
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TACTIC: ADAPTIVE SPARSE ATTENTION WITH CLUS-
TERING AND DISTRIBUTION FITTING FOR LONG-
CONTEXT LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Long-context models are essential for many applications but face inefficiencies
in loading large KV caches during decoding. Prior methods enforce fixed token
budgets for sparse attention, assuming a pre-chosen number of tokens can approxi-
mate full attention. However, these methods overlook variations in the sparsity of
attention across heads, layers, and contexts.
To address these limitations, we propose Tactic, an adaptive and calibration-free
sparse attention mechanism that dynamically selects tokens based on their cumula-
tive attention scores rather than a fixed token budget. By setting a target fraction
of total attention scores, Tactic ensures that token selection naturally adapts to
variations in attention sparsity. To efficiently approximate this selection, Tactic
leverages clustering-based sorting and distribution fitting, allowing it to accurately
estimate token importance with minimal computational overhead.
We show that Tactic achieves superior accuracy and up to 7.29× decode attention
speedup, contributing to overall 1.58× end-to-end inference speedup, making it
a practical and effective solution for long-context LLM inference in accuracy-
sensitive applications.

1 INTRODUCTION

Large language models (LLMs) power a wide range of applications, from conversational assistants
to document analysis systems and search engines. The demand for multi-turn interactions and
long-document processing has driven an expansion of context length, growing from thousands to as
many as one million tokens (Liu et al., 2024b).

However, supporting long contexts in LLM inference presents significant challenges, primarily due
to the growing memory footprint of the Key-Value (KV) cache (Tang et al., 2024). The memory
requirements of the KV cache scale proportionally with the context length; therefore, it can quickly
become a bottleneck despite optimizations such as Grouped-Query Attention (GQA) (Ainslie et al.,
2023). Furthermore, the need to repeatedly load the KV cache for every generated token becomes
a bottleneck. For instance, loading the large KV cache can account for over 50% of the total
latency during auto-regressive decoding, significantly impeding the efficiency of large-scale serving
systems. (Tang et al., 2024)

To mitigate the high cost of KV-cache loading, recent methods approximate full attention by selecting
a subset of stored Key and Value vectors, corresponding to a subset of tokens, within a fixed token
budget (Liu et al., 2024a; Tang et al., 2024; Zhang et al., 2023; Xiao et al., 2023). These approaches
exploit the natural sparsity of attention, where only a small fraction of tokens significantly influence
the output. By leveraging this sparsity, they aim to reduce the overhead of loading the KV-cache
without sacrificing model accuracy.

Alas, existing fixed budget-based methods have several shortcomings. Some methods employ a
global fixed token budget (Tang et al., 2024; Xiao et al., 2023; Zhang et al., 2023), not accounting
for variations in attention sparsity across attention heads and layers. In practice, some attention
heads focus on significantly more tokens than others, and the level of sparsity fluctuates across layers.
More adaptive methods (Cai et al., 2024; Feng et al., 2024; Ge et al., 2024) attempt to distribute

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Fixed Token Budget (Budget = 3) TacticOutput Output

Context 1
Step 1

Full Attention ScoreLower
Attention Score

Higher
Attention Score

×Context 1
Step 5

Context 2
Step 1

Target: ≥

Figure 1: Comparison between fixed-budget-based methods and Tactic. Fixed-budget-based methods
may select excessive tokens or have a large difference from full attention score. In contrast, Tactic
dynamically selects tokens to efficiently approximate full attention based on a cumulative attention
score, considering variation of sparsity across different query tokens and contexts.

token budgets more effectively using calibration data or predefined rules, but they remain constrained
by static allocation and cannot adapt to query tokens and contexts, often leading to suboptimal
approximations in different cases.

To address the limitations of fixed-budget-based methods, we propose Tactic, an adaptive and
calibration-free post-training sparse attention mechanism that improves both the accuracy and effi-
ciency of long-context LLM inference. Fig. 1 shows a comparison between existing fixed budget-
based methods and Tactic. Instead of enforcing a fixed budget, Tactic dynamically selects tokens
starting from ones with the highest attention score to ensure that their cumulative attention scores
(where attention score represents the softmax output of the Query-Key product) reach a target fraction
of the full attention score.

Tactic offers key advantages. First, it provides flexibility—Tactic selects fewer tokens in high-sparsity
cases and more in low-sparsity cases without requiring calibration. Second, since V vectors have
similar norms as we show in Fig. 12, reaching fixed cumulative attention score offers a bounded
difference between sparse and full attention (see Section 2.3 and Section A).

However, efficiently selecting tokens to reach a certain threshold P of cumulative attention score
is challenging. To minimize the number of tokens selected (i.e., loads from memory), the optimal
way is to select tokens following a descending order of attention score until the cumulative attention
score surpasses P . Additionally, unlike fixed budget-based methods that simply stop at a fixed token
count, Tactic must track cumulative attention score in real time to determine the stop point, making
the selection process more complex.

To approximate optimal token selection, Tactic introduces two key techniques: clustering and distri-
bution fitting. First, to efficiently sort tokens, Tactic clusters similar tokens to reduce computational
overhead. However, we observe that positional proximity, which is used for clustering tokens by prior
work (Tang et al., 2024), does not necessarily guarantee similarity in Key vectors, which limits the
clustering quality. Since attention operates on Query-Key interactions rather than token positions,
Tactic groups tokens using K-means clustering based on Key-vector similarity (i.e., vector distance) at
prefill phase. During decoding, Tactic approximates the sorted list of tokens by sorting clusters based
on the similarity between Query vectors and cluster centroids. After approximating token sorting,
Tactic estimates the attention score for each token by leveraging the observation that attention scores
follow a smooth distribution. Using distribution fitting, Tactic effectively keeps track of attained
cumulative attention score to determine the end of token selection.

By loading only the cluster centroids along with a small sampled subset of tokens (∼ 2.5% of the
KV cache size in practice), Tactic efficiently selects the most critical tokens that reach the target
cumulative attention score. To balance efficiency and accuracy, Tactic performs full attention on
newly generated tokens and updates the clustering every fixed number of decoding steps (e.g., 2048).

