
Under review as a conference paper at ICLR 2022

FINDING AND FIXING SPURIOUS PATTERNS WITH
EXPLANATIONS

Anonymous authors
Paper under double-blind review

ABSTRACT

Machine learning models often use spurious patterns such as “relying on the
presence of a person to detect a tennis racket,” which do not generalize. In this
work, we present an end-to-end pipeline for identifying and mitigating spurious
patterns for image classifiers. We start by finding patterns such as “the model’s
prediction for tennis racket changes 63% of the time if we hide the people.” Then,
if a pattern is spurious, we mitigate it via a novel form of data augmentation. We
demonstrate that this approach identifies a diverse set of spurious patterns and that
it mitigates them by producing a model that is both more accurate on a distribution
where the spurious pattern is not helpful and more robust to distribution shift.
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Figure 1: For the tennis racket example, SPIRE iden-
tifies this pattern by observing that, when we remove
the people from images with both a tennis racket and a
person, the model’s prediction changes 63% of the time.
Since this process does not remove the tennis racket it-
self, we label this pattern as spurious. Then, SPIRE care-
fully adds/removes tennis rackets/people from different
images to create an augmented training set where tennis
rackets and people are independent while minimizing
any new correlations between the label and artifacts in
the counterfactual images (e.g., grey boxes).

With the adoption of machine learning models
in real-world applications, there is a growing
concern about Spurious Patterns (SPs) – when
models rely on patterns that do not align with
domain knowledge and do not generalize (Ross
et al., 2017; Shetty et al., 2019; Rieger et al.,
2020; Teney et al., 2020; Singh et al., 2020). For
example, a model trained to detect tennis rackets
on the COCO dataset (Lin et al., 2014) learns to
rely on the presence of a person, which leads to
systemic errors: it is significantly less accurate
at detecting tennis rackets for images without
people than with people (41.2% vs 86.6%) and
only ever has false positives on images with peo-
ple. Relying on this SP works well on COCO,
where the vast majority of images with tennis
rackets also have people, but would not be as
effective for other distributions. Further, relying
on SPs may also lead to serious concerns when
they relate to protected attributes such as race or
gender (Buolamwini & Gebru, 2018).

We focus on SPs where an image classification
model is relying on a spurious object (e.g., using people to detect tennis rackets) and we propose
Spurious Pattern Identification and REpair1 (SPIRE) as an end-to-end solution for these SPs. As
illustrated in Figure 1, SPIRE identifies which patterns the model is using by measuring how often it
makes different predictions on the original and counterfactual versions of an image. Since it reduces
a pattern to a single value that has a clear interpretation, it is easy for a user to (when needed) label
that pattern as spurious or valid. Then, it mitigates SPs by retraining the model using a novel form
of data augmentation that aims to shift the training distribution towards the balanced distribution, a
distribution where the SP is no longer helpful, while minimizing any new correlations between the
label and artifacts in the counterfactual images (e.g., the grey boxes from removing people).

1Code will be released at https://github.com/user/repo
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In order to verify that the baseline model relies on a SP and quantify the impact of mitigation methods,
we measure gaps in accuracy between images with and without the spurious object (e.g., there is
a 45.4% accuracy drop between images of tennis rackets with and without people). Intuitively,
the more a model relies on a SP, the larger these gaps will be and the less robust the model is to
distribution shift. Additionally, we measure performance on the balanced distribution. Then, an
effective mitigation method will decrease the gap metrics and improve performance on the balanced
distribution. Empirically, we demonstrate SPIRE’s effectiveness with three sets of experiments:

• Benchmark Experiments. We induce SPs with varying strengths by sub-sampling COCO in order
to better understand how mitigation methods work in a controlled setting. Overall, we find that
SPIRE is substantially more effective than prior methods. Interestingly, we also find that most prior
methods are ineffective at mitigating negative SPs (i.e., SPs where the presence of the spurious
object is negatively associated with the label).

• Full Experiment. We show that SPIRE is useful “in the wild” on the full COCO dataset. For
identification, it finds a diverse set of SPs and is the first method to identify negative SPs (e.g.,
neck ties and cats), and, for mitigation, it is more effective than prior methods. Additionally, we
show that it improves zero-shot generalization (i.e., evaluation without any re-training) to two
challenging datasets: UnRel (Peyre et al., 2017) and SpatialSense (Yang et al., 2019). Collectively,
these results are notable because most methods produce no improvements in terms of robustness to
natural distribution shifts (Taori et al., 2020).

