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Abstract
We present PEPFlow, a Python library designed to streamline the workflow for analyzing the
convergence behavior of a variety of first-order optimization algorithms. The library builds
on Performance Estimation Problems (PEPs), which reformulate the worst-case convergence
guarantees as convex semidefinite programs (SDPs). Solving the SDP provides numerical
evidence of convergence rates, and more importantly, its dual variables can be leveraged
to construct analytical proofs. PEPFlow supports the entire workflow by automating SDP
formulation, exploring relaxations, inspecting dual variables, and verifying proofs. Together,
these features bridge numerical verification with rigorous analysis and substantially reduce
manual effort. A pre-release version of PEPFlow is available at:

https://github.com/pepflow-lib/PEPFlow.

1 Introduction
First-order optimization methods are among the most widely used tools in modern optimization
and machine learning, valued for their simplicity, scalability, and ease of implementation. Their
versatility has made them popular with both practitioners and researchers. However, analyzing their
convergence behavior remains technically demanding and often limited to experts.
Performance Estimation Problems (PEPs) [9, 33] provide a systematic framework for such analyses,
and extensive research has been devoted to their development and applications [1–6, 8, 10, 11, 13–16,
18–24, 26–32, 34–37]. The worst-case convergence behavior of a first-order optimization method is
formulated as a tractable convex optimization problem, referred to as Primal PEP, whose solution
offers numerical verification of the algorithm’s convergence guarantees. More importantly, the dual
variables of Primal PEP provide the key ingredients for constructing analytical convergence proofs,
thereby turning numerical evidence into rigorous theoretical guarantees.
Despite the power of the PEP framework, existing tools such as PEPit [12] focus primarily on
automating the numerical setup, with limited support for the subsequent and more challenging proof
stage. This leaves a gap between numerical evidence and analytical verification.
To address this limitation, we introduce PEPFlow, a Python library that assists with the complete
PEP workflow. In addition to formulating and solving Primal PEP, PEPFlow provides tools for
exploring its relaxations, inspecting dual solutions, and symbolically verifying proofs. Together,
these features reduce the manual effort required in traditional PEP analysis and enable a seamless
workflow from problem setup to convergence proof.
Our main contributions are as follows.

• We introduce PEPFlow, a Python library covering the PEP workflow end-to-end.
• We provide new functionality to support analytical proof construction, including an interactive

dashboard for inspecting relaxations of Primal PEP and structured access to dual variables.
• We demonstrate the library through the example of gradient descent, with a particular focus on

how it streamlines convergence analysis.
The remainder of the paper is organized as follows. Section 2 outlines the PEP workflow and il-
lustrates how PEPFlow assists at each stage, Section 3 presents a working example and details the
library’s key features, and Section 4 concludes with future directions.

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: ScaleOPT: GPU-
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2 The Workflow of PEP and PEPFlow
This section overviews the PEP workflow and shows how PEPFlow assists at each stage, from for-
mulating and solving Primal PEP to deriving analytical proofs, while highlighting key features in
PEPFlow that streamline and automate the process.

Provide user input
(Section 3.1)

Formulate Primal PEP
(Section 3.1)

Numerically verify
convergence rate

(Section 3.2)

Relax Primal PEP
(Section 3.4)

Find
analytical expressions

of dual variables
(Section 3.5)

Verify
analytical expressions

of dual variables
(Section 3.5)

Figure 1: A diagram of the PEP workflow. Existing libraries such as PEPit [12] have features that
assist users with the steps in blue. PEPFlow has new features that assist users with the steps in green.

A typical PEP workflow begins with the user specifying key ingredients: the problem/function class,
algorithm update rule, performance metric, optimality criterion, and initial condition. From this
information, one formulates the Primal PEP, a semidefinite program (SDP) whose solution charac-
terizes the algorithm’s worst-case convergence behavior. Solving Primal PEP for different iteration
counts verifies convergence and reveals the numerical rate. PEPFlow automates this stage: it allows
users to define the problem in a high-level interface, automatically generates Primal PEP, and passes
it to efficient SDP solvers. This greatly reduces the technical burden on users and makes numerical
experimentation straightforward.
After numerical evidence is obtained, the next step in the PEP workflow is to derive a formal con-
vergence proof. This requires identifying analytical expressions for the dual variables (Lagrange
multipliers) of Primal PEP and verifying them numerically. This typically requires an exact relax-
ation of Primal PEP, which reduces the number of constraints and hence the number of nontrivial
dual variables. The resulting sparse dual solution helps reveal candidate formulas for the multipli-
ers that can then be tested and verified. Once confirmed, substituting these expressions into the
Lagrangian yields an equality that, when symbolically verified, constitutes a rigorous convergence
proof. PEPFlow supports this stage in the workflow by providing tools to inspect dual solutions,
detect sparsity patterns, and test/verify candidate analytical formulas, enabling a smooth transition
from numerical exploration to rigorous proofs.
Overall, PEPFlow is designed to support users throughout the entire PEP workflow. While other
Python libraries such as PEPit [12] provide useful functionality, their features cover only a subset
of the workflow (see Figure 1). In contrast, PEPFlow offers tools for every stage and, uniquely,
introduces capabilities that assist users in establishing formal convergence proofs for a wide class of
optimization algorithms. In particular, PEPFlow provides two critical new features:

• An interactive dashboard that allows users to search for exact relaxations of Primal PEP.
• Direct access to the mathematical objects required to derive and verify analytical expressions of

the dual variables.
In the next section, we will present a working example of the PEP workflow, highlighting the parts
that PEPFlow can automate or facilitate and those that still require user intervention.