Our experiments show that Tactic achieves superior and consistent accuracy compared to existing
algorithms, including Quest (Tang et al., 2024), MagicPig (Chen et al., 2024), PyramidKV (Cai et al.,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2024), and Ada-KV (Feng et al., 2024), offering a more effective solution for long-context LLM
inference in accuracy-sensitive applications. Tactic achieves up to 7.29× decode attention speedup,
which leads to 1.58× end-to-end speedup.

In summary, we contribute the following:

• A detailed analysis of the dynamic nature of attention sparsity across heads, layers, queries,
and contexts.

• Tactic, a sparsity-adaptive attention algorithm that uses clustering and distribution fitting to
dynamically determine the token budget for achieving cumulative attention score targets.

• A comprehensive evaluation of Tactic, demonstrating Tactic consistently achieves high
accuracy and significant speedup.

2 ANALYSIS

2.1 INTRINSIC SPARSITY IN SELF-ATTENTION MECHANISMS

In the decode phase, for one request, assuming there are n previous tokens, the attention formula can
be written as

o =

n∑
i=1

sivi, si =
exp(

qk⊤
i√
d
)∑n

i=1 exp(
qk⊤

i√
d
)
. (1)

Our empirical results, evaluated on Llama 3.1 8B model using the PG19 dataset (Rae et al., 2019),
show that ∥vi∥ are remarkably consistent, with a very low relative variance of approximately 5×10−5.

While in si, the exponential term exp(
qk⊤

i√
d
) non-linearly amplifies the differences in the attention

scores, leading to a sparse distribution (Zhang et al., 2023; Xiao et al., 2023), indicating that a small
subset of tokens can exert a significant influence on the model’s output. This motivates the possibility
of only loading a subset of tokens to approximate the attention output and incur lower memory
loading overhead.

2.2 FIXED TOKEN BUDGET APPROACHES LEAD TO ACCURACY VARIATIONS

0 1000 2000 3000 4000 5000 6000 7000
Index of Attention Computation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Di
st

an
ce

 o
f A

tte
nt

io
n

Ou
tp

ut

Quest
Threshold P

Figure 2: Distance of attention output to full at-
tention of Quest and our proposed solution of se-
lecting tokens until reaching cumulative attention
score threshold P, measured with Llama3.1-8B-
Instruct model.

0 5000 10000 15000 20000 25000 30000
Token Index

0

5

10

15

20

At
te

nt
io

n
Sc

or
es

1e 4

Figure 3: The distribution of attention scores af-
ter cluster-based sorting for one request in PG19
dataset using Llama3.1-8B-Instruct model. De-
spite some variations, the overall trend closely
aligns with the function y = a

x + b.

Several methods have been proposed to choose a small set of tokens I minimizing the distance ϵ(I)
between full and approximate attention. Some of the work, including Quest (Tang et al., 2024),
uniformly chooses tokens across attention heads and layers. These result in a large variance of
ϵ(I), as shown in Fig. 2. This variance stems from the intrinsic sparsity difference across heads

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 10000 20000 30000
0.00

0.25

0.50

0.75

1.00

Head 0
Head 10
Head 20
Head 30

(a)

0 10000 20000 30000
0.00

0.25

0.50

0.75

1.00

layer 0
layer 10
layer 20
layer 30

(b)

0 10000 20000 30000
0.00

0.25

0.50

0.75

1.00

Query 1
Query 2
Query 3
Query 4

(c)
Figure 4: Variation in sparsity across attention heads (a), model layers (b), and query tokens (c). In
(c), Query i represents the query vector of i-th decoded token. Sorted token indices (by attention
score) on the x-axis and the cumulative density of attention score on the y-axis.

and layers. As illustrated in Fig. 4a, attention heads exhibit distinct sparsity patterns. Some heads
display a more uniform distribution of si (retrieval heads), whereas others are dominated by a few
high-magnitude si values (streaming heads). When a fixed number of tokens |I| is selected per head,
it leads to inefficiencies—allocating excessive tokens to streaming heads while introducing significant
estimation errors in retrieval heads. Similarly, Fig. 4b highlights variation in sparsity across layers,
making it inefficient to select a fixed number of tokens from different layers.

Motivated by the diversity of sparsity patterns across heads and layers, some works, including
AdaKV (Feng et al., 2024) and PyramidKV (Cai et al., 2024), fix the total budget |I| but use
calibration data or assumptions to statically assign different budgets to different layers and heads.
However, as we show in Fig. 4c, the sparsity of particular heads varies significantly depending on the
query token. For example, in the model output “The Answer is ...”, the token “Answer" attends to far
fewer tokens compared to “is". This is because “Answer" relies primarily on local information to
generate “is", whereas “is" requires broader context to produce the subsequent answer. Thus, relying
on static partitioning of a fixed token budget also falls short of maintaining a consistent low attention
distance ϵ(I). While MagicPig (Chen et al., 2024) uses a dynamic selection, it does not provide an
accuracy guarantee on ϵ(I).

2.3 CUMULATIVE ATTENTION SCORE: A MORE ROBUST TARGET FOR SPARSE ATTENTION

The key drawback of existing work is the reliance on a fixed total token budget, making it hard to
adapt to sparsity variations. Instead, we propose directly using the cumulative attention score of
tokens in I to guide token selection.

Specifically, we define p(I) as the cumulative attention score of tokens in I , which is

p(I) =
∑
i∈I

si =

∑
i∈I exp(

qk⊤
i√
d
)∑n

i=1 exp(
qk⊤

i√
d
)

(2)

These cumulative attention score targets offer two key advantages over fixed token budgets. First, they
inherently adapt to sparsity variations without requiring assumptions or calibration data. Less sparse
heads, layers, query tokens, and contexts naturally require more tokens to reach a given cumulative
attention score than sparser ones. Second, targeting cumulative attention score provides a theoretical
guarantee on attention distance. Specifically, the attention distance is bounded by

ϵ(I) ≤ 2(1− p(I))max
i

∥vi∥. (3)

A detailed proof is provided in Section A. Since value vectors V have similar norms across tokens
(Fig. 12), setting a threshold P (typically close to 1.0) for p(I) establishes a tight upper bound on
ϵ(I). Identifying the minimal index set I that satisfies p(I) ≥ P reduces the variance of the attention
approximation error, as shown in Fig. 2.