• Generalization Experiments. We illustrate how SPIRE generalizes beyond the setting from our
prior experiments, where we considered the object-detection task and assumed that the dataset has
annotations to use to create counterfactual images. Specifically, we explore three examples that
consider a different task and/or do not make this assumption.

2 RELATED WORK

We discuss prior work as it pertains to identifying and mitigating SPs for image classification models.

Identification. While several prior works measure the extent to which the model is relying on
“context” in a general sense (e.g., the model is relying on something other than the tennis racket to
detect the tennis racket) (Shetty et al., 2019; Agarwal et al., 2020; Xiao et al., 2021), SPIRE identifies
specific SPs (e.g., the model is relying on the person to detect the tennis racket). For identifying
specific SPs, the most common approach uses explainable machine learning (Simonyan et al., 2013;
Ribeiro et al., 2016; Selvaraju et al., 2017; Ross et al., 2017; Singh et al., 2018; Dhurandhar et al.,
2018; Goyal et al., 2019; Koh et al., 2020; Joo & Kärkkäinen, 2020; Rieger et al., 2020). For image
datasets, these methods rely on local explanations, resulting in a slow process that requires the user to
look at the explanation for each image, infer what that explanation is telling them, and then aggregate
those inferences to assess whether or not they represent a consistent pattern (Figure 2). In addition to
this procedural difficulty, there is uncertainty about the usefulness of some of these explanations for
model debugging (Adebayo et al., 2018; 2020).

In contrast, SPIRE inherently avoids these challenges by measuring the aggregated effect that a
specific counterfactual has on the model’s predictions (e.g., the model’s prediction changes 63% of
the time when we remove the people from images with both a tennis racket and a person). Note
that our proposed explanations fall into the broad definition of a global counterfactual explanation
described in (Plumb et al., 2020); however, our technical approach is different. Singh et al. (2020)
follow a similar principle and look for object pairs such that the presence of one object increases the
prediction probability of the other object. This method relies on the existence of images of objects
in isolation, which may be rare (e.g., the entire COCO dataset contains 34 images of tennis rackets
without people), while SPIRE counterfactually generates such images.

Mitigation. While prior work has explored data augmentation for mitigation (Hendricks et al., 2018;
Shetty et al., 2019; Teney et al., 2020; Chen et al., 2020a; Agarwal et al., 2020), it has done so with
augmentation strategies that are agnostic to the training distribution (e.g., QCEC (Shetty et al., 2019)
simply removes either the tennis rackets or the people, as applicable, uniformly at random for each
image). In contrast, SPIRE aims to use counterfactual images to create a training distribution where
the label is independent of the spurious object, while minimizing any new correlations between the
label and artifacts in the counterfactual images.
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Figure 2: Based on the saliency map (Simonyan et al., 2013) (Left), one might mistakenly infer that the model
is not relying on the person. However, the model fails to detect the racket after the person is removed (Center)
and incorrectly detects a racket after it is removed (Right).

Another line of prior work adds regularization to the model training process (Ross et al., 2017;
Hendricks et al., 2018; Wang et al., 2019; Rieger et al., 2020; Teney et al., 2020; Liang et al., 2020;
Singh et al., 2020). Some of these methods specify which parts of the image should not be relevant to
the model’s prediction (Ross et al., 2017; Rieger et al., 2020). Other methods encourage the model’s
predictions to be consistent across counterfactual versions of the image (Hendricks et al., 2018; Teney
et al., 2020; Liang et al., 2020). All of these methods could be used in conjunction with SPIRE.

Finally, there are two additional lines of work that make different assumptions. Making weaker
assumptions, there are methods based on sub-sampling, re-weighting, or grouping the training set
(Chawla et al., 2002; Sagawa* et al., 2020; Creager et al., 2020). These methods have been found to
be less effective than methods that use data augmentation or regularization (Rieger et al., 2020; Neto,
2020; Singh et al., 2020; Goel et al., 2021). Making stronger assumptions, there are methods from
domain adaptation, which assume access to several distinct training distributions (Wen et al., 2020;
Chen et al., 2020b); we do not assume this.