3 A Working Example of PEPFlow
3.1 Primal PEP Problem Formulation

What sets PEPFlow apart from other PEP packages is its ability not only to automate the formulation
process but also to support the derivation of analytical convergence proofs. To showcase this capabil-
ity, we begin by introducing the key idea of PEP: formulating a tractable convex problem to evaluate
the worst-case performance of first-order methods, using the gradient descent (GD) method as an
example. Although PEPFlow automates this process, understanding the underlying formulation is
crucial for deriving the analytical convergence proof of GD.
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To begin, recall that GD is an iterative algorithm for minimizing a differentiable function f : Rd →
R, where f belongs to a given function class F . Analyzing the convergence of GD requires specify-
ing an initial condition on the starting point x0 and selecting a performance measure that quantifies
the progress of GD, which typically involves a minimizer of f , denoted by x⋆. With these ingredi-
ents, we can formulate the worst-case behavior of GD as an optimization problem:

maximize some performance measure
subject to f belongs to some function class F ,

{xn}Nn=1 is generated by GD,
x⋆ is a minimizer of f,
x0 satisfies some initial condition.

(1)

To make this problem more concrete, we here consider as an example that f is an L-smooth convex
function, the performance measure is f(xN )− f(x⋆), and the initial condition is ∥x0 − x∗∥2 ≤ ρ2

with ρ > 0. Instead of working directly with the functional constraint f ∈ F , one can equiva-
lently enforce a set of so-called interpolation conditions that characterize L-smooth convex func-
tions [9, 33]. These conditions are crucial in PEP, as they translate abstract functional properties
into explicit inequalities relating the function values, gradients, and points visited by GD, yielding
a finite-dimensional optimization problem. Defining the index sets I⋆

N := {0, 1, . . . , N, ⋆} and
J ⋆
N := {(i, j) ∈ I⋆

N × I⋆
N | i ̸= j}, we can reformulate (1) into the following nonconvex quadrati-

cally constrained quadratic program (QCQP):
maximize fN − f⋆
subject to fi ≥ fj + gTj (xi − xj) +

1
2L∥gi − gj∥22, (i, j) ∈ J ⋆

N

xi = xi−1 − 1
L

∑i−1
j=0 gj , i ∈ 1, . . . , N

g⋆ = 0
∥x0 − x⋆∥22 ≤ ρ2,

(2)

where the decision variables are {xi, fi, gi}i∈I⋆
N

⊆ Rd × R × Rd, and for simplicity the stepsize
in GD is chosen as 1

L . The nonconvex QCQP can be further reformulated into a convex SDP by
introducing the following change of variables

G := HTH ∈ SN+3
+ , where H := [x0 g0 g1 · · · gN x∗] ∈ Rd×(N+3),

F :=
(
f0, f1, . . . , fN , f∗

)
∈ RN+2.

We introduce the following notation to select {xi, fi, gi}i∈I⋆
N

from H and F :
f⋆ := eN+3 ∈ RN+2, f i := ei+1 ∈ RN+2, i ∈ {0, . . . , N}
g⋆ := 0 ∈ RN+3, gi := ei+2 ∈ RN+3, i ∈ {0, . . . , N}
x0 := e1 ∈ RN+3, x⋆ := eN+3 ∈ RN+3,
xi := xi−1 − 1

Lgi−1 ∈ RN+3, i ∈ {1, . . . , N}.

(3)

where ei is the ith basis vector. This system of notation satisfies
xi = Hxi, fi = Ff i, gi = Hgi,

for all i ∈ I⋆
N . Furthermore, for all (i, j) ∈ J ⋆

N , define

Ai,j := (xi − xj)⊙ (xi − xj) ∈ SN+3
+ , Bi,j := gi ⊙ (xi − xj) ∈ SN+3,

Ci,j := (gi − gj)⊙ (gi − gj) ∈ SN+3
+ , Di,j := f j − f i ∈ RN+2,

(4)

where ⊙ denotes the symmetric outer product: x⊙ y = 1
2 (xy

T + yxT). These notations satisfy

∥xi − xj∥22 = tr
(
GAi,j

)
, gTj (xi − xj) = tr

(
GBi,j

)
, ∥gi − gj∥22 = tr

(
GCi,j

)
.

With all the introduced notation, we can finally rewrite the nonconvex QCQP (2) as an SDP
maximize FTD⋆,N

subject to FTDi,j + tr
(
GBi,j

)
+ 1

2L tr
(
GCi,j

)
≤ 0, (i, j) ∈ J ⋆

N

tr
(
GA0,⋆

)
≤ ρ2

G ⪰ 0,

(Primal PEP)

where the decision variables are F ∈ RN+2 and G ∈ SN+3. As an SDP, Primal PEP can be solved
efficiently by numerical solvers. Moreover, Primal PEP can be easily implemented using PEPFlow,
as illustrated below where we specifically consider L = 1 and ρ = 1 without loss of generality.