2.4 CHALLENGES OF ATTAINING CUMULATIVE ATTENTION SCORES

While effective, identifying the minimal subset of tokens that achieve a target cumulative attention
score during the inference is a challenging task. The optimal way is to select tokens following a

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

descending order of attention score until the cumulative attention score surpasses the target value.
Therefore, like prior approaches, Tactic must rank tokens by attention score to minimize the number
of tokens needed to reach the desired cumulative attention score. However, unlike previous methods,
Tactic also requires the exact attention score values for each token to track the cumulative sum of
selected tokens in real-time. This process involves two key components: (1) computing the sum
of attention intermediate values, exp(qk⊤/

√
d), for the selected token set I , and (2) computing

the total sum of exp(qk⊤/
√
d) for normalization. We discuss how Tactic achieves efficient subset

identification in the following section.

3 METHODOLOGY

3.1 ALGORITHM OVERVIEW

Figure 5 provides an overview of Tactic’s workflow. During prefill, Tactic performs K-means
clustering on key vectors to group similar tokens. During decode, Tactic ranks tokens based on the dot
product between cluster centroids and the current query vector. Tactic then models the distribution of
attention score with a fitted curve and determines the tokens to meet the desired cumulative attention
score threshold. After token selection, Tactic handles the Group Query Attention (GQA) and then
performs the attention using FlashInfer (Ye et al., 2025).

3.2 PREFILL STAGE: GROUPING TOKENS VIA CLUSTERING

Sequence Length WCSS (cluster) WCSS (consecutive)
8192 173.422150 195.059021

16384 75.293724 93.293350
32768 75.394318 93.245926
65536 78.067314 93.832886

Table 1: WCSS of clustering and consecutive grouping, evaluated on Llama-3.1-8B, with data from
LongBench (Bai et al., 2024).

Similar to prior works, Tactic groups tokens to reduce computational overhead for identifying critical
tokens. However, existing methods rely on positional order, assuming consecutive tokens share similar
attention patterns (Tang et al., 2024). However, Table 1 shows that clustering achieves lower WCSS1

than consecutive grouping, which means consecutive grouping is suboptimal. Moreover, modern
attention kernels efficiently handle non-contiguous KV-cache access, making positional grouping
unnecessary. Therefore, Tactic applies K-means clustering to group tokens based on Key-vector
similarity. Based on the sensitivity analysis in Section D on hyper-parameters, Tactic empirically
chooses the average cluster size to be 16 to balance accuracy and efficiency and randomly samples
initial cluster centroids.2 Tactic follows the traditional K-Means algorithm with 10 iterations.

3.3 DECODE STAGE: PARTIAL SORT TOKENS USING CLUSTER CENTROIDS

Once the tokens are organized into clusters, Tactic identifies critical clusters for a given query vector
Q in the decode phase. The criticality of each cluster is determined by the dot product between Q and
each cluster centroid3. This process produces a sequence of clusters sorted by the criticality, from
which we can derive a partially sorted token list.

3.4 DECODE STAGE: ESTIMATING ATTENTION SCORE VIA DISTRIBUTION FITTING

Due to the non-linearity of Softmax, cluster centroids do not accurately reflect the average attention
score of individual tokens. Thus, Tactic requires a more precise approach to estimating attention

1WCSS =
∑

x∈C ∥x− µc∥2, µc is the mean vector of C.
2Note that neither multiple initializations nor K-Means ++ initialization drastically improves the clustering

quality, and in fact leads to high-performance overhead, as stated in Section D.
3Compared to distance, dot product directly relates to the attention score, which is more accurate.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

K1

K2

K3

K4

K5

K6

K7

K8

C1

C2

C3

C4

Keys Cluster
Centroids

Stage1: Clustering

Prefill Phase

Stage2A: Querying

Query

Dot Product

C3

C1

C2

C4

Inner
Product

Sorted
CentroidsSort

K2

K6

K1

K3

K4

K5

K7

K8

Exp Inner
Product SelectionRetrieved

Tokens

Query
Dot Product

Ke
ep

Di
st

rib
ut

io
n

Fi
t

Est.
Score

Stage2B: Fitting

Decode Phase

At
te

nt
io

n

Cum
Attn
Score

+

=
+

+

+

Figure 5: The overall workflow of Tactic. Tactic operates in three stages to achieve low overhead
adaptive sparse attention. Stage 1 is applied right after prefill phase, Stage 2A and 2B happens during
the decode phase.

score. We observe that after partial sorting, the attention score distribution follows a consistent pattern
across heads, layers, and contexts. For example, as shown in Fig. 3, the attention score is high for a
few tokens and then smoothly decreases, forming a long-tail distribution suggesting that function
fitting can be used to estimate attention score. Tactic models the distribution of the exponential
values of the dot products (exp(QK⊤

√
d
)) for each token using a lightweight function y = a

x + b, where
x is the position index in the sorted list of tokens. To estimate parameters a and b, we select two
segments of the tokens in the middle of the curve (e.g., 10% and 60% of all the tokens), and calculate
the average of tokens within each segment (as labeled in Fig. 3). However, initial tokens (1-2%
of the total tokens) are often outliers and cannot be accurately described by the curve. Moreover,
these tokens feature high attention score, and thus a bad estimation would cause high deviations of
estimated cumulative attention score, which affects the accuracy of Tactic. Therefore, Tactic directly
calculates the exponential values of the dot products for these tokens.

3.5 DECODE STAGE: GQA-AWARE SPARSE ATTENTION

Modern models use Grouped Query Attention (GQA) to reduce the KV cache size (Dubey et al.,
2024), where multiple query heads share one KV head. However, existing methods select tokens
on a per-head basis, and each query head reads KV cache independently. Tactic instead takes the
union of selected tokens across all grouped query heads and loads it only once. To ensure workload
balancing, Tactic divides each request into subrequests. Each subrequest processes a KV head and
its corresponding Query head, with sequence length determined by the tokens selected for each KV
head, allowing the request-level workload balance in modern libraries (Ye et al., 2025) to effectively
handle head-level imbalance efficiently.