Consequently, the methods designed for image classification that use data augmentation or regulariza-
tion represent SPIRE’s most direct competition. As a result, we compare against “Right for the Right
Reasons” (RRR) (Ross et al., 2017), “Quantifying and Controlling the Effects of Context” (QCEC)
(Shetty et al., 2019), “Contextual Decomposition Explanation Penalization” (CDEP) (Rieger et al.,
2020), “Gradient Supervision” (GS) (Teney et al., 2020), and the “Feature Splitting” (FS) method
from (Singh et al., 2020). Note that, with the exception of FS, all of these methods require dataset
annotations for the location of the spurious object; we make the same assumption in Sections 5.1 and
5.2, but explore relaxing it in Section 5.3.

3 SPURIOUS PATTERN IDENTIFICATION AND REPAIR

In this section, we explain SPIRE’s approach for addressing SPs. We use the object detection task as
a running example, where Main is the object being detected and Spurious is the other object in a SP.2

Preliminaries. We view a dataset as a probability distribution over a set of image splits, which we
call Both, Just Main, Just Spurious, and Neither, depending on which of Main and/or Spurious they
contain (e.g., Just Main is the set of images with tennis rackets but no people). Figure 3 (Left) shows
these splits for the tennis racket example. Note that we can take an image from one split and create a
counterfactual version of it in a different split by either adding or removing either Main or Spurious
(e.g., removing the people from an image in Both moves it to Just Main) (see Appendix B.1).

Identification. SPIRE measures the degree to which the model relies on Spurious to detect Main
by measuring the probability that, when we remove Spurious from a training image from Both, the
model’s prediction changes (e.g., the model’s prediction for tennis racket changes 63% of the time
when we remove the people from an image with both a tennis racket and a person). Intuitively, the
higher this probability, the stronger this pattern is.

To identify the full set of patterns that the model is using, SPIRE measures this probability for all
(Main, Spurious) pairs, where Main and Spurious are different, and then sorts this list to find the pairs
that represent the strongest patterns. Recall that not all patterns are necessarily spurious and that the
user may label patterns as spurious or valid as necessary before moving to the mitigation step.

2The same methodology directly applies to any binary classification with a binary “spurious feature.”
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Figure 3: Left. The training image splits and the original training distribution for the tennis racket example.
Because of the strong positive correlation between Main and Spurious, it is helpful for the model to rely on this
SP. Right. The balanced distribution for the tennis racket example. This SP is no longer helpful because Main
and Spurious are now independent and there are the same number of images in Both and Just Main.

Mitigation. It is often the case that there is a strong correlation between Main and Spurious in the
original training distribution, which incentivizes the model to rely on this SP. As a result, we want
to define a distribution, which we call the balanced distribution, where relying on this SP is neither
inherently helpful nor harmful. This is a distribution, exemplified in Figure 3 (Right), that:

• Preserves P(Main). This value strongly influences the model’s relative accuracy on {Both, Just
Main} versus {Just Spurious, Neither} but does not incentivize the SP. As a result, we preserve it
in order to maximize the similarity between the original and balanced distributions.

• Sets P(Spurious | Main) = P(Spurious | not Main) = 0.5. This makes Main and Spurious inde-
pendent, which removes the statistical benefit of relying on the SP, and assigns equal importance
to images with and without Spurious. However, this does not go so far as to invert the original
correlation, which would directly punish reliance on the SP.

As shown in Figure 3 (Right), SPIRE’s mitigation strategy uses counterfactual images to manipulate
the training distribution. The specifics are described in Section 3.1, but they implement two goals:

• Primary: Shift the training distribution towards the balanced distribution. While the original
training distribution often incentivizes the model to rely on the SP, the balanced distribution does
not. However, adding too many counterfactual images may compromise the model’s accuracy on
natural images. As a result, we want to shift the training distribution towards, but not necessarily
all the way to, the balanced distribution.

• Secondary: Minimize the potential for new SPs. While shifting towards the balanced distribution,
we may inadvertently introduce new potential SPs between Main and artifacts in the counterfactual
images. For example, augmenting the dataset with the same counterfactuals that SPIRE uses for
identification (i.e., images from Both where Spurious has been covered with a grey box) introduces
the potential for a new SP because P(Main | “Artifact”) = 1.0 where, in this case, the “Artifact” is
“grey boxes”. Because the augmentation will be less effective if the model learns to rely on new
SPs, we minimize their potential by trying to set P(Main | Artifact) = 0.5.

