores this for
LLMs. For each set of values along each row of a matrix,
we can perform k-means (Lloyd, 1982b; MacQueen et al.,
1967) or neural network-based clustering, so each row of the
matrix has its own 4-bit quantization code, providing indices
into a per-row codebook or lookup table (LUT) containing
arbitrary floating point dequantization values. This adds
little overhead to quantization: for each row of a M×4096
matrix, any4 will add 16 bfloat16/float16 values, for an
overhead of (16 × sizeof([b]float16) × 8 bits/byte) / 4096
columns = 0.0625 bits for each matrix entry. Like existing
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4-bit techniques, for higher accuracy we add quantization
groups (e.g., each set of g contiguous row values has a
shared 16-bit scale and zero point). Thus, per-scalar quan-
tization group overhead for g = 128 in our example would
be ((4096 / 128) × (2 × 16)) / 4096 = 0.25 bits, yielding
0.0625 + 0.25 + 4 = 4.3125 bits for any4 representation.
Note that standard int4 grouped quantization is already 4.25
bits/entry here, with extension to any4 only adding 0.0625
bits/entry of LUT overhead.

In addition, the likely most efficient way to implement nf4
and af4 in software itself is via the same mechanism as any4:
using a LUT, as there is no efficient programmatic way to
convert a 4-bit integer to an nf4/af4 value using a small
number of instructions. To support nf4/af4, our CUDA
implementation also allows using a single 16 entry any4
LUT for an entire matrix instead of a LUT per each matrix
row. This paper solely evaluates the latter.

2.5. Quantization Process

Vanilla quantization happens in 2 steps: scaling followed by
rounding.

2.5.1. SCALING

Numeric formats have different numeric ranges, and high
precision numeric formats usually have orders of magnitude
larger ranges from low precision numeric formats, e.g., fp32
ranges from −3.4× 1038 to +3.4× 1038 while int4 ranges
from -7 to +8. Moreover, the numeric range of a given
tensor could be orders of magnitude different from a low
precision format (e.g., most weight values range from -0.01
to +0.01 while int4 ranges from -7 to +8). Hence, directly
rounding each element in a tensor to its nearest value in a
numeric format will waste most of the bits and lead to high
reconstruction error.

Instead, most approaches scale a tensor, or a subset of a ten-
sor, to the range of lower precision numeric format. Given a
weight tensor w, and an index i, the scaled weight tensor,
wS , can be expressed as:

wSi =
wi − βi

αi
(1)

Scale factors α and β, are high precision scalar values that
are calculated for each group of indices, G. For asymmetric
quantization1:

αj∈G =
max(wj∈G)− min(wj∈G)

Qmax −Qmin

βj∈G = min(wj∈G)

(2)

1Note that some quantization literature scale slightly differently
from us: βj∈G = round(min(wj∈G)/αj∈G) and wSi =

wi
αi

− βi

For symmetric quantization:

αj∈G =
max(abs(wj∈G))

Qmax

β = 0

(3)

where G is a set of indices of a tensor, α and β are scaling
factors, Qmin and Qmax are the minimum and maximum
values of the lower precision numeric format.

Scaling could be applied at different granularities:

• Tensorwise: where G is the set of all indices of the
tensor. Hence, all elements in tensor, w, share the
same scale factors: αi,j = α, βi,j = β,∀i, j.

• Rowwise: where G is the set of all indices of a row.
Elements in each row of a tensor share the same scale
factors: αi,j = αi, βi,j = βi,∀j.

• Columnwise: where G is the set of all indices of a
column. Elements in each column of a tensor share the
same scale factors: αi,j = αj , βi,j = βj ,∀i.

• Groupwise: where G is the set of non-overlapping con-
secutive indices along a row (or column), of size 1× g,
where group size, g, is a scalar hyperparameter. Ele-
ments in each group, Gk, share the same scale factors:
αi,j = αi,Gk

, βi,j = βi,Gk
,∀j s.t. kg ≤ j < k(g+1).

Values of 64 or 128 for g usually provide a sweet spot
between accuracy and overhead for 4-bit quantization.

• Blockwise: where G is the set of indices within a two-
dimensional block of size b × b, where, b, is a scalar
hyperparameter. Elements in each block, Gk,l, of a ten-
sor share the same scale factors: αi,j = αGk.l

, βi,j =
βGk,l

,∀i, j s.t. kb ≤ i < k(b+ 1), lb ≤ j < l(b+ 1).

In our work, we focus on weight-only groupwise quanti-
zation (along the reduction dimension) and, unless stated
otherwise, use a default group size g of 128.

2.5.2. ROUNDING

After scaling, the next step is to round the scaled value to
the nearest value in the low-precision quantization format:

wQ = roundQ(wS) (4)

And to dequantize: dequant(wQ) = αwQ + β.