4 EXPERIMENTS

4.1 SETTING

We evaluate Tactic for both accuracy and efficiency. We use two models: Llama-3.1-8B-
Instruct (Grattafiori et al., 2024), a widely used model with Grouped-Query Attention; and MegaBeam-
Mistral-7B-512k (Chen Wu and Yin Song and Eden Duthie, 2024), an extended version of Mistral-
7B-Instruct-v0.2 with a 512k token context window.

For accuracy evaluations, we use the PG19 language modeling dataset (Rae et al., 2019), six
tasks from the LongBench dataset (Bai et al., 2024), including HotpotQA (Yang et al., 2018),

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Tactic MagicPig Ada-SnapKVPyramidKV Quest0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

KL
-d

iv
er

ge
nc

e

Thresholds
80% 90%

Figure 6: KL-Divergence against full attention of
Tactic and other baseline methods on the PG19
dataset. Tactic maintains the most accurate out-
put in two configurations.

Tactic Ada-SnapKV PyramidKV Quest0.0

0.2

0.4

0.6

0.8

1.0

Ac
ce

pt
an

ce
 R

at
e

Threshold
80% 90%

Figure 7: Acceptance rate of draft tokens at 80%
and 90% thresholds on the PG19 dataset. Tactic
shows more than 95% of acceptance rate, sur-
passing other baselines.

TriviaQA (Joshi et al., 2017), MultifieldQA (Bai et al., 2024), NarrativeQA (Kočiský et al., 2018),
Qasper (Dasigi et al., 2021), and Musique (Bai et al., 2024). Additionally, we conduct experiments on
the RULER benchmark (Hsieh et al., 2024), using 50 examples for each task. We compare Tactic with
the most popular fixed token budget KV cache algorithms, Quest (Tang et al., 2024), PyramidKV (Cai
et al., 2024), and Ada-SnapKV (Feng et al., 2024). Also, we compare Tactic with MagicPig (Chen
et al., 2024) RULER benchmarks. To ensure consistency, we set the page size in Quest and the
cluster size in our method to 16. Both Ada-SnapKV and PyramidKV follow the configuration settings
outlined in (Feng et al., 2024), including an observation window size of 32 and a max pooling kernel
size of 7. We follow the configuration of MagicPig in the original paper in RULER evaluation. For
the clustering process, we limit the maximum number of iterations to 10.

For efficiency evaluations, we perform the evaluation on Nvidia Ada 6000 GPUs with CUDA 12.4
compared with full attention using Flashinfer (Ye et al., 2025).

4.2 ACCURACY EVALUATION

4.2.1 OUTPUT ACCURACY

We assess the KL-divergence of model output probability distribution of Tactic relative to the full
attention on the PG19 test set (Rae et al., 2019), under Top-K sampling. We include all texts in PG19
with the number of tokens larger than 32k. In the prefill stage, we truncate the input to 32k tokens
and feed it into the model. In the decode stage, we feed tokens one by one and collect the output
logits of each decode step. We collect 32 decode steps in total. As shown in Figure 6, Tactic achieves
the most accurate output compared to all baselines.

4.2.2 ACCEPTANCE RATE IN SPECULATIVE DECODING

To further demonstrate the practical indication of smaller KL-divergence, we evaluate the token
acceptance rate under greedy sampling when using Tactic as draft model for speculative decoding
using the PG19 test set. Specifically, we select all documents in PG19 containing more than 32K
tokens and decode up to 96 tokens per document, varying the number of draft tokens (i.e., different
values of γ). During the experiments, we record the verification results, capturing the number of
tokens accepted by the target model at each verification step. After computing the average number of
accepted tokens for each γ, we fit a curve to the resulting data points to estimate the acceptance rate,
following the formulation in Equation

E(#accepted tokens) =
α− αγ+1

1− α
(4)

which is adapted from (Leviathan et al., 2023). Here α is the acceptance rate to be estimated. The
results are presented in Figure 7.

4.2.3 ACCURACY FOR LONG-CONTEXT TASKS

LongBench. We evaluate Tactic on six LongBench tasks, as illustrated in Section 4.1. For each
dataset, we first evaluate Tactic by setting the cumulative attention score threshold as 70% and 90%.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison on RULER for Llama-3.1-8B-Instruct and Mega-Beam-Mistral-
512k models.

Llama-3.1-8B-Instruct

Methods Config 16K 32K 64K 96K Avg.
Full 91.3 86.0 85.2 85.0 86.8
Tactic 75% 90.9 85.5 83.4 78.9 84.7
PyramidKV 75% 61.8 67.4 60.8 62.5 63.1
Ada-SnapKV 75% 58.0 62.2 59.2 58.7 59.2
Quest 75% 70.0 71.5 69.7 65.7 69.2
MagicPig 75% 78.6 76.8 70.4 70.1 74.0
Tactic 90% 90.3 84.9 82.8 80.5 84.6
PyramidKV 90% 73.1 76.2 74.2 68.6 73.0
Ada-SnapKV 90% 72.7 76.4 74.3 68.7 73.0
Quest 90% 85.8 81.9 79.8 70.5 79.5
MagicPig 90% 79.8 76.9 71.3 70.7 74.7

Mega-Beam-Mistral-512k

Methods Config 16K 32K 64K 96K Avg.
Full 90.9 88.4 82.7 83.1 86.3
Tactic 75% 88.0 88.8 81.7 82.5 85.2
PyramidKV 75% 80.2 79.0 75.2 74.0 77.1
Ada-SnapKV 75% 80.6 78.1 75.4 73.6 76.8
Quest 75% 80.7 79.0 71.4 70.5 75.4
MagicPig 75% 89.7 86.5 81.0 69.4 81.6
Tactic 90% 90.3 88.0 81.0 82.6 85.4
PyramidKV 90% 84.3 82.7 76.2 86.2 82.4
Ada-SnapKV 90% 84.7 81.8 76.2 87.1 82.4
Quest 90% 81.1 81.3 73.5 79.7 78.9
MagicPig 90% 90.2 87.1 82.3 82.3 85.4

The average number of tokens selected at each threshold serves as the token budget for evaluating
baselines. As shown in Table 5, Tactic consistently outperforms all other baselines. At a threshold of
90%, Tactic achieves performance close to full attention.