3.1 SPECIFIC MITIGATION STRATEGIES

While SPIRE’s augmentation strategy follows the aforementioned goals, its specific details depend
on the problem setting, which we characterize using two factors:

• Can the counterfactuals change an image’s label? For tasks such as object detection, counterfactu-
als can change an image’s label by removing or adding Main. However, for tasks such as scene
identification, we may not have counterfactuals that can change an image’s label. For example,
we cannot turn a runway into a street or a street into a runway by manipulating a few objects.
Fundamentally, this defines the space of counterfactuals an augmentation strategy can use.

• Is the dataset class balanced? While working with class balanced datasets drastically simplifies
the problem and analysis, it is not an assumption that usually holds in practice.

These two factors define the three problem settings that we consider, which correspond to the
experiments in Sections 5.1, 5.2, and 5.3 respectively. For each setting, we summarize what makes it
interesting, define SPIRE’s specific augmentation strategy for it, and then discuss how that strategy
meets SPIRE’s primary and secondary goals.
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Table 1: Setting 1. For p = 0.9 and p = 0.1, we show the original size of each split for a dataset of size 200 as
well as the size of each split after SPIRE’s or QCEC’s augmentation. Note that SPIRE produces the balanced
distribution, while QCEC does not even make Main and Spurious independent.

p = 0.9 p = 0.1

Split Original SPIRE QCEC Original SPIRE QCEC

Both 90 90 90 10 90 10
Just Main 10 90 55 90 90 95

Just Spurious 10 90 55 90 90 95
Neither 90 90 110 10 90 190

Setting 1: Counterfactuals can change an image’s label and the dataset is class-balanced. Be-
cause we have class balance, P(Main) = P(Spurious) = 0.5 and we can specify the training distribution
by specifying p = P(Main | Spurious). If p > 0.5, SPIRE moves images from {Both, Neither} to
{Just Main, Just Spurious} with probability 2p�1

2p for each of those four combinations. If p < 0.5,
SPIRE moves images from {Just Main, Just Spurious} to {Both, Neither} with probability p�0.5

p�1 .

Table 1 shows how SPIRE changes the training distributions for p = 0.9 and p = 0.1. For p = 0.9,
it succeeds at both of its goals. For p = 0.1, it produces the balanced distribution, but does add the
potential for new SPs because P(Main | Removed an object) = 0 and P(Main | Added an object) = 1.
We contrast SPIRE to the most closely related method, QCEC (Shetty et al., 2019), which removes
either Main or Spurious uniformly at random from each image. For both values of p, QCEC does not
make Main and Spurious independent and adds the potential for new SPs. This example highlights
the fact that, while prior work has used counterfactuals for data augmentation, SPIRE uses them in a
fundamentally different way by considering the training distribution.

Setting 2: Counterfactuals can change an image’s label, but the dataset has class imbalance.
In the presence of significant class imbalance, two parts of the definition of the balanced distribution
become problematic for an augmentation strategy:

• Preserves P(Main). When P(Main) is small, this constraint requires that we generate more
counterfactual images without Main than with it, which can introduce new potential SPs.

• Sets P(Spurious | not Main) = 0.5. When P(Spurious) is also small, this constraint requires that
most of the counterfactual images we generate belong to Just Spurious, which can lead to the
counterfactual data outnumbering the original data by a factor of 100 or more for this split.

Consequently, we relax these constraints. If P(Spurious | Main) > P(Spurious), SPIRE cre-
ates an equal number of images to add to Just Main/Spurious by removing the appropriate ob-
ject from an image from Both. Specifically, this number is the smallest positive solution to:

|Both|
|Both|+|Just Spurious|+� = |Just Main|+�

|Just Main|+|Neither|+� . Otherwise, SPIRE creates an equal number of images to
add to Both/Just Spurious by adding Spurious to Just Main/Neither. Specifically, this number solves:

|Both|+�
|Both|+|Just Spurious|+2� = |Just Main|

|Just Main|+|Neither| . In both cases, we cap � to be no larger than the smallest
source split. SPIRE achieves its primary goal by making P(Main | Spurious) = P(Main | not Spurious)
(i.e., Main and Spurious are now independent) and it achieves its secondary goal by adding an equal
number of counterfactual images with and without Main (i.e., P(Main | Artifact) = 0.5).