3. Related Work
Quantization has long been researched to run on CPUs and
custom chips (Xie & Jabri, 1992). Various techniques can
be categorized into:
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Weights vs. Activations vs. Gradients vs. Opti-
mizer States Quantization can be applied on weights
only (AWQ (Lin et al., 2024), GPTQ (Frantar et al.,
2023)), weights and activations (SmoothQuant (Xiao et al.,
2023), LLM.int8() (Dettmers et al., 2022a)), KV cache
(KVQuant (Hooper et al., 2024)), and can be applied to
gradients for training (TinyScript (Fu et al., 2020)) and opti-
mization states (8-bit Optimizers (Dettmers et al., 2022b)).
Auto-regressive decoding with batch size 1 and sequence
length 1 is a highly memory bound process (a big portion
of compute time is spent in loading weights compared to
processing activations), thus 4-bit weight only quantization
leads to better speedup than 8-bit weight and 8-bit activa-
tion quantization (PyTorch, 2024). Moreover, 4-bit weight
only quantization leads to a better accuracy-speed tradeoff
compared to 4-bit weight and 4-bit activation quantization.
In this research, we focus on quantizing weights only.

Post-Training Quantization (PTQ) vs. Quantization
Aware Training (QAT) PTQ refers to quantization on a
trained model without the need for further training. QAT
refers to quantization during training, whether training a
model from scratch, e.g., FP8-LM (Peng et al., 2023), or
continually training or finetuning a trained model, e.g.,
QLoRA (Dettmers et al., 2023). This work falls under PTQ
as it does not require further training of a model.

Numeric Representation While integer quantization is the
most commonly used numeric representation, other numeric
representations, that have been explained above, are also
used for inference and/or training: fp8 (Wang et al., 2018),
fp6 (Gernigon et al., 2023), fp4 (Sun et al., 2020), nf4, and
af4 (Yoshida, 2023).

Lookup Table (LUT) Representation While most research
quantize to pre-defined numeric formats, other approaches
use a dynamic format that is specified for each tensor or
subset of elements of a tensor using a look-up-table (LUT)
(a.k.a. codebook). In scalar quantization techniques, e.g.,
DeepCompression for CNNs (Han et al., 2016), GOBO for
BERT (Zadeh et al., 2020), SqueezeLLM for LLMs (Kim
et al., 2023), LUTs map scalar quantized values to scalar
high precision values. In vector quantization techniques
(Stock et al. for CNNs (Stock et al., 2020), AQLM for
LLMs (Egiazarian et al., 2024)), LUTs map vectors of quan-
tized values to vectors of high precision values.

Preserving Outlier/Sensitive Values LLM.int8() (Dettmers
et al., 2022a) found that keeping < 0.1% of outlier activa-
tions and their corresponding weights in high precision min-
imizes drop in accuracy. SqueezeLLM (Kim et al., 2023)
found that keeping 0.40% outlier weights and an additional
0.05% sensitive weights, determined by a Hessian metric,
minimizes accuracy drops. In this work, we quantize all val-
ues and keep no outlier/sensitive values in higher precision.

Pre-processing Weights and/or Activations While many
quantization algorithms simply round each high precision
value to a value in the quantized set of possible values
(Round to Nearest (RTN), stochastic rounding (Xia et al.,
2021), or adaptive rounding (Nagel et al., 2020)), other
algorithms perform some offline or online processing of
weights and/or activations. Instead of keeping outlier ac-
tivations or sensitive weights, AWQ (Lin et al., 2024) and
SmoothQuant (Xiao et al., 2023) mitigate their effects by di-
viding outlier channels by a scaling factor and compensating
by multiplying weights with the same factor. Other quantiza-
tion approaches mitigate outliers by applying matrix trans-
formations on weights and activations, e.g., QuIP (Chee
et al., 2023), QuaRot (Ashkboos et al., 2024a) and Spin-
Quant (Liu et al., 2024). Another line of research follows an
iterative procedure of quantizing weights in subsets, modify-
ing unquantized elements to mitigate the errors introduced
after quantizing each subset, e.g., GPTQ (Frantar et al.,
2023).

A common trend is to use a combination of techniques.
QuIP cascades incoherence processing with adaptive round-
ing, QTIP (Tseng et al., 2024) uses Hadamard transforms to
remove outliers, vector quantization for numeric representa-
tion and other techniques, while SqueezeLLM preserves a
portion of outlier/sensitive values in high precision and ap-
plies scalar quantization. In this work, we opt for a one-shot
quantization algorithm that does not require any online or
offline pre-processing or transformations on weights and/or
activations, and focus on the aspect of learning quantization
from data with efficient inference in hardware, achieving
SOTA accuracies compared to other numeric format ap-
proaches and is competitive with orthogonal approaches
that pre-process weights and activations. We leave it to fu-
ture work to combine any4 with such orthogonal techniques.