RULER. We evaluate Tactic and baselines on all tasks in RULER (Hsieh et al., 2024) with context
length ranging from 16K to 96K. As shown in the Table 2, Tactic consistently outperforms all
baselines in each configuration in terms of average accuracy. Furthermore, at higher thresholds,
Tactic achieves similar accuracy to full attention, significantly higher than other methods. Also, we
provide the efficiency comparison in the RULER test in Section G.

We provide a detailed table of the average number of tokens selected by Tactic across various
thresholds, datasets, and models in Table 6, Table 7, and Table 8, which is set as token budgets for
baselines.

4.2.4 ACCURACY OF CLUSTERING & DISTRIBUTION FITTING

To identify the minimal number of tokens to reach the threshold, Tactic employs clustering and
distribution fitting (explained in Section 3). We evaluate our method on the PG19 dataset, focusing on
how well it aligns with the target cumulative attention score and how many tokens it selects. We set
specific attention score thresholds and compare the actual cumulative score achieved by our method
against two oracles: the global optimal, which sums tokens in the descending order of attention score,
and the clustering optimal, which sums attention score from sorted clusters.

Table 3 indicates that Tactic achieves the target threshold of cumulative attention score with high
success rates. Also, the values of Cluster Optimal and Tactic are close, indicating that the distribution
fitting presents an accurate estimation of the number of tokens.

Table 3: Evaluation of number of tokens selected and ratio of cumulative attention score achieved for
llama model

Threshold Optimal Cluster Optimal Tactic Average Achieved Score Success Rate

50% 71 166 185 66% 92%
60% 122 271 294 72% 89%
70% 212 451 490 78% 86%
80% 394 802 890 84% 84%
90% 895 1723 1975 91% 86%

4.3 EFFICIENCY EVALUATION

We begin by analyzing the latency breakdown of Tactic, focusing on token clustering during the
prefill phase and attention computation for critical tokens during decoding (Section 4.3.1). Next, we
evaluate Tactic’s end-to-end performance and its speed-up relative to full attention (Section 4.3.3).

4.3.1 LATENCY BREAKDOWN

Latency of clustering during prefill. We measure the time taken for clustering for different sequence
lengths in Figure 8. We observe that, as the sequence length increases, the clustering time increases

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

32K 64K 128K0

20

40
Ti

m
e

(s
)

0.16 0.62 2.745.66

15.80

49.53
Clustering Prefill

Figure 8: Comparison of Clustering
and Prefill time across different se-
quence lengths.

P=0.7 P=0.9 Full0

2

4

Ti
m

e
(m

s)

SeqLen 32K
Query
Fitting
Union
Attn

P=0.7 P=0.9 Full0
2
4
6
8

10
SeqLen 64K

P=0.7 P=0.9 Full0
4
8

12
16
20

SeqLen 128K

Figure 9: Latency breakdown of Tactic in the decode stage
for different sequence lengths and thresholds.

32768
P = 0.7

32768
P = 0.9

65536
P = 0.7

65536
P = 0.9

131072
P = 0.7

131072
P = 0.9

0

1

2

3

Ti
m

e
(m

s)

Without Union
With Union

Figure 10: Ablation study on taking union for the
GQA model. Taking union significantly reduces
the attention time.

32768
P = 0.7

32768
P = 0.9

65536
P = 0.7

65536
P = 0.9

131072
P = 0.7

131072
P = 0.9

0.8

1.0

1.2

1.4

1.6

En
d

to
 E

nd
 S

pe
ed

up Decode length
1024
2048
4096

Figure 11: End-to-end speedup of Tactic com-
pared to the full attention.

quadratically and is dominated by the distance calculation. However, long sequences also significantly
increase the prefill time. Overall, the clustering time always stays below 6% of the prefill time.

Latency of attention during decode. In the decode stage, Tactic identifies and performs attention
on critical tokens. We break down this process into four parts: 1) Cluster sorting, where the clusters
are ranked based on the dot product of centroids and queries, 2) Distribution fitting, where Tactic
samples a small portion of tokens and derives the attention score to identify the token budget for each
attention head, 3) performing attention for the selected tokens. Figure 9 shows the latency of this
breakdown for different sequence lengths.

The latency of sparse attention during decode is reduced significantly, while the overheads of sorting
and distribution fitting remain low across various sequence lengths. Overall, Tactic achieves up to
7.29× speedup compared to the full attention.

4.3.2 ABLATION STUDY FOR QUERY HEAD UNION

We evaluate the benefits of taking the union of grouped query heads versus computing attention for
each query head individually. As shown in Fig. 10, across different context lengths and ratio P ,
taking unions can achieve up to 1.65× attention speedup, due to the reduced memory loading.

4.3.3 END-TO-END PERFORMANCE

We compute the end-to-end performance of Tactic with different output tokens, sequence lengths,
and ratios in Figure 11, considering the prefill stages and the clustering overhead. Overall, Tactic
achieves a speedup of up to 1.58× compared to full attention.

5 CONCLUSION

We presented Tactic, a sparsity-adaptive attention mechanism for efficient long-context LLM inference.
Unlike fixed token budget methods, Tactic dynamically selects tokens based on cumulative attention
scores, adapting to variations in attention sparsity. By leveraging clustering-based sorting and
distribution fitting, Tactic accurately estimates token importance with low overhead. Our results
showed that Tactic outperforms existing sparse attention methods, achieving higher accuracy and
significant inference speedups, making it a practical solution for long-context LLMs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints,
2023.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. LongBench: A bilin-
gual, multitask benchmark for long context understanding. In Lun-Wei Ku, Andre Martins, and
Vivek Srikumar (eds.), Proceedings of the 62nd Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers), pp. 3119–3137, Bangkok, Thailand, August
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.172. URL
https://aclanthology.org/2024.acl-long.172.

Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue Dong,
Baobao Chang, Junjie Hu, and Wen Xiao. Pyramidkv: Dynamic kv cache compression based on
pyramidal information funneling, 2024. URL https://arxiv.org/abs/2406.02069.

Zhuoming Chen, Ranajoy Sadhukhan, Zihao Ye, Yang Zhou, Jianyu Zhang, Niklas Nolte, Yuandong
Tian, Matthijs Douze, Leon Bottou, Zhihao Jia, and Beidi Chen. Magicpig: Lsh sampling for
efficient llm generation, 2024. URL https://arxiv.org/abs/2410.16179.