The following code block demonstrates how to use PEPFlow to formulate Primal PEP. Moreover,
PEPFlow uses this information to automatically construct Primal PEP, which can be translated into
a CVXPY problem solvable by various numerical solvers.
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import pepflow as pf

ctx_gd = pf. PEPContext (" ctx_gd "). set_as_current ()
L, N = 1, 9 # Set the Lipschitz constant and the number of iterations .

f = pf. SmoothConvexFunction ( is_basis =True , L=L, tags =["f"]) # Declare a function
x = pf. Vector ( is_basis =True , tags =["x_0"]) # Define an initial point .
x_star = f. set_stationary_point (" x_star ") # Define an optimal solution .
init_dist = (x - x_star ) ** 2

for i in range (1, N+1):
x = x - 1 / L * f.grad(x) # Implement Gradient Descent .
x. add_tag (f"x_{i}") # Add tag for this point .

# Set the initial constraint (‘lt ’ means less than).
pb = pf. PEPBuilder ( ctx_gd )
pb. add_initial_constraint ( init_dist .lt(1, name=" initial_condition "))
# Set the performance metric .
pb. set_performance_metric (f(x) - f( x_star ))
pb. solve_primal () # or pb. solve_dual () to get the pep problem result .

3.2 Numerical Verification of the Convergence Rate
By solving Primal PEP numerically for different iteration counts N and examining the resulting
objective values, we can verify the convergence of GD and estimate its convergence rate. Plotting
these objective values yields the following figure. The first three values indicate 1

2 = 0.500, 1
6 ≈

0.167, and 1
10 = 0.100. This suggests the pattern 1

4N+2 for the optimal values of Primal PEP.

0 1 2 3 4 5 6 7 8 9
Iteration Number N

0.0
0.1
0.2
0.3
0.4
0.5

f N
f

0.500

0.167
0.100 0.071 0.056 0.045 0.038 0.033 0.029 0.026

Values from the code
Guessed analytic form 1

4N + 2

Figure 2: Optimal values of Primal PEP for different N , rounded to three decimal places.

3.3 Lagrangian of Primal PEP and Obtaining a Proof of Convergence
The key to obtaining an analytical proof of convergence is to examine the Lagrangian of Primal PEP:

L(F,G, λ, τ, S) = FTD⋆,N −
∑

(i,j)∈J ⋆
N

λij

(
FTDi,j + tr(GBi,j) +

1
2L tr(GCi,j)

)
− τ

(
tr(GA⋆,0)− ρ2

)
+ tr(GS),

(5)

where λ = {λi,j} ⊂ R, τ ∈ R, and S ∈ SN+3 are the Lagrange multipliers (dual variables). Let
(λ̃, τ̃ , S̃) be a dual feasible point. The Lagrangian L evaluated at this feasible point equals

FTD⋆,N − τ̃ tr(GA⋆,0) =
∑

(i,j)∈J ⋆
N

λ̃ij

(
FTDi,j + tr(GBi,j) +

1
2L tr(GCi,j)

)
− tr(GS̃).

Using the definitions we established earlier, this can be rewritten as

fN − f⋆ − τ̃∥x0 − x⋆∥22 =
∑

(i,j)∈J ⋆
N

λ̃ij

(
fj − fi + gTj (xi − xj) +

1
2L∥gi − gj∥22

)
− tr(GS̃). (6)

Because f is L-smooth and convex, the term fj − fi + gTj (xi − xj) +
1
2L∥gi − gj∥22 is nonpositive.

Moreover, the term tr(GS̃) is nonnegative as G and S̃ are positive semidefinite. It then follows that

f(xN )− f(x⋆) ≤ τ̃∥x0 − x⋆∥22.
Consequently, if we can find the analytical expression of a dual feasible point (λ̃, τ̃ , S̃) and verify (6),
we can formally establish an upper bound on the worst-case convergence behavior of GD.
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3.4 Exact Relaxation of Primal PEP
We first focus on finding analytical expressions for λ̃. Since the number of variables λ̃i,j grows
quadratically with N , it is desirable to reduce their count. To this end, we attempt to set certain λ̃i,j

to zero, or equivalently, to remove some interpolation constraints, without altering the optimal value.
In other words, our goal is to identify an equivalent relaxation of Primal PEP.

PEPFlow provides an interactive dashboard that enables users to manually deactivate selected inter-
polation constraints. After choosing which constraints to remove, the user can re-solve the relaxed
Primal PEP to check whether the relaxation remains exact. The goal is to identify relaxations where
the active constraints exhibit a recognizable pattern as the number of iterations N increases. See Fig-
ure 3 for an example illustrating this process for GD.

Figure 3: An interactive constraint relaxation panel in PEPFlow for GD with N = 2.

3.5 Finding and Verifying Analytical Expressions of Dual Variables
After obtaining an exact relaxation of Primal PEP, the next step is to derive and numerically vali-
date analytical expressions for the dual variables. This is carried out through a trial-and-error style
iterative process in which the user alternates between proposing candidate formulas for the dual
variables and verifying, across different iteration counts N , that these formulas match the solutions
returned by the numerical solver. The dual variables fall into three categories, τ̃ , λ̃, and S̃, for which
analytical expressions must be identified and confirmed. Throughout the remainder of this section,
we set L = 1 and ρ = 1 for simplicity.