4. Proposed Solution
4.1. any4 Algorithm

In any4 quantization, we first apply group-wise scaling, then
try to find the optimal numeric representation for each row
of a weight matrix. Naively applying K-means clustering
on scaled weights will lead to a sub-optimal quantization
scheme. This is because K-means clustering will minimize
the reconstruction error of the weight matrix rather than the
output of multiplying weights with sample inputs, and even
for weight reconstruction, K-means clustering will minimize
the reconstruction error of the scaled weight matrix rather
than the original weight matrix.

We denote a weight matrix with dimensions of N ×K as
w, an input vector with dimensions M ×K, where M = 1
without loss of generality, as x, and the output vector with
dimensions M × N as y. Matrix multiplication in high
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precision can be expressed as:

y = wx (5)

and matrix multiplication with quantized weights as:

ŷ = dequant(wQ)x (6)

For the ith element of output y, this is equivalent to:

yi =
∑
∀j

wi,jxj (7)

ŷi =
∑
∀j

dequant(wQi,j )xj (8)

Our goal is to find the set of 2n quantized values for row i:

Qi = {wQ0
i
, wQ1

i
, . . . , w

Q2n−1
i

} (9)

for n-bit quantization (anyn) that will minimize the expected
mean square error in output activations for possible input
activations:

min
Qi

E ∥ŷ − y∥ (10)

We choose a greedy approach to minimize the mean of
Frobenius norm of the error of the output activation vector
by minimizing the absolute error of each of its elements:

min
Qi

E |ŷi − yi| = min
Qi

E

∣∣∣∣∣∣
∑
∀j

wi,jxj −
∑
∀j

dequant(wQi,j )xj

∣∣∣∣∣∣
= min

Qi

E

∣∣∣∣∣∣
∑
∀j

(wi,j − dequant(wQi,j ))xj

∣∣∣∣∣∣
(11)

This way, we can focus on dealing with finding the optimal
quantization configuration for each row i of the weight ma-
trix. (Note that GPTQ opts to minimize output activations
error in a different way such that all rows of the weight ma-
trix are co-optimized together). Expanding the right hand
side of the equation:

min
Qi

E |ŷi − yi| = min
Qi

E

∣∣∣∣∣∣
∑
∀j

(wi,j − (αi,jwQi,j + βi,j))xj

∣∣∣∣∣∣
(12)

The high precision weights are mathematically equivalent to
applying scaling factors on scaled weights (i.e., re-arrange
Eqn. 1 to expand wi,j into wi,j = αi,jwSi,j

+ βi,j):

min
Qi

E |ŷi − yi|

= min
Qi

E

∣∣∣∣∣∣
∑
∀j

(αi,jwSi,j + βi,j − (αi,jwQi,j + βi,j))xj

∣∣∣∣∣∣
= min

Qi

E

∣∣∣∣∣∣
∑
∀j

(αi,j(wSi,j − wQi,j )xj

∣∣∣∣∣∣
(13)

The offset factors, βi,j , cancel each other out. Hence, we
have:

min
Qi

E |ŷi − yi| = min
Qi

E

∣∣∣∣∣∣
∑
∀j

(αi,jwSi,jxj − αi,jwQi,jxj)

∣∣∣∣∣∣
(14)

We now proceed to solve this by a K-Means-style alternating
optimization procedure:

0. Initialize: for ith row of a weight matrix, randomly
initialize a set Qi to a random set of 2n values:

Qi = {wQ0
i
, wQ1

i
, . . . , w

Q2n−1
i

} (15)

1. E-Step: Given Qi and the row of scaled weights:

{wSi,j}∀j = {wSi,0 , wSi,1 , . . . , wSi,M−1} (16)

we would like to deduce the best wQi,j for each cor-
responding wSi,j that will minimize the expression
defined in Eq. 14. Since in this step, the possible val-
ues in Qi are fixed and we are merely selecting from a
set of discrete values, we apply a local minimization
step and re-write Eq. 14 to:

wQi,j = min
wQi,j

∈Qi

(αi,jwSi,jxj − αi,jwQi,jxj)
2

= αi,jxj min
wQi,j

∈Qi

(wSi,j − wQi,j )
2

(17)

Again since αi,jxj are fixed in this step and are inde-
pendent of wQi,j , we can drop that term:

wQi,j = min
wQi,j

∈Qi

(wSi,j − wQi,j )
2

(18)

2. M-Step: After applying the E-Step above, each wQi,j

will be set to one of the 2n values in the set Qi. We
refer to each set of indices i, j that are associated with
a specific quantized value Qq

i as a cluster. We can re-
write Eq. 14 to create a separate sum term for elements
in each cluster:

min
Qi

E |ŷi − yi|

= min
Qi

E

∣∣∣∣∣∣
∑
∀j

∑
∀q∈Q

q
i

(αi,jwSi,jxj − αi,jwQ
q
i
xj)

∣∣∣∣∣∣
(19)

To minimize the term, we can aim to set the difference
for elements for each cluster to 0:

E

∣∣∣∣∣∣
∑

∀q∈Q
q
i

(αi,jwSi,jxj − αi,jwQ
q
i
xj)

∣∣∣∣∣∣ = 0 (20)
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The expression inside the expectation operation is a
scalar value. Moreover, except for input activations
x, all the other variables are deterministic and known
offline. Hence, the expectation operator is only needed
to be applied on input activations:

∑
∀q∈Q

q
i

(αi,jwSi,jE |xj | − αi,jwQ
q
i
E |xj |) = 0 (21)

Re-writing:

∑
∀q∈Q

q
i

αi,jwSi,jE |xj | =
∑

∀q∈Q
q
i

αi,jwQ
q
i
E |xj |

= wQ
q
i

∑
∀q∈Q

q
i

αi,jE |xj |
(22)

Re-arranging:

wQ
q
i
=

∑
∀q∈Q

q
i
αi,jwSi,jE |xj |∑

∀q∈Q
q
i
αi,jE |xj |

(23)

Eqn. 23 states that the optimal value to represent a
group of scaled weights within a cluster is their aver-
age weighted by the product of the scaling factor of a
weight element and mean of the norm of activations
applied to that element.

We alternate between the E-Step and M-Step till the values
of Qi converge.

The equation of E-Step is equivalent to the cluster assign-
ment step of K-means clustering, while the equation of
M-Step is equivalent to the centroid update step of weighted
K-means. Hence, our mathematical formulations guides us
to creating the LUT of each row of a scaled weight matrix
by the algorithm depicted in Alg. 1. We also summarize our
algorithm in Fig. 2. We speedup the process by paralleliz-
ing the loop over each linear weight’s rows, enabling us to
quantize Llama3 8B in 10 minutes.

While most quantization papers use a dataset like C4 to
obtain a set of calibration activations, we hand curate a
single calibration sample, as shown in Listing. 1, that covers
diverse set of topics, and then obtain the mean of absolute
of activations along the channel axis to represent E |x|).

- Fiction: “Once upon a time, a girl named
Alice was living alone on an island. One day,
she met a wizard ...”
- News: “The United Nations held its Gen-
eral Assembly meeting this year amid multi-
ple world crises and wars. In his speech, the
General Secretary called for ...”
- Code: ˜public static void main(String[] args)
\n System.out.println(“Hello world!”);\n ˜
- Math: (5.2 + 2.7) / 0.6 - 1.9 * 2.2 =
- Facts: “The capital of Egypt is Cairo. It is the
largest city in the region and is home to...”

Listing 1: Calibration sample used to generate LUTs.

row 0 group 0 (r0 g0)
⍺=0.27
β=-2.1

row 0 group 1 (r0 g1)
⍺=0.08
β=-0.6

(1) Original N x K matrix

Sampled activations

Each row of matrix (2)
(row 0 in example)

(3) Clustering 

method

any4 LUT for row 0 (16 entries)

(4) any4 LUT for entire matrix (size N x 16)

(6) quantized matrix is index to 

closest per-row any4 LUT value

(N x K matrix of 4-bit codes)

N x K matrix from (2)

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . . . . . . 

N x 16 LUT from (4)

. . . . . . . 

. . . . . . . 

. . . . . . . 

. . . . . . . 

(5) lookup 

nearest LUT 

entry in row 

for all values

(2) Apply quantization groups
(example is along rows, group size K/2)

-0.6 1.2 … …0.08 0.3

1.1 -0.43 … -0.7 2.8 …

… … … … … …

… … … … … …

5.6 12.2 … …8.5 11.3

1.97 0 … 0.6 7.6 …

… … … … … …

… … … … … …

r1 g1r1 g0

r(n-1) g1r(n-1) g0

… …

5.6 12.2 … …8.5 11.3

0.7 -10 3.2 …-0.06 0.3

K (vector/reduction dimension)

N
 (
(n

u
m

b
e
r 

o
f 

v
e
c
to

rs
)

0.03 0.07 0.24 13.90.5 …

0.03 0.07 0.24 13.90.5 …

0 0.24 0.6 2.9 … 9.3

… … … … … …

…… … … … …

row 0

row 1

row (n-1)

…

10 15 … …0 2

9 0 … 1 15 …

… … … … … …

… … … … … …

…

Figure 2: any4 quantization process

4.2. tinygemm Library

As part of this paper, we present tinygemm, a GEMM li-
brary optimized for low-latency LLM inference at small
batch sizes (1 to 16) for Nvidia GPU Ampere generation and
later architectures. For a matrix multiplication y = xwT

where x is of size M × K and w is of size N × K (M
and N being the outer dimensions and K being the reduc-
tion dimension), in linear layers, the product of batch size