Chen Wu and Yin Song and Eden Duthie. aws-prototyping/MegaBeam-Mistral-7B-512k, 2024. URL
https://huggingface.co/aws-prototyping/MegaBeam-Mistral-7B-512k.

Pradeep Dasigi, Kyle Lo, Iz Beltagy, Arman Cohan, Noah A. Smith, and Matt Gardner. A dataset of
information-seeking questions and answers anchored in research papers. In Kristina Toutanova,
Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tur, Iz Beltagy, Steven Bethard, Ryan Cot-
terell, Tanmoy Chakraborty, and Yichao Zhou (eds.), Proceedings of the 2021 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Lan-
guage Technologies, pp. 4599–4610, Online, June 2021. Association for Computational Linguis-
tics. doi: 10.18653/v1/2021.naacl-main.365. URL https://aclanthology.org/2021.
naacl-main.365.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv preprint arXiv:2407.21783, 2024.

Yuan Feng, Junlin Lv, Yukun Cao, Xike Xie, and S. Kevin Zhou. Ada-kv: Optimizing kv cache
eviction by adaptive budget allocation for efficient llm inference, 2024. URL https://arxiv.
org/abs/2407.11550.

Suyu Ge, Yunan Zhang, Liyuan Liu, Minjia Zhang, Jiawei Han, and Jianfeng Gao. Model tells you
what to discard: Adaptive kv cache compression for llms, 2024. URL https://arxiv.org/
abs/2310.01801.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem
Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson,
Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,
Chaya Nayak, Chloe Bi, Chris Marra, et al. The llama 3 herd of models, 2024. URL https:
//arxiv.org/abs/2407.21783.

Cheng-Ping Hsieh, Simeng Sun, Samuel Kriman, Shantanu Acharya, Dima Rekesh, Fei Jia, Yang
Zhang, and Boris Ginsburg. Ruler: What’s the real context size of your long-context language
models?, 2024. URL https://arxiv.org/abs/2404.06654.

Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. TriviaQA: A large scale distantly su-
pervised challenge dataset for reading comprehension. In Regina Barzilay and Min-Yen Kan (eds.),
Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 1601–1611, Vancouver, Canada, July 2017. Association for Computational
Linguistics. doi: 10.18653/v1/P17-1147. URL https://aclanthology.org/P17-1147.

10

https://aclanthology.org/2024.acl-long.172
https://arxiv.org/abs/2406.02069
https://arxiv.org/abs/2410.16179
https://huggingface.co/aws-prototyping/MegaBeam-Mistral-7B-512k
https://aclanthology.org/2021.naacl-main.365
https://aclanthology.org/2021.naacl-main.365
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2407.11550
https://arxiv.org/abs/2310.01801
https://arxiv.org/abs/2310.01801
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2404.06654
https://aclanthology.org/P17-1147

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tomáš Kočiský, Jonathan Schwarz, Phil Blunsom, Chris Dyer, Karl Moritz Hermann, Gábor Melis,
and Edward Grefenstette. The NarrativeQA reading comprehension challenge. Transactions of the
Association for Computational Linguistics, 6:317–328, 2018. doi: 10.1162/tacl_a_00023. URL
https://aclanthology.org/Q18-1023.

Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding, 2023. URL https://arxiv.org/abs/2211.17192.

Guangda Liu, Chengwei Li, Jieru Zhao, Chenqi Zhang, and Minyi Guo. Clusterkv: Manipulating llm
kv cache in semantic space for recallable compression, 2024a. URL https://arxiv.org/
abs/2412.03213.

Xiaoran Liu, Hang Yan, Shuo Zhang, Chenxin An, Xipeng Qiu, and Dahua Lin. Scaling laws of
rope-based extrapolation, 2024b. URL https://arxiv.org/abs/2310.05209.

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, and Timothy P. Lillicrap. Compressive
transformers for long-range sequence modelling, 2019. URL https://arxiv.org/abs/
1911.05507.

Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster
analysis. Journal of Computational and Applied Mathematics, 20:53–65, 1987. ISSN 0377-0427.
doi: https://doi.org/10.1016/0377-0427(87)90125-7. URL https://www.sciencedirect.
com/science/article/pii/0377042787901257.

Jiaming Tang, Yilong Zhao, Kan Zhu, Guangxuan Xiao, Baris Kasikci, and Song Han. Quest:
Query-aware sparsity for efficient long-context llm inference, 2024. URL https://arxiv.
org/abs/2406.10774.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv, 2023.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and
Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question answer-
ing. In Ellen Riloff, David Chiang, Julia Hockenmaier, and Jun’ichi Tsujii (eds.), Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2369–2380,
Brussels, Belgium, October-November 2018. Association for Computational Linguistics. doi:
10.18653/v1/D18-1259. URL https://aclanthology.org/D18-1259.

Zihao Ye, Lequn Chen, Ruihang Lai, Wuwei Lin, Yineng Zhang, Stephanie Wang, Tianqi Chen,
Baris Kasikci, Vinod Grover, Arvind Krishnamurthy, and Luis Ceze. Flashinfer: Efficient and
customizable attention engine for llm inference serving. arXiv preprint arXiv:2501.01005, 2025.
URL https://arxiv.org/abs/2501.01005.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, Zhangyang Wang, and Beidi Chen. H2o: Heavy-
hitter oracle for efficient generative inference of large language models, 2023.

11

https://aclanthology.org/Q18-1023
https://arxiv.org/abs/2211.17192
https://arxiv.org/abs/2412.03213
https://arxiv.org/abs/2412.03213
https://arxiv.org/abs/2310.05209
https://arxiv.org/abs/1911.05507
https://arxiv.org/abs/1911.05507
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://www.sciencedirect.com/science/article/pii/0377042787901257
https://arxiv.org/abs/2406.10774
https://arxiv.org/abs/2406.10774
https://aclanthology.org/D18-1259
https://arxiv.org/abs/2501.01005

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

A BOUND OF APPROXIMATION ERROR

In Section 2.3, the upper bound of ϵ(I) can be derived as

ϵ(I) =∥o− õ(I)∥ (5)

=∥o− 1

p(I)

∑
i∈I

sivi∥ (6)

=∥
∑
i∈I

sivi +
∑
i/∈I

sivi −
1

p(I)

∑
i∈I

sivi∥ (7)

=∥
(
1− 1

p(I)

)∑
i∈I

sivi +
∑
i/∈I

sivi∥ (8)

≤∥
(
1− 1

p(I)

)∑
i∈I

sivi∥+ ∥
∑
i/∈I

sivi∥ (9)

≤
∣∣∣∣(1− 1

p(I)

)∣∣∣∣∑
i∈I

si∥vi∥+
∑
i/∈I

si∥vi∥ (10)

≤
(

1

p(I)
− 1

)
p(I)max

i
∥vi∥+ (1− p(I))max

i
∥vi∥. (11)

Hence we can get
ϵ(I) ≤ 2(1− p(I))max

i
∥vi∥. (12)

Both (10) to (11) and (11) to (12) are based on triangle inequality.