Setting 3: Counterfactuals cannot change an image’s label Because of this new constraint, the
previously described augmentation strategies cannot be applied. As a result, SPIRE removes Spurious
from every image with it and adds Spurious to every image without it. While this does achieve its
primary goal, it does not achieve its secondary goal (e.g., the correlation between the label and grey
boxes from removing Spurious is the same as the correlation between the label and Spurious).

4 EVALUATION

Because relying on the SP is usually helpful on the original distribution, we cannot measure the
effectiveness of a mitigation method using that distribution. Instead, we measure the model’s
performance on the balanced distribution using metrics such as accuracy and average precision.
Intuitively, using the balanced distribution provides a fairer comparison because the SP is neither
helpful nor harmful on it. However, like any performance metric that is aggregated over a distribution,
these metrics hide potentially useful details and are dependent on the distribution itself.
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We address these limitations by measuring the model’s accuracy on each of the image splits.3 These
per split accuracies yield a more detailed analysis and, further, allow us to calculate two “gap metrics,”
which give us a distribution-independent form of evaluation. The Recall Gap is the difference in
accuracy between Both and Just Main; the Hallucination Gap is the difference in accuracy between
Neither and Just Spurious. Intuitively, a smaller recall gap means that the model is more robust
to distribution shifts that move weight between Both and Just Main. The same is true for the
hallucination gap and shifts between Neither and Just Spurious. As a concrete example of these
metrics, consider the tennis racket example (Figure 3 Left), where we observe that the recall gap is
45.4% (i.e., the model is much more likely to detect a tennis racket when a person is present) and a
hallucination gap of 0.5% (i.e., the model is more likely to hallucinate a tennis racket when a person
is present; see Appendix C.2).

It is important to note that these per split accuracies are measured using only natural (i.e., not
counterfactual) images, in order to prevent the model from “cheating” by learning to use artifacts
in the counterfactual images. As a result, the gap metrics and the performance on the balanced
distribution also only use natural images because they are estimated from these accuracies.

Class Balanced vs Imbalanced Evaluation. When the dataset is class balanced, we use the standard
prediction threshold of 0.5 to measure a model’s performance using accuracy on the balanced
distribution (i.e., balanced accuracy) and its gap metrics. When there is class imbalance, Average
Precision (AP), which is the area under the precision vs recall curve, is the standard performance
metric. Analogous to AP, we can calculate the Average Recall Gap by finding the area under the
“absolute value of the recall gap” vs recall curve; the Average Hallucination Gap is defined similarly.
As a result, we measure a model’s performance using AP on the balanced distribution (i.e., balanced

AP) and the Average Recall/Hallucination Gaps.

5 EXPERIMENTS

We divide our experiments into three groups:

• In Section 5.1, we induce SPs with varying strengths by sub-sampling COCO in order to better
understand how mitigation methods work in a controlled setting. We show that SPIRE is more
effective at mitigating these SPs than prior methods. We also use these results to identify the best
prior method, which we use for comparisons for the remaining experiments.

• In Section 5.2, we find and fix SPs “in the wild” using all of COCO; this means finding multiple nat-
urally occurring SPs and fixing them simultaneously. We show that SPIRE identifies a wider range
of SPs than prior methods and that it is more effective at mitigating them. Additionally, we show
that it improves zero-shot generalization to two challenging datasets (UnRel and SpatialSense).

• In Section 5.3, we show how SPIRE generalizes beyond the setting considered for COCO. Specifi-
cally, we consider tasks other than object-detection and/or not using dataset annotations to create
counterfactual images.

For the baseline models (i.e., the normally trained models that contain the SPs that we are going to
identify and mitigate), we fine-tune a pre-trained version of ResNet18 (He et al., 2016) (Appendix D).
We compare SPIRE to RRR (Ross et al., 2017), QCEC (Shetty et al., 2019), CDEP (Rieger et al.,
2020), GS (Teney et al., 2020), and FS (Singh et al., 2020). We use the evaluation described in Section
4 and, for any split that is too small to produce a reliable accuracy estimate, we acquire additional
images (using Google Images) such that each split has at least 30 images to use for evaluation.

5.1 BENCHMARK EXPERIMENTS

We construct a set of benchmark tasks from COCO consisting of different SPs with varying strengths,
by manipulating the model’s training distribution, in order to better understand how mitigation
methods work in a controlled setting. Appendix E has additional details.