6



any4: Learned 4-bit Numeric Representation for LLMs

Llama3.2 1B

Perplexity ↓ Tasks ↑

WikiText-2 C4 PTB CodeParrot HumanEval
Pass@1

MBPP
Pass@1 MMLU HellaSwag GSM8K BBH

FP16 9.76 12.77 16.56 3.49 16.46% 21.4% 36.1% 47.7% 6.60% 31.1%
INT4 11.89 15.74 20.32 4.08 9.76% 11.4% 30.1% 44.7% 3.18% 26.2%
FP4 13.01 17.11 21.89 4.28 8.54% 5.8% 29.3% 43.6% 2.27% 23.3%
NF4 10.99 14.63 18.78 3.82 13.4% 13.8% 33.3% 45.8% 2.65% 26.8%
ANY4 10.63 13.95 17.94 3.71 11.0% 18.6% 32.9% 46.7% 3.71% 29.0%

Llama3 8B

FP16 6.14 8.93 10.59 2.54 29.3% 41.4% 62.0% 60.1% 50.7% 62.8%
INT4 6.87 9.89 11.37 2.83 23.2% 35.4% 59.6% 58.6% 40.6% 58.5%
FP4 7.10 10.22 11.81 2.89 22.0% 36.8% 57.1% 58.5% 35.0% 53.2%
NF4 6.63 9.52 11.14 2.72 23.2% 39.2% 60.7% 59.1% 41.1% 59.0%
ANY4 6.51 9.40 11.07 2.68 21.3% 39.2% 61.0% 59.5% 41.7% 59.2%

Llama3 70B

FP16 2.86 6.77 8.16 1.91 17.7% 60.8% 75.4% 66.3% 80.6% 82.4%
INT4 3.63 7.97 8.86 2.21 18.3% 45.0% 73.0% 66.2% 73.9% 78.4%
FP4 3.94 7.76 8.99 2.17 22.0% 50.8% 71.9% 65.6% 75.3% 77.9%
NF4 3.43 7.67 8.84 2.15 18.9% 39.6% 73.7% 66.1% 75.9% 79.3%
ANY4 3.20 7.01 8.33 1.99 17.1% 57.4% 75.1% 66.1% 78.5% 81.8%

Table 1: Quantizing Llama3 models with various numeric formats. Results for Llama2 and Mistral/Mixtral are in the
Appendix.

and sequence length corresponds to matrix dimension M .
At M ≤ 8, activation x is itself much smaller than tensor
core tile sizes (m = 16, n = 8, k = 16) for 16-bit float
Ampere+ mma “tensor core” fixed-function matrix multi-
plication instructions. In this case, each 8 × 16 tile of w
(weights) is only used once (no data reuse). Thus, multistage
asynchronous pipelining and data reuse concerns in typical
high-performance GPU GEMM kernels are reduced, as the
problem is largely memory latency (or bandwidth) limited.
Tensor cores still outperform manual (scalar) matrix multi-
plication at M = 1 (GEMV / matrix-vector multiplication)
per our analysis. An early version of tinygemm, largely fo-
cused on int4 grouped quantization for small batch sizes, has
been part of core PyTorch since late 2023, subsequently uti-
lized by gpt-fast (PyTorch, 2023), torchao (PyTorch, 2024),
and Hugging Face Transformers (Wolf et al., 2020).

Many inference works (especially in open source) concen-
trate on M = 1 performance, where latency is a concern.
Even in this case, where we would be using only 1

8 or 1
16

of tensor core throughput, we improve latency by laying
out matrices in main (global) memory in the exact format
that mma expects per tile rather than standard row-major /
column-major format. Typical tensor core GEMM kernels
use shared memory (a small, high-speed user-controllable
scratchpad memory) to transpose tiles of matrices into the
desired format before multiplication can proceed. We avoid
this by performing the transposition in advance, allowing
matrix data to pass directly from global memory to registers.

As there is little to no weight reuse opportunity for small
batch sizes, and loads into registers can be asynchronous as
they generally do not stall execution until the point of first
use, tinygemm does not use shared memory in many cases.
This strategy improves performance at small batch sizes,
but is not applicable for larger sizes. To improve efficiency,
when M ≤ 8, we maintain weights on the left to use the
16 × 16 tile, computing y = (wxT )T flipping the order of
matrices presented to mma with transpositions performed on
the fly, and if M > 8, we maintain weights on the right for
the 8 × 16 tile (y = xwT ).

To implement int4, nf4, or any4 GEMM, we dequantize
weights on the fly before mma multiplication. Speed is im-
proved by always ensuring that we can load matrix data
using vectorized 16 byte loads in coalesced and contigu-
ous fashion across the warp from global memory. In cases
where a single thread’s quantized tile data is less than 16
bytes (a m16n8k16 “B” tensor core layout with quantized
4-bit values only needs 2 bytes loaded prior to dequantiza-
tion per CUDA thread per mma), multiple tiles along the
reduction dimension (“k-tiles” in tinygemm terminology)
can be packed together to ensure that wide data loads can
be used in all cases.