PEPFlow supports this stage by providing convenient access to solver outputs, utilities to inspect
dual variables, and tools to test candidate analytical formulas, thereby streamlining the iterative
process for the user.

Finding a closed-form expression for τ̃ amounts to identifying a pattern in the objective values
of Primal PEP as the number of iterations N varies. This was already observed when we numerically
verified the convergence rate of GD in Section 3.2, which suggests τ̃ = 1

4N+2 . The rest of this
subsection demonstrates how PEPFlow assists users in verifying the other dual variables, λ̃ and S̃.

3.5.1 Finding and Verifying Analytical Expressions of λ̃
Recall that the dual variables λ̃ are associated with the interpolation conditions of Primal PEP, and
the purpose of finding a suitable relaxation is to reduce the number of nonzero λ̃i,j’s. Here we
review the relaxation identified using the interactive dashboard, illustrated for N = 2 in Figure 3.
This previously known relaxation restricts only the following dual variables to be nonzero:{

λ̃i−1,i | i = 0, . . . , N − 1
}
∪

{
λ̃⋆,i | i = 0, . . . , N

}
.
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Examining these dual variables after solving Primal PEP numerically for various N gives:

[[0. 0.25 0. 0. ]
[0. 0. 0.667 0. ]
[0. 0. 0. 0. ]
[0.25 0.417 0.333 0. ]]

(a) N = 2

[[0. 0.167 0. 0. 0. ]
[0. 0. 0.4 0. 0. ]
[0. 0. 0. 0.75 0. ]
[0. 0. 0. 0. 0. ]
[0.167 0.233 0.35 0.25 0. ]]

(b) N = 3

We can then guess the following analytical expressions:

λ̃i−1,i =
i

2N + 1− i
, i = 1, . . . , N, λ̃⋆,i =


λ̃0,1 i = 0

λ̃i,i+1 − λ̃i−1,i i = 1, . . . , N − 1

1− λ̃i−1,i i = N.

(7)

Details on numerical verification of the proposed expression with NumPy are in Appendix B.1.
A key benefit of PEPFlow in this stage of the PEP workflow is that it presents the dual variables λ in
a structured and transparent manner. As shown in Figure 3, users can readily see the correspondence
between the dual variables and their associated interpolation conditions. This clarity is made possi-
ble by the tagging system implemented in PEPFlow, which allows users to assign tags to different
mathematical objects.

3.5.2 Verifying S̃ is positive semidefinite
PEPFlow automates the calculations needed for the final numerical verification step: to identify a
positive semidefinite (PSD) matrix S̃ that satisfies (6). Actually, given λ̃ as in (7) and τ̃ = 1

4N+2 , S̃
is uniquely determined by dual feasibility. Thus, the PEP workflow is complete once the symbolic
S̃ is shown to be PSD. Further details are provided in Appendix B.2.
Although the technical details of this verification are deferred to Appendix B.2, we highlight here
two key features of PEPFlow that automate much of the process:

• Although S̃ is uniquely determined once τ̃ and λ̃ are fixed, its analytical expression is often
intricate and requires careful examination of {(xi, gi)}i∈I⋆

N
(or {(xi, gi)}i∈I⋆

N
). PEPFlow auto-

mates the extraction of the pairs {(xi, gi)}i∈I⋆
N

, as demonstrated in the code below.

x_list = ctx. tracked_point (f) # The points associated with function f.
g_x_list = ctx. tracked_grad (f) # The gradients associated with function f.

With the above lists of iterates and gradients, the user can arbitrarily form their linear combina-
tions and inner products, operations essential to verify S̃ is PSD.

• When a user defines a candidate expression, S_guess, using linear combinations and inner prod-
ucts of above lists of iterates and gradients, PEPFlow provides a function that translates that
analytical expression into its matrix representation based on (3) and (4). This otherwise tedious
procedure is fully automated and can be carried out with a single line of code:

S_guess_matrix_expression = S_guess .eval(ctx). matrix

Once we numerically verify an analytical expression of a dual feasible point (for various N ), the
subsequent symbolic verification is mechanical; an example is provided in Appendix B.3. This
completes the end-to-end workflow of PEP.

4 Conclusion and Future Work
This paper introduces PEPFlow, a library designed to streamline the end-to-end workflow of the
Performance Estimation Problems (PEP) for verifying and deriving convergence guarantees of first-
order optimization methods. Beyond formulating and solving the Primal PEP, PEPFlow uniquely
assists in deriving and verifying analytical convergence proofs. Through the example of gradient
descent (GD), we show how its interactive tools, structured access to dual variables, and symbolic
routines streamline the transition from numerical results to rigorous analysis.

PEPFlow is still under active development, with steady progress toward broader capabilities. Many
infrastructure improvements remain—for example, automating the search for suitable relaxations of
the Primal PEP—with the ultimate goal of fully “automating” the design and analysis of first-order
methods. Beyond infrastructure, the development of PEPFlow also sparks new research directions;
for instance, studying how patterns in dual solutions can reveal structural properties of algorithms.
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A Design of PEPFlow library

The PEPFlow library is designed for interactive use. As explained in the main text, the workflow for
solving a performance estimation problem (PEP) involves multiple steps. From the user’s perspec-
tive, interaction with PEPFlow is structured around three main entry points, as depicted in Figure 5.