Creating the benchmark. We start by finding each pair of objects that has at least 100 images in
each split of the testing set (13 pairs). For each of those pairs, we create a series of controlled training

3In fact, we have to do this in order to estimate the model’s performance on the balanced distribution because
the only way we can estimate metrics like accuracy and average precision is by re-weighting the model’s accuracy
on each split. The same process allows us to estimate the model’s performance on any distribution.
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Figure 4: A comparison of the baseline model to various mitigation methods. The results shown are averaged
across both the pairs accepted for our benchmark and across eight trials. Left - Balanced Accuracy. For
p  0.2 and p � 0.8, SPIRE produces the most accurate models. None of the methods have much of an impact
for p = 0.4 or p = 0.6, likely because those create weak SPs. Center/Right - Recall/Hallucination Gaps.
SPIRE generally shrinks the absolute value of both of the gap metrics by more than prior methods.

sets of size 2000 by sampling images from the full training set such that P(Main) = P(Spurious) = 0.5
and p = P(Main | Spurious) ranges between 0.025 and 0.975. Each controlled training set represents a
binary task, where the goal is to predict the presence of Main.

While varying p allows us to control the strength of the correlation between Main and Spurious (i.e.,
p near 0 indicates a strong negative correlation while p near 1 indicates a strong positive correlation),
it does not guarantee that the model actually relies on the intended SP. Indeed, when measure the
models’ balanced accuracy as p varies, we observe that 5 out of the 13 pairs show little to no loss
in balanced accuracy as p approaches 1. Consequently, subsequent evaluation considers the other 8
pairs. For these pairs, the model’s reliance on the SP increases as p approaches 0 or 1 as evidenced
by the increasing loss of balanced accuracy and confirmed via counterfactual evaluation.

Results. Figure 4 (Left) presents the balanced accuracy results. We find that SPIRE consistently
improves balanced accuracy and that it does so by significantly more than prior methods. Interestingly,
while most prior methods are beneficial for strong positive SPs (p � 0.9), only FS is also (mildly)
beneficial for negative SPs (p < 0.5).

Figure 4 (Center/Right) presents the gap metric results. We find that SPIRE is the most effective
method at shrinking these metrics, which indicates that it produces a model that is more robust to
distribution shift. Interestingly, QCEC and GS, which are the two prior methods that include some
form of data augmentation, are the only prior methods that substantially shrink the gap metrics;
however, they do so at the cost of balanced accuracy for p < 0.9.

Overall, this experiment shows that SPIRE is an effective mitigation method and that our evaluation
framework enables us to easily understand how methods affect the behavior of a model. We use FS
as the baseline for comparison for the remaining experiments because, of the prior methods, it had
the best average balanced accuracy across p’s range.

5.2 FULL EXPERIMENT

We evaluate SPIRE “in the wild” by identifying and mitigating SPs learned by a multi-label binary
object-detection model trained on the full COCO dataset. Appendix F has additional details.

Identification. Out of all possible (Main, Spurious) pairs, we consider those which have at least 25
training images in Both (⇡ 2700). From these, SPIRE identifies 29 where the model’s prediction
changes at least 40% of the time when we remove Spurious; we verified that the model is relying
on these SPs by checking that it has large recall and hallucination gaps. Table 2 shows a few of the
identified SPs; overall, they are quite diverse: the spurious object ranges from common (e.g., person)
to rare (e.g., sheep); the SPs range from objects that are commonly co-located (e.g., tie-person) to
usually separate (e.g., dog-sheep); and a few Main objects (e.g., tie and frisbee) have more than one
associated SP. Notably, SPIRE identifies negative SPs (e.g., tie-cat) while prior work (Shetty et al.,
2019; Singh et al., 2020; Teney et al., 2020) has only found positive SPs (e.g., frisbee-person).
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Table 2: A few examples of the SPs identified by
SPIRE for the Full Experiment. For each pair, we
report several basic dataset statistics including bias,
P(Spurious | Main) - P(Spurious)

P(Spurious) , which captures how far Main
and Spurious are away from being independent as well
as the sign of their correlation.
Main Spurious P(M) P(S) P(S | M) bias

tie cat 0.03 0.04 0.01 -0.66
toothbrush person 0.01 0.54 0.54 -0.01
bird sheep 0.03 0.01 0.01 0.00
frisbee person 0.02 0.54 0.83 0.54
tie person 0.03 0.54 0.95 0.76
tennis racket person 0.03 0.54 0.99 0.83
dog sheep 0.04 0.01 0.03 1.05
frisbee dog 0.02 0.04 0.24 5.44
fork dining table 0.03 0.10 0.76 6.56

Table 3: Mitigation results for the Full Experiment.
Balanced AP is averaged across the SPs identified
by SPIRE. Similarly, the gap metrics are reported as
the “mean (median)” change from the baseline model,
aggregated across those SPs.