Instead of typical int4-to-float dequantization (converting
an integer in [-8, 7] to floating point via native instructions
or bit manipulation), we can use a 16-entry LUT per row
containing arbitrary floating point values. In tinygemm, this
LUT is held in a single register with lookup provided using

7
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Llama3 8B

Quantization
Algorithm

Numeric
Format

WikiText-2
Perplexity ↓

Numeric
Format

WikiText-2
Perplexity ↓

Numeric
Format

WikiText-2
Perplexity ↓

FP16 6.1
RTN INT4 6.9 INT3 17.1 INT2 1.9E3
GPTQ INT4 6.5 INT3 8.2 INT2 2.1E2
AWQ INT4 6.6 INT3 8.2 INT2 1.7E6
QuIP INT4 6.5 INT3 7.5 INT2 85.1

4-bits

RTN ANY4 6.5

3-bits

ANY3 8.0

2-bits

ANY2 1.0E3

Llama3 70B

FP16 2.9
RTN INT4 3.6 INT3 11.8 INT2 4.6E5
GPTQ INT4 3.3 INT3 5.2 INT2 11.9
AWQ INT4 3.3 INT3 4.8 INT2 1.7E6
QuIP INT4 3.4 INT3 4.7 INT2 13.0

4-bits

RTN ANY4 3.2

3-bits

ANY3 4.6

2-bits

ANY2 253.8

Table 2: Quantizing Llama3 models with various quantization algorithms for different bit widths.

GPU warp shuffle functionality, with the 4-bit quantization
codes used as LUT indices. An alternative strategy would
be to use a shared memory LUT containing all possible
16 × 16 = 256 pairs of any4 reproduction values so that
two packed any4 values (in a byte) can be dequantized per
lookup. While this amount of shared memory usage will
likely not affect performance (via occupancy) that much, it
does suffer shared memory bank conflict penalties in many
circumstances.

5. Results
We quantize weights of all linear modules of all transformer
layers: key, query, value, and output projections, up, down
projections and gate for feed-forward networks (FFN). Fol-
lowing most quantization papers, we keep weights of em-
bedding and final classification layers high-precision.

We evaluate both perplexity and downstream tasks. For
perplexity, we ported the implementation of GPTQ for
WikiText-2 (Merity et al., 2017), C4 (Raffel et al., 2019),
and Penn Treebank (Marcus et al., 1993) that is used by
codebases of other quantization papers. To add coding do-
main, we added perplexity on CodeParrot (CodeParrot).

For downstream tasks, we used Eleuther Harness (Gao
et al., 2024) for natural language tasks, and BigCode Har-
ness (Ben Allal et al., 2022) for coding tasks. Accuracies on
downstream tasks tend to be noisy (Wang et al., 2024), while
perplexity is a less noisy indicator of a model’s performance.

Comparison with Other Numeric Representations We
first compare accuracy of any4 with other numeric formats:
int4, fp4, nf4. We use group-wise scaling with group size
128, and asymmetric scaling for all models, except for
Llama3 70B where we found symmetric scaling leads to

better results.

We ran on different model families (Llama (Touvron
et al., 2023a) and Mistral (Jiang et al., 2023)), differ-
ent generations (Llama2 (Touvron et al., 2023b) and
Llama3 (Grattafiori et al., 2024)), and different sizes (from
1B all the way to 70B). We provide results of Llama3 in
Table 1, Llama2 in Table A1, and Mistral in Table A2. Our
results show any4 has the best accuracies across all models.

Speed Comparisons We benchmark matrix multiplication
of vector activation and square weight tensors from 1K to
16K on A100 80GB GPU using PyTorch 2.3.0 and provide
the speedups of our tinygemm library in Fig. 3. int4, nf4, and
any4 were implemented using our tinygemm library. int4
kernels have the highest speedup, reaching close to 3×. nf4
and any4 speedups reach up to 2×; lower than int4 because
of the overhead of looking up the LUTs. Nevertheless,
any4 has almost the same speedup as nf4, despite the latter
requiring a single LUT for a whole tensor and the former
requiring a separate LUT for each row in the weight matrix.

Comparison with Orthogonal Quantization Techniques
As explained in the Related Works section, our work pro-
poses a new numeric representation applying RTN (round-
to-nearest). Despite our work being orthogonal to others
that transforms weights and/or activations to make them
more rounding or quantization friendly, we compare any4
to GPTQ, AWQ, and QuIP that use int4 in Table 2. Results
of AWQ, GPTQ, and QuIP are obtained from (Huang et al.,
2024). In 4-bit the results show that any4 has either the
best or competitive performance. For future work, we can
evaluate these orthogonal techniques together, replacing the
int4 representation with any4.