Figure 5: PEPFlow

The first entry point of PEPFlow allows the user to define an optimization algorithm. To model the
algorithm, PEPFlow provides three key components: Vector, Scalar, and Function. These serve
as abstract representations for quantities defined by the algorithm, such as xi, f(xi), or ∇f(xi). The
relationship between iterates, like xi+1 = xi − η∇f(xi), is encoded directly in the Vector object’s
construction. To encode these relationships, Vector objects support inner product space operations
like linear combinations and inner products. Similarly, Scalar objects support basic arithmetic.
The Function class has several derived subclasses for different function types (e.g., smooth convex,
strongly convex), and each Function object stores the interpolation constraints associated with its
type. These three components are designed to interact with one another. For instance, applying a
Function to a Vector returns a Scalar, and the inner product of two Vector objects also yields a
Scalar.

As these components are abstract representations, their concrete realizations as vectors or matri-
ces are context-dependent. Therefore, we introduce a crucial concept: the PEPContext. The
PEPContext is an object that groups all related Vector, Scalar, and Function components, and
it is this context that ultimately determines their concrete numerical values. We give a concrete
example below:

>>> import pepflow as pf
>>> ctx = pf. PEPContext ("pep"). set_as_current ()
>>> p1 = pf. Vector ( is_basis =True)
>>> print (p1.eval(ctx))
array ([1]) # We only have one basis vector in contex
>>> p2 = pf. Vector ( is_basis =True)
>>> print (p1.eval(ctx)) # Note it is ‘p1 ’ again
array ([1 , 0]) # Because we have two basis vectors now

The PEPContext object automatically tracks all Vector and Function components as they are
defined. Therefore, once the user finishes constructing the algorithm, the PEPContext holds all the
necessary information to formulate the PEP. This formulation is handled by the PEPBuilder class,
which encapsulates everything required to build Primal PEP, including initialization and interpola-
tion constraints, as well as their relaxations. The core of the problem solver is as follow.

... # PEPBuilder preparing all performance metric and constraints
solver = ps. CVXSolver (

objective = objective ,
constraints =[c for c in constraints if c not in relaxed_constraints ],
context =context ,

)
problem = solver . build_problem ()
result = problem . solve (** kwargs )
...
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Since PEPFlow is not a solver, it interfaces with external optimization libraries such as CVXPY [7].
This connection is handled by an expression evaluation component. After the PEPBuilder class
generates the abstract Constraint and objective objects (depending on PEPContext), the evaluator
translates them into the concrete matrix and vector representations that are compatible with CVXPY.
That is essentially what the function solver.build_problem() does behind the scenes.

While Primal PEP is solvable at this point, this only completes the initial phase of the PEP workflow.
The next step involves strategically relaxing the interpolation constraints as much as possible without
altering the optimal value. This process requires user intuition and cannot be automated. Therefore,
PEPFlow provides an interactive web interface—compatible with both scripts and Jupyter Notebook-
sthat allows the user to explore and apply these relaxations manually. The following screenshot is
the example usage of interactive relaxation:

Figure 6: Interactive constraint relaxation panel in PEPFlow.

Users can toggle interpolation constraints between active and inactive by clicking the corresponding
points in the left panel. Clicking the “Solve PEP Problem” button then re-solves a relaxation of
Primal PEP that only uses the user-selected set of active constraints. By observing changes in the
optimal value, the user can assess the impact of toggling each constraint. PEPFlow leverages the
Plotly [17] and Dash [25] library to allow for interactive usage. The connection between the Dash
app and PEPFlow is through the DualManager. For each Constraint, there is a unique associated
name so that Plotly can use the string to manipulate the relaxation of constraints.

After the necessary interpolation constraints are determined, the final stage of the PEP workflow
remains—finding and verifying the analytical expressions of the dual variables. Details about how
PEPFlow can assist with this process are covered in Section 3.5.

Remark. The PEPFlow library is under active development. Its API and internal utilities are
subject to change in future releases.
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A.1 Comparison with PEPit

The design of PEPFlow’s Primal PEP modeling interface was influenced by PEPit [12], an im-
portant precursor library that also models Primal PEP. Despite this shared foundation, their core
philosophies differ significantly, as PEPFlow is designed to support the entire interactive workflow,
extending beyond PEPit’s focus on Primal PEP formulation alone.

PEPFlow is designed for interactive use, featuring a dynamic and extensible interface. This design
facilitates straightforward integration with other libraries like Dash and allows users to easily access
underlying data, such as NumPy representations, or retrieve information like the dual variables of
tagged constraints. PEPit, on the other hand, is a more closed ecosystem, which makes it challenging
for users to extract its internal data structures for interoperability with other tools. Furthermore,
PEPit is designed for static script execution and lacks context management. As a result, when used
in an interactive environment like a Jupyter Notebook, its global state can be easily corrupted by
the nonlinear execution of cells. Consequently, this design makes it challenging to extend PEPit to
support interactive constraint relaxation, a feature we consider essential to the PEP workflow.