Original MAP Balanced AP %� Avg.
Recall Gap

%� Avg.
Hallucination Gap

Baseline 64.1 46.2 — —
SPIRE 63.7 47.3 -14.2 (-14.5) -28.1 (-27.3)
FS 62.5 44.7 9.7 (-5.9) 25.7 (-6.9)

Table 4: The MAP results of a zero-shot evaluation on
the classes that are in the UnRel/SpatialSense datasets
that SPIRE also identified as being Main in a SP.

UnRel SpatialSense

Baseline 38.9 20.3
SPIRE 41.3 20.7
FS 39.6 18.6

Mitigation. Unlike the Benchmark Experiments, this experiment requires mitigating many SPs
simultaneously. We do this by re-training the slice of the model’s final layer that corresponds to
Main’s class on an augmented dataset that combines SPIRE’s augmentation for each SP associated
with Main. All results shown (Tables 3 and 4) are averaged across eight trials.

We conclude that SPIRE significantly reduces the model’s reliance on these SPs based on two main
observations. First, it increases balanced AP by 1.1% and shrinks the average recall/hallucination
gaps by a factor of 14.2/28.1%, relative to the baseline model, on COCO. As expected, this does
slightly decrease Mean Average Precision (MAP) by 0.4% on the original (biased) distribution.
Second, it increases MAP on the UnRel (Peyre et al., 2017) and SpatialSense (Yang et al., 2019)
datasets. Because this evaluation was done in a zero-shot manner and these datasets are designed
to have objects in unusual contexts, this is further evidence that SPIRE improves performance and
distributional robustness. In contrast, FS decreases the model’s performance, has inconsistent effects
on the gap metrics, and has mixed results on the zero-shot evaluation.

SPIRE and Distributional Robustness. Noting that robustness to specific distribution shifts is one
of the consequences of mitigating SPs, we can contextualize the impact of SPIRE by considering an
extensive meta-analysis of methods that aim to provide general robustness (Taori et al., 2020). This
analysis finds that the only methods that consistently work are those that re-train the baseline model
on several orders of magnitude more data. It also describes two necessary conditions for a method to
work. Notably, SPIRE satisfies both of those conditions: first, it improves performance on the shifted
distributions (i.e., the balanced distributions, UnRel, and SpatialSense) and, second, this improvement
cannot be explained by increased performance on the original distribution. Consequently, SPIRE ’s
results are significant because they show improved robustness without using orders of magnitude
more training data. We hypothesize that SPIRE is successful because it targets specific SPs that the
baseline model relies on rather than using a less targeted approach.

5.3 GENERALIZATION EXPERIMENTS

We illustrate how SPIRE generalizes beyond the setting from our prior experiments, where we
considered the object-detection task and assumed that the dataset has annotations to use to cre-
ate counterfactual images. Specifically, we explore three examples that consider a different task
(Generalization 1) and/or do not make this assumption (Generalization 2).

Scene Identification Experiment (Generalization 1). In this experiment, we construct a scene
identification task using the image captions from COCO and show that SPIRE can identify and
mitigate a naturally occurring SP. To do this, we define two classes: one where the word “runway”
(the part of an airport where airplanes land) appears in the caption (1,134 training images) and another
where “street” appears (12,543 training images); images with both or without either are discarded.
For identification, we observe that removing all of the airplanes from an image of a runway changes
the model’s prediction 50.7% of the time and label this pattern as a SP.
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Table 5: Results for the Scene Identification Experiment
(averaged across sixteen trials).

Original AP Balanced AP %� Avg.
Recall Gap

%� Avg.
Hallucination Gap

Baseline 95.0 48.9 — —
SPIRE 92.8 83.2 -82.1 -75.5
FS 93.7 47.8 -11.5 3.7

Table 6: Results for the No Object Annotation Exper-
iment for the tennis racket example (averaged across
eight trials).