3-bit and 2-bit Quantization Although our main goal was
4-bit representation, we ran experiments to see how any3 and
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Llama3.2 1B

Perplexity ↓Calibration
Data

Number of
Samples

Sequence Length
per Sample WikiText-2 C4 PTB CodeParrot

FP16 9.76 12.77 16.56 3.49
ANY4 WikiText-2 128 2048 10.70 14.08 18.02 3.74
ANY4 Pile 128 2048 10.70 13.99 18.26 3.74
ANY4 C4 128 4096 10.74 14.14 18.10 3.75
ANY4 C4 128 2048 10.67 14.05 17.97 3.74
ANY4 C4 128 512 10.62 13.96 18.03 3.72
ANY4 Handwritten Prompt 1 - 10.63 13.95 17.94 3.71

Table 3: any4 quantization with different calibration data.
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Figure 3: Speedup of our tinygemm CUDA kernels on 80GB
A100 on matrix multiplication of 1 ×K input by K ×K
weight, w.r.t PyTorch’s bfloat16 implementation.

any2 perform compared to the prior orthogonal quantization
techniques (Table 2). For 3-bit, any3 is either the best or
competitive with other approaches. For 2-bit, QuIP is the
best, while any2 is better than AWQ and competitive with
GPTQ.

5.1. Ablation Studies

Calibration Data

In Table 3 we ablate with different calibration datasets to
calculate sample weighting in Eqn. 23 of our any4 algorithm.
The results show that our proposed handwritten sample per-
forms better than commonly used datasets in literature, de-
spite being significantly smaller in number of tokens. Note
that the handwritten sample or prompt has a fixed number of
words that translates to different number of tokens depend-
ing on the tokenizer that changes with different models. Our
prompt has 88 words only, which will in worst case translate
to a few hundred tokens. These results may indicate that a
single data sample with diverse topics could be enough or
better to calibrate than using many long sample sequences.
Our evaluation sequence length is 2048 (following (Lin
et al., 2024; Frantar et al., 2023)), calibration is on training
split of each dataset, and evaluation is on the validation or

test split.

Group Size In Table 4 we ablate quantization group size
from 64 to 1024. any4 always has the lowest perplexity
across other 4-bit representations across all group sizes. It is
noteworthy that fp4 and nf4 perplexity degenerates for large
group sizes at 1024, while any4 only increases marginally.

Llama3.2 1B

Group Size

64 128 256 512 1024
FP16 12.77
FP4 16.19 17.11 18.12 20.43 2.3E6
NF4 14.27 14.63 14.98 15.38 7.8E5
ANY4 13.75 13.95 14.09 14.24 14.34

Table 4: C4 perplexity after quantizing with different group
sizes.

6. Conclusion & Future Work
We have presented any4, an algorithm to find an optimal
low-bit numeric representation for each row in a weight
matrix, as well as tinygemm, a matrix multiplication library
for low-latency, low-bit inference. We have shown that
accuracy of any4 is superior to other 4-bit numeric formats
with low memory overhead, and competitive with various
orthogonal quantization techniques that involve further pre-
processing. We would like to explore combining with these
orthogonal techniques in the future.
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Impact Statement
This paper presents a work that quantizes pretrained models.
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architecture, and a calibration dataset (which in our case
was a single hand-written prompt). We have not evaluated
if the quantization algorithm increases or decreases any
societal impact of the underlying model. One factor that
may introduce bias into the model is the calibration dataset.
We leave it for future work to analyze the effect of different
calibration datasets (or prompts in our case) on bias and
truthfulness.
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Appendix

A. Solution Details
We provide here more details about our proposed any4 algorithm.

A.1. Algorithm

We summarize our any4 quantization algorithm in Alg. 1.

Algorithm 1 any4 quantization algorithm.

module2input = calibrate(model, sample_data)

for module in model:
w = module.weight()
wQ = torch.zeros_like(w)
alpha = []
beta = []
for i in range(w.shape[0]):

wSi, alphai, betai = scale(w[i,:])
xi = module2input[module][i]
wQ[i, :] = kmeans(

samples=wSi,
sample_weight=alphai*abs(xi.mean())

)
alpha.append(alphai)
beta.append(betai)

module.weight.data = wQ
module.alpha = alpha
module.beta = beta

B. Further Results
B.1. Comparison with Other Numeric Formats

We compare our any4 numeric format with other numeric formats for the Llama2 family of models in Table A1 and for
Mistral-7B and Mixtral-7B in Table A2.

Mistral-7B Instruct v0.2

Perplexity ↓ Tasks ↑
WikiText-2 C4 PTB CodeParrot MMLU HellaSwag GSM8K BigBench

FP16 5.95 8.82 21.77 2.63 58.7% 66.1% 41.7% 51.7%
INT4 6.14 9.03 22.02 2.70 57.1% 65.1% 39.7% 50.4%
FP4 6.19 9.10 21.62 2.70 56.6% 64.7% 38.2% 47.7%
NF4 6.06 8.93 24.72 2.66 58.0% 65.5% 38.5% 51.8%
ANY4 6.00 8.85 23.24 2.64 58.6% 65.4% 41.1% 51.7%