B VALUE VECTOR NORM DISTRIBUTION

0 5 10 15 20
Norm of Value Vector

0.0

0.1

0.2

0.3

Ra
tio

Figure 12: The distribution of ||V || across different layers, heads, and decoding tokens. The results
indicate that ||V || values are concentrated within a very narrow range.

C ALGORITHM OF DISTRIBUTION FITTING

The algorithm for distribution fitting is illustrated in Algorithm 1.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Algorithm 1 Estimating Token Budget via Distribution Fitting

1: Input: Key sequence unpacking from sorted clusters {k1, k2, . . . , kn}, query Q, weight percent-
age threshold P , initial token count N , centers of two sampling window p1 and p2, sampling
window size w, head dimension d

2: Output: Token budget K
3:
4: Compute µ1 and µ2 as the means of exp(ki ·Q/

√
d) within fixed windows around p1 and p2,

namely,

µj =

∑pj+
w
2

i=pj−w
2
exp(ki ·Q/

√
d)

w
, j = 1, 2 (13)

Solve for parameters a and b in y = a/x+ b using (p1, µ1) and (p2, µ2).
5:
6: Initialize array si, i ∈ [n] to store the fitted attention scores for all tokens
7: for i = 1 to n do
8: If i ≤ N , si = exp(xi ·Q/

√
d)

9: Else, si = a/i+ b
10: end for
11: Compute the minimal K such that the cumulative sum

∑K
1 si ≥ P ·

∑n
1 si.

12:
13: return K

D SENSITIVITY ANALYSIS OF CLUSTERING

As stated in Section 3.2, clustering is controlled by three parameters: the number of iterations, the
cluster size, and the initialization count (n_init). In this section we provide the effects of different
value of the three parameters. We use Silhouette Score (Rousseeuw, 1987) to evaluate the performance
of clustering, which is a commonly used metric in machine learning field.

Table 4 presents the impact of key hyperparameters on clustering quality across different sequence
lengths. Increasing the number of iterations or number of initializations brings little improvement
on the performance of clustering but proportional overhead, Tactic chooses 10 iterations and one
time initialization to maintain high performance with minimal overhead. Also, a smaller cluster size
yields better clustering performance but longer clustering time, Tactic chooses 16 to balance the
performance and efficiency. Notably, the effect of these hyperparameters is largely independent of
sequence length.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Hyperparameter Value 8192 16384 32768 65536
n_init 1 0.091 0.113 0.145 0.166

2 0.095 0.117 0.150 0.170
4 0.095 0.117 0.149 0.170
8 0.095 0.118 0.149 0.170

max_iter 5 0.091 0.111 0.145 0.166
10 0.091 0.113 0.144 0.165
20 0.095 0.117 0.150 0.171
30 0.095 0.117 0.150 0.171
40 0.095 0.117 0.150 0.171
50 0.095 0.117 0.150 0.171

cluster_size 8 0.096 0.118 0.155 0.173
16 0.095 0.116 0.149 0.170
32 0.088 0.110 0.143 0.164
64 0.082 0.104 0.131 0.155
128 0.070 0.096 0.119 0.143

Table 4: Silhouette scores for K-Means clustering across different sequence lengths, evaluated against
hyperparameters n_init, max_iter, and cluster_size.

E LONGBENCH ACCURACY EVALUATION

The LongBench evaluation results are presented in Table 5. MagicPig is not included since they don’t
provide an evaluation script on Longbench.

Methods Config HotpotQA TriviaQA MultiFieldQA Qasper NarrativeQA Musique
Llama-3.1-8B-Instruct Full 54.99 89.22 55.05 46.52 27.12 32.16
Tactic 70% 51.20 90.38 52.98 43.30 30.39 28.57
PyramidKV 70% 52.59 89.57 43.26 27.50 21.44 25.34
AdaKV 70% 49.32 89.57 43.45 29.99 25.23 23.54
Quest 70% 45.43 77.42 49.96 38.09 24.77 24.78
Tactic 90% 53.57 90.61 54.35 44.20 29.59 30.71
PyramidKV 90% 53.77 90.31 48.15 36.40 26.97 28.52
AdaKV 90% 54.05 90.46 49.15 37.55 27.86 29.19
Quest 90% 49.37 80.38 52.42 42.41 30.21 26.64

MegaBeam-Mistral-512k Full 48.89 88.24 52.14 33.13 26.08 26.38
Tactic 70% 49.15 87.89 50.50 32.37 25.63 25.85
PyramidKV 70% 42.21 85.77 36.74 21.23 19.31 19.93
AdaKV 70% 42.23 85.65 38.44 22.23 21.89 21.68
Quest 70% 48.90 88.13 50.58 30.78 23.88 24.65
Tactic 90% 49.59 89.16 49.85 33.93 26.31 25.93
PyramidKV 90% 44.05 86.64 40.66 24.22 21.13 23.32
AdaKV 90% 44.80 86.80 42.80 22.51 22.46 24.86
Quest 90% 51.69 88.49 51.81 32.46 24.63 25.89

Table 5: Experiment Results on LongBench

F NUMBER OF TOKENS SELECTED BY TACTIC IN BENCHMARKS

We provide the average number of tokens selected by Tactic in benchmark evaluations in Table 6,
Table 7 and Table 8.

G SPEEDUP OF TACTIC IN RULER EVALUATION

To ensure a fair comparison of efficiency between Tactic and baseline methods in Section Section 4.2.3,
we adjust the number of selected tokens to match the RULER scores. The token count required to
achieve this accuracy, along with the attention speedup over baseline methods, is shown in Table 9.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 6: Average number of tokens selected by Tactic for different cumulative attention scores.