B Omitted details in Section 3.5

B.1 Details of the implementation to verify analytical expressions of λ̃

To numerically verify whether our proposed analytical expression is correct, we can use, for example,
the following code snippet:

lambda_candidate = np. zeros ((N + 2, N + 2))

## Additional constraint 1 ( consecutive )
for j in range (N + 1):

for i in range (N + 2):
if j == i + 1:

lambda_candidate [i, j] = j / (2 * N + 1 - j)

## Additional constraint 2 ( between x_ *)
for j in range (N + 1):

if j == N:
lambda_candidate [N + 1, j] = 1 - lambda_candidate [j - 1, j]

else:
lambda_candidate [N + 1, j] = (

lambda_candidate [j, j + 1] - lambda_candidate [j - 1, j]
)

np. allclose ( lambda_candidate , lambda_solution , atol =1e -4)

B.2 Details of the implementation for numerically verifying that S̃ is PSD

Recall that our goal is to find feasible λ̃ and S̃ that satisfy (6), with τ̃ = 1
4N+2 . Since we have a

candidate for λ̃, the remaining step is to find a compatible analytic expression for a feasible S̃. Since
S̃ must satisfy (6), we can show that it should satisfy1

S̃ =
∑

i,j∈I⋆
N

λ̃ij

(
Bij +

1

2L
Ci,j

)
+ τ̃A⋆,0. (8)

Thus, the analytical form is already determined since τ̃ and λ̃ are determined. The remaining condi-
tion from dual feasibility that we need to show is that S̃ is PSD.

There are various way to show a matrix is PSD. Here, we show that S̃ is PSD by providing a concrete
decomposition. We first print the numerical values of S̃ we obtain from the code:

1We use the fact that, since the equality (6) holds for all arbitrary G, the coefficients of G on the left-hand
side and the right-hand side must coincide.
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S_solution =
[[ 0.1 -0.125 -0.208 -0.167 -0.1 ]

[ -0.125 0.25 0.208 0.167 0.125]
[ -0.208 0.208 0.667 0.167 0.208]
[ -0.167 0.167 0.167 0.5 0.167]
[ -0.1 0.125 0.208 0.167 0.1 ]]

Figure 7: Numerical values of S̃ obtained from the code, when N = 2.

Leveraging the numerical values and using some heuristics, we are able to find the following decom-
position:

Sguess =
1

4N + 2
(zN − x⋆)⊙ (zN − x⋆) +

1

2

N∑
i=0

N∑
j=i+1

(
(2N + 1)λ̃⋆,i − 1

)
λ̃⋆,jCi,j , (9)

where

zN = x0 − (2N + 1)

N∑
i=0

λ̃⋆,igi.

We numerically verify this decomposition with the following code. As mentioned in Section 3.5.2,
we leverage PEPFlow to automatically obtain the list corresponding to {xi}i∈I⋆

N
and {gi}i∈I⋆

N
.

x_list = ctx. tracked_point (f) # The points associated with function f.
g_x_list = ctx. tracked_grad (f) # The gradients associated with function f.

Now, we create the term corresponding to (9). First, we calculate the term 1
4N+2 (zN −x⋆)⊙ (zN −

x⋆) in (9). Leveraging PEPFlow, the required calculation can be written intuitively, as shown below.
z = x_list [0] - (2*N+1) * sum( lambda_candidate [N+1,i] * g_x_list [i] for i in range (N + 1))
S_guess = 1 / (4*N+2) * (z - x_list [ -1]) **2

Similarly, we calculate the remaining summation term in (9).
S_guess += 1/2 * sum( lambda_candidate [N+1,j] * ((2*N+1) * lambda_candidate [N+1,i] - 1)

* ( g_x_list [i] - g_x_list [j]) **2 for i in range (N+1) for j in range (i+1,N+1) )

As mentioned in Section 3.5.2, PEPFlow provides a function that translates the analytical expres-
sion S_guess into its matrix representation S_guess_matrix_expression, which is based on
(3) and (4). This translation allows us to compare our guessed decomposition S_guess with the
numerical values in Figure 7, which are the values of S̃ obtained from the code.
S_guess_matrix_expression = S_guess .eval(ctx). matrix

Finally, we check that our candidate decomposition is equal to S̃ obtained from the code. The
following code outputs True. This concludes the numerical verification of the decomposition in (9).
np. allclose ( S_guess_matrix_expression , S_solution , atol =1e -4)

We could still obtain True for N = 0, . . . , 10, which strongly suggests that the decomposition in
(9) is correct. Once we have a convincing candidate, the remaining formal verification can be done
by carefully comparing the coefficients, which is an elementary calculation. Details are provided in
Appendix B.3.

B.3 Details of symbolically verifying that S̃ is PSD

In Appendix B.2, we numerically verified that S̃ in (8) and Sguess in (9) are equal. Recalling that
τ̃ = 1

4N+2 , this means that the following equality holds for N = 0, . . . , 10, up to a certain numerical
precision: ∑

i,j∈I⋆
N

λ̃ij

(
Bij +

1

2
Ci,j

)
+ τ̃A⋆,0

= τ̃(zN − x⋆)⊙ (zN − x⋆) +
1

2

N∑
i=0

N∑
j=i+1

(
1

2τ̃
λ̃⋆,i − 1

)
λ̃⋆,jCi,j
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Recalling the definition (4), this suggests (10) in the lemma below. This is essentially an alternative
argument corresponding to half of the proof of [9, Theorem 3.1], which relies on [9, Lemma 3.2]
and [9, Lemma 3.3], and spans more than seven pages.