Original AP Balanced AP %� Avg.
Recall Gap

%� Avg.
Hallucination Gap

Baseline 93.9 79.9 — —
SPIRE 92.9 80.5 -31.3 -27.3
SPIRE-R 94.0 81.0 -9.1 -44.9
FS 92.9 80.7 -10.4 -22.3

Table 7: Results for the ISIC Experiment (averaged
across eight trials).

Original AP Balanced AP %� Avg.
Recall Gap

%� Avg.
Hallucination Gap

Baseline 78.3 71.0 — —
SPIRE-EM 78.8 76.4 -20.5 -39.0
FS 70.7 68.0 -31.3 -61.0

Table 5 shows the results. SPIRE reduces the
model’s reliance on this SP because it substan-
tially increases balanced AP and it reduces the
average recall and hallucination gaps by factors
of 82.1% and 75.5%. In contrast, FS is not ef-
fective at mitigating this SP.

No Object Annotation Experiment (Gener-
alization 2). In this experiment, we mitigate
the SP from the tennis racket example with-
out assuming that we have pixel-wise object-
annotations to create counterfactuals. Instead,
we train a linear (in the model’s representation
space) classifier to predict whether or not an
image contains a person (similar to Kim et al.
(2018)). Then, we project across this linear
classifier to essentially add or remove a person
from an image’s representation (so we call this
method SPIRE-R).

Table 6 shows the results. There are two main
results to note. First, that SPIRE provides a
small increase in Balanced AP while providing
the largest average decrease in the gap metrics. Second, that SPIRE-R is preferable to FS because it
produces a larger reduction in the hallucination gap while being comparable otherwise.

ISIC Experiment (Generalizations 1 & 2). In this experiment, we imitate the setup from (Rieger
et al., 2020) for the ISIC dataset (Codella et al., 2019). Specifically: the task is to predict whether
an image of a skin lesion is malignant or benign; the model learns to use a SP where it relies on a
“brightly colored sticker” that is spuriously correlated with the label; and the dataset does not have
annotations for those stickers to use create counterfactual images. For this experiment, we illustrate
another approach for working without annotations: using external models (so we call this method
SPIRE-EM) to produce counterfactual images. The external model could be an off-the-shelf model
(e.g., a model that locates text in an image or a GAN) or a simple pipeline such as the super-pixel
clustering one we use (see Appendix G.1).

Table 7 shows the results. We can see that SPIRE-EM is effective at mitigating this SP because it
generally improves performance while also shrinking the gap metrics.4 In contrast, FS does not
seem to be beneficial because it substantially reduces performance on both the original and balanced
distributions (which outweighs shrinking the gap metrics).

6 CONCLUSION

In this work, we introduced SPIRE as an end-to-end solution for addressing Spurious Patterns for
image classification models that are relying on spurious objects to make predictions. SPIRE identifies
potential SPs by measuring how often the model’s prediction changes when we remove the Spurious
object from an image with a positive label and mitigates SPs by shifting the training distribution
towards the balanced distribution while minimizing any correlations between the label and artifacts
in the counterfactual images. We demonstrated that SPIRE is able identify and, at least partially,
mitigate a diverse set of SPs by improving the model’s performance on the balanced distribution
and by making it more robust to specific distribution shifts. We found that these improvements
lead to improved zero-shot generalization to challenging datasets. Finally, we showed that SPIRE
can be applied to tasks other than object detection and we illustrated two potential ways to apply
SPIRE when there are no dataset annotations to use to create counterfactuals (creating counterfactual
representations and using external models).

4Note that, because the dataset does not contain enough malignant images with stickers to produce a reliable
accuracy estimate, we had to use counterfactual images for this evaluation. This may influence the results for
balanced AP and the recall gap metric. However, SPIRE-EM is still an improvement over the baseline because
of the original AP and hallucination gap metric results.
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7 ETHICS STATEMENT

While developing tools to identify and mitigate SPs should be useful for helping address some of the
ethical concerns around applying machine learning, these tools should not be viewed as a panacea for
addressing such concerns. Moreover, it is not impossible that similar ideas could be used to identify
and then exacerbate harmful patterns.

8 REPRODUCIBILITY STATEMENT

We provide a description of the data processing and model training process in Appendix D. Ad-
ditionally, we provide a link to the source code that was used to run all of the experiments in the
supplemental material.
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