Mixtral-8x7B Instruct v0.1

FP16 4.14 7.18 16.47 2.20 68.2% 67.6% 64.8% 68.1%
INT4 4.45 7.45 16.84 2.26 66.5% 66.3% 57.8% 61.8%
FP4 4.46 7.48 18.42 2.27 66.8% 66.5% 59.4% 62.8%
NF4 4.30 7.32 15.00 2.24 67.6% 67.2% 61.0% 66.5%
ANY4 4.27 7.27 16.14 2.22 67.7% 67.1% 62.8% 65.8%

Table A2: Quantizing Mistral and Mixtral with various numeric formats.
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Llama2 7B

Perplexity ↓ Tasks ↑

WikiText-2 C4 PTB CodeParrot HumanEval
Pass@1

MBPP
Pass@1 MMLU HellaSwag GSM8K BBH

FP16 5.47 6.97 20.83 2.54 17.1% 20.0% 41.3% 57.2% 13.6% 39.8%
INT4 5.74 7.30 24.00 2.63 10.4% 18.2% 38.1% 56.4% 10.6% 36.5%
FP4 5.83 7.37 22.57 2.65 11.0% 16.8% 36.5% 56.6% 11.2% 35.5%
NF4 5.66 7.19 22.82 2.60 11.6% 19.2% 37.4% 56.8% 12.0% 36.8%
ANY4 5.59 7.10 21.23 2.57 14.0% 18.4% 40.3% 56.7% 12.7% 36.9%

Llama2 13B

FP16 4.88 6.47 28.93 2.40 19.5% 18.4% 50.5% 60.0% 23.2% 47.4%
INT4 5.05 6.65 30.79 2.45 15.2% 16.4% 48.8% 59.3% 20.8% 44.2%
FP4 5.07 6.67 30.96 2.46 15.2% 16.2% 49.5% 59.3% 19.3% 43.0%
NF4 4.99 6.58 31.17 2.43 15.9% 16.0% 49.9% 59.9% 22.1% 44.6%
ANY4 4.97 6.55 28.83 2.42 15.2% 18.0% 49.3% 59.5% 21.6% 44.6%

Llama2 70B

FP16 3.32 5.52 14.44 2.11 31.7% 37.4% 65.2% 64.8% 53.3% 67.1%
INT4 3.46 5.61 14.71 2.14 26.8% 37.8% 64.4% 64.7% 51.4% 65.0%
FP4 3.53 5.67 14.34 2.16 28.0% 30.6% 64.1% 64.0% 51.6% 65.0%
NF4 3.44 5.61 14.65 2.14 29.9% 37.2% 64.5% 63.9% 50.6% 65.4%
ANY4 3.40 5.58 14.64 2.13 26.8% 35.8% 64.8% 64.5% 51.6% 66.6%

Table A1: Quantizing Llama2 models with various numeric formats.

C. Further Ablation Studies
C.1. Minimization Terms

In Table A3 we ablate on using different terms to minimize when learning (using K-means clustering) the LUT of each row
in the weight matrix. First row shows the results of optimizing weights directly. The other 2 rows show the results of using
the 2 additional terms of Equation 14 in our paper, i.e., multiplying with activations and scales. These results confirm that
our derivation that lead to all the terms of Equation 14 is essential for optimal accuracy.

Llama3.2 1B

Term to Minimize Perplexity ↓
WikiText-2 C4 PTB CodeParrot

Weights Only (wSi,j − wQi,j ) 6.680 9.619 11.186 2.751
Weights × Activations (wSi,jxj − wQi,jxj) 6.496 9.375 11.055 2.675
Weights × Activations × Group Scales
[Ours]

(αi,jwSi,jxj − αi,jwQi,jxj) 6.487 9.366 11.034 2.680

Table A3: Perplexity after quantizing Llama3.2 1B with LUTs created by minimizing different terms.

C.2. K-Means Initialization

We use scikit (Pedregosa et al., 2011) to implement K-means clustering, that is core to any4’s quantization algorithm. By
default, scikit initializes cluster centroids using k-means++ algorithm (Arthur & Vassilvitskii, 2007), but it also supports
random initialization, as well as initializing with a vector of pre-defined values. In Table A4 we ablate K-means initialization
on Llama 3.2 1B by evaluating k-means++ and random initialization, as well as seeding with uniform int4 values (i.e.,
integer values -7 to 8), and nf4 values (ranging from -1 to +1). We see that k-means++ performs clearly the best, while
uniform int4 initialization performs the worst.
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any4: Learned 4-bit Numeric Representation for LLMs

Llama3.2 1B

Perplexity ↓K-Means Initialization WikiText-2 C4 PTB

FP16 9.76 12.77 16.56
ANY4 k-means++ 10.63 13.95 17.94
ANY4 random 10.66 13.97 18.17
ANY4 int4 10.83 14.21 18.69
ANY4 nf4 10.65 13.96 18.21

Table A4: any4 quantization with K-means clustering initialzied with different algorithms and values.
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