Lemma 1. Let N ≥ 0. Define λ̃i,j for i, j ∈ I⋆
N = {0, 1, . . . , N, ⋆} as in (7), i.e.,

λ̃i−1,i =
i

2N + 1− i
, i = 1, . . . , N, λ̃⋆,i =


λ̃0,1 i = 0

λ̃i,i+1 − λ̃i−1,i i = 1, . . . , N − 1

1− λ̃i−1,i i = N.

(7)

when j = i− 1 or i = ⋆, and 0 otherwise. Suppose that {xi}i=0,1,...,N satisfies xi = x0 −
∑i−1

j=0 gj
and g⋆ = 0. Then the following equality holds:∑

i,j∈I⋆
N

λ̃ij

(
gTj (xi − xj) +

1

2
∥gi − gj∥2

)
+ τ̃ ∥x0 − x⋆∥2

= τ̃

∥∥∥∥∥x0 − x⋆ −
1

2τ̃

N∑
i=0

λ̃⋆,igi

∥∥∥∥∥
2

+
1

2

N∑
i=0

N∑
j=i+1

(
1

2τ̃
λ̃⋆,i − 1

)
λ̃⋆,j ∥gi − gj∥2 .

(10)

Proof. Although the statement appears rather complicated to prove, the underlying strategy is
straightforward:

substitute all definitions and assumptions into (10) and
compare the coefficients on both sides via a careful case division of the indices.

The remaining proof is simply a detailed breakdown of the above process to make it easier for
humans to follow.

By substituting the definitions and assumptions, showing (10) reduces to showing the equality be-
low:

N∑
i=1

λ̃i−1,i

(
gTi gi−1 +

1

2
∥gi−1 − gi∥2

)
+ τ̃ ∥x0 − x⋆∥2

+

N∑
i=0

λ̃⋆,i

(
gTi

(
x⋆ − x0 +

i−1∑
j=0

gj
)
+

1

2
∥gi∥2

)

= τ̃

∥∥∥∥∥x0 − x⋆ −
1

2τ̃

N∑
i=0

λ̃⋆,igi

∥∥∥∥∥
2

+
1

2

N∑
i=0

N∑
j=i+1

(
1

2τ̃
λ̃⋆,i − 1

)
λ̃⋆,j ∥gi − gj∥2

(11)

This equality can be verified in the following steps:

(i) Compare the terms containing x0 − x⋆.

N∑
i=1

λ̃i−1,i

(
gTi gi−1 +

1

2
∥gi−1 − gi∥2

)
+

N∑
i=0

λ̃⋆,i

(
gTi

i−1∑
j=0

gj +
1

2
∥gi∥2

)

=
1

4τ̃

∥∥∥∥∥
N∑
i=0

λ̃⋆,igi

∥∥∥∥∥
2

+
1

2

N∑
i=0

N∑
j=i+1

(
1

2τ̃
λ̃⋆,i − 1

)
λ̃⋆,j ∥gi − gj∥2

(12)

(ii) Compare the coefficients of the cross terms gTi gj .
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Observe that the cross terms in the right hand side can be simplified to:

1

2τ̃

N∑
i=0

i−1∑
j=0

λ̃⋆,iλ̃⋆,jg
T
i gj −

N∑
i=0

N∑
j=i+1

(
1

2τ̃
λ̃⋆,i − 1

)
λ̃⋆,jg

T
i gj

=
1

2τ̃

 N∑
i=0

i−1∑
j=0

λ̃⋆,iλ̃⋆,jg
T
i gj −

N∑
i=0

N∑
j=i+1

λ̃⋆,iλ̃⋆,jg
T
i gj

+

N∑
i=0

N∑
j=i+1

λ̃⋆,jg
T
i gj

=

N∑
i=0

i−1∑
j=0

λ̃⋆,ig
T
i gj .

Substituting into (12), we obtain
N∑
i=1

λ̃i−1,i

(1
2
∥gi−1∥2 +

1

2
∥gi∥2

)
+

N∑
i=0

λ̃⋆,i

(1
2
∥gi∥2

)
=

1

4τ̃

N∑
i=0

λ̃2
⋆,i ∥gi∥

2
+

1

2

N∑
i=0

N∑
j=i+1

(
1

2τ̃
λ̃⋆,i − 1

)
λ̃⋆,j

(
∥gi∥2 + ∥gj∥2

) (13)

(iii) Compare the coefficients of the squared terms ∥gi∥2.