P HotpotQA TriviaQA MultiFieldQA Qasper NarrativeQA Musique
Llama-3.1-8B-Instruct

70% 959 761 774 629 1918 1229
90% 2298 1813 1559 1276 4254 2754

MegaBeam-Mistral-7B-512k
70% 2126 1733 1399 1191 3017 2598
90% 3641 3048 2031 1546 5616 4384

Table 7: Average number of tokens selected by Tactic for Llama-3.1-8B-Instruct across context
lengths and cumulative attention scores.

Task 16K 32K 64K 96K

75% 90% 75% 90% 75% 90% 75% 90%

NIAH_Single 1 166 813 363 1567 456 2404 1790 3319
NIAH_Single 2 271 1289 534 2196 711 3209 2030 3940
NIAH_Single 3 171 1015 369 1820 507 3031 1068 3952
NIAH_Multikey 1 224 1052 449 1832 654 2792 978 4438
NIAH_Multikey 2 399 1612 706 2533 981 3902 1405 5527
NIAH_Multikey 3 340 1428 567 2404 798 3990 1068 5062
NIAH_Multivalue 246 1769 478 2679 692 4458 1025 8147
NIAH_Multiquery 253 1524 465 2648 681 4830 915 6011
FWE 282 1572 515 2693 778 4376 963 6202
CWE 443 1939 570 3036 655 4707 780 6731
QA 1 329 1250 704 2565 852 3830 3417 5055
QA 2 547 1484 1092 2263 1662 3455 2120 4276
VT 118 731 253 1413 269 2028 404 3068

AVG 291 1344 543 2281 746 3616 1382 5056
AVG/Token 1.78% 8.21% 1.66% 6.96% 1.14% 5.52% 1.41% 5.14%

Table 8: Average number of tokens selected by Tactic for MegaBeam-Mistral-7B-512K across context
lengths and cumulative attention scores.

Task 16K 32K 64K 96K

75% 90% 75% 90% 75% 90% 75% 90%

NIAH_Single 1 1410 1176 2521 2354 4715 4512 7042 7271
NIAH_Single 2 1418 1665 2704 3364 5113 6732 7668 10472
NIAH_Single 3 3005 2032 5312 3800 10235 7327 15492 11090
NIAH_Multikey 1 1486 1661 2872 3415 5332 5983 7781 8767
NIAH_Multikey 2 1480 1639 2826 3031 5288 5956 8240 9279
NIAH_Multikey 3 2840 2039 5990 4306 11438 7741 17088 11292
NIAH_Multivalue 2880 2225 5070 4006 10180 7463 16138 11853
NIAH_Multiquery 3088 2165 5234 4075 9931 7551 14420 11164
FWE 2706 1809 5537 3685 10837 7157 16558 10818
CWE 4240 2526 7404 4869 13189 8802 18329 13215
QA 1 1003 1502 2772 3132 5828 5685 6007 9150
QA 2 724 1718 2124 3017 4853 6520 8598 8598
VT 2227 1409 4132 2619 8667 4719 14318 8671

AVG 2193 1813 4192 3513 8124 6627 12129 10126
AVG/Token 13.38% 11.06% 12.79% 10.72% 12.40% 10.11% 12.34% 10.30%

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 9: Attention speedup over baselines in RULER evaluation.

Method SeqLen # Tokens Chosen Attention Time (ms)

Tactic 32K 543 (1×) 0.58 (1×)
Quest 32K 5430 (10×) 1.08 (1.86×)
Pyramid 32K 8145 (15×) 1.47 (2.53×)
Ada 32K 8688 (16×) 1.56 (2.69×)

Tactic 64K 746 (1×) 0.57 (1×)
Quest 64K 9698 (13×) 1.69 (2.96×)
Pyramid 64K 16412 (22×) 2.67 (4.68×)
Ada 64K 14920 (20×) 2.45 (4.29×)

Tactic 128K 1381 (1×) 0.66 (1×)
Quest 128K 20715 (15×) 3.31 (5.01×)
Pyramid 128K 34525 (25×) 5.43 (8.22×)
Ada 128K 33144 (24×) 5.23 (7.92×)

H COMPUTER INFORMATION OF EXPERIMENTS

For Longbench and RULER evaluation (Table 5 and Table 2), we use a Nvidia H100 DGX server,
Longbench evaluation takes around 8 hours and RULER evaluation takes 12 hours, two models
(Llama-3.1-8B-Instruct and MegaBeam-Mistral-7B-512K). Other accuracy evaluations like KL-
divergence can be done within 30 minutes on a single H100. For Efficiency evaluation, we use Nvidia
Ada 6000 GPUs with CUDA 12.4.

I POTENTIAL SOCIAL IMPACTS

This paper is motivated by recent advances in the field of long-context language models. Sparse
attention methods has the potential to be used to serve more requests and thus benefit more users.

16

	Introduction
	Analysis
	Intrinsic Sparsity in Self-Attention Mechanisms
	Fixed Token Budget Approaches Lead to Accuracy Variations
	Cumulative Attention Score: A More Robust Target for Sparse Attention
	Challenges of Attaining Cumulative Attention Scores

	Methodology
	Algorithm Overview
	Prefill Stage: Grouping Tokens via Clustering
	Decode Stage: Partial Sort Tokens using Cluster Centroids
	Decode Stage: Estimating Attention Score via Distribution Fitting
	Decode Stage: GQA-Aware Sparse Attention

	Experiments
	Setting
	Accuracy Evaluation
	Output Accuracy
	Acceptance rate in Speculative Decoding
	Accuracy for long-context tasks
	Accuracy of Clustering & Distribution Fitting

	Efficiency Evaluation
	Latency Breakdown
	Ablation Study for Query Head Union
	End-to-end performance

	Conclusion
	Bound of approximation error
	Value Vector Norm Distribution
	Algorithm of Distribution Fitting
	Sensitivity Analysis of Clustering
	LongBench accuracy evaluation
	Number of tokens selected by Tactic in Benchmarks
	Speedup of Tactic in RULER evaluation
	Computer information of experiments
	Potential Social Impacts