Now, we take a look at the coefficient of ∥gi∥2 for each i = 0, . . . , N . By reorganizing the
left-hand side, we obtain:
N∑
i=1

λ̃i−1,i

(1
2
∥gi−1∥2 +

1

2
∥gi∥2

)
+

N∑
i=0

λ̃⋆,i

(1
2
∥gi∥2

)
=

1

2

N−1∑
i=0

λ̃i,i+1 ∥gi∥2 +
1

2

N∑
i=1

λ̃i−1,i ∥gi∥2 +
1

2

N∑
i=0

λ̃⋆,i ∥gi∥2

=
1

2

(
λ̃0,1 + λ̃⋆,0

)
∥g0∥2 +

1

2

N−1∑
i=1

(
λ̃i,i+1 + λ̃i−1,i + λ̃⋆,i

)
∥gi∥2 +

1

2

(
λ̃N−1,N + λ̃⋆,N

)
∥gN∥2

=

N−1∑
i=0

λ̃i,i+1 ∥gi∥2 +
1

2
∥gN∥2 , (14)

where we obtain the last equation from the definition of λ̃⋆,i in (7).

By reorganizing the double summation on the right-hand side, we obtain:

1

2

N∑
i=0

N∑
j=i+1

(
1

2τ̃
λ̃⋆,i − 1

)
λ̃⋆,j

(
∥gi∥2 + ∥gj∥2

)

=
1

2

N∑
i=0

N∑
j=i+1

(
1

2τ̃
λ̃⋆,i − 1

)
λ̃⋆,j ∥gi∥2 +

1

2

N∑
i=0

N∑
j=i+1

(
1

2τ̃
λ̃⋆,i − 1

)
λ̃⋆,j ∥gj∥2

=
1

2

N∑
i=0

N∑
j=i+1

(
1

2τ̃
λ̃⋆,i − 1

)
λ̃⋆,j ∥gi∥2 +

1

2

N∑
i=1

i−1∑
j=0

(
1

2τ̃
λ̃⋆,j − 1

)
λ̃⋆,i ∥gi∥2

=
1

2

(
1

2τ̃
λ̃⋆,0 − 1

) N∑
j=1

λ̃⋆,j ∥g0∥2 +
1

2

N∑
i=1

 N∑
j=0

1

2τ̃
λ̃⋆,iλ̃⋆,j −

N∑
j=i+1

λ̃⋆,j −
i−1∑
j=0

λ̃⋆,i

 ∥gi∥2

− 1

2

N∑
i=1

1

2τ̃
λ̃2
⋆,i ∥gi∥

2
,

where we obtain the second equality by rearranging the order of summation.2

2∑N
i=0

∑N
j=i+1 ai,j =

∑N
j=0

∑N
i=j+1 aj,i =

∑N
i=1

∑i−1
j=0 aj,i
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Next, from the definition of λ̃⋆,i in (7), it follows that:

i∑
j=0

λ̃⋆,j =

{
λ̃i,i+1 if i = 0, . . . , N − 1

1 if i = N,

and so
N∑

j=i+1

λ̃⋆,j =

N∑
j=0

λ̃⋆,j −
i∑

j=0

λ̃⋆,j = 1− λ̃i,i+1.

Substituting the gathered observations into (13), we can check that the right-hand side of (13)
can be rewritten as:

1

4τ̃

N∑
i=0

λ̃2
⋆,i ∥gi∥

2
+

1

2

N∑
i=0

N∑
j=i+1

(
1

2τ̃
λ̃⋆,i − 1

)
λ̃⋆,j

(
∥gi∥2 + ∥gj∥2

)
=

(
1

2

(
1

2τ̃
λ̃⋆,0 − 1

)
(1− λ̃⋆,0) +

1

4τ̃
λ̃2
⋆,0

)
∥g0∥2

+

N∑
i=1

1

2

(
1

2τ̃
λ̃⋆,i − (1− λ̃i,i+1)− iλ̃⋆,i

)
∥gi∥2 +

1

2

(
1

2τ̃
λ̃⋆,N −Nλ̃⋆,N

)
∥gN∥2 .

Now, recalling that τ̃ = 1
4N+2 and λ̃⋆,0 = λ̃0,1 = 1

2N from (7), for i = 0 we have:

1

2

(
1

2τ̃
λ̃⋆,0 − 1

)
(1− λ̃⋆,0) +

1

4τ̃
λ̃2
⋆,0 =

1

2
(2N + 1 + 1) λ̃⋆,0 −

1

2
= λ̃0,1.

Next, recalling that λ̃i−1,i =
i

2N+1−i from (7), for i = 1, . . . , N − 1 we have:

1

2

(
1

2τ̃
λ̃⋆,i − (1− λ̃i,i+1)− iλ̃⋆,i

)
=

1

2
(2N + 1− i)

(
λ̃i,i+1 − λ̃i−1,i

)
− 1

2
(1− λ̃i,i+1)

=
1

2
(2N − i)λ̃i,i+1︸ ︷︷ ︸

=i+1

+
1

2
λ̃i,i+1 −

1

2
(2N + 1− i)λ̃i−1,i︸ ︷︷ ︸

=i

−1

2
+

1

2
λ̃i,i+1 = λ̃i,i+1.

Finally, for i = N :

1

2

(
1

2τ̃
λ̃⋆,N −Nλ̃⋆,N

)
=

1

2
(2N + 1−N) λ̃⋆,N =

1

2
(N + 1)

(
1− N

N + 1

)
=

1

2
.

Since this coincides with the coefficient on the left-hand side in (14), we conclude the proof.

This completes the PEP workflow.